JP2003279287A - Heat transfer pipe support structure of steam generator - Google Patents

Heat transfer pipe support structure of steam generator

Info

Publication number
JP2003279287A
JP2003279287A JP2002084413A JP2002084413A JP2003279287A JP 2003279287 A JP2003279287 A JP 2003279287A JP 2002084413 A JP2002084413 A JP 2002084413A JP 2002084413 A JP2002084413 A JP 2002084413A JP 2003279287 A JP2003279287 A JP 2003279287A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
support structure
steam generator
tube support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002084413A
Other languages
Japanese (ja)
Inventor
Kimitoshi Yoneda
公俊 米田
Masahiro Furuya
正裕 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2002084413A priority Critical patent/JP2003279287A/en
Publication of JP2003279287A publication Critical patent/JP2003279287A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0135Auxiliary supports for elements for tubes or tube-assemblies formed by grids having only one tube per closed grid opening
    • F28F9/0136Auxiliary supports for elements for tubes or tube-assemblies formed by grids having only one tube per closed grid opening formed by intersecting strips

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent disturbance of a flow of secondary cooling water, and to reduce a manufacturing cost. <P>SOLUTION: This heat transfer pipe support structure 1 of a steam generator supports a large number of heat transfer pipes of the steam generator so as to bundle the pipes. A plurality of band plates 3 are combined in a grating shape by opposing side surfaces 3a and 3b, and the heat transfer pipes 2 are inserted into a large number of grating spaces 4 formed between the plurality of band plates 3, and are supported by heat transfer pipe support parts 3e and 3f of the side surfaces 3a and 3b of the band plates 3 for surrounding the heat transfer pipes 2. A projecting part 5 for supporting the heat transfer pipes 2 is formed in the heat transfer pipe support parts 3e and 3f, and the projecting part 5 for supporting the same heat transfer pipe 2 supports the same circumference of the heat transfer pipes 2. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気発生器の伝熱
管支持構造体に関する。更に詳しくは、複数の帯板を格
子状に交差させて組合せ、多数形成された格子空間に伝
熱管を挿入することで、蒸気発生器の多数の伝熱管を束
ねるように支持する蒸気発生器の伝熱管支持構造体に関
するものである。
TECHNICAL FIELD The present invention relates to a heat transfer tube support structure for a steam generator. More specifically, by combining a plurality of strips in a grid shape and inserting a heat transfer tube into a large number of formed grid spaces, a steam generator that supports a large number of heat transfer tubes of the steam generator in a bundle is formed. The present invention relates to a heat transfer tube support structure.

【0002】[0002]

【従来の技術】加圧水型原子炉(PWR)の蒸気発生器
(SG)内には、例えば3000本を越える逆U字型伝
熱管が鉛直に設置されており、この管群を支持する目的
で高さ方向に所定間隔で伝熱管支持構造体が設置されて
いる。
2. Description of the Related Art In a steam generator (SG) of a pressurized water nuclear reactor (PWR), for example, more than 3000 inverted U-shaped heat transfer tubes are vertically installed, and for the purpose of supporting this tube group. The heat transfer tube support structures are installed at predetermined intervals in the height direction.

【0003】伝熱管支持構造体としては、図8に示すド
リル型支持板101、図9に示すBEC型支持板10
2、図10に示すエッグクレート式伝熱管支持構造体1
03がある。
As the heat transfer tube supporting structure, a drill type supporting plate 101 shown in FIG. 8 and a BEC type supporting plate 10 shown in FIG.
2. Egg crate type heat transfer tube support structure 1 shown in FIG.
There is 03.

【0004】ドリル型支持板101は伝熱管104を挿
通させる孔105を多数形成した板材であり、4つの孔
105の中心を結ぶ対角線の交点を中心にして流路(ブ
ローホール)106を形成し、二次冷却水を流すように
している。また、BEC型支持板102も伝熱管104
を挿通させる孔105を多数形成した板材であり、当該
孔105の周囲の数箇所に切り欠き107を形成し、こ
の切り欠き107をフローホールにしている。
The drill-type support plate 101 is a plate material having a large number of holes 105 through which the heat transfer tubes 104 are inserted, and a flow path (blow hole) 106 is formed around the intersection of the diagonal lines connecting the centers of the four holes 105. The secondary cooling water is made to flow. In addition, the BEC type support plate 102 is also a heat transfer tube 104.
It is a plate material in which a large number of holes 105 through which the holes are inserted are formed, and notches 107 are formed at several places around the holes 105, and the notches 107 serve as flow holes.

【0005】エッグクレート式伝熱管支持構造体103
として、例えば特開平11−201684号公報に開示
されたものがある。この伝熱管支持構造体103は多数
の帯板108を格子状に組み合わせたものであり、各帯
板108間に形成される格子空間109に伝熱管104
を挿入し、各伝熱管104を囲む帯板108の側面で当
該伝熱管104を支持している。各帯板108の側面に
は丸孔110が形成されており、二次冷却水の流通を可
能にしてドライアウト領域の生成を抑制している。
Egg crate type heat transfer tube support structure 103
For example, there is one disclosed in Japanese Patent Laid-Open No. 11-201684. The heat transfer tube support structure 103 is a combination of a large number of strips 108 arranged in a grid, and the heat transfer tubes 104 are placed in a lattice space 109 formed between the strips 108.
The heat transfer tubes 104 are supported by the side surface of the strip 108 surrounding each heat transfer tube 104. A round hole 110 is formed on the side surface of each strip 108 to allow the secondary cooling water to flow therethrough and suppress the generation of a dryout region.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ドリル
型支持板101では伝熱管104の周囲にわずかな隙間
(クレビス部)111が発生するので、このクレビス部
111で二次冷却水の流れが滞留し、伝熱によるドライ
アウト領域の生成、そして沸騰濃縮により、伝熱管10
4を腐食させる虞がある。
However, since a slight gap (clevis portion) 111 is generated around the heat transfer tube 104 in the drill type support plate 101, the flow of the secondary cooling water stays in this clevis portion 111. The heat transfer tube 10 is formed by the formation of the dry-out region by heat transfer, and the boiling concentration.
4 may be corroded.

【0007】この様な腐食の発生を防止するために伝熱
管104周囲の滞留域を消滅させ、沸騰濃縮を抑制する
目的で開発されたものがBEC型支持板102である。
しかしながら、このBEC型支持板102では、フロー
ホール107にスケール112が付着して二次冷却水の
流路の閉塞率を上げるという現象が生じることがある。
一般にこのような流体中の不純物付着現象は電気化学と
熱流動の両因子による複合現象であると考えられる。こ
の現象で特徴的なのはスケール112が付着する場所が
伝熱管104の表面ではないことであり、二次冷却水の
下流側に設けられたフローホール107の伝熱管104
から離れた場所にスケール112の発生が顕著に見られ
ることである。このことからこの現象は伝熱が主因子で
はなく、二次冷却水の流れの乱れや圧力などの流動特性
が急激に変化していることが大きく関与していると考え
られる。従って、二次冷却水の流動特性の変化を極力抑
えることができる伝熱管支持構造体の開発が必要であ
る。また、蒸気発生器全体の二次冷却水の流動抵抗を軽
減するためには、二次冷却水の圧力損失が小さく、二次
冷却水の流動を複雑にしないフローホールを形成する必
要がある。
The BEC type support plate 102 was developed for the purpose of eliminating the accumulation area around the heat transfer tube 104 in order to prevent the occurrence of such corrosion and suppress the boiling concentration.
However, in this BEC type support plate 102, a phenomenon may occur in which the scale 112 is attached to the flow hole 107 and the blocking rate of the flow path of the secondary cooling water is increased.
It is generally considered that such an impurity attachment phenomenon in a fluid is a composite phenomenon due to both electrochemical and thermal fluid factors. A characteristic of this phenomenon is that the place where the scale 112 adheres is not the surface of the heat transfer tube 104, and the heat transfer tube 104 of the flow hole 107 provided on the downstream side of the secondary cooling water is located.
That is, the generation of the scale 112 is remarkably observed at a place distant from. From this fact, it is considered that the heat transfer is not the main factor in this phenomenon, and that the flow characteristics such as the turbulence and the pressure of the secondary cooling water are drastically changed. Therefore, it is necessary to develop a heat transfer tube support structure capable of suppressing changes in the flow characteristics of the secondary cooling water as much as possible. Further, in order to reduce the flow resistance of the secondary cooling water of the entire steam generator, it is necessary to form a flow hole in which the pressure loss of the secondary cooling water is small and the flow of the secondary cooling water is not complicated.

【0008】また、特開平11−201684号公報の
伝熱管支持構造体103では、帯板108の側面で伝熱
管104を直接支持しているので、二次冷却水の流路面
積が大きく減少し、二次冷却水の流動抵抗が大きくなる
ため、圧力損失も大きくなる。
Further, in the heat transfer tube support structure 103 of Japanese Patent Laid-Open No. 11-201684, since the heat transfer tube 104 is directly supported by the side surface of the strip plate 108, the flow passage area of the secondary cooling water is greatly reduced. Since the flow resistance of the secondary cooling water increases, the pressure loss also increases.

【0009】更に、現在の日本の原子力情勢を鑑みる
と、既存のプラントの運転及び新規のプラント設置につ
いて、安全性の確保とコスト低減の両立が不可欠な要素
となっている。従って、耐震・強度に関する信頼性や製
造コストの削減等も考慮する必要がある。
Further, in view of the current situation of nuclear power in Japan, it is an essential factor to ensure safety and reduce costs in operating an existing plant and installing a new plant. Therefore, it is necessary to consider reliability related to earthquake resistance and strength, and reduction of manufacturing costs.

【0010】本発明は、二次冷却水の流れを乱しにく
く、製造コストを安くすることができる蒸気発生器の伝
熱管支持構造体を提供することを目的とする。
It is an object of the present invention to provide a heat transfer tube support structure for a steam generator, which is less likely to disturb the flow of secondary cooling water and can reduce the manufacturing cost.

【0011】[0011]

【課題を解決するための手段】かかる目的を達成するた
めに請求項1記載の発明は、蒸気発生器の多数の伝熱管
を束ねるように支持する蒸気発生器の伝熱管支持構造体
において、複数の帯板を側面を対向させて格子状に組合
せ、複数の帯板間に形成された多数の格子空間に伝熱管
を挿入して当該伝熱管を囲む帯板の側面の伝熱管支持部
で支持し、伝熱管支持部には伝熱管を支持する凸部が形
成されており、且つ同一の伝熱管を支持する凸部は当該
伝熱管の同一円周上を支持するものである。
In order to achieve such an object, the invention according to claim 1 is a heat transfer tube supporting structure for a steam generator, which supports a plurality of heat transfer tubes of a steam generator in a bundle. The strips are combined in a grid shape with their side surfaces facing each other, and heat transfer tubes are inserted into a large number of lattice spaces formed between a plurality of strips and supported by the heat transfer tube supporting portions on the side surfaces of the strips surrounding the heat transfer tubes. However, the heat transfer tube supporting portion is formed with a convex portion that supports the heat transfer tube, and the convex portion that supports the same heat transfer tube supports the same circumference of the heat transfer tube.

【0012】複数の帯板を格子状に組み合わせると、各
帯板間には多数の格子空間が形成される。各格子空間に
伝熱管を挿入することで、多数の伝熱管を束ねるように
支持することができる。例えば、1つの格子空間に伝熱
管を1本ずつ挿入する場合には、1本の伝熱管を4枚の
帯板で囲んで支持することになる。伝熱管を支持する部
分である各帯板の伝熱管支持部には凸部が形成されてお
り、伝熱管を囲む4つの凸部が当該伝熱管を周囲から支
持する。凸部による支持構造はいわば点接触による支持
構造であり、伝熱管を少ない面積で支持することにな
る。このため、伝熱管の周囲に二次冷却水の滞留域が発
生するのを抑えることができる。また、点接触による支
持構造にすることで、流路面積の収縮断面積比が増加
し、且つ均一な流路を確保することができるので、二次
冷却水の流動特性の急激な変化や圧力損失を抑えること
ができる。
When a plurality of strips are combined in a grid pattern, a large number of grid spaces are formed between the strips. By inserting a heat transfer tube into each lattice space, it is possible to support a large number of heat transfer tubes in a bundle. For example, when the heat transfer tubes are inserted one by one in one lattice space, one heat transfer tube is surrounded by and supported by four strips. A convex portion is formed on the heat transfer tube supporting portion of each strip, which is a portion that supports the heat transfer tube, and four convex portions surrounding the heat transfer tube support the heat transfer tube from the surroundings. The support structure by the convex portion is, so to speak, a support structure by point contact, and supports the heat transfer tube in a small area. For this reason, it is possible to suppress the generation of the retention area of the secondary cooling water around the heat transfer tube. In addition, since the contraction cross-sectional area ratio of the flow passage area is increased and a uniform flow passage can be secured by using the support structure by point contact, it is possible to rapidly change the flow characteristics of the secondary cooling water and to reduce the pressure. Loss can be suppressed.

【0013】また、請求項2記載の蒸気発生器の伝熱管
支持構造体は、凸部が帯板を部分的に凹まして反対側に
突出させた突起であり、帯板の側面の伝熱管支持部には
当該帯板を挟んで隣り合う伝熱管をそれぞれ支持するた
めに当該帯板の一側面に突出する一側突起と他側面に突
出する他側突起が伝熱管の軸方向に並べて形成され、同
一の帯板に対して一側突起と他側突起の配置を逆にした
2種類の伝熱管支持部を交互に形成し、同一の伝熱管を
支持する伝熱管支持部が同一種類の伝熱管支持部になる
ように帯板を格子状に組み合わせたものである。
Further, in the heat transfer tube supporting structure of the steam generator according to the present invention, the convex portion is a projection which is formed by partially recessing the strip plate and projecting the strip plate to the opposite side. One side protrusion protruding on one side surface of the strip plate and the other side protrusion protruding on the other side surface thereof are formed side by side in the axial direction of the heat transfer tube to respectively support adjacent heat transfer tubes sandwiching the strip plate. , Two kinds of heat transfer tube supporting parts in which the arrangement of the one side projection and the other side projection are reversed are alternately formed on the same strip plate, and the heat transfer tube supporting parts supporting the same heat transfer tube are of the same type. The strips are combined in a grid pattern so as to form a heat pipe support.

【0014】帯板への突起の形成は容易である。即ち、
プレス加工等により一側突起と他側突起を簡単に形成す
ることができる。プレス加工等により形成された突起
は、片面を凹ましてもう片面を突出させているので、一
側突起と他側突起を帯板の同じ位置に形成することはで
きない。このため、本発明では、一側突起と他側突起を
伝熱管の軸方向にずらして形成している。そして、一側
突起と他側突起の位置関係を逆にした2種類の伝熱管支
持部を各帯板に交互に形成しているので、一つの格子空
間に対して同一種類の伝熱管支持部を配置するように各
帯板を組み合わせることが可能である。即ち、1つの格
子空間は4枚の帯板で形成されるので1つの格子空間に
は4つの伝熱管支持部が配置されることになるが、4つ
の伝熱管支持部を同じ種類のものにすることができる。
このため、伝熱管の同一円周上を4つの一側突起又は4
つの他側突起によって支持することができる。
It is easy to form protrusions on the strip plate. That is,
The one-side protrusion and the other-side protrusion can be easily formed by pressing or the like. Since one side of the projection formed by pressing or the like is recessed and the other side is projected, the one side projection and the other side projection cannot be formed at the same position on the strip plate. Therefore, in the present invention, the one-side protrusion and the other-side protrusion are formed so as to be displaced in the axial direction of the heat transfer tube. Further, since two types of heat transfer tube supporting parts in which the positional relationship between the one side projection and the other side projection is reversed are alternately formed on each strip, the heat transfer tube supporting parts of the same type can be used for one lattice space. It is possible to combine the strips so that they are arranged. That is, since one grid space is formed by four strips, four heat transfer tube supports are arranged in one grid space, but four heat transfer tube supports are of the same type. can do.
Therefore, four one-sided protrusions or four on one circumference of the heat transfer tube
Can be supported by two other side projections.

【0015】また、請求項3記載の蒸気発生器の伝熱管
支持構造体は、凸部が薄板を部分的に凹まして反対側に
突出させた突起であり、当該薄板を凸部が外側を向くよ
うに2枚重ね合わせて帯板を構成したものである。
Further, in the heat transfer tube supporting structure of the steam generator according to the present invention, the convex portion is a projection in which the thin plate is partially recessed and projected to the opposite side, and the convex portion of the thin plate faces outward. Thus, two strips are stacked to form a strip plate.

【0016】薄板への突起の形成は容易である。即ち、
プレス加工等により突起を簡単に形成することができ
る。本発明では、薄板を2枚重ね合わせて帯板を構成す
るので、帯板の一側面に突出する突起と他側面に突出す
る突起を同じ位置に配置することが可能である。このた
め、突起の種類を気にせずに各帯板を格子状に組み合わ
せることができる。
It is easy to form a protrusion on a thin plate. That is,
The protrusion can be easily formed by pressing or the like. In the present invention, since two thin plates are superposed on each other to form a strip plate, it is possible to dispose the protrusion projecting on one side surface of the strip plate and the projection projecting on the other side surface thereof at the same position. Therefore, the strips can be combined in a grid pattern without worrying about the type of protrusion.

【0017】さらに、請求項4記載の蒸気発生器の伝熱
管支持構造体は、帯板の底面及び上面の角辺に丸みを施
したものである。したがって、二次冷却水の流れの乱れ
及び圧力損失をより抑えることができる。
Further, in the heat transfer tube support structure of the steam generator according to the fourth aspect of the present invention, the bottom and top corners of the strip are rounded. Therefore, the turbulence of the flow of the secondary cooling water and the pressure loss can be further suppressed.

【0018】[0018]

【発明の実施の形態】以下、本発明の構成を図面に示す
最良の形態に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the present invention will be described below in detail based on the best mode shown in the drawings.

【0019】図1から図4に、本発明を適用した蒸気発
生器の伝熱管支持構造体の実施形態の一例を示す。な
お、伝熱管支持構造体1の一部分のみを図示している。
伝熱管支持構造体1は、蒸気発生器の多数の伝熱管2を
束ねるように支持するもので、複数の帯板3を側面3
a,3bを対向させて格子状に組合せ、複数の帯板3間
に形成された多数の格子空間4に伝熱管2を挿入して当
該伝熱管2を囲む帯板3の側面3a,3bの伝熱管支持
部3e,3fで支持し、伝熱管支持部3e,3fには伝
熱管2を支持する凸部5が形成されており、且つ同一の
伝熱管2を支持する凸部5は当該伝熱管2の同一円周上
を支持するものである。
1 to 4 show an example of an embodiment of a heat transfer tube support structure of a steam generator to which the present invention is applied. Note that only a part of the heat transfer tube support structure 1 is shown.
The heat transfer tube support structure 1 supports a large number of heat transfer tubes 2 of a steam generator so as to be bundled together, and a plurality of strips 3 is attached to a side surface 3
a, 3b are opposed to each other and are combined in a lattice shape, and the heat transfer tube 2 is inserted into a large number of lattice spaces 4 formed between the plurality of strip plates 3 to form side surfaces 3a, 3b of the strip plate 3 surrounding the heat transfer tube 2. The heat transfer tube support portions 3e and 3f are supported by the heat transfer tube support portions 3e and 3f, and the heat transfer tube support portions 3e and 3f are formed with convex portions 5 that support the same heat transfer tube 2. The heat pipe 2 is supported on the same circumference.

【0020】帯板3は、例えば縦長の矩形断面の板材
で、底面3c又は上面3dには一定間隔でスリット6が
形成されている。スリット6は板幅の半分の位置まで形
成されている。底面3cにスリット6が形成されている
帯板3と上面3dにスリット6が形成されている帯板3
を、それらのスリット6を互いに差し込むことで格子状
に組み合わせている。各帯板3は、例えば正方格子状に
組み合わされている。組み合わせた帯板3は、例えば溶
接されている。また、帯板3の底面3c及び上面3dの
角辺には、丸み7が施されている。
The strip plate 3 is, for example, a plate member having a vertically long rectangular cross section, and slits 6 are formed at regular intervals on the bottom surface 3c or the top surface 3d. The slit 6 is formed to a position half the plate width. A strip 3 having a slit 6 formed on the bottom surface 3c and a strip 3 having a slit 6 formed on the upper surface 3d
Are combined in a lattice by inserting the slits 6 into each other. The strips 3 are combined in a square lattice, for example. The combined strip 3 is welded, for example. In addition, the bottom surface 3c and the upper surface 3d of the strip 3 are rounded on the corners.

【0021】凸部5は帯板3を部分的に凹まして反対側
に突出させた突起であり、帯板3の側面3a,3bの伝
熱管支持部3e,3fには、当該帯板3を挟んで隣り合
う伝熱管2をそれぞれ支持するために当該帯板3の一側
面3aに突出する突起(以下、一側突起5Aという)と
他側面3bに突出する突起(以下、他側突起5Bとい
う)が伝熱管2の軸方向に並べて形成されている。一側
突起5A及び他側突起5Bは例えばプレス加工等により
成形され、例えば半球形状を成している。したがって、
プレス加工等により一側突起5Aと他側突起5Bを形成
する場合、帯板3の同じ位置に一側突起5Aと他側突起
5Bを成形することはできない。このため、一側突起5
Aと他側突起5Bを伝熱管2の軸方向にずらして成形し
ている。
The convex portion 5 is a projection in which the strip plate 3 is partially recessed and projected to the opposite side. The strip plate 3 is attached to the heat transfer tube support portions 3e and 3f on the side surfaces 3a and 3b of the strip plate 3, respectively. A projection (hereinafter, referred to as one side projection 5A) protruding to one side surface 3a of the strip plate 3 and a projection (hereinafter, referred to as another side projection 5B) projected to the other side surface 3b so as to respectively support the heat transfer tubes 2 adjacent to each other. ) Are formed side by side in the axial direction of the heat transfer tube 2. The one-side protrusion 5A and the other-side protrusion 5B are formed by, for example, press working, and have, for example, a hemispherical shape. Therefore,
When forming the one-side projection 5A and the other-side projection 5B by pressing or the like, the one-side projection 5A and the other-side projection 5B cannot be formed at the same position on the strip plate 3. Therefore, the one side protrusion 5
A and the other side projection 5B are formed by shifting in the axial direction of the heat transfer tube 2.

【0022】そして、同一の帯板3に対して一側突起5
Aと他側突起5Bの配置を逆にした2種類の伝熱管支持
部3e,3fを交互に形成し、同一の伝熱管2を支持す
る伝熱管支持部が同一種類の伝熱管支持部3e又は3f
になるように帯板3を格子状に組み合わせている。即
ち、各帯板3に一側突起5Aと他側突起5Bの位置関係
を逆にした2種の伝熱管支持部3e,3fを交互に形成
することで、同じ格子空間4に対して同一種類の伝熱管
支持部3e,3fが配置されるように、各帯板3を組み
合わせることを可能にしている。
Then, one side projection 5 is applied to the same strip 3.
Two types of heat transfer tube support portions 3e and 3f in which the arrangements of A and the other side projection 5B are reversed are alternately formed, and the heat transfer tube support portions that support the same heat transfer tube 2 have the same type heat transfer tube support portion 3e or 3f
The strips 3 are combined in a grid pattern so that That is, by alternately forming the two types of heat transfer tube support portions 3e and 3f in which the positional relationship between the one-side projection 5A and the other-side projection 5B is reversed on each strip plate 3, the same type can be obtained for the same lattice space 4. It is possible to combine the strips 3 so that the heat transfer tube support portions 3e and 3f are arranged.

【0023】なお、本実施形態では、図中上側に一側突
起5Aが配置され、下側に他側突起5Bが配置されてい
る伝熱管支持部を伝熱管支持部3eとし、図中上側に他
側突起5Bが配置され、下側に一側突起5Aが配置され
ている伝熱管支持部を伝熱管支持部3fとしている。帯
板3の一側面3aに伝熱管支持部3eが形成されている
場合、同じ場所の他側面3bは伝熱管支持部3fとなっ
ており、逆に、一側面3aに伝熱管支持部3fが形成さ
れている場合、同じ場所の他側面3bは伝熱管支持部3
eとなっている。
In the present embodiment, the heat transfer tube supporting portion 3e having the one side projection 5A arranged on the upper side in the drawing and the other side projection 5B arranged on the lower side is referred to as the heat transfer tube supporting portion 3e. The heat transfer tube support portion on which the other side projection 5B is arranged and the one side projection 5A is arranged on the lower side is referred to as a heat transfer tube support portion 3f. When the heat transfer tube support portion 3e is formed on the one side surface 3a of the strip plate 3, the other side surface 3b at the same location is the heat transfer tube support portion 3f, and conversely, the heat transfer tube support portion 3f is provided on the one side surface 3a. When it is formed, the other side surface 3b at the same place is the heat transfer tube support portion 3
It is e.

【0024】この伝熱管支持構造体1は、1本の伝熱管
2を4枚の帯板3で囲み4方向から凸部5を接触させて
支持する。凸部5による支持構造はいわば点接触による
支持構造であり、伝熱管2を少ない面積で支持すること
ができる。このため、二次冷却水の流れを妨げ難く、伝
熱管2の周囲に発生する二次冷却水の流れの滞留域を減
らすことができる。また、帯板3の底面3c及び上面3
dの角辺には丸み7が形成されているので、この部分が
二次冷却水の流れを乱すこと及び圧力損失を抑えてい
る。
In this heat transfer tube support structure 1, one heat transfer tube 2 is surrounded by four strips 3 and the projections 5 are contacted from four directions to support it. The support structure by the convex portion 5 is, so to speak, a support structure by point contact, and can support the heat transfer tube 2 in a small area. Therefore, the flow of the secondary cooling water is less likely to be obstructed, and the retention area of the flow of the secondary cooling water generated around the heat transfer tube 2 can be reduced. In addition, the bottom surface 3c and the top surface 3 of the strip 3
Since the roundness 7 is formed on the corner side of d, this portion suppresses disturbance of the flow of the secondary cooling water and pressure loss.

【0025】また、伝熱管支持構造体1は、1本の伝熱
管2を支持する伝熱管支持部が同一種類の伝熱管支持部
3e又は3fになるように帯板3を格子状に組み合わせ
ているので、1本の伝熱管2を同じ種類の突起5A又は
5Bによって支持することができる。このため、1本の
伝熱管2をその同一円周上の四方から囲むように支持す
ることができ、伝熱管2を傾ける力を発生させることが
なく、安定性に優れた支持構造になる。
In the heat transfer tube support structure 1, the band plates 3 are combined in a grid pattern so that the heat transfer tube support portions supporting one heat transfer tube 2 are the same type heat transfer tube support portions 3e or 3f. Therefore, one heat transfer tube 2 can be supported by the same type of projections 5A or 5B. Therefore, one heat transfer tube 2 can be supported so as to surround the heat transfer tube 2 from four sides on the same circumference, a force for tilting the heat transfer tube 2 is not generated, and the support structure has excellent stability.

【0026】また、伝熱管支持構造体1を点接触による
支持構造にすることで、各伝熱管2の間に多くの隙間を
形成することができ、隙間を多くした分だけ使用する材
料を削減することができて材料コストを安くすることが
できる。例えば、伝熱管支持構造体1の二次冷却水の流
れ方向の寸法と図9のBEC型支持板102の厚さ寸法
が同じであるとすると、各伝熱管2の間の隙間が約30
%広くなり、その分だけ使用する材料が少なくなって材
料に要するコストを削減することができる。
Further, by forming the heat transfer tube support structure 1 into a support structure by point contact, many gaps can be formed between the heat transfer tubes 2, and the amount of material used is reduced by the increase in the gap. Therefore, the material cost can be reduced. For example, if the dimension of the heat transfer tube support structure 1 in the flow direction of the secondary cooling water and the thickness dimension of the BEC type support plate 102 in FIG. 9 are the same, the gap between the heat transfer tubes 2 is about 30.
%, The amount of material used decreases, and the cost required for the material can be reduced.

【0027】また、伝熱管支持構造体1の流路面積の収
縮断面積比を(突起5A,5Bがある位置の流路面積)
÷(伝熱管2群のみの領域の流路面積)とすると、本発
明の伝熱管支持構造体1では流路面積の収縮断面積比が
例えば0.589(帯板3の断面を30mm×4mmと
した場合)となり、図9に示すBEC型支持板102で
は流路面積の収縮断面積比が例えば0.443となる。
このように本発明の伝熱管支持構造体1では、BEC型
支持板102に比べて、流路面積の収縮断面積比を相対
的に約30%大きくすることができる。この収縮断面積
比が大きいということは、流路面積の減少量が小さいと
いうことなので、本発明の伝熱管支持構造体1は二次冷
却水の流動特性の変化を抑えることができ、圧力損失を
抑えることができる。
Further, the contraction sectional area ratio of the flow passage area of the heat transfer tube support structure 1 is defined as (the flow passage area at the position where the projections 5A and 5B are present).
÷ (flow passage area in the region of only two groups of heat transfer tubes), in the heat transfer tube support structure 1 of the present invention, the shrinkage cross-sectional area ratio of the flow passage area is, for example, 0.589 (the cross section of the strip 3 is 30 mm × 4 mm. In the BEC type support plate 102 shown in FIG. 9, the contraction cross-sectional area ratio of the flow passage area is 0.443, for example.
As described above, in the heat transfer tube support structure 1 of the present invention, the contracted cross-sectional area ratio of the flow passage area can be relatively increased by about 30% as compared with the BEC type support plate 102. The fact that the shrinkage cross-sectional area ratio is large means that the reduction amount of the flow passage area is small, and therefore the heat transfer tube support structure 1 of the present invention can suppress the change in the flow characteristics of the secondary cooling water and the pressure loss. Can be suppressed.

【0028】実機運転条件における流動特性を数値解析
により求めた結果を表1に示す。
Table 1 shows the results obtained by numerical analysis of the flow characteristics under actual machine operating conditions.

【表1】 [Table 1]

【0029】ここで、局所的圧力降下は、突起5A、5
Bが設けられている部分やその直後の角部などにおける
局所的な圧力降下の値である。また、支持構造体通過に
伴う圧力降下は、伝熱管支持構造体1の上流と下流の流
路断面平均圧力の差である。
Here, the local pressure drop is caused by the protrusions 5A, 5
It is the value of the local pressure drop at the portion where B is provided, the corner immediately after that, and the like. Further, the pressure drop accompanying the passage of the support structure is the difference between the upstream and downstream flow passage cross-section average pressures of the heat transfer tube support structure 1.

【0030】これらの結果より、伝熱管支持構造体1内
の局所的な圧力降下については約30%以上低減するこ
とができ、支持構造体通過に伴う圧力降下は約60%低
減することができることがわかった。このように本発明
の伝熱管支持構造体1では、二次冷却水の流動特性の急
激な変化を大きく抑制することができる。
From these results, the local pressure drop in the heat transfer tube support structure 1 can be reduced by about 30% or more, and the pressure drop accompanying the passage of the support structure can be reduced by about 60%. I understood. As described above, in the heat transfer tube support structure 1 of the present invention, it is possible to greatly suppress the abrupt change in the flow characteristics of the secondary cooling water.

【0031】本発明の伝熱管支持構造体1は二次冷却水
の流動特性を急激に変化させることがないので、伝熱管
2の腐食やフローホールにおけるスケール付着を抑制す
ることができる。このため、原子力発電プラント等の定
期検査の工程軽減及び期間短縮、稼働率向上や寿命延
伸、更には発電コストの低減を図ることができる。
Since the heat transfer tube support structure 1 of the present invention does not drastically change the flow characteristics of the secondary cooling water, it is possible to suppress corrosion of the heat transfer tube 2 and scale adhesion in the flow holes. Therefore, it is possible to reduce the number of steps for periodic inspection of a nuclear power plant or the like, shorten the period, improve the operation rate, extend the life, and reduce the power generation cost.

【0032】帯板3の加工は容易である。即ち、格子空
間4の二つ分の長さを最少基本単位としてプレス加工の
型を作製することで帯板3の大量生産が可能となり、製
作コストの削減に寄与することができる。
The strip 3 is easy to process. That is, it is possible to mass-produce the strips 3 by making a die for press work with the length of two portions of the lattice space 4 as a minimum basic unit, which can contribute to a reduction in production cost.

【0033】また、伝熱管支持構造体1の強度評価を行
った。その結果を表2に示す。なお、上述の数値解析や
当該強度評価は測定値ではなく、仮定を設けた計算値で
ある。
The strength of the heat transfer tube support structure 1 was evaluated. The results are shown in Table 2. In addition, the above-mentioned numerical analysis and the strength evaluation are not measured values but calculated values with assumptions.

【表2】 [Table 2]

【0034】ここで、最大応力は、伝熱管支持構造体1
の格子の端点についてのものである。また、降伏応力
は、帯板3の材料としてステンレス鋼を採用した場合の
塑性変形を生じる応力である。また、設計応力は、降伏
応力を安全率で割った値である。さらに、最大応力に対
する設計応力の大きさを示す裕度は約3倍であり、蒸気
発生器の伝熱管を束ねるように支持する構造物として充
分に強度が保てる範囲である。即ち、耐震・強度に関す
る信頼性を充分確保することができる。
Here, the maximum stress is the heat transfer tube support structure 1.
For the end points of the grid of. The yield stress is a stress that causes plastic deformation when stainless steel is used as the material of the strip 3. The design stress is the yield stress divided by the safety factor. Further, the margin indicating the magnitude of the design stress with respect to the maximum stress is about three times, which is a range in which the strength can be maintained sufficiently as a structure that supports the heat transfer tubes of the steam generator so as to be bundled. That is, it is possible to sufficiently secure the reliability regarding earthquake resistance and strength.

【0035】なお、伝熱管支持構造体1に作用する最大
応力は、従来のBEC型支持板102に作用する最大応
力に比べて約2.5倍であり、大きな応力を受けること
は否めない。しかしながら、設計強度として3倍の安全
率を考慮しても構造体が塑性変形するまでには最大応力
の約3倍の裕度があり、充分に実機への適用は可能であ
る。
The maximum stress that acts on the heat transfer tube support structure 1 is about 2.5 times the maximum stress that acts on the conventional BEC type support plate 102, and it cannot be denied that a large stress is applied. However, even if the safety factor of 3 times is considered as the design strength, there is a margin of about 3 times the maximum stress before the structure is plastically deformed, and it can be sufficiently applied to an actual machine.

【0036】なお、上述の形態は本発明の好適な形態の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、2枚の薄板を重ね合わせて帯板を構成して
も良い。つまり、図5〜図7に示す伝熱管支持構造体1
のように、凸部5は薄板8を凹まして反対側に突出させ
た突起であり、薄板8を凸部5が外側を向くように2枚
重ね合わせて帯板3を構成したものであっても良い。こ
の場合には、帯板3の両側面3a,3bの同じ場所に凸
部5を成形することができる。このため、凸部5の種類
を気にせずに帯板3を格子状に組み合わせることができ
る。
The above-described embodiment is an example of the preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, two thin plates may be overlapped to form a strip plate. That is, the heat transfer tube support structure 1 shown in FIGS.
As described above, the convex portion 5 is a protrusion that is formed by recessing the thin plate 8 and projecting it to the opposite side. The thin plate 8 is formed by stacking two thin plates 8 so that the convex portion 5 faces outward. Is also good. In this case, the convex portion 5 can be formed at the same place on both side surfaces 3a and 3b of the strip plate 3. Therefore, the strips 3 can be combined in a grid pattern without worrying about the type of the protrusions 5.

【0037】[0037]

【発明の効果】以上説明したように、請求項1記載の蒸
気発生器の伝熱管支持構造体では、複数の帯板を側面を
対向させて格子状に組合せ、複数の帯板間に形成された
多数の格子空間に伝熱管を挿入して当該伝熱管を囲む帯
板の側面の伝熱管支持部で支持し、伝熱管支持部には伝
熱管を支持する凸部が形成されており、且つ同一の伝熱
管を支持する凸部は当該伝熱管の同一円周上を支持する
ようにしたので、伝熱管を傾ける力を発生させることな
く安定的に支持することができ、しかも、二次冷却水の
流れの乱れを抑えることができる。このため、伝熱管周
囲の腐食やフローホールにおけるスケール付着を抑える
ことができ、原子力発電プラントの定期検査の工程軽減
及び期間短縮、稼働率向上や寿命延伸、更には発電コス
トの低減を図ることができる。
As described above, in the heat transfer tube support structure for a steam generator according to the first aspect of the present invention, a plurality of strip plates are combined in a grid pattern with their side surfaces facing each other and are formed between the plurality of strip plates. The heat transfer tubes are inserted into the large number of lattice spaces and supported by the heat transfer tube support portions on the side surfaces of the strip surrounding the heat transfer tubes, and the heat transfer tube support portions are formed with protrusions that support the heat transfer tubes, and Since the convex portion that supports the same heat transfer tube supports the same circumference of the heat transfer tube, it can be stably supported without generating the force to tilt the heat transfer tube, and the secondary cooling is also possible. The turbulence of the water flow can be suppressed. For this reason, it is possible to suppress corrosion around the heat transfer tubes and scale adhesion in the flow holes, and to reduce the process and period of the periodic inspection of the nuclear power plant, improve the operation rate and extend the life, and further reduce the power generation cost. it can.

【0038】また、請求項2記載の蒸気発生器の伝熱管
支持構造体では、凸部は帯板を部分的に凹まして反対側
に突出させた突起であり、帯板の側面の伝熱管支持部に
は当該帯板を挟んで隣り合う伝熱管をそれぞれ支持する
ために当該帯板の一側面に突出する一側突起と他側面に
突出する他側突起が伝熱管の軸方向に並べて形成され、
同一の帯板に対して一側突起と他側突起の配置を逆にし
た2種類の伝熱管支持部を交互に形成し、同一の伝熱管
を支持する伝熱管支持部が同一種類の伝熱管支持部にな
るように帯板を格子状に組み合わせているので、プレス
加工等により帯板を簡単に成形することができ、伝熱管
支持構造体の製造コストを減少させることができる。ま
た、同一の伝熱管を支持する伝熱管支持部を同一種類の
ものにしているので、凸部によって伝熱管の同一円周上
を支持することができ、伝熱管を傾ける力を発生させる
ことなく安定性に優れた支持構造を提供することができ
る。
Further, in the heat transfer tube supporting structure of the steam generator according to the present invention, the convex portion is a projection which is formed by partially recessing the strip plate and projecting to the opposite side. One side protrusion protruding on one side surface of the strip plate and the other side protrusion protruding on the other side surface thereof are formed side by side in the axial direction of the heat transfer tube to respectively support adjacent heat transfer tubes sandwiching the strip plate. ,
Two types of heat transfer tube supporting parts, in which the one side protrusion and the other side protrusion are reversed, are alternately formed on the same strip plate, and the heat transfer tube supporting part supporting the same heat transfer tube has the same type heat transfer tube. Since the strips are combined in a grid pattern so as to form the support portion, the strips can be easily formed by pressing or the like, and the manufacturing cost of the heat transfer tube support structure can be reduced. In addition, since the heat transfer tube supporting portions that support the same heat transfer tube are of the same type, it is possible to support the same circumference of the heat transfer tube by the convex portion, without generating a force to tilt the heat transfer tube. It is possible to provide a support structure having excellent stability.

【0039】また、請求項3記載の蒸気発生器の伝熱管
支持構造体では、凸部は薄板を部分的に凹まして反対側
に突出させた突起であり、当該薄板を凸部が外側を向く
ように2枚重ね合わせて帯板を構成しているので、プレ
ス加工等により薄板を簡単に成形して帯板を製造するこ
とができる。このため、伝熱管支持構造体の製造コスト
を減少させることができる。
Further, in the heat transfer tube supporting structure of the steam generator according to the present invention, the convex portion is a projection in which the thin plate is partially recessed and projected to the opposite side, and the convex portion of the thin plate faces outward. As described above, since the two strips are stacked to form the strip plate, the strip plate can be manufactured by simply forming a thin plate by pressing or the like. Therefore, the manufacturing cost of the heat transfer tube support structure can be reduced.

【0040】さらに、請求項4記載の蒸気発生器の伝熱
管支持構造体では、帯板の底面及び上面の角辺に丸みを
施したので、二次冷却水の流れの乱れ及び圧力損失をよ
り抑えることができる。
Further, in the heat transfer tube support structure of the steam generator according to the fourth aspect, since the bottom and top corners of the strip are rounded, the turbulence of the flow of the secondary cooling water and the pressure loss are further reduced. Can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した蒸気発生器の伝熱管支持構造
体の実施形態の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a heat transfer tube support structure of a steam generator to which the present invention is applied.

【図2】図1に示す伝熱管支持構造体の斜視図である。FIG. 2 is a perspective view of the heat transfer tube support structure shown in FIG.

【図3】図1に示す伝熱管支持構造体を構成する帯板の
正面図である。
3 is a front view of a strip plate constituting the heat transfer tube support structure shown in FIG. 1. FIG.

【図4】図3のIV−IV線に沿う帯板の断面図であ
る。
FIG. 4 is a cross-sectional view of the strip plate taken along line IV-IV in FIG.

【図5】本発明を適用した蒸気発生器の伝熱管支持構造
体の他の実施形態を示す斜視図である。
FIG. 5 is a perspective view showing another embodiment of the heat transfer tube support structure of the steam generator to which the present invention is applied.

【図6】図5に示す伝熱管支持構造体を構成する帯板の
正面図である。
FIG. 6 is a front view of a strip plate constituting the heat transfer tube support structure shown in FIG.

【図7】図6のVII−VII線に沿う帯板の断面図で
ある。
7 is a cross-sectional view of the strip plate taken along the line VII-VII in FIG.

【図8】従来のドリル型支持板の平面図であるFIG. 8 is a plan view of a conventional drill type support plate.

【図9】従来のBEC型支持板の平面図であるFIG. 9 is a plan view of a conventional BEC type support plate.

【図10】従来のエッグクレート式伝熱管支持構造体の
斜視図である
FIG. 10 is a perspective view of a conventional egg crate type heat transfer tube support structure.

【符号の説明】[Explanation of symbols]

1 伝熱管支持構造体 2 蒸気発生器の伝熱管 3 帯板 3a,3b 帯板の側面 3c 帯板の底面 3d 帯板の上面 3e,3f 伝熱管支持部 4 格子空間 5A 一側突起(凸部) 5B 他側突起(凸部) 7 丸み 8 薄板 1 Heat transfer tube support structure 2 Heat transfer tube of steam generator 3 strips 3a, 3b Side surface of strip 3c Bottom of strip 3d strip top 3e, 3f Heat transfer tube support 4 lattice space 5A One side protrusion (projection) 5B Other side protrusion (projection) 7 roundness 8 thin plates

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蒸気発生器の多数の伝熱管を束ねるよう
に支持する蒸気発生器の伝熱管支持構造体において、複
数の帯板を側面を対向させて格子状に組合せ、前記複数
の帯板間に形成された多数の格子空間に前記伝熱管を挿
入して当該伝熱管を囲む帯板の側面の伝熱管支持部で支
持し、前記伝熱管支持部には前記伝熱管を支持する凸部
が形成されており、且つ同一の伝熱管を支持する前記凸
部は当該伝熱管の同一円周上を支持することを特徴とす
る蒸気発生器の伝熱管支持構造体。
1. A heat transfer tube support structure for a steam generator, which supports a plurality of heat transfer tubes of a steam generator so as to be bundled together, wherein a plurality of strips are combined in a grid pattern with their side surfaces facing each other. The heat transfer tubes are inserted into a large number of lattice spaces formed therebetween and supported by the heat transfer tube support portions on the side surfaces of the strip surrounding the heat transfer tubes, and the heat transfer tube support portions have convex portions that support the heat transfer tubes. The heat transfer tube supporting structure of the steam generator, wherein the convex portions that are formed with the same shape and that support the same heat transfer tube support on the same circumference of the heat transfer tube.
【請求項2】 前記凸部は前記帯板を部分的に凹まして
反対側に突出させた突起であり、前記帯板の側面の伝熱
管支持部には当該帯板を挟んで隣り合う伝熱管をそれぞ
れ支持するために当該帯板の一側面に突出する一側突起
と他側面に突出する他側突起が前記伝熱管の軸方向に並
べて形成され、同一の帯板に対して前記一側突起と他側
突起の配置を逆にした2種類の伝熱管支持部を交互に形
成し、同一の伝熱管を支持する伝熱管支持部が同一種類
の伝熱管支持部になるように前記帯板を格子状に組み合
わせたことを特徴とする請求項1記載の蒸気発生器の伝
熱管支持構造体。
2. The convex portion is a protrusion that is formed by partially recessing the strip plate and projecting the strip plate to the opposite side, and the heat transfer tube support portions on the side surfaces of the strip plate are adjacent to each other with the strip plate interposed therebetween. One side protrusion protruding on one side surface and the other side protrusion protruding on the other side surface for supporting the strip plate are formed side by side in the axial direction of the heat transfer tube, and the one side protrusion is formed on the same strip plate. The two kinds of heat transfer tube supporting portions in which the arrangement of the other side projections are reversed are alternately formed, and the strip plate is formed so that the heat transfer tube supporting portions supporting the same heat transfer tube are the same type heat transfer tube supporting portions. The heat transfer tube support structure for a steam generator according to claim 1, wherein the heat transfer tube support structure is combined in a grid pattern.
【請求項3】 前記凸部は薄板を部分的に凹まして反対
側に突出させた突起であり、当該薄板を前記凸部が外側
を向くように2枚重ね合わせて前記帯板を構成したこと
を特徴とする請求項1記載の蒸気発生器の伝熱管支持構
造体。
3. The convex portion is a protrusion formed by partially recessing a thin plate and projecting to the opposite side, and the thin plate is formed by stacking two thin plates so that the convex portion faces outward. A heat transfer tube support structure for a steam generator according to claim 1, wherein
【請求項4】 前記帯板の底面及び上面の角辺に丸みを
施したことを特徴とする請求項1から3のいずれかに記
載の蒸気発生器の伝熱管支持構造体。
4. The heat transfer tube support structure for a steam generator according to claim 1, wherein the bottom and top corners of the strip are rounded.
JP2002084413A 2002-03-25 2002-03-25 Heat transfer pipe support structure of steam generator Pending JP2003279287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084413A JP2003279287A (en) 2002-03-25 2002-03-25 Heat transfer pipe support structure of steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084413A JP2003279287A (en) 2002-03-25 2002-03-25 Heat transfer pipe support structure of steam generator

Publications (1)

Publication Number Publication Date
JP2003279287A true JP2003279287A (en) 2003-10-02

Family

ID=29231774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084413A Pending JP2003279287A (en) 2002-03-25 2002-03-25 Heat transfer pipe support structure of steam generator

Country Status (1)

Country Link
JP (1) JP2003279287A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120487A1 (en) * 2007-02-27 2008-10-09 Mitsubishi Heavy Industries, Ltd. Tube support plate of steam generator
JP2012141271A (en) * 2011-01-06 2012-07-26 Mitsubishi Heavy Ind Ltd Attachment measuring device, attachment measuring method, and attachment measuring program
CN109883243A (en) * 2019-03-14 2019-06-14 中国原子能科学研究院 Support device for heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120487A1 (en) * 2007-02-27 2008-10-09 Mitsubishi Heavy Industries, Ltd. Tube support plate of steam generator
JP2012141271A (en) * 2011-01-06 2012-07-26 Mitsubishi Heavy Ind Ltd Attachment measuring device, attachment measuring method, and attachment measuring program
US9207211B2 (en) 2011-01-06 2015-12-08 Mitsubishi Heavy Industries, Ltd. Deposit measurement apparatus, deposit measurement method, and computer-readable storage medium storing deposit measurement program
CN109883243A (en) * 2019-03-14 2019-06-14 中国原子能科学研究院 Support device for heat exchanger
CN109883243B (en) * 2019-03-14 2020-08-21 中国原子能科学研究院 Support device for heat exchanger

Similar Documents

Publication Publication Date Title
JP5671013B2 (en) Method for producing plate bundle of heat exchanger and plate heat exchanger
KR100965989B1 (en) Fuel assembly and associated grid for nuclear reactor
US20080104838A1 (en) Anti-vibration support for steam generator heat transfer tubes and method for making same
JPS6190086A (en) Lattice structure of nuclear fuel aggregate
CN102365686B (en) Nuclear fuel assembly with pivot dimpled grids
JPH0429090A (en) Fuel assembly, channel box, manufacture of channel box and reactor core
US6744843B2 (en) Side-slotted nozzle type double sheet spacer grid for nuclear fuel assemblies
US6385271B2 (en) Nuclear fuel assembly
JP2003279287A (en) Heat transfer pipe support structure of steam generator
KR20160145155A (en) Heat-exchanger module with improved heat exchange and compactness, use with liquid metal and gas
US7804931B2 (en) Spacer and a fuel unit for a nuclear plant
JPH0161197B2 (en)
JP2531965B2 (en) Lattice for fuel rod assembly in light water reactors
RU2518058C1 (en) Spacer grid of fuel assembly of nuclear reactor (versions)
CN111141163B (en) Welded plate heat exchanger
JP2013050240A (en) Plate heat exchanger and method for manufacturing the same
CN106091757A (en) The package assembly of a kind of full welding corrugated board cluster and assemble method
EP2818820A1 (en) A shell and tube equipment with a baffle structure for supporting the tubes
KR101731915B1 (en) Supporting spacer grid for nuclear fuel rods or cylindrical tubes
KR20170015986A (en) Crush resistant nuclear fuel assembly support grid
EP2365489A1 (en) Structure of a grid for a nuclear reactor fuel assembly
US20230243593A1 (en) Heat exchanger
JP6806541B2 (en) Vibration control structure of heat transfer tube group
JP3887759B2 (en) Core support structure
RU2333554C2 (en) Nuclear reactor fuel assembly