JP2003284961A - Method for producing hydrocarbon hydrogenation treatment catalyst composition - Google Patents

Method for producing hydrocarbon hydrogenation treatment catalyst composition

Info

Publication number
JP2003284961A
JP2003284961A JP2002088162A JP2002088162A JP2003284961A JP 2003284961 A JP2003284961 A JP 2003284961A JP 2002088162 A JP2002088162 A JP 2002088162A JP 2002088162 A JP2002088162 A JP 2002088162A JP 2003284961 A JP2003284961 A JP 2003284961A
Authority
JP
Japan
Prior art keywords
hydrocarbon
catalyst composition
producing
hydrotreating catalyst
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002088162A
Other languages
Japanese (ja)
Inventor
Yuji Yoshimura
雄二 葭村
Toshio Sato
利夫 佐藤
Kyoko Bando
恭子 阪東
Takashi Kameoka
隆 亀岡
Hisaya Ishihara
久也 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2002088162A priority Critical patent/JP2003284961A/en
Publication of JP2003284961A publication Critical patent/JP2003284961A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a hydrocarbon hydrogenation treatment catalyst composition that is used for hydrogenation treatment of a hydrocarbon, particularly light oil, has a high desulfurization activity and a high hydrogenation capability for aromatic hydrocarbons, and a high level of resistance to sulfur compounds and nitrogen compounds, and has reduced deterioration in activity and a prolonged life. <P>SOLUTION: In the method for producing the hydrocarbon hydrogenation treatment catalyst composition in which a hydrogenation active component is carried on a carrier made of a crystalline aluminosilicate zeolite and/or a porous inorganic oxide, the carrier is impregnated with a hydrogenation active component-containing aqueous solution containing at least one kind of metal selected from noble metals of the eighth group of the periodic table, and then a microwave is applied thereto. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素の水素化
処理触媒組成物の製造方法に関し、更に詳しくは、軽油
中の硫黄および芳香族炭化水素を低減させる水素化処理
に使用して、高い脱硫活性と芳香族炭化水素の高い水素
化活性を有する水素化処理触媒組成物の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing a hydrocarbon hydrotreating catalyst composition, and more particularly, it is used for hydrotreating to reduce sulfur and aromatic hydrocarbons in light oil, The present invention relates to a method for producing a hydrotreating catalyst composition having desulfurization activity and high aromatic hydrocarbon hydrogenation activity.

【0002】[0002]

【従来の技術】従来、ディーゼルエンジンは、良燃費、
耐久性や信頼性、低CO排出の理由から商用車に多く
用いられている。しかし、このエンジンの有する経済的
優位性や地球環境保全に対する優位性とは裏腹に、ディ
ーゼル排ガスの都市部や道路沿岸域の大気汚染に及ぼす
影響は益々深刻になっている。特に、粒子状物質(す
す、有機溶剤不溶解分、硫酸塩、水分等から形成)の健
康への影響は強く懸念されており、粒子状物質を低減す
る方策としてエンジンの改良や排ガスの後処理技術が鋭
意検討されているが、軽油の品質を改善する方法の有効
性は世界的に認識されつつある。このため、軽油中の硫
黄分を低減させると同時に、芳香族炭化水素(特に多環
芳香族炭化水素)の低減を可能にする高水素化性能触媒
の開発は重要な課題となってきている。
2. Description of the Related Art Conventionally, diesel engines are
It is often used in commercial vehicles because of its durability, reliability, and low CO 2 emission. However, contrary to the economic superiority of this engine and the superiority to global environment conservation, the influence of diesel exhaust gas on air pollution in urban areas and road coastal areas is becoming more and more serious. In particular, the health effects of particulate matter (formed by soot, insolubles in organic solvents, sulfates, water, etc.) are strongly concerned. As a measure to reduce particulate matter, engine improvement and exhaust gas post-treatment Although the technology has been studied intensively, the effectiveness of the method for improving the quality of diesel oil is being recognized worldwide. For this reason, the development of a catalyst for high hydrogenation performance that can reduce the amount of sulfur in light oil and at the same time reduce the amount of aromatic hydrocarbons (particularly polycyclic aromatic hydrocarbons) has become an important issue.

【0003】炭化水素の水素化処理触媒組成物について
は、アルミナにニッケル−モリブデンやニッケル−タン
グステンを担持した硫化物触媒が多く用いられてきた。
これらの硫化物触媒は原料油中の硫黄化合物に対して優
れた耐硫黄被毒性を示すが、水素化活性は貴金属触媒に
比較して低いという問題があった。一方、貴金属触媒は
高い芳香環水素化活性を有するが、逆に硫黄化合物に対
する耐硫黄被毒性が十分でないため触媒寿命が短いとい
う問題があった。そのため、軽油のような高濃度の硫黄
を含む原料油を対象とする水素化処理の場合には、あら
かじめ硫黄濃度を低減させておく必要があった。
As a hydrocarbon hydrotreating catalyst composition, a sulfide catalyst in which nickel-molybdenum or nickel-tungsten is supported on alumina has been widely used.
These sulfide catalysts show excellent sulfur poisoning resistance to sulfur compounds in the feed oil, but have a problem that their hydrogenation activity is lower than that of the noble metal catalyst. On the other hand, the noble metal catalyst has a high aromatic ring hydrogenation activity, but on the contrary, there is a problem that the catalyst life is short because the sulfur poisoning resistance to the sulfur compound is not sufficient. Therefore, in the case of hydrotreating a feedstock oil containing a high concentration of sulfur such as light oil, it was necessary to reduce the sulfur concentration in advance.

【0004】前述の問題点を改善した水素化処理触媒組
成物として、本発明者らは、特開2001−24625
3号公報において、重希土類元素から選ばれた少なくと
も一種の元素と周期律表第VIII族貴金属から選ばれた少
なくとも一種の貴金属を含有することを特徴とする芳香
族炭化水素の水素化処理触媒組成物を提案した。該水素
化処理触媒組成物は、芳香族炭化水素等において高い水
素化活性および優れた耐硫黄被毒性や耐窒素被毒性を有
すると共に軽油中の硫黄成分を同時に低減させる、優れ
た効果を有する。しかしながら、地球環境問題解決に対
する国際的要求は高く、更なる水素化処理触媒組成物の
改善が望まれていた。
As a hydrotreating catalyst composition in which the above-mentioned problems have been improved, the inventors of the present invention have disclosed JP-A-2001-24625.
Japanese Patent Publication No. 3 discloses a hydrotreating catalyst composition for aromatic hydrocarbons containing at least one element selected from heavy rare earth elements and at least one noble metal selected from Group VIII noble metals of the periodic table. Suggested a thing. The hydrotreating catalyst composition has high hydrogenation activity in aromatic hydrocarbons and the like and excellent sulfur poisoning resistance and nitrogen poisoning resistance, and at the same time, has an excellent effect of reducing sulfur components in gas oil. However, international demands for solving global environmental problems are high, and further improvement of the hydrotreating catalyst composition has been desired.

【0005】一方、マイクロ波加熱法は、従来から調理
などに利用されているが、最近ではプラスチックの硬
化、セラミックスの乾燥・焼結など各方面に利用される
ようになった。マイクロ波加熱法の触媒調製技術への応
用については、例えば、特開平11−244696号公
報がある。この公報には、気相でエチレン、酢酸および
酸素または酸素含有ガスから高い選択率で酢酸ビニルを
得るための触媒製造法において、パラジウム及び/また
はその化合物、金および/またはその化合物並びにアル
カリ金属化合物を粒子状多孔質担体に担持させ、最終工
程でこの担体にマイクロ波を照射することによって製造
する方法が記載されている。しかし、炭化水素の水素化
処理触媒組成物の製造方法にマイクロ波加熱法を応用し
た例は見あたらない。
On the other hand, the microwave heating method has been conventionally used for cooking and the like, but recently, it has come to be used in various fields such as hardening of plastics and drying / sintering of ceramics. Regarding the application of the microwave heating method to the catalyst preparation technique, there is, for example, JP-A No. 11-244696. This publication describes a method for producing a catalyst for obtaining vinyl acetate with high selectivity from ethylene, acetic acid and oxygen or an oxygen-containing gas in a gas phase, palladium and / or a compound thereof, gold and / or a compound thereof and an alkali metal compound. Is supported on a particulate porous carrier, and the carrier is irradiated with microwaves in the final step to produce the product. However, there is no example of applying the microwave heating method to the method for producing a hydrocarbon hydrotreating catalyst composition.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、炭化
水素、特に軽油の水素化処理に使用して高い脱硫活性と
芳香族炭化水素への高い水素化機能を有し、しかも、硫
黄化合物や窒素化合物に対して高い耐性を有し、活性劣
化が少なく寿命の長い炭化水素の水素化処理触媒組成物
の製造方法を提供することにある。
The object of the present invention is to have a high desulfurization activity and a high hydrogenation function to aromatic hydrocarbons when used for the hydrotreatment of hydrocarbons, especially gas oil, and further, sulfur compounds. (EN) Provided is a method for producing a hydrotreating catalyst composition for a hydrocarbon, which has a high resistance to nitrogen compounds and has a long life with little activity deterioration.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前述の問
題点を解決するために鋭意研究を重ねた結果、炭化水素
の水素化処理触媒組成物の製造方法において、担体に水
素化活性成分を含浸した後マイクロ波を照射して乾燥す
ると、従来の加熱乾燥に比較して触媒組成物の脱硫活性
および水素化活性が高くなることを見出し、本発明を完
成するに至った。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, in the method for producing a hydrocarbon hydrotreating catalyst composition, the carrier has hydrogenation activity. We have found that when the components are impregnated and then dried by irradiation with microwaves, the desulfurization activity and hydrogenation activity of the catalyst composition are higher than in conventional heat drying, and the present invention has been completed.

【0008】即ち、前記課題は、次の(1)〜(6)の
発明によって解決される。 (1)結晶性アルミノシリケートゼオライトおよび/ま
たは多孔性無機酸化物からなる担体に水素化活性成分を
担持した炭化水素の水素化処理触媒組成物の製造方法に
於いて、該担体に周期律表第VIII族貴金属から選ばれた
少なくとも一種の貴金属を含有する水素化活性成分含有
水溶液を含浸した後、マイクロ波を照射することを特徴
とする炭化水素の水素化処理触媒組成物の製造方法に関
する。 (2)前記マイクロ波の周波数が2.45GHzである
(1)記載の炭化水素の水素化処理触媒組成物の製造方
法に関する。 (3)前記貴金属がパラジウム及び白金からなり、Pd
/Pt原子比が0.1/1〜10/1の範囲にあるもの
である(1)または(2)記載の炭化水素の水素化処理
触媒組成物の製造方法に関する。 (4)前記水素化活性成分が重希土類元素から選ばれた
少なくとも一種の元素を含有するものである(1)、
(2)または(3)記載の炭化水素の水素化処理触媒組
成物の製造方法に関する。 (5)前記炭化水素が軽油である(1)、(2)、
(3)または(4)記載の炭化水素の水素化処理触媒組
成物の製造方法に関する。 (6)前記炭化水素が芳香族炭化水素である(1)、
(2)、(3)、(4)または(5)記載の炭化水素の
水素化処理触媒組成物の製造方法に関する。
That is, the above problems can be solved by the following inventions (1) to (6). (1) In a process for producing a hydrocarbon hydrotreating catalyst composition comprising a carrier comprising a crystalline aluminosilicate zeolite and / or a porous inorganic oxide carrying a hydrogenation active component, the carrier is a periodic table The present invention relates to a method for producing a hydrocarbon hydrotreating catalyst composition, which comprises irradiating with microwaves after impregnating an aqueous solution containing a hydrogenation active component containing at least one noble metal selected from Group VIII noble metals. (2) The method for producing a hydrocarbon hydrotreating catalyst composition according to (1), wherein the microwave frequency is 2.45 GHz. (3) The precious metal is composed of palladium and platinum, and Pd
The method for producing a hydrocarbon hydrotreating catalyst composition according to (1) or (2), wherein the / Pt atomic ratio is in the range of 0.1 / 1 to 10/1. (4) The hydrogenation active component contains at least one element selected from heavy rare earth elements (1),
It relates to a method for producing the hydrocarbon hydrotreating catalyst composition according to (2) or (3). (5) The hydrocarbon is light oil (1), (2),
(3) or a method for producing the hydrocarbon hydrotreating catalyst composition according to (4). (6) The hydrocarbon is an aromatic hydrocarbon (1),
(2), (3), (4) or (5) The method for producing a hydrocarbon hydrotreating catalyst composition according to (5).

【0009】以下、本発明の好適な実施形態について、
詳細に説明する。
The preferred embodiments of the present invention will be described below.
The details will be described.

【0010】本発明の炭化水素の水素化処理触媒組成物
の製造方法で使用される担体は、結晶性アルミノシリケ
ートゼオライトおよび/または多孔性無機酸化物からな
る。結晶性アルミノシリケートゼオライトとしては、A
型ゼオライト、X型ゼオライト、Y型ゼオライト、L型
ゼオライト、ベータ型ゼオライト、モルデナイト、チャ
バサイト、エリオナイト、AlPO、SAPOやZS
Mゼオライトで代表されるペンタシル型ゼオライトなど
のMFI型ゼオライトなどが例示される。特に、SiO
/Alモル比が5以上、好ましくは10〜10
00、さらに好ましくは10〜300の超安定化Y型ゼ
オライトは、適当な固体酸を有するので好適である。
The carrier used in the method for producing the hydrocarbon hydrotreating catalyst composition of the present invention comprises crystalline aluminosilicate zeolite and / or porous inorganic oxide. As crystalline aluminosilicate zeolite, A
-Type zeolite, X-type zeolite, Y-type zeolite, L-type zeolite, beta-type zeolite, mordenite, chabazite, erionite, AlPO 4 , SAPO and ZS
Examples include MFI-type zeolite such as pentasil-type zeolite represented by M-zeolite. Especially SiO
2 / Al 2 O 3 molar ratio is 5 or more, preferably 10 to 10
00, more preferably 10-300, ultra-stabilized Y-zeolites are suitable as they have suitable solid acids.

【0011】また、多孔性無機酸化物としては、アルミ
ナ、シリカ、チタニア、ジルコニア、アルミナ−シリ
カ、アルミナ−チタニア、アルミナ−ボリア、アルミナ
−リン、シリカ−チタニア、アルミナ−シリカ−チタニ
ア、アルミナ−シリカ−ボリア、アルミナ−リン−ボリ
ア、アルミナ−チタニア−ボリア、アルミナ−シリカ−
リン、アルミナ−チタニア−リン−ボリアなど、通常、
炭化水素の水素化処理触媒用担体に使用される多孔性無
機酸化物が使用可能である。
As the porous inorganic oxide, alumina, silica, titania, zirconia, alumina-silica, alumina-titania, alumina-boria, alumina-phosphorus, silica-titania, alumina-silica-titania, alumina-silica. -Boria, alumina-phosphorus-boria, alumina-titania-boria, alumina-silica-
Phosphorus, alumina-titania-phosphorus-boria, etc.
Porous inorganic oxides used as carriers for hydrocarbon hydrotreating catalysts can be used.

【0012】結晶性アルミノシリケ−トゼオライトと多
孔性無機酸化物からなる担体では、工業触媒として使用
する場合の機械的強度等の点から、前述の結晶性アルミ
ノシリケートゼオライト/前述多孔性無機酸化物の重量
比は、好ましくは5/95〜95/5、さらに好ましく
は30/70〜95/5の範囲にあることが望ましい。
該担体は、結晶性アルミノシリケートゼオライトと多孔
性無機酸化物の前駆物質を混合し、成型、乾燥、焼成す
る公知の方法で製造することができる。特に、超安定化
Y型ゼオライトとアルミナ−ボリア混合担体が好適に使
用される。
A carrier comprising a crystalline aluminosilicate zeolite and a porous inorganic oxide is a carrier of the above-mentioned crystalline aluminosilicate zeolite / the above-mentioned porous inorganic oxide in view of mechanical strength when used as an industrial catalyst. The weight ratio is preferably 5/95 to 95/5, more preferably 30/70 to 95/5.
The carrier can be produced by a known method in which a crystalline aluminosilicate zeolite and a precursor of a porous inorganic oxide are mixed and molded, dried and fired. In particular, ultra-stabilized Y-type zeolite and alumina-boria mixed carrier are preferably used.

【0013】本発明の方法では、前述の担体に周期律表
第VIII族貴金属から選ばれた少なくとも一種の貴金属を
含有する水素化活性成分含有水溶液を含浸して水素化活
性成分を担持する。該貴金属としては、ルテニウム、ロ
ジウム、パラジウム、オスミウム、イリジウム、白金な
どが例示される。前記の貴金属の担持量は、金属として
0.1〜10重量%(触媒組成物基準)の範囲であるこ
とが好ましい。該貴金属の担持量が0.1重量%より少
ない場合には所望の水素化機能が得られないことがあ
り、また、10重量%より多くしても水素化機能の増加
は少なく、製造原価が高くなる傾向にある。該貴金属の
担持量のさらに好ましい範囲は、金属として0.5〜5
重量%である。
In the method of the present invention, the above-mentioned carrier is impregnated with a hydrogenation-active-ingredient-containing aqueous solution containing at least one noble metal selected from Group VIII noble metals of the periodic table to carry the hydrogenation-active component. Examples of the noble metal include ruthenium, rhodium, palladium, osmium, iridium and platinum. The amount of the noble metal supported is preferably in the range of 0.1 to 10% by weight (based on the catalyst composition) as metal. If the amount of the noble metal supported is less than 0.1% by weight, the desired hydrogenation function may not be obtained, and even if it exceeds 10% by weight, the hydrogenation function does not increase much and the manufacturing cost is low. It tends to be higher. A more preferable range of the amount of the noble metal supported is 0.5 to 5 as the metal.
% By weight.

【0014】前述の貴金属として、特にパラジウムと白
金を組み合わせて使用することが好適である。パラジウ
ムと白金を組み合わせて使用することにより、高い水素
化機能を維持し硫黄化合物に対する耐性が増大される。
これは、パラジウムが硫黄との親和性が高いため白金の
硫黄被毒を保護していると推定される。パラジウムと白
金の組み合わせは、Pd/Pt原子比で0.1/1〜1
0/1の範囲が望ましい。
It is preferable to use palladium and platinum in combination as the above-mentioned noble metal. The combined use of palladium and platinum maintains a high hydrogenation function and increases resistance to sulfur compounds.
It is presumed that palladium protects platinum from sulfur poisoning because it has a high affinity for sulfur. The combination of palladium and platinum has a Pd / Pt atomic ratio of 0.1 / 1 to 1
The range of 0/1 is desirable.

【0015】前述の貴金属を含有する水素化活性成分含
有水溶液(以下、含浸液ということがある)としては、
塩化ロジウム4水和物、塩化パラジウム、硝酸パラジウ
ム及びそのアンミン錯体や水酸化白金アンミン、白金ア
ンミン錯体などの水に溶解性の金属塩や錯体化合物など
の水溶液が使用される。
The aqueous solution containing a hydrogenation active component containing the above-mentioned noble metal (hereinafter sometimes referred to as impregnating solution) is as follows:
An aqueous solution of a water-soluble metal salt or complex compound such as rhodium chloride tetrahydrate, palladium chloride, palladium nitrate and its ammine complex, platinum ammine hydroxide, and platinum ammine complex is used.

【0016】本発明での水素化活性成分含有水溶液の担
体への含浸方法としては、一般に公知の含浸方法が採用
され、吸着(Adsorption)法、平衡吸着(E
quilibrium Adsorption)法、ポ
アフィリング(Pore−filling)法、インシ
ピアント ウエットネス(Incipient Wet
ness)法、蒸発乾個(Evaporation t
o Dryness)法、噴霧(Spray)法、イオ
ン交換(Ion−Exchange)法などが例示され
る。
As a method of impregnating the carrier with the aqueous solution containing a hydrogenation active component in the present invention, a generally known impregnation method is adopted, and an adsorption method, an equilibrium adsorption method (E) are used.
quibrium Adsorption method, Pore-filling method, incipient wetness (Incipient Wet)
Ness method, Evaporation dry
o Dryness) method, a spray (Spray) method, an ion exchange (Ion-Exchange) method, etc. are illustrated.

【0017】本発明の炭化水素の水素化処理触媒組成物
の製造方法では、前述の担体に前述の貴金属を含有する
水素化活性成分含有水溶液を含浸した後、マイクロ波を
照射することが特徴的である。マイクロ波としては、通
常、周波数にして1GHz〜1000GHzの範囲であ
るが、好ましくは1GHz〜10GHzである。特に、
2.45GHzの周波数は家庭で使用されている電子レ
ンジのマイクロ波と同じで水分子が共振して加熱される
のでとくに好適である。
The method for producing a hydrocarbon hydrotreating catalyst composition of the present invention is characterized in that the above-mentioned carrier is impregnated with an aqueous solution containing the above-mentioned noble metal-containing hydrogenation active component and then irradiated with microwaves. Is. The frequency of microwaves is usually in the range of 1 GHz to 1000 GHz, preferably 1 GHz to 10 GHz. In particular,
The frequency of 2.45 GHz is the same as the microwave of a microwave oven used at home, and water molecules resonate and are heated, which is particularly preferable.

【0018】本発明の方法では、前述の担体に含浸液を
含浸して得られた物(以下、含浸品ということがある)
に前記のマイクロ波を照射して水分を蒸発させて乾燥す
る。マイクロ波の照射は、含浸品の水分量が照射前の水
分量よりも5wt%以上、好ましくは10wt%以上、
更に好ましくは50〜100wt%減少するようにマイ
クロ波の強さおよび照射時間を調節するのが望ましい。
本発明の方法では、前述の含浸品にマイクロ波を照射し
た後、所望により、更に通常の方法で加熱乾燥すること
もできる。マイクロ波を照射し水分が減少された含浸品
は通常の方法、例えば、200〜700℃の温度で0.
1〜10時間焼成して水素化処理触媒組成物を得る。従
来の乾燥方法は、前述の含浸品に熱を加えて乾燥するた
め、含浸品の表面が最初に加熱され内部よりも表面部の
方が最初は温度が高くなる。そのため、含浸品の内部か
ら外表面へ水の移動が起こり、水の移動に伴って水素化
活性成分が外表面へ移動するため、水素化活性成分の分
散状態が不均一になる。本発明の方法では、前述の含浸
品にマイクロ波を照射すると含浸品に含まれる水分子が
マイクロ波により高速回転し、摩擦熱が生じ含浸品全体
の温度が上昇するため、内部と表面部で温度差が生じな
い。このため、含浸品の内部から外表面への水の移動が
少なく、水素化活性成分が均一に分散した状態で担持さ
れる。
In the method of the present invention, a product obtained by impregnating the above-mentioned carrier with an impregnating liquid (hereinafter sometimes referred to as impregnated product).
The above is irradiated with the microwave to evaporate the water and dry. The microwave irradiation is performed so that the water content of the impregnated product is 5 wt% or more, preferably 10 wt% or more than the water content before the irradiation.
More preferably, it is desirable to adjust the microwave intensity and irradiation time so as to reduce by 50 to 100 wt%.
In the method of the present invention, after the above-mentioned impregnated product is irradiated with microwaves, it can be further heated and dried by a usual method, if desired. The impregnated product in which the water content has been reduced by irradiation with microwaves is subjected to a conventional method, for example, at a temperature of 200 to 700 ° C.
It is calcined for 1 to 10 hours to obtain a hydrotreating catalyst composition. In the conventional drying method, the above-mentioned impregnated product is heated to be dried, so that the surface of the impregnated product is first heated and the temperature of the surface portion is initially higher than that of the inside. Therefore, water moves from the inside of the impregnated product to the outer surface, and the hydrogenation active component moves to the outer surface as the water moves, so that the dispersed state of the hydrogenation active component becomes non-uniform. In the method of the present invention, when the above-mentioned impregnated product is irradiated with microwaves, the water molecules contained in the impregnated product rotate at high speed due to microwaves, frictional heat is generated, and the temperature of the entire impregnated product rises. There is no temperature difference. For this reason, the migration of water from the inside of the impregnated product to the outer surface is small, and the hydrogenation active component is carried in a state in which it is uniformly dispersed.

【0019】本発明の方法では、前述の水素化活性成分
が周期律表第VIII族貴金属から選ばれた少なくとも一種
の貴金属の外に重希土類元素から選ばれた少なくとも一
種の元素を含有することが好ましい。本明細書で言う重
希土類元素とは、イッテルビウム(Yb)、ガドリウム
(Gd)、テルビウム(Tb)及びジスプロシウム(D
y)の4つの元素を意味する。重希土類元素の含有量
は、好ましくは金属として0.5〜40重量%(触媒組
成物基準)、さらに好ましくは2.0〜20重量%の範
囲にあることが望ましい。前記重希土類元素を含有せし
めることにより、触媒組成物の耐硫黄被毒性や耐窒素被
毒性の効果が増加される。なお、本発明の方法では、前
述の水素化活性成分は周期律表第VIII族貴金属の外に、
コバルト、ニッケル、モリブデン、タングステンなどの
水素化活性金属成分などをも含有することができる。
In the method of the present invention, the aforementioned hydrogenation active component may contain at least one element selected from heavy rare earth elements in addition to at least one noble metal selected from Group VIII noble metals of the periodic table. preferable. The heavy rare earth elements referred to in this specification include ytterbium (Yb), gadolinium (Gd), terbium (Tb), and dysprosium (D).
y) means four elements. The content of the heavy rare earth element is preferably 0.5 to 40% by weight (based on the catalyst composition) as a metal, and more preferably 2.0 to 20% by weight. By incorporating the heavy rare earth element, the effects of sulfur poisoning resistance and nitrogen poisoning resistance of the catalyst composition are increased. In the method of the present invention, the above-mentioned hydrogenation active component is a Group VIII noble metal of the periodic table,
Hydrogenation active metal components such as cobalt, nickel, molybdenum, and tungsten may also be contained.

【0020】本発明の方法で得られる水素化処理触媒組
成物は、炭化水素、特に、軽油の水素化脱硫・脱窒素処
理に好適に使用される。特に、軽油中の硫黄分を超深度
脱硫して生成油中の硫黄分を10ppm以下に水素化処
理することが長期間にわたって可能である。
The hydrotreating catalyst composition obtained by the method of the present invention is suitably used for hydrodesulfurization / denitrification treatment of hydrocarbons, especially light oil. In particular, it is possible for a long period of time to subject the sulfur content in light oil to ultra-deep desulfurization to hydrotreate the sulfur content in the produced oil to 10 ppm or less.

【0021】また、本発明の方法で得られる水素化処理
触媒組成物は、芳香族炭化水素における芳香環や複素芳
香族炭化水素における複素芳香環を水素化して脂肪族環
に変換させる水素化処理に好適に使用される。該触媒組
成物は、高められた水素化活性と同時に耐硫黄被毒性と
耐窒素被毒性を併せ持つ特徴を有している。
The hydrotreating catalyst composition obtained by the method of the present invention is a hydrotreating treatment for hydrogenating an aromatic ring in an aromatic hydrocarbon or a heteroaromatic ring in a heteroaromatic hydrocarbon to convert it to an aliphatic ring. It is preferably used for. The catalyst composition has a feature that it has both sulfur poisoning resistance and nitrogen poisoning resistance at the same time as the enhanced hydrogenation activity.

【0022】前述の芳香環には、ベンゼン環、ナフタレ
ン環、アントラセン環、フェナンスレン環等が包含され
る。また、複素芳香環には、窒素原子、酸素原子、硫黄
原子等の複素原子(ヘテロ原子)を環構成原子とする各
種の芳香環が包含される。複素芳香環としては、例え
ば、ピロール環、フラン環、ベンゾフラン環、チオナフ
テン環、チオフェン環、インドール環、オキサゾール
環、カルバゾール環、ピラン環、キノリン環、イソキノ
リン環、ピコリン環、チアゾール環、ピラゾール環、ピ
リジン環、トルイジン環、アクリジン環、ピリダジン
環、ピラジン環、フタラジン環、キノキサリン環等が挙
げられる。本発明の方法で得られる水素化処理触媒組成
物は、接触分解油、熱分解油、直留軽油、コーカーガス
オイル、水素化処理軽油、脱硫処理軽油などに含まれる
芳香族炭化水素の水素化に好適に使用される。
The above-mentioned aromatic ring includes benzene ring, naphthalene ring, anthracene ring, phenanthrene ring and the like. The heteroaromatic ring includes various aromatic rings having heteroatoms such as nitrogen atom, oxygen atom and sulfur atom as ring-constituting atoms. Examples of the heteroaromatic ring include a pyrrole ring, a furan ring, a benzofuran ring, a thionaphthene ring, a thiophene ring, an indole ring, an oxazole ring, a carbazole ring, a pyran ring, a quinoline ring, an isoquinoline ring, a picoline ring, a thiazole ring, a pyrazole ring, Examples thereof include a pyridine ring, a toluidine ring, an acridine ring, a pyridazine ring, a pyrazine ring, a phthalazine ring and a quinoxaline ring. The hydrotreating catalyst composition obtained by the method of the present invention is used for hydrocracking aromatic hydrocarbons contained in catalytically cracked oil, thermally cracked oil, straight-run light oil, coker gas oil, hydrotreated light oil, desulfurized light oil, etc. It is preferably used for.

【0023】また、本発明の方法で得られる水素化処理
触媒組成物は、通常の水素化反応条件が採用可能であ
り、具体的な水素化条件としては、水素分圧が2.9〜
14.7MPa、好ましくは3.9〜7.8MPa、反
応温度が200〜400℃、好ましくは250〜350
℃、液空間速度が0.1〜5.0h−1、好ましくは
2.0〜4.0h−1などを例示することができる。
Further, the hydrotreating catalyst composition obtained by the method of the present invention can employ ordinary hydrogenation reaction conditions, and specific hydrogenation conditions include a hydrogen partial pressure of 2.9 to.
14.7 MPa, preferably 3.9 to 7.8 MPa, reaction temperature 200 to 400 ° C., preferably 250 to 350
C., liquid hourly space velocity is 0.1 to 5.0 h −1 , preferably 2.0 to 4.0 h −1 .

【0024】[0024]

【実施例】以下に実施例を示し本発明を具体的に説明す
るが、本発明はこれにより限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

【0025】実施例1(触媒の調製) (1)担体の調整 触媒の調製に当り担体の1成分として、結晶性アルミノ
シリケートゼオライトとして超安定化Y型ゼオライト
〔東ソー(株)製、HSZ−360HUA、SiO
Alモル比=13.9、H型ゼオライト〕を用い
た。また、担体の他の1成分として多孔性無機酸化物で
あるアルミナを次のようにして調製した。即ち、アルミ
ナとして濃度5重量%のアルミン酸ナトリウム水溶液1
0kgを調合容器に入れ、この水溶液を撹拌しながら濃
度2重量%の硫酸アルミニウム水溶液をpHが7になる
まで添加し、擬ベーマイト形アルミナ水和物スラリーを
調製した。このアルミナ水和物スラリーを洗浄、熟成し
た後、加熱捏和してアルミナ捏和物を得た。次に、前記
超安定化Y型ゼオライト1050g(乾燥基準)と該ア
ルミナ捏和物450g(乾燥基準)を混合捏和し、直径
1/16インチの円柱状に押出成型した。次いで、該成
型物を110℃で16時間乾燥し、550℃で3時間焼
成して70重量%超安定化Y型ゼオライト−30重量%
アルミナ混合担体を調製した。
Example 1 (Preparation of catalyst) (1) Preparation of carrier As a component of a carrier for preparing a catalyst, a superstabilized Y-type zeolite as a crystalline aluminosilicate zeolite [manufactured by Tosoh Corp., HSZ-360HUA] , SiO 2 /
Al 2 O 3 molar ratio = 13.9, H-type zeolite] was used. Alumina, which is a porous inorganic oxide, was prepared as another component of the carrier as follows. That is, 1% aqueous solution of sodium aluminate having a concentration of 5% by weight as alumina
0 kg was put in a preparation container, and an aluminum sulfate aqueous solution having a concentration of 2% by weight was added to the aqueous solution with stirring until the pH became 7, to prepare a pseudo-boehmite alumina hydrate slurry. This alumina hydrate slurry was washed and aged, and then kneaded by heating to obtain an alumina kneaded product. Next, 1050 g of the ultra-stabilized Y-zeolite (dry basis) and 450 g of the alumina kneaded product (dry basis) were mixed and kneaded, and extrusion-molded into a cylinder having a diameter of 1/16 inch. Then, the molded product is dried at 110 ° C. for 16 hours and calcined at 550 ° C. for 3 hours to obtain 70% by weight of ultra-stabilized Y-type zeolite-30% by weight
An alumina mixed carrier was prepared.

【0026】(2)含浸 該70重量%超安定化Y型ゼオライト−30重量%アル
ミナの混合担体に、酢酸イッテルビウム、テトラアンミ
ンパラジウム塩化物水和物およびテトラアンミン白金塩
化物水和物を含浸法により担持させた。即ち、前述の混
合担体50g(乾燥基準)を、Ybとして3重量%のY
b(CHCOO)・4HO3.85g、Pdとし
て0.82重量%の[Pd(NH]Cl1.0
95gとPtとして0.38重量%の[Pt(NH
]Cl0.358gを純水に溶解して調製したYb
−Pd−Pt混合金属塩水溶液に浸漬した。次いで、こ
の含浸品を2.45GHzの周波数を持つマイクロ波を
10分間照射し、水分の96重量%を蒸発させて乾燥
し、酸素気流中(10L/min・50g)において3
00℃で3時間(昇温速度;0.5℃/min)焼成し
た。焼成後、粉砕して粒径22〜48meshに揃えて
触媒Aを調製した。
(2) Impregnation Ytterbium acetate, tetraamminepalladium chloride hydrate and tetraammineplatinum chloride hydrate are supported on a mixed carrier of the 70% by weight ultra-stabilized Y-type zeolite-30% by weight alumina by an impregnation method. Let That is, 50 g of the above-mentioned mixed carrier (dry basis) is used as Yb and 3% by weight of Y is added.
b (CH 3 COO) 3 · 4H 2 O3.85g, 0.82 wt% Pd [Pd (NH 3) 4 ] Cl 2 1.0
95 g and 0.38 wt% [Pt (NH 3 ) as Pt]
4 ] Cl 2 Yb prepared by dissolving 0.358 g of Cl 2 in pure water
It was immersed in a -Pd-Pt mixed metal salt aqueous solution. Next, this impregnated product was irradiated with a microwave having a frequency of 2.45 GHz for 10 minutes to evaporate 96% by weight of water to dry the product, and then to 3 in an oxygen stream (10 L / min · 50 g).
Firing was performed at 00 ° C. for 3 hours (heating rate; 0.5 ° C./min). After calcination, it was pulverized to have a particle size of 22 to 48 mesh and a catalyst A was prepared.

【0027】比較例1(触媒の調製) 実施例1で得た70重量%超安定化Y型ゼオライト−3
0重量%アルミナ混合担体50g(乾燥基準)を、Yb
として3重量%のYb(CHCOO)・4H
3.85g、Pdとして0.82重量%の[Pd(NH
]Cl1.095gとPtとして0.38重量
%の[Pt(NH]Cl0.358gを純水に
溶解して調製したYb−Pd−Pt混合金属塩水溶液に
浸漬した。次いで、この含浸品を真空中において60℃
で6時間乾燥し、酸素気流中(10L/min・50
g)において300℃で3時間(昇温速度;0.5℃/
min)焼成後、粉砕し、粒径を22〜48meshに
揃えて触媒Bを調製した。
Comparative Example 1 (Preparation of catalyst) 70% by weight superstabilized Y-zeolite-3 obtained in Example 1
50 g of 0 wt% alumina mixed carrier (dry basis) is added to Yb
As 3 wt% of Yb (CH 3 COO) 3 · 4H 2 O
3.85 g, Pd 0.82 wt% [Pd (NH
3 ) 4 ] Cl 2 1.095 g and 0.38 wt% [Pt (NH 3 ) 4 ] Cl 2 0.358 g as Pt were dissolved in pure water to prepare a Yb-Pd-Pt mixed metal salt aqueous solution. Soaked. Next, this impregnated product is vacuumed at 60 ° C.
Dry for 6 hours in an oxygen stream (10 L / min.50
g) at 300 ° C. for 3 hours (heating rate; 0.5 ° C. /
min) After calcination, it was pulverized and the particle size was adjusted to 22 to 48 mesh to prepare catalyst B.

【0028】実施例2(触媒の分散度測定) 実施例1及び比較例1で調製した触媒A、Bを用いて、
触媒表面に担持されている貴金属の分散度を全自動触媒
ガス吸着量測定装置(大倉理研製)を用い気体吸着法で
求めた。即ち、それぞれの触媒0.1gを専用セルに採
取し、300℃で1時間水素還元した後COを化学吸着
させ、その吸着量から求められる表面原子数から分散度
を求めた。なお、貴金属の分散度は、担持された金属の
全原子数に対する触媒表面に露出している原子数の比と
して定義される。その結果を表1に示す。
Example 2 (Measurement of Dispersion of Catalyst) Using the catalysts A and B prepared in Example 1 and Comparative Example 1,
The degree of dispersion of the noble metal supported on the catalyst surface was determined by a gas adsorption method using a fully automatic catalyst gas adsorption amount measuring device (Okura Riken). That is, 0.1 g of each catalyst was sampled in a dedicated cell, hydrogen was reduced at 300 ° C. for 1 hour, CO was chemically adsorbed, and the dispersity was determined from the number of surface atoms determined from the adsorption amount. The degree of dispersion of the noble metal is defined as the ratio of the number of atoms exposed on the catalyst surface to the total number of atoms of the supported metal. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】また、別途に超安定化Y型ゼオライト−ア
ルミナ混合担体上に担持した貴金属の形態を透過電子顕
微鏡で観察し、貴金属粒子径と分散度との関係を調べた
結果、分散度が20%で貴金属粒子径は約80Åであ
り、分散度が50%で貴金属粒子径は約20Åであっ
た。このことから、触媒Aの貴金属粒子径は10Å以
下、触媒Bの貴金属粒子径は10〜20Åと推察され、
従来の乾燥法(真空乾燥)に比べマイクロ波照射乾燥で
は貴金属が高分散状態で担持されていることがわかる。
The morphology of the noble metal separately supported on the ultra-stabilized Y-type zeolite-alumina mixed carrier was observed with a transmission electron microscope, and the relationship between the noble metal particle size and the dispersity was examined. %, The noble metal particle size was about 80Å, and the dispersity was 50%, and the noble metal particle size was about 20Å. From this, it is assumed that the catalyst A has a precious metal particle size of 10 Å or less, and the catalyst B has a precious metal particle size of 10 to 20 Å,
It can be seen that the noble metal is supported in a highly dispersed state in the microwave irradiation drying as compared with the conventional drying method (vacuum drying).

【0031】実施例3(触媒の評価) 実施例1及び比較例1で調製した触媒A、Bを用いて硫
黄および窒素化合物を含む芳香族炭化水素油の水素化脱
硫活性と水素化活性を評価した。触媒は反応前に還元処
理を行った。触媒を反応管に充填し、水素気流中(常
圧、0.2L/min)、300℃で3時間(昇温速
度;0.5℃/min)還元した。反応試験は、高圧固
定床流通式反応装置(アップフローモード)で、原料油
の水素化脱硫活性と水素化活性(テトラリンからデカリ
ンへの転化率)を調べた。なお、原料油はつぎのように
調製した。すなわち、n−ヘキサデカン279.17g
にテトラリン120gを添加して撹拌混合し、この混合
溶液に4,6−ジメチルジベンゾチオフェン0.79g
とn−ブチルアミン0.04gを加え、撹拌溶解して原
料油400gを調製した。原料油中の各成分の濃度は、
テトラリン30wt%、4,6−ジメチルジベンゾチオ
フェン0.20wt%、n−ブチルアミン0.01wt
%、n−ヘキサデカン69.79wt%、であり、硫黄
濃度として300wtppm、窒素濃度として20wt
ppmに相当するものである。反応は、触媒量0.25
g、水素分圧3.9MPa、反応温度280℃、液空間
速度(WHSV)16h−1、H/Oil比500N
l/lの条件で行った。液体生成物は定期的に採取し、
水素炎イオン化検出器(FID=Flame Ioni
zation Detector)及びキャピラリーカ
ラムを備えたガスクロマトグラフで分析した。また、硫
黄の分析には電量滴定法による硫黄分析装置を用いた。
その結果を図1(水素化脱硫活性)と図2(水素化活
性)に示す。図1および2から本発明の方法で調製され
た触媒Aは、従来法で調製された触媒Bよりも、脱硫活
性および水素化活性が高いことが分かる。
Example 3 (Evaluation of catalyst) Using the catalysts A and B prepared in Example 1 and Comparative Example 1, the hydrodesulfurization activity and hydrogenation activity of aromatic hydrocarbon oils containing sulfur and nitrogen compounds were evaluated. did. The catalyst was reduced before the reaction. The catalyst was filled in a reaction tube and reduced in a hydrogen stream (normal pressure, 0.2 L / min) at 300 ° C. for 3 hours (heating rate: 0.5 ° C./min). In the reaction test, the hydrodesulfurization activity and hydrogenation activity (conversion rate from tetralin to decalin) of the feedstock were examined using a high pressure fixed bed flow reactor (upflow mode). The raw material oil was prepared as follows. That is, 279.17 g of n-hexadecane
120 g of tetralin was added to and mixed with stirring, and 0.79 g of 4,6-dimethyldibenzothiophene was added to the mixed solution.
And n-butylamine (0.04 g) were added and dissolved by stirring to prepare 400 g of raw material oil. The concentration of each component in the raw oil is
Tetralin 30 wt%, 4,6-dimethyldibenzothiophene 0.20 wt%, n-butylamine 0.01 wt
%, N-hexadecane 69.79 wt%, sulfur concentration 300 wt ppm, nitrogen concentration 20 wt
It corresponds to ppm. The reaction amount is 0.25
g, hydrogen partial pressure 3.9 MPa, reaction temperature 280 ° C., liquid hourly space velocity (WHSV) 16 h −1 , H 2 / Oil ratio of 500 N.
It was carried out under the condition of 1 / l. Liquid products are collected regularly,
Hydrogen flame ionization detector (FID = Frame Ioni)
Zation Detector) and a gas chromatograph equipped with a capillary column. A sulfur analyzer by coulometric titration was used for sulfur analysis.
The results are shown in FIG. 1 (hydrodesulfurization activity) and FIG. 2 (hydrogenation activity). It can be seen from FIGS. 1 and 2 that the catalyst A prepared by the method of the present invention has higher desulfurization activity and hydrogenation activity than the catalyst B prepared by the conventional method.

【0032】[0032]

【発明の効果】本発明の製造方法で得られる水素化処理
触媒組成物は、水素化活性成分である貴金属が均一に高
分散しているため、軽油、芳香族及び複素芳香族炭化水
素等の水素処理に使用して高い水素化脱硫活性と水素化
活性を有し、硫黄および窒素化合物に対して高い耐性を
示し、活性劣化が少ない。
INDUSTRIAL APPLICABILITY The hydrotreating catalyst composition obtained by the production method of the present invention, in which the noble metal which is the hydrogenation active component is uniformly and highly dispersed, can be used for gas oil, aromatic and heteroaromatic hydrocarbons and the like. It has high hydrodesulfurization activity and hydrogenation activity when used for hydrotreating, shows high resistance to sulfur and nitrogen compounds, and has little activity deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3における硫黄および窒素化合物を含む
芳香族炭化水素油の水素化脱硫活性の経時変化の結果を
示す。
FIG. 1 shows the results of changes over time in hydrodesulfurization activity of aromatic hydrocarbon oils containing sulfur and nitrogen compounds in Example 3.

【図2】実施例3における硫黄および窒素化合物を含む
芳香族炭化水素油のテトラリンからデカリンへの転化率
の経時変化の結果を示す。
FIG. 2 shows the results of changes over time in the conversion rate from tetralin to decalin of an aromatic hydrocarbon oil containing sulfur and nitrogen compounds in Example 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10G 45/54 C10G 45/54 (72)発明者 佐藤 利夫 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所 つくばセンター内 (72)発明者 阪東 恭子 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所 つくばセンター内 (72)発明者 亀岡 隆 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 石原 久也 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 Fターム(参考) 4G069 AA03 AA08 BA01A BA01B BA07A BA07B BB04A BC41A BC44B BC69A BC72A BC72B BC75A BC75B CC02 DA05 EA06 FA01 FA02 FB30 FB57 FB58 FC08 ZA05B 4H029 CA00 DA00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C10G 45/54 C10G 45/54 (72) Inventor Toshio Sato 1-1-1 East, Tsukuba, Ibaraki Prefecture Institute of Human Science and Technology Research Center Tsukuba Center (72) Inventor Kyoko Bando 1-1-1 Higashi, Tsukuba City, Ibaraki Prefecture 13-2 Kitaminato-cho Catalysis Kasei Kogyo Co., Ltd. Wakamatsu Plant (72) Inventor Hisaya Ishihara 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu City, Fukuoka Prefecture F-term (catalyst Kasei Kasei Co., Ltd. Wakamatsu Plant) 4G069 AA03 AA08 BA01A BA01B BA07A BA07B BB04A BC41A BC44B BC69A BC72A BC72B BC75A BC75B CC02 DA05 EA06 FA01 FA02 FB30 FB57 FB58 FC08 ZA05B 4H029 CA00 DA00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 結晶性アルミノシリケートゼオライトお
よび/または多孔性無機酸化物からなる担体に水素化活
性成分を担持した炭化水素の水素化処理触媒組成物の製
造方法に於いて、該担体に周期律表第VIII族貴金属から
選ばれた少なくとも一種の貴金属を含有する水素化活性
成分含有水溶液を含浸した後、マイクロ波を照射するこ
とを特徴とする炭化水素の水素化処理触媒組成物の製造
方法。
1. A method for producing a hydrocarbon hydrotreating catalyst composition comprising a carrier comprising a crystalline aluminosilicate zeolite and / or a porous inorganic oxide carrying a hydrogenation active component, wherein the carrier has a periodic pattern. Table 1. A method for producing a hydrocarbon hydrotreating catalyst composition, which comprises irradiating with microwaves after impregnating an aqueous solution containing a hydrogenation active component containing at least one noble metal selected from Group VIII noble metals.
【請求項2】 前記マイクロ波の周波数が2.45GH
zである請求項1記載の炭化水素の水素化処理触媒組成
物の製造方法。
2. The frequency of the microwave is 2.45 GH
The method for producing a hydrocarbon hydrotreating catalyst composition according to claim 1, wherein z is z.
【請求項3】 前記貴金属がパラジウム及び白金からな
り、Pd/Pt原子比が0.1/1〜10/1の範囲に
あるものである請求項1または2記載の炭化水素の水素
化処理触媒組成物の製造方法。
3. The hydrocarbon hydrotreating catalyst according to claim 1, wherein the noble metal is composed of palladium and platinum, and the Pd / Pt atomic ratio is in the range of 0.1 / 1 to 10/1. A method for producing a composition.
【請求項4】 前記水素化活性成分が重希土類元素から
選ばれた少なくとも一種の元素を含有するものである請
求項1、2または3記載の炭化水素の水素化処理触媒組
成物の製造方法。
4. The method for producing a hydrocarbon hydrotreating catalyst composition according to claim 1, 2 or 3, wherein the hydrogenation active component contains at least one element selected from heavy rare earth elements.
【請求項5】 前記炭化水素が軽油である請求項1、
2、3または4記載の炭化水素の水素化処理触媒組成物
の製造方法。
5. The hydrocarbon according to claim 1, wherein the hydrocarbon is light oil.
5. A method for producing a hydrocarbon hydrotreating catalyst composition according to 2, 3 or 4.
【請求項6】 前記炭化水素が芳香族炭化水素である
請求項1、2、3、4または5記載の炭化水素の水素化
処理触媒組成物の製造方法。
6. The method for producing a hydrocarbon hydrotreating catalyst composition according to claim 1, 2, 3, 4, or 5, wherein the hydrocarbon is an aromatic hydrocarbon.
JP2002088162A 2002-03-27 2002-03-27 Method for producing hydrocarbon hydrogenation treatment catalyst composition Pending JP2003284961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088162A JP2003284961A (en) 2002-03-27 2002-03-27 Method for producing hydrocarbon hydrogenation treatment catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088162A JP2003284961A (en) 2002-03-27 2002-03-27 Method for producing hydrocarbon hydrogenation treatment catalyst composition

Publications (1)

Publication Number Publication Date
JP2003284961A true JP2003284961A (en) 2003-10-07

Family

ID=29234111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088162A Pending JP2003284961A (en) 2002-03-27 2002-03-27 Method for producing hydrocarbon hydrogenation treatment catalyst composition

Country Status (1)

Country Link
JP (1) JP2003284961A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344754A (en) * 2003-05-21 2004-12-09 National Institute Of Advanced Industrial & Technology Method for preparing catalyst composition for hydrogenating hydrocarbon
JP2005000873A (en) * 2003-06-13 2005-01-06 Catalysts & Chem Ind Co Ltd Method for producing hydrotreating catalyst composition of hydrocarbon
JP2005013930A (en) * 2003-06-27 2005-01-20 Catalysts & Chem Ind Co Ltd Method for preparing alumina-containing porous inorganic oxide carrier and hydrogenating catalyst composition using the carrier
JP2005305417A (en) * 2004-03-26 2005-11-04 Ngk Insulators Ltd Honeycomb filter having catalytic function and manufacturing method therefor
JP2006297313A (en) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology Method for manufacturing catalyst for hydrogenating light oil
JP2008514420A (en) * 2004-10-01 2008-05-08 エクソンモービル リサーチ アンド エンジニアリング カンパニー Ex-situ reduction and dry passivation of precious metal catalysts
JP2010142741A (en) * 2008-12-19 2010-07-01 Cataler Corp Catalyst for purifying exhaust gas, and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344754A (en) * 2003-05-21 2004-12-09 National Institute Of Advanced Industrial & Technology Method for preparing catalyst composition for hydrogenating hydrocarbon
JP2005000873A (en) * 2003-06-13 2005-01-06 Catalysts & Chem Ind Co Ltd Method for producing hydrotreating catalyst composition of hydrocarbon
JP2005013930A (en) * 2003-06-27 2005-01-20 Catalysts & Chem Ind Co Ltd Method for preparing alumina-containing porous inorganic oxide carrier and hydrogenating catalyst composition using the carrier
JP2005305417A (en) * 2004-03-26 2005-11-04 Ngk Insulators Ltd Honeycomb filter having catalytic function and manufacturing method therefor
JP2008514420A (en) * 2004-10-01 2008-05-08 エクソンモービル リサーチ アンド エンジニアリング カンパニー Ex-situ reduction and dry passivation of precious metal catalysts
JP2006297313A (en) * 2005-04-21 2006-11-02 National Institute Of Advanced Industrial & Technology Method for manufacturing catalyst for hydrogenating light oil
JP4721759B2 (en) * 2005-04-21 2011-07-13 独立行政法人産業技術総合研究所 Method for producing hydrotreating catalyst for light oil
JP2010142741A (en) * 2008-12-19 2010-07-01 Cataler Corp Catalyst for purifying exhaust gas, and method for producing the same

Similar Documents

Publication Publication Date Title
JP6812316B2 (en) Hydrogenation catalyst and how to make it
US7429550B2 (en) Hydrogenation catalyst for hydrocarbon oil and process for hydrogenation using the catalyst
CA2071649A1 (en) Hydrogenation catalyst and process
KR950000881B1 (en) Novel iron-coating aluminosilicate
JP5543150B2 (en) Selective hydrogenation catalyst for aromatic nitro compounds, process for producing and regenerating the same, and process for selective hydrogenation of aromatic nitrated compounds using the same
JP2003284961A (en) Method for producing hydrocarbon hydrogenation treatment catalyst composition
JP4370124B2 (en) Hydrotreating catalyst composition
Infantes-Molina et al. Catalysts based on Co/zirconium doped mesoporous silica MSU for the hydrogenation and hydrogenolysis/hydrocracking of tetralin
JP4721759B2 (en) Method for producing hydrotreating catalyst for light oil
Welters et al. Hydrocracking of n-decane over zeolite-supported metal sulfide catalysts. 1. CaY-supported transition metal sulfides
KR100587248B1 (en) Process for the preparation of phenol by means of the hydrodeoxygenation of benzenediols
Infantes-Molina et al. Effect of molybdenum and tungsten on Co/MSU as hydrogenation catalysts
JP4394787B2 (en) Aromatic hydrocarbon hydrogenation catalyst composition
RU2649384C1 (en) Method of hydro-treatment of hydrocracking raw materials
JP4439069B2 (en) Aromatic hydrocarbon hydrogenation catalyst composition
RU2607905C1 (en) Catalyst for hydrocracking hydrocarbon material
RU2626396C1 (en) Hydrocarbons crude hydrocraking catalyst
RU2603776C1 (en) Method of hydrocracking hydrocarbon material
CA2691886A1 (en) Catalyst compositions with permselective coatings, methods of making same, and uses thereof
JP3463089B2 (en) Hydrogenation catalyst, hydrogenation method, and gas oil hydrotreating method
JP2005000873A (en) Method for producing hydrotreating catalyst composition of hydrocarbon
FI74410C (en) Hydrocracking catalyst composition comprising a nickel component and a tungsten component on a silica-alumina support material and process for making the same.
JP4523714B2 (en) Hydrocarbon hydrogenation catalyst composition and hydrocarbon hydrogenation method using the catalyst composition
JP4485625B2 (en) Aromatic hydrocarbon hydrogenation catalyst composition
RU2788742C1 (en) Hydrocracking catalyst of hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050311

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A977 Report on retrieval

Effective date: 20080123

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A131 Notification of reasons for refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080908

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A02