JP2003278633A - Residual pressure utilizing hydraulic power generating system in water supply conduit - Google Patents

Residual pressure utilizing hydraulic power generating system in water supply conduit

Info

Publication number
JP2003278633A
JP2003278633A JP2002081061A JP2002081061A JP2003278633A JP 2003278633 A JP2003278633 A JP 2003278633A JP 2002081061 A JP2002081061 A JP 2002081061A JP 2002081061 A JP2002081061 A JP 2002081061A JP 2003278633 A JP2003278633 A JP 2003278633A
Authority
JP
Japan
Prior art keywords
water
water supply
residual pressure
line
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002081061A
Other languages
Japanese (ja)
Inventor
Kazuo Nishimura
和夫 西村
Hideo Murakami
秀夫 村上
Satoru Miki
悟 三木
Akihiro Takahashi
晃裕 高橋
Yasushi Hashimoto
靖志 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002081061A priority Critical patent/JP2003278633A/en
Publication of JP2003278633A publication Critical patent/JP2003278633A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a residual pressure utilizing hydraulic power generating system in a water supply conduit capable of avoiding waste of energy by recovering and effectively utilizing residual pressure in the water supply conduit. <P>SOLUTION: A water service facility is constituted to supply water improved and purified in water quality in a water purifying facility 1 to a water receiving well (water receiving tank) 3 by the water supply conduit 2 and to distribute water to a water supply facility 5 at an end such as each family from the water receiving tank 3 by a water distributing pipe 4, for instance. In the water supply conduit 2, a generator 7 provided with an in-line water turbine is interposed, the generator 7 is operated by residual pressure in the water supply conduit 2, and residual pressure of the water supply conduit 2 is recovered and is converted into electric power, and the electric power is supplied. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば水道施設
における送水管路の残圧を利用して発電を行なう送水管
路の残圧利用水力発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic power generation system utilizing residual pressure of a water supply line for generating power by utilizing the residual pressure of the water supply line in a water supply facility, for example.

【0002】[0002]

【従来の技術】従来より、図10に示すように、たとえ
ば浄水施設1で水質の改良浄化がなされた水を送水管路
2によって着水井(受水槽)3に送水し、この受水槽3
から配水管4により各家庭などの末端の給水施設5に分
配配水するように構成された水道施設において、送水管
路2から受水槽3への送水量は、季節や時間帯などによ
って変動する末端の給水施設5での使用水量に応じて制
御される。すなわち、送水管路2における受水槽3の直
上流位置に減勢弁もしくは減圧弁によってなる減勢また
は減圧手段6を介設し、たとえば、末端の給水施設5で
の使用水量が多い場合には、減勢または減圧手段6の減
勢・減圧作用を小さく制御して送水量を増やし、末端の
給水施設5での使用水量が少ない場合には、減勢または
減圧手段6の減勢・減圧作用を大きく制御して送水量を
減じている。
2. Description of the Related Art Conventionally, as shown in FIG. 10, for example, water whose water quality has been improved and purified in a water purification facility 1 is sent to a water receiving well (water receiving tank) 3 through a water supply conduit 2 and this water receiving tank 3
In a water supply facility configured to distribute and distribute water from a water distribution pipe 4 to a water supply facility 5 at the end of each home, the amount of water sent from the water supply pipe line 2 to the water receiving tank 3 varies depending on the season and the time zone. It is controlled according to the amount of water used in the water supply facility 5. That is, when a depressurizing or depressurizing means 6 constituted by a depressurizing valve or a depressurizing valve is provided at a position immediately upstream of the water receiving tank 3 in the water supply conduit 2, for example, when the amount of water used in the terminal water supply facility 5 is large. If the amount of water used in the terminal water supply facility 5 is small and the amount of water supply is increased by controlling the depressing or depressurizing action of the depressurizing or depressurizing device 6 to a small amount, the depressing or depressurizing action of the depressurizing or depressurizing device 6 is performed. The amount of water to be sent is reduced by controlling the water flow.

【0003】[0003]

【発明が解決しようとする課題】すなわち、従来は、受
水槽3への送水量の大小の如何を問わず、送水管路2の
残圧を有効に利用することなく受水槽3に送水(放水)
して、残圧(エネルギー)を浪費している。
That is, conventionally, regardless of the amount of water to be sent to the water receiving tank 3, the water is sent to the water receiving tank 3 (spraying water) without effectively utilizing the residual pressure of the water sending pipeline 2. )
Then, the residual pressure (energy) is wasted.

【0004】本発明は、このような事情に鑑みてなされ
たもので、送水管路の残圧を回収し電力に変換して有効
に利用することで、エネルギーの浪費を避けることがで
きる送水管路の残圧利用水力発電システムを提供するこ
とを目的としている。
The present invention has been made in view of such circumstances, and a waste water pipe capable of avoiding energy waste by recovering the residual pressure of the water pipe and converting it to electric power for effective use. The purpose is to provide a hydroelectric power generation system that uses residual pressure on the road.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に記載の発明に係る送水管路の残圧利用水
力発電システムは、受水槽に送水する送水管路にインラ
イン水車を備えた発電装置が介設されていることを特徴
としている。
In order to achieve the above object, a hydraulic power generation system utilizing residual pressure of a water supply pipe according to the invention described in claim 1 has an in-line turbine in a water supply pipe for supplying water to a water receiving tank. It is characterized in that a power generator provided therein is provided.

【0006】また、請求項2に記載の発明のように、前
記送水管路に減勢または減圧手段を介設することが好ま
しい。
Further, as in the invention described in claim 2, it is preferable that a depressurizing or depressurizing means is provided in the water supply conduit.

【0007】さらに、請求項3に記載の発明のように、
前記インライン水車を備えた発電装置を迂回して、前記
受水槽に送水できるバイパス管路を設けることが好まし
い。
Further, as in the invention described in claim 3,
It is preferable to provide a bypass pipe line that bypasses the power generation device including the inline water turbine and can supply water to the water receiving tank.

【0008】また、請求項4に記載の発明のように、前
記バイパス管路に減勢または減圧手段を介設してもよ
い。
Further, as in the invention described in claim 4, a depressurizing or depressurizing means may be provided in the bypass conduit.

【0009】請求項1に記載の発明によれば、インライ
ン水車を備えた発電装置により送水管路の残圧を回収し
電力に変換して供給することができる。
According to the first aspect of the present invention, the residual pressure of the water supply pipe can be recovered by the power generator equipped with the in-line water turbine, converted into electric power, and supplied.

【0010】請求項2に記載の発明によれば、減勢また
は減圧手段の減勢・減圧制御により、インライン水車を
備えた発電装置によって回収される残圧を加減して、イ
ンライン水車を備えた発電装置が上限値を超える通水量
で過負荷運転される不都合や下限値未満の通水量で不発
電運転される不都合を回避して、インライン水車を備え
た発電装置を設計値の範囲内で適正に運転させることが
できる。
According to the second aspect of the present invention, the residual pressure recovered by the power generator having the inline turbine is adjusted by the deenergization or decompression control of the depressurizing or depressurizing means to provide the inline turbine. The power generator with an in-line turbine is appropriate within the design range, avoiding the disadvantage that the generator is overloaded with the water flow exceeding the upper limit and the power generation is not operated with the water flow below the lower limit. Can be driven.

【0011】請求項3に記載の発明によれば、インライ
ン水車を備えた発電装置に故障が発生した緊急時やメン
テナンスなどに際しては、送水管路への通水をとめた状
態でバイパス管路から受水槽に送水することができる。
また、バイパス管路の開度調整によって、送水管路の通
水量とバイパス管路の送水量との割合を加減できるの
で、インライン水車を備えた発電装置が上限値を超える
通水量で過負荷運転される不都合や下限値未満の通水量
で不発電運転される不都合を回避して、インライン水車
を備えた発電装置を設計値の範囲内で適正に運転させる
ことができる。さらに、減勢または減圧手段の減勢・減
圧制御により、送水管路の通水量とバイパス管路の送水
量との割合を加減できるので、インライン水車を備えた
発電装置が上限値を超える通水量で過負荷運転される不
都合や下限値未満の通水量で不発電運転される不都合を
回避して、インライン水車を備えた発電装置を設計値の
範囲内で適正に運転させることもできる。
According to the third aspect of the present invention, in the event of an emergency such as a failure in the power generator equipped with the in-line water turbine or during maintenance, the water is not supplied to the water supply pipeline from the bypass pipeline. Water can be sent to the receiving tank.
Also, by adjusting the opening of the bypass pipe, the ratio between the water flow amount of the water supply pipe and the water flow amount of the bypass pipe can be adjusted, so that the power generator equipped with an in-line water turbine operates overloaded with the water flow amount exceeding the upper limit. It is possible to avoid the inconvenience and the inconvenience of non-power generation operation with the water flow rate less than the lower limit value, and to appropriately operate the power generation device including the in-line water turbine within the design value range. In addition, the ratio of the amount of water flowing through the water pipeline and the amount of water flowing through the bypass pipeline can be adjusted by controlling the energy reduction or decompression of the pressure reduction means. It is also possible to avoid the inconvenience of overload operation and the inconvenience of non-power generation operation with a water flow rate less than the lower limit value, and to appropriately operate the power generator equipped with the inline turbine within the design value range.

【0012】請求項4に記載の発明によれば、インライ
ン水車を備えた発電装置に故障が発生した緊急時やメン
テナンスなどに際しては、送水管路への通水をとめた状
態で、減勢または減圧手段の減勢・減圧制御により、減
勢または減圧した水をバイパス管路から受水槽に送水す
ることができる。
According to the fourth aspect of the present invention, in the event of an emergency such as a failure in the power generator equipped with the in-line water turbine or during maintenance, the power supply to the water supply line is stopped and the power is reduced or reduced. The depressurized / depressurized control of the depressurizing means allows the depressurized or depressurized water to be sent from the bypass pipe to the water receiving tank.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は請求項1に記載の発明に係
る送水管路の残圧利用水力発電システムの一実施の形態
を示す構成図である。なお、図10で説明した従来例と
同一部分には、同一符号を付して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of a hydraulic power generation system utilizing residual pressure of a water supply pipe according to the invention described in claim 1. The same parts as those of the conventional example described with reference to FIG.

【0014】図1において、たとえば浄水施設1で水質
の改良浄化がなされた水を送水管路2によって着水井
(受水槽)3に送水し、この受水槽3から配水管4によ
り各家庭などの末端の給水施設5に分配配水するように
構成された水道施設において、送水管路2には、たとえ
ば、電動バタフライ弁によってなる入口弁7Aと、手動
弁によってなる出口弁7Bと、インライン水車7Cとか
らなるインライン水車を備えた発電装置7が介設されて
いる。
In FIG. 1, for example, water whose water quality has been improved and purified in a water purification facility 1 is sent to a water receiving well (water receiving tank) 3 by a water supply conduit 2, and from this water receiving tank 3 to a distribution pipe 4 in each home or the like. In the water supply facility configured to distribute and distribute water to the terminal water supply facility 5, for example, the water supply conduit 2 includes an inlet valve 7A formed of an electric butterfly valve, an outlet valve 7B formed of a manual valve, and an inline water turbine 7C. A power generation device 7 having an in-line water turbine consisting of is installed.

【0015】インライン水車7Cは、送水管路2に介設
可能な両端開口の筒状ケーシングと、この筒状ケーシン
グ内に回転自在に配置されて送水管路2の残圧によって
回転する水車と、この水車によって回転駆動されるとと
もに、筒状ケーシング内に水密に配置された発電機とを
備えている。
The in-line water turbine 7C includes a tubular casing which is openable at both ends and which can be interposed in the water feed conduit 2, and a water turbine which is rotatably disposed in the tubular casing and rotates by the residual pressure of the water feed conduit 2. The water turbine is driven to rotate and includes a generator that is watertightly arranged in a cylindrical casing.

【0016】前記構成によれば、矢印Fで示すように、
送水管路2内を圧送される通水の圧力、つまり送水管路
2の残圧によってインライン水車7Cを運転し、インラ
イン水車を備えた発電装置7により前記残圧を回収し電
力に変換して供給することができる。すなわち、残圧
(エネルギー)の浪費を避けることができる。
According to the above construction, as shown by the arrow F,
The in-line water turbine 7C is operated by the pressure of the water flowing through the water supply pipe line 2, that is, the residual pressure of the water supply pipe line 2, and the residual pressure is recovered by the power generator 7 equipped with the in-line water turbine and converted into electric power. Can be supplied. That is, waste of residual pressure (energy) can be avoided.

【0017】つぎに、請求項2に記載の発明の実施の形
態を説明する。図2は請求項2に記載の発明に係る送水
管路の残圧利用水力発電システムの一実施の形態を示す
構成図である。なお、図1と同一部分には、同一符号を
付して重複する構造説明は省略する。
Next, an embodiment of the invention described in claim 2 will be described. FIG. 2 is a configuration diagram showing an embodiment of a hydraulic power generation system utilizing residual pressure of a water supply pipe according to the invention described in claim 2. Note that the same parts as those in FIG.

【0018】図2において、送水管路2におけるインラ
イン水車を備えた発電装置7の介設位置の下流側には、
減勢または減圧手段6を介設してある。この減勢または
減圧手段6は減圧弁または減圧弁によって構成されてい
る。
In FIG. 2, on the downstream side of the interposed position of the power generator 7 having the in-line water turbine in the water supply pipe line 2,
A de-energizing or decompressing means 6 is provided. This de-energizing or pressure reducing means 6 is composed of a pressure reducing valve or a pressure reducing valve.

【0019】このような構成であれば、矢印Fで示すよ
うに、送水管路2内を圧送される通水の圧力、つまり送
水管路2の残圧によってインライン水車7Cを運転し、
インライン水車を備えた発電装置7により前記残圧を回
収し電力に変換して供給するとともに、インライン水車
7Cでの余剰残圧を減勢または減圧手段6で減勢または
減圧して着水井(受水槽)3に送水することができる。
つまり、インライン水車7Cで回収できる残圧は、減勢
または減圧手段6の減勢・減圧制御によって加減できる
ので、インライン水車を備えた発電装置7が上限値を超
える通水量で過負荷運転されて焼き付く不都合や下限値
未満の通水量で不発電運転される不都合を回避して、イ
ンライン水車を備えた発電装置7を設計値の範囲内で適
正に運転することができる。
With such a structure, as shown by an arrow F, the in-line turbine 7C is driven by the pressure of the water flowing under pressure in the water supply conduit 2, that is, the residual pressure of the water supply conduit 2.
The residual pressure is recovered and converted into electric power by a power generator 7 equipped with an in-line turbine, and the surplus residual pressure in the in-line turbine 7C is de-energized or decompressed by the decompression means 6 to reach the receiving well (reception well). Water can be sent to the water tank 3.
In other words, the residual pressure that can be recovered by the inline water turbine 7C can be adjusted by the energy reduction or the energy reduction / decompression control of the pressure reducing means 6, so that the power generation device 7 equipped with the inline water turbine is overloaded with a water flow rate exceeding the upper limit value. It is possible to properly operate the power generation device 7 including the in-line water turbine within the design value range by avoiding the problem of seizure and the problem of non-power generation operation with the water flow rate less than the lower limit value.

【0020】図3は請求項2に記載の発明に係る送水管
路の残圧利用水力発電システムの他の実施の形態を示す
構成図である。なお、図2と同一部分には、同一符号を
付して重複する構造説明は省略する。
FIG. 3 is a configuration diagram showing another embodiment of the hydraulic power generation system utilizing residual pressure of the water supply pipe according to the invention described in claim 2. Note that the same parts as those in FIG. 2 are denoted by the same reference numerals, and duplicated structural description will be omitted.

【0021】このような構成であれば、矢印Fで示すよ
うに、送水管路2内を圧送される水の圧力、つまり送水
管路2の残圧は、まず減勢または減圧手段6により減勢
または減圧され、減勢または減圧手段6での余剰残圧に
よってインライン水車7Cを運転し、インライン水車を
備えた発電装置7により前記余剰残圧を回収し電力に変
換して着水井(受水槽)3に送水することができる。つ
まり、インライン水車7Cで回収できる残圧は、減勢ま
たは減圧手段6の減勢・減圧制御によって加減できるの
で、インライン水車を備えた発電装置7が上限値を超え
る通水量で過負荷運転されて焼き付く不都合や下限値未
満の通水量で不発電運転される不都合を回避して、イン
ライン水車を備えた発電装置7を設計値の範囲内で適正
に運転することができる。
With such a configuration, as shown by arrow F, the pressure of the water pumped in the water supply conduit 2, that is, the residual pressure of the water supply conduit 2 is first reduced by the depressurizing or depressurizing means 6. The inline turbine 7C is operated by the surplus residual pressure in the depressurizing or depressurizing means 6, and the surplus residual pressure is recovered by the power generator 7 equipped with the inline turbine and converted into electric power to reach the water receiving well (water receiving tank). ) Water can be sent to 3. In other words, the residual pressure that can be recovered by the inline water turbine 7C can be adjusted by the energy reduction or the energy reduction / decompression control of the pressure reducing means 6, so that the power generation device 7 equipped with the inline water turbine is overloaded with a water flow rate exceeding the upper limit value. It is possible to properly operate the power generation device 7 including the in-line water turbine within the design value range by avoiding the problem of seizure and the problem of non-power generation operation with the water flow rate less than the lower limit value.

【0022】つぎに、請求項3に記載の発明の実施の形
態を説明する。図4は請求項3に記載の発明に係る送水
管路の残圧利用水力発電システムの一実施の形態を示す
構成図である。なお、図1または図2と同一部分には、
同一符号を付して重複する構造説明は省略する。
Next, an embodiment of the invention described in claim 3 will be described. FIG. 4 is a configuration diagram showing an embodiment of a hydraulic power generation system utilizing residual pressure of a water supply pipe according to the invention described in claim 3. In addition, in the same portion as FIG. 1 or 2,
The same reference numerals are given and duplicated structural description will be omitted.

【0023】図4において、インライン水車を備えた発
電装置7を迂回してバイパス弁8Aを介設したバイパス
管路8が受水槽3に開口して設けられている。
In FIG. 4, a bypass pipe 8 is provided in the water receiving tank 3 so as to bypass the power generator 7 having an in-line water turbine and have a bypass valve 8A interposed.

【0024】このような構成であれば、インライン水車
を備えた発電装置1に故障が発生した緊急時やメンテナ
ンスなどに際しては、入口弁7Aと出口弁7Bをそれぞ
れ弁閉して、送水管路2への通水Fをとめた状態でバイ
パス管路8から受水槽3に送水F1して、各家庭などの
末端の給水施設5への分配配水を実行することができ
る。また、バイパス弁8Aの開度調整によって、送水管
路2の通水量とバイパス管路8の送水量との割合を加減
できるので、インライン水車を備えた発電装置7が上限
値を超える通水量で過負荷運転されて焼き付く不都合や
下限値未満の通水量で不発電運転される不都合を回避し
て、インライン水車を備えた発電装置7を設計値の範囲
内で適正に運転することができる。なお、図5に示すよ
うに、バイパス弁8Aを介設したバイパス管路8の下流
端部を送水管路2に合流させた構成であっても、図4と
同様の作用・効果を奏することができる。
With such a structure, the inlet valve 7A and the outlet valve 7B are closed and the water supply conduit 2 is used in the event of an emergency such as a failure of the power generator 1 equipped with an in-line turbine or during maintenance. Water F1 from the bypass pipe 8 to the water receiving tank 3 can be distributed to the water supply facility 5 at the end of each household so that the water can be distributed. Further, since the ratio of the water flow rate of the water feed conduit 2 and the water feed amount of the bypass conduit 8 can be adjusted by adjusting the opening degree of the bypass valve 8A, the power generation device 7 equipped with the in-line turbine can handle the water flow rate exceeding the upper limit value. It is possible to properly operate the power generation device 7 including the in-line water turbine within the range of the design value, while avoiding the inconvenience of being overloaded and seizing and the inconvenience of non-power generation operation with the water flow rate less than the lower limit value. As shown in FIG. 5, even if the downstream end of the bypass pipe 8 having the bypass valve 8A is merged with the water supply pipe 2, the same action and effect as in FIG. 4 can be obtained. You can

【0025】一方、図6に示すように、バイパス管路8
の下流端部を減勢または減圧手段6の上流側で送水管路
2に合流させた構成であれば、インライン水車を備えた
発電装置1に故障が発生した緊急時やメンテナンスなど
に際しては、入口弁7Aと出口弁7Bをそれぞれ弁閉し
て、送水管路2への通水Fをとめた状態でバイパス管路
8から受水槽3に送水F1して、各家庭などの末端の給
水施設5への分配配水を実行することができるととも
に、減勢または減圧手段6の減勢・減圧制御により、送
水管路2の残圧とバイパス管路8の残圧と割合、つまり
通水量Fと送水量F1の割合を加減できるので、インラ
イン水車を備えた発電装置7が上限値を超える通水量で
過負荷運転されて焼き付く不都合や下限値未満の通水量
で不発電運転される不都合を回避して、インライン水車
を備えた発電装置7を設計値の範囲内で適正に運転する
ことができる。
On the other hand, as shown in FIG. 6, the bypass line 8
If the configuration is such that the downstream end of the generator is joined to the water supply conduit 2 on the upstream side of the depressurizing or depressurizing means 6, in the event of an emergency such as a failure in the power generator 1 equipped with an in-line turbine, maintenance, etc. The valve 7A and the outlet valve 7B are closed, and the water supply F to the water supply pipe 2 is stopped. The distribution and distribution of water to the pipes can be performed, and the depressurization or depressurization control of the depressurizing means 6 controls the residual pressure in the water supply conduit 2 and the residual pressure in the bypass conduit 8, that is, the amount of water flow F and the amount of water to be sent. Since the proportion of the water amount F1 can be adjusted, it is possible to avoid the inconvenience that the power generation device 7 equipped with the in-line water turbine is overloaded with the water flow amount exceeding the upper limit value and burns in, and the power is not operated with the water flow amount less than the lower limit value. , Generator set 7 with inline turbine It can be operated properly in the range of design values.

【0026】また、図7に示すように、インライン水車
を備えた発電装置7の上流側の送水管路2に減勢または
減圧手段6を介設し、バイパス管路8の上流端部を減勢
または減圧手段6の下流位置で送水管路2に合流させ、
かつ下流端部をインライン水車を備えた発電装置7の下
流側で送水管路2に合流させた構成であっても、図6と
同様の作用・効果を奏することができる。
Further, as shown in FIG. 7, a depressurizing or depressurizing means 6 is provided in the water supply pipe line 2 on the upstream side of the power generator 7 having an in-line turbine to reduce the upstream end portion of the bypass pipe line 8. Join the water supply conduit 2 at a position downstream of the force or pressure reducing means 6,
Moreover, even if the downstream end is joined to the water supply conduit 2 on the downstream side of the power generation device 7 including the inline turbine, the same operation and effect as in FIG. 6 can be achieved.

【0027】さらに、図8または図9に示すように、バ
イパス管路8に減勢または減圧手段6を介設することに
より、インライン水車を備えた発電装置7に故障が発生
した緊急時やメンテナンスなどに際しては、入口弁7A
と出口弁7Bをそれぞれ弁閉して、送水管路2への通水
Fをとめた状態でしかも減勢または減圧手段6の減勢・
減圧制御により、減勢または減圧した水をバイパス管路
8から受水槽3に送水F1して、各家庭などの末端の給
水施設5への分配配水を実行することができる。
Further, as shown in FIG. 8 or FIG. 9, the bypass line 8 is provided with a depressurizing or depressurizing means 6 so that a failure occurs in the power generator 7 equipped with an in-line water turbine and in case of emergency or maintenance. In such cases, the inlet valve 7A
And the outlet valve 7B are each closed to stop the flow of water F to the water supply conduit 2 and to deactivate or decompress the decompression means 6.
The depressurized control allows the depressurized or depressurized water to be fed F1 from the bypass pipe 8 to the water receiving tank 3 to execute distributed water distribution to the water supply facility 5 at the end of each home or the like.

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る送水
管路の残圧利用水力発電システムは構成されているの
で、以下のような格別の効果を奏する。
As described above, since the residual pressure utilizing hydraulic power generation system for the water supply line according to the present invention is constructed, the following special effects are exhibited.

【0029】請求項1に記載の発明によれば、送水管路
の残圧によってインライン水車を運転し、インライン水
車を備えた発電装置により前記残圧を回収し電力に変換
して供給することができる。すなわち、残圧(エネルギ
ー)の浪費を避けることができる。
According to the first aspect of the invention, the in-line turbine is operated by the residual pressure of the water supply line, and the residual pressure is recovered by the power generator equipped with the in-line turbine and converted into electric power to be supplied. it can. That is, waste of residual pressure (energy) can be avoided.

【0030】請求項2に記載の発明のように、送水管路
に減勢または減圧手段を介設すれば、インライン水車で
回収できる残圧を、減勢または減圧手段の減勢・減圧制
御によって加減して、インライン水車を備えた発電装置
が上限値を超える通水量で過負荷運転されて焼き付く不
都合や下限値未満の通水量で不発電運転される不都合を
回避して、インライン水車を備えた発電装置7を設計値
の範囲内で適正に運転することができる。
If the depressurizing or depressurizing means is provided in the water supply line as in the second aspect of the invention, the residual pressure that can be recovered by the in-line water turbine is controlled by the depressurizing or depressurizing control of the depressurizing or depressurizing means. In addition, the inline turbine was equipped to avoid the disadvantage that the power generator equipped with the inline turbine is overloaded with the water flow rate exceeding the upper limit value and burns in, and the power generation operation is performed with the water flow rate less than the lower limit value. The power generation device 7 can be properly operated within the design value range.

【0031】請求項3に記載の発明のように、インライ
ン水車を備えた発電装置を迂回して、前記受水槽に送水
できるバイパス管路を設けることで、インライン水車を
備えた発電装置に故障が発生した緊急時やメンテナンス
などに際しては、送水管路への通水をとめた状態でバイ
パス管路から受水槽に送水することができる。また、バ
イパス管路の開度調整あるいは減勢または減圧手段の減
勢・減圧制御により、送水管路の通水量とバイパス管路
の送水量との割合を加減できるので、インライン水車を
備えた発電装置が上限値を超える通水量で過負荷運転さ
れる不都合や下限値未満の通水量で不発電運転される不
都合を回避して、インライン水車を備えた発電装置を設
計値の範囲内で適正に運転させることもできる。
According to the third aspect of the present invention, by providing a bypass line that bypasses the power generator equipped with the in-line turbine and can supply water to the water receiving tank, the power generator equipped with the in-line turbine is protected from failure. In the event of an emergency or maintenance, it is possible to send water from the bypass pipe to the water receiving tank while stopping the water supply to the water pipe. In addition, by adjusting the opening of the bypass pipeline, or by controlling the decompression or the decompression / decompression control of the decompression means, it is possible to adjust the ratio between the amount of water flowing through the water pipeline and the amount of water flowing through the bypass pipeline. Properly install a power generator equipped with an in-line turbine within the design value range by avoiding the inconvenience that the equipment is overloaded with water flow exceeding the upper limit and the inconvenience of non-power generation with water flow below the lower limit. It can also be driven.

【0032】請求項4に記載の発明のように、バイパス
管路に減勢または減圧手段を介設すれば、インライン水
車を備えた発電装置に故障が発生した緊急時やメンテナ
ンスなどに際しては、送水管路への通水をとめた状態で
しかも減勢または減圧手段の減勢・減圧制御により、減
勢または減圧した水をバイパス管路から受水槽に送水し
て、各家庭などの末端の給水施設への分配配水を実行す
ることができる。
According to the fourth aspect of the present invention, if the bypass line is provided with a depressurizing or depressurizing means, the power transmission device provided with the in-line water turbine can be sent in case of emergency or maintenance. Water that has been deenergized or decompressed by the deenergization / decompression control of the decompression or decompression means with water stopped to the water pipeline is sent from the bypass pipeline to the water receiving tank to supply water at the end of each household. Distribution water distribution to the facility can be implemented.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に記載の発明の一実施の形態を示す構
成図である。
FIG. 1 is a configuration diagram showing an embodiment of the invention described in claim 1.

【図2】請求項2に記載の発明の一実施の形態を示す構
成図である。
FIG. 2 is a configuration diagram showing an embodiment of the invention described in claim 2.

【図3】請求項2に記載の発明の他の実施の形態を示す
構成図である。
FIG. 3 is a configuration diagram showing another embodiment of the invention according to claim 2;

【図4】請求項3に記載の発明の一実施の形態を示す構
成図である。
FIG. 4 is a configuration diagram showing an embodiment of the invention described in claim 3.

【図5】図4の変形例を示す構成図である。5 is a configuration diagram showing a modified example of FIG.

【図6】請求項3に記載の発明の他の実施の形態を示す
構成図である。
FIG. 6 is a configuration diagram showing another embodiment of the invention according to claim 3;

【図7】図6の変形例を示す構成図である。7 is a configuration diagram showing a modified example of FIG.

【図8】請求項4に記載の発明の一実施の形態を示す構
成図である。
FIG. 8 is a configuration diagram showing an embodiment of the invention described in claim 4.

【図9】図8の変形例を示す構成図である。9 is a configuration diagram showing a modified example of FIG.

【図10】従来例の構成図である。FIG. 10 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

2 送水管路 3 着水井(受水槽) 6 減勢または減圧手段 7 インライン水車を備えた発電装置 8 バイパス管路 2 water supply lines 3 landing well (water tank) 6 Energy reduction or decompression means 7 Power generator with in-line turbine 8 bypass lines

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三木 悟 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 高橋 晃裕 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 (72)発明者 橋本 靖志 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 Fターム(参考) 3H074 AA12 AA20 BB10 CC11 CC43   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoru Miki             1-1-1 Nakanomiya Oike, Hirakata City, Osaka Prefecture             Inside the Kubota Hirakata Factory (72) Inventor Akihiro Takahashi             1-1-1 Nakanomiya Oike, Hirakata City, Osaka Prefecture             Inside the Kubota Hirakata Factory (72) Inventor Yasushi Hashimoto             1-1-1 Nakanomiya Oike, Hirakata City, Osaka Prefecture             Inside the Kubota Hirakata Factory F term (reference) 3H074 AA12 AA20 BB10 CC11 CC43

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 受水槽に送水する送水管路にインライン
水車を備えた発電装置が介設されていることを特徴とす
る送水管路の残圧利用水力発電システム。
1. A hydroelectric power generation system using residual pressure in a water transmission line, wherein a power generation device equipped with an in-line water turbine is provided in a water transmission line for supplying water to a water receiving tank.
【請求項2】 前記送水管路に減勢または減圧手段が介
設されている請求項1に記載の送水管路の残圧利用水力
発電システム。
2. The hydraulic power generation system using residual pressure of a water supply line according to claim 1, wherein a depressurizing or depressurizing means is provided in the water supply line.
【請求項3】 前記インライン水車を備えた発電装置を
迂回して前記受水槽に送水できるバイパス管路が設けら
れている請求項1または請求項2に記載の送水管路の残
圧利用水力発電システム。
3. Hydroelectric power generation using residual pressure of the water supply line according to claim 1 or 2, wherein a bypass line is provided that can bypass the power generator equipped with the in-line water turbine and supply water to the water receiving tank. system.
【請求項4】 前記バイパス管路に減勢または減圧手段
が介設されている請求項3に記載の送水管路の残圧利用
水力発電システム。
4. The hydraulic power generation system using residual pressure of a water supply line according to claim 3, wherein a de-energizing or pressure reducing means is provided in the bypass line.
JP2002081061A 2002-03-22 2002-03-22 Residual pressure utilizing hydraulic power generating system in water supply conduit Pending JP2003278633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002081061A JP2003278633A (en) 2002-03-22 2002-03-22 Residual pressure utilizing hydraulic power generating system in water supply conduit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002081061A JP2003278633A (en) 2002-03-22 2002-03-22 Residual pressure utilizing hydraulic power generating system in water supply conduit

Publications (1)

Publication Number Publication Date
JP2003278633A true JP2003278633A (en) 2003-10-02

Family

ID=29229841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002081061A Pending JP2003278633A (en) 2002-03-22 2002-03-22 Residual pressure utilizing hydraulic power generating system in water supply conduit

Country Status (1)

Country Link
JP (1) JP2003278633A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250114A (en) * 2005-03-14 2006-09-21 Masao Muraoka Power generation system for molding facility
JP2007002735A (en) * 2005-06-23 2007-01-11 Ebara Corp Piping line
JP2009007995A (en) * 2007-06-27 2009-01-15 Hitachi Industrial Equipment Systems Co Ltd Energy recovery system
EP2022978A2 (en) * 2007-08-08 2009-02-11 Greenpower SRL Electrical power generator connectable to a water network
JP4523064B1 (en) * 2009-05-21 2010-08-11 藤沢電機管工株式会社 Power generation device and energy recovery system including the power generation device
JP2015218568A (en) * 2014-05-21 2015-12-07 株式会社小松製作所 Water system
JP2022551750A (en) * 2019-10-14 2022-12-13 アンソニー・マカルーソ Method and apparatus for generating electricity from moving fluids
US11722869B2 (en) 2019-06-07 2023-08-08 Anthony Macaluso Systems and methods for managing a vehicle's energy via a wireless network
US11738641B1 (en) 2022-03-09 2023-08-29 Anthony Macaluso Flexible arm generator
US11757332B2 (en) 2019-06-07 2023-09-12 Anthony Macaluso Power generation from vehicle wheel rotation
US11837411B2 (en) 2021-03-22 2023-12-05 Anthony Macaluso Hypercapacitor switch for controlling energy flow between energy storage devices
US11850963B2 (en) 2022-03-09 2023-12-26 Anthony Macaluso Electric vehicle charging station
US11904708B2 (en) 2019-06-07 2024-02-20 Anthony Macaluso Methods, systems and apparatus for powering a vehicle
US11919412B2 (en) 2019-06-07 2024-03-05 Anthony Macaluso Methods and apparatus for powering a vehicle
US11955875B1 (en) 2023-02-28 2024-04-09 Anthony Macaluso Vehicle energy generation system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250114A (en) * 2005-03-14 2006-09-21 Masao Muraoka Power generation system for molding facility
JP2007002735A (en) * 2005-06-23 2007-01-11 Ebara Corp Piping line
JP2009007995A (en) * 2007-06-27 2009-01-15 Hitachi Industrial Equipment Systems Co Ltd Energy recovery system
EP2022978A3 (en) * 2007-08-08 2012-12-26 Greenpower SRL Electrical power generator connectable to a water network
EP2022978A2 (en) * 2007-08-08 2009-02-11 Greenpower SRL Electrical power generator connectable to a water network
JP4523064B1 (en) * 2009-05-21 2010-08-11 藤沢電機管工株式会社 Power generation device and energy recovery system including the power generation device
JP2010270660A (en) * 2009-05-21 2010-12-02 Fujisawa Denki Kanko Kk Power generation apparatus and energy recovery system equipped with the same
JP2015218568A (en) * 2014-05-21 2015-12-07 株式会社小松製作所 Water system
US11919412B2 (en) 2019-06-07 2024-03-05 Anthony Macaluso Methods and apparatus for powering a vehicle
US11722869B2 (en) 2019-06-07 2023-08-08 Anthony Macaluso Systems and methods for managing a vehicle's energy via a wireless network
US11999250B2 (en) 2019-06-07 2024-06-04 Anthony Macaluso Methods and apparatus for powering a vehicle
US11757332B2 (en) 2019-06-07 2023-09-12 Anthony Macaluso Power generation from vehicle wheel rotation
US11985579B2 (en) 2019-06-07 2024-05-14 Anthony Macaluso Systems and methods for managing a vehicle's energy via a wireless network
US11970073B2 (en) 2019-06-07 2024-04-30 Anthony Macaluso Vehicle energy generation with flywheel
US11904708B2 (en) 2019-06-07 2024-02-20 Anthony Macaluso Methods, systems and apparatus for powering a vehicle
US11916466B2 (en) 2019-06-07 2024-02-27 Anthony Macaluso Power generation from vehicle wheel rotation
US11919413B2 (en) 2019-06-07 2024-03-05 Anthony Macaluso Methods and apparatus for powering a vehicle
JP2022551750A (en) * 2019-10-14 2022-12-13 アンソニー・マカルーソ Method and apparatus for generating electricity from moving fluids
JP7434541B2 (en) 2019-10-14 2024-02-20 アンソニー・マカルーソ Method and apparatus for generating electricity from moving fluid
US11837411B2 (en) 2021-03-22 2023-12-05 Anthony Macaluso Hypercapacitor switch for controlling energy flow between energy storage devices
US11919387B1 (en) 2022-03-09 2024-03-05 Anthony Macaluso Flexible arm generator
US11897355B2 (en) 2022-03-09 2024-02-13 Anthony Macaluso Electric vehicle charging station
US11850963B2 (en) 2022-03-09 2023-12-26 Anthony Macaluso Electric vehicle charging station
US11738641B1 (en) 2022-03-09 2023-08-29 Anthony Macaluso Flexible arm generator
US11955875B1 (en) 2023-02-28 2024-04-09 Anthony Macaluso Vehicle energy generation system
US12003167B1 (en) 2023-02-28 2024-06-04 Anthony Macaluso Vehicle energy generation system

Similar Documents

Publication Publication Date Title
JP2003278633A (en) Residual pressure utilizing hydraulic power generating system in water supply conduit
WO2011011134A3 (en) Water recovery systems and methods
WO2009106945A4 (en) Electricity generating arrangement
KR101307656B1 (en) Water power generator for waterworks
CN207451686U (en) A kind of raising film producing water ratio processing system
WO2005042408A3 (en) Treatment of particle-bearing liquid
CN206753670U (en) The personal system of heat supply one-level web portal pressure electricity-generating more than needed
CN204983011U (en) Box linkage is augmented and is pressed no negative pressure water supply installation of intelligence
CN207700265U (en) Water-saving cell pure water central water supply system
CN206752403U (en) A kind of water pipeline for hydraulic engineering
CN106761992A (en) Heat supply one-level web portal pressure electricity-generating more than needed personal system and progress control method
JP2008209031A (en) Auxiliary steam temperature lowering system
CN107986395A (en) Fluid energy integrated management system
US20210231095A1 (en) Methods and apparatus for generating electricity from moving fluid
JP2018207696A (en) Hydraulic power generation system
CN219752002U (en) Water purifier with two RO reverse osmosis membranes connected in parallel for purification
CN214402008U (en) High-order regulation tank self-flowing pressure-superposed water supply system
CN216972080U (en) Reverse osmosis device suitable for landfill leachate treatment
JP2004225681A (en) Water supply/sewage power generation
CN206167685U (en) Low pressure high power foam generator
CN205425344U (en) Supply -air outlet with filtering capability
CN108560645B (en) Constant-pressure water supply system and method of constant-frequency pump
van Heeringen et al. Real-time Control of sewer pumps by using ControlNEXT to smooth inflow at Waste Water Treatment Plant Garmerwolde
CN204111438U (en) A kind of reverse osmosis water purification machine
JP2002332947A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610