JP2003278607A - Egr cooler - Google Patents

Egr cooler

Info

Publication number
JP2003278607A
JP2003278607A JP2002076275A JP2002076275A JP2003278607A JP 2003278607 A JP2003278607 A JP 2003278607A JP 2002076275 A JP2002076275 A JP 2002076275A JP 2002076275 A JP2002076275 A JP 2002076275A JP 2003278607 A JP2003278607 A JP 2003278607A
Authority
JP
Japan
Prior art keywords
evaporator
condenser
refrigerant
egr cooler
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002076275A
Other languages
Japanese (ja)
Inventor
Takashi Ishimori
崇 石森
Eiko Shiga
栄孝 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2002076275A priority Critical patent/JP2003278607A/en
Publication of JP2003278607A publication Critical patent/JP2003278607A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an EGR cooler for preventing thermal load of an engine cooling system from being increased without the necessity of using a forced circulation means such as a water pump. <P>SOLUTION: A condenser 7 which is provided independently from the engine cooling system and condenses steam generated in a boiling type evaporator 6 by heat exchanging with outside air is disposed at a portion higher than the evaporator 6 heat exchanging EGR gas circulated from an exhaust system to an intake system with a coolant. By connecting a distal end of a returning route 8 extended from a bottom part of the condenser 7 to the evaporator 6 and connecting a distal end of a going route 9 extended from a top part of the evaporator 6 to the condenser 7 at a position away from a connection position with the returning route 8, the coolant is circulated between the evaporator 6 and the condenser 7 by utilizing a difference in specific gravity. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は吸気系に還流される
EGRガスを冷却するEGRクーラに係り、特に、エン
ジン冷却系の負荷を軽減することができるEGRクーラ
に関するものである。 【0002】 【従来の技術】吸気系に還流されるEGRガスを冷却し
て燃焼温度の上昇を抑制するために、近年ではEGRク
ーラを設けることが多い。しかしながら、従来ではエン
ジン冷却水の一部を利用してEGRガスを冷却するよう
にしていたために、EGRガス流量が増加するとエンジ
ン冷却系の熱負荷が大きくなるために、ラジエータおよ
びウォータポンプなどを大容量化する必要性があった。
また、エンジン冷却系とEGRクーラの冷却系を独立さ
せた場合においても、ウォータポンプなどの強制循環手
段を設ける必要性があるために、いずれの場合にもEG
Rシステムのコストが上昇してしまうという不具合があ
った。 【0003】 【発明が解決しようとする課題】本発明は上記実情に鑑
みてなされたものであって、ウォータポンプなどの強制
循環手段を用いる必要性がなく、しかも、エンジン冷却
系の熱負荷の増加をもたらすことがないEGRクーラを
提供することを課題としている。 【0004】 【課題を解決するための手段】上記課題を解決するため
に本発明は、排気系から吸気系に還流されるEGRガス
と冷媒を熱交換させる沸騰式のエバポレータと、エンジ
ン冷却系から独立して設けられて前記エバポレータで発
生した蒸気を外気との熱交換で凝縮させるコンデンサを
備えている。また、前記コンデンサをエバポレータより
高所に配設している。そして、コンデンサの底部から延
びる復路の先端をエバポレータに接続する一方、エバポ
レータの頂部から延びる往路の先端を復路との接続位置
より離れた位置においてコンデンサに接続したことを特
徴としている。 【0005】 【発明の実施の形態】以下に本発明の実施形態を図に基
づいて詳細に説明する。図1は本発明に係るEGRクー
ラを備えた過給式ディーゼルエンジンの概略平面図、図
2はEGRクーラの第1実施形態を示す概略正面図であ
る。 【0006】これらの図において、ディーゼルエンジン
1の排気マニホールド2から分岐して吸気マニホールド
3に至るEGR通路4にはEGRクーラ5を介装してい
る。 【0007】EGRクーラ5は、EGR通路4を流れる
EGRガスと冷媒を熱交換させる沸騰式のエバポレータ
6と、エンジン冷却系から独立して設けたコンデンサ7
で主要部が構成される。また、コンデンサ7をエバポレ
ータ5より高所に配設したうえで、コンデンサ7の底部
から延びる復路8の先端をエバポレータ6の底部に接続
するとともに、エバポレータ6の頂部から延びる往路9
を復路8との接続位置より高所である頂部空間において
コンデンサ7に接続している。 【0008】そして、外気との間の熱交換容量を大きく
するためのフィンなどをコンデンサ7の外側面または内
側に設けることにより、前記エバポレータ5で発生して
往路9からコンデンサ7に送り込まれた蒸気を、例えば
自動車の走行風あるいはエンジンのクーリングファンで
誘起された風などとの間で熱交換させて凝縮させるよう
にしている。なお、図1中10は排気ターボチャージャ
であり、該排気ターボチャージャ10から吐出された空
気は、図示しないインタークーラで冷却された後に、吸
気マニホールド3に導かれてEGRガスとともにエンジ
ン1の燃焼室に供給される。 【0009】かかる構成になるEGRクーラにおいて、
エバポレータ6においてEGRガスとの間で熱交換され
た冷媒は、時間の経過とともに温度上昇して比重が次第
に小さくなる。また、EGRガスとの間の熱交換で加熱
された温度の高い冷媒がエバポレータ6の内管6aの表
面において沸騰し、そのときの蒸発潜熱でEGRガスを
冷却する。 【0010】沸騰して蒸気となった冷媒の比重は、液体
状態の冷媒の比重に対比して著しく小さいために、比重
差によってエバポレータ6から押し出され、往路9を通
ってコンデンサ7に送り込まれる。そして、コンデンサ
7に送り込まれた冷媒の蒸気は、外気との間の熱交換で
冷却されて凝縮し、外気との熱交換で温度が低下すると
ともに比重が大きくなってコンデンサ7の底部に溜る。 【0011】また、コンデンサ7内の冷媒はエバポレー
タ6内の冷媒より温度が低くて比重が大きいために、コ
ンデンサ7の底部に溜っている低温の冷媒が復路8から
エバポレータ6に自重で流入し、EGRガスとの熱交換
で再び蒸気となってコンデンサ7に送られて凝縮する。 【0012】すなわち、コンデンサ7をエバポレータ6
より高所に配設してコンデンサ7の底部から延びる復路
8の先端をエバポレータ6の底部に接続する一方、エバ
ポレータ6の頂部から延びる往路9の先端を復路8との
接続位置より離れた位置でコンデンサ7に接続するとい
う簡潔構成であるにも拘らず、エバポレータ6での蒸発
によって発生した冷媒の蒸気をコンデンサ7で凝縮して
温度を低下させれば自重によってエバポレータ6に流入
するというように、冷媒の比重差を利用してエバポレー
タ6とコンデンサ7の間で冷媒を循環させることができ
る。 【0013】このために、エネルギ消費をともなうポン
プなどの循環手段を設ける必要性がなく、しかも、冷媒
の蒸発潜熱を利用してEGRガスを冷却することができ
るために、EGRクーラ5を安価に提供することができ
る。また、エンジン冷却系とは独立した冷却系を構成す
るために、多量のEGRガスを還流させる場合において
もエンジン冷却系の熱負荷が増加することもない。 【0014】なお、冷媒としてはエンジン冷却系などと
同様に水を用いることができるものであり、図示しない
逆止弁を復路8に設けることにより、冷媒の逆流をより
確実に防止することができる。 【0015】図3は本発明に係るEGRクーラの第2実
施形態を示す概略正面図、図4は図3のA−A断面図で
ある。 【0016】本実施形態においては、エバポレータ6を
二重管で構成し、内管6aの内側でEGRガスの流路を
構成するとともに、内管6aと外管6bの間に形成され
た環状の通路6cで冷媒の流路を構成している。また、
本実施形態においては復路8の先端を前記環状通路6c
の一端部に接続するとともに、往路9を環状通路6cの
他端から延設して両者の開口高さをほぼ同一としている
ために、冷媒の逆流を防止する逆止弁11を復路8に設
けている。 【0017】また、本実施形態においては、コンデンサ
7の底部に小室12を形成する仕切り13を設け、仕切
り13の側壁下部に設けた小孔14を介して小室12の
内部をコンデンサ7内に連通保持させている。そして、
往路9をコンデンサ7の底壁から小室12内に突入させ
てその先端を小室12の頂部近傍に開口させることによ
り、往路9から送られた蒸気を小室12内に放出すると
もに、この蒸気の熱で小室12内の冷媒を温度上昇させ
て往路9の保温効果を維持させて不用意な凝縮を回避し
つつ、小室12内の蒸気および冷媒を小孔14からコン
デンサ7内に戻すようにしている。 【0018】従って本実施形態によれば、前記第1実施
形態のように復路8の先端をエバポレータ6の底部に接
続する必要性がなく、あるいは、往路9をコンデンサ7
の頂部まで延設する必要性がないために、復路8および
往路9を短縮してEGRクーラ5を軽量化することがで
きる利点がある。 【0019】なお、上記実施形態においてはエバポレー
タ6を二重管で構成した場合について説明しているが、
エバポレータ6は必ずしも単純な二重管で構成する必要
性はなく、例えば図5に示したように軸線方向に沿う凹
凸条を壁面に形成した内管6aを用いてEGRガスと冷
媒の熱交換率を高くすることができ、あるいは、いわゆ
る多管式の熱交換器でエバポレータ6を構成することも
できる。 【0020】 【発明の効果】以上の説明から明らかなように本発明
は、排気系から吸気系に還流されるEGRガスと冷媒を
熱交換させる沸騰式のエバポレータより高所に、エンジ
ン冷却系から独立して設けられて前記エバポレータで発
生した蒸気を外気との熱交換で凝縮させるコンデンサを
配設し、コンデンサの底部から延びる復路の先端をエバ
ポレータに接続する一方、エバポレータの頂部から延び
る往路の先端を復路との接続位置より離れた位置におい
てコンデンサに接続したものであるから、冷媒の蒸発潜
熱を利用してEGRガスを冷却することができる。ま
た、コンデンサをエバポレータより高所に配して冷媒を
自然循環させるようにしているために、ウォータポンプ
などの強制循環手段を用いる必要性がなく、エバポレー
タはエンジン冷却系から独立して設けたものであるか
ら、大量のEGRガスを冷却するに際してもエンジン冷
却系の熱負荷が増加することがない。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an EGR cooler for cooling EGR gas recirculated to an intake system, and more particularly to an EGR system capable of reducing the load on an engine cooling system. It is about cooler. 2. Description of the Related Art In recent years, an EGR cooler is often provided in order to cool EGR gas recirculated to an intake system and suppress an increase in combustion temperature. However, conventionally, a part of the engine cooling water is used to cool the EGR gas. Therefore, when the flow rate of the EGR gas increases, the heat load of the engine cooling system increases. There was a need to increase the capacity.
Even in the case where the engine cooling system and the cooling system of the EGR cooler are made independent, it is necessary to provide a forced circulation means such as a water pump.
There was a problem that the cost of the R system would increase. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and does not require the use of forced circulation means such as a water pump. It is an object to provide an EGR cooler that does not cause an increase. [0004] In order to solve the above-mentioned problems, the present invention relates to a boiling evaporator for exchanging heat between a refrigerant and EGR gas which is recirculated from an exhaust system to an intake system, and an engine cooling system. A condenser is provided independently and condenses the steam generated by the evaporator by heat exchange with the outside air. Further, the condenser is disposed at a higher position than the evaporator. The forward end extending from the bottom of the condenser is connected to the evaporator, while the forward end extending from the top of the evaporator is connected to the condenser at a position farther from the connection with the return path. An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic plan view of a supercharged diesel engine provided with an EGR cooler according to the present invention, and FIG. 2 is a schematic front view showing a first embodiment of the EGR cooler. In these figures, an EGR cooler 5 is interposed in an EGR passage 4 which branches off from an exhaust manifold 2 of a diesel engine 1 and reaches an intake manifold 3. The EGR cooler 5 includes a boiling evaporator 6 for exchanging heat between the EGR gas flowing through the EGR passage 4 and the refrigerant, and a condenser 7 provided independently of the engine cooling system.
The main part is composed of. Further, after arranging the condenser 7 at a position higher than the evaporator 5, the tip of the return path 8 extending from the bottom of the condenser 7 is connected to the bottom of the evaporator 6, and the outward path 9 extending from the top of the evaporator 6.
Is connected to the capacitor 7 in a top space higher than the connection position with the return path 8. By providing fins or the like on the outside or inside of the condenser 7 for increasing the heat exchange capacity with the outside air, the steam generated by the evaporator 5 and sent to the condenser 7 from the outward path 9 is provided. Is condensed by exchanging heat with, for example, a running wind of an automobile or a wind induced by a cooling fan of an engine. In FIG. 1, reference numeral 10 denotes an exhaust turbocharger. The air discharged from the exhaust turbocharger 10 is cooled by an intercooler (not shown), and then guided to the intake manifold 3 and together with the EGR gas and the combustion chamber of the engine 1. Supplied to In the EGR cooler having such a configuration,
The refrigerant that has exchanged heat with the EGR gas in the evaporator 6 increases in temperature over time and the specific gravity gradually decreases. The high-temperature refrigerant heated by the heat exchange with the EGR gas boils on the surface of the inner tube 6a of the evaporator 6, and cools the EGR gas by the latent heat of evaporation at that time. Since the specific gravity of the refrigerant that has been vaporized by boiling is significantly smaller than the specific gravity of the refrigerant in the liquid state, the refrigerant is pushed out of the evaporator 6 by the difference in specific gravity and is sent to the condenser 7 through the outward path 9. The vapor of the refrigerant sent to the condenser 7 is cooled and condensed by heat exchange with the outside air, and the temperature is lowered by heat exchange with the outside air and the specific gravity is increased, so that the vapor is accumulated at the bottom of the condenser 7. Since the refrigerant in the condenser 7 has a lower temperature and a higher specific gravity than the refrigerant in the evaporator 6, the low-temperature refrigerant accumulated at the bottom of the condenser 7 flows into the evaporator 6 from the return path 8 by its own weight. The heat is exchanged with the EGR gas to become a vapor again to be sent to the condenser 7 and condensed. That is, the condenser 7 is connected to the evaporator 6
The distal end of the return path 8 extending from the bottom of the condenser 7 is connected to the bottom of the evaporator 6 at a higher position, and the distal end of the outward path 9 extending from the top of the evaporator 6 is located at a position farther from the connection position with the return path 8. Despite the simple configuration of connecting to the condenser 7, if the refrigerant vapor generated by evaporation in the evaporator 6 is condensed in the condenser 7 to lower the temperature, the refrigerant flows into the evaporator 6 by its own weight. The refrigerant can be circulated between the evaporator 6 and the condenser 7 using the specific gravity difference of the refrigerant. Therefore, there is no need to provide a circulating means such as a pump which consumes energy, and the EGR gas can be cooled by utilizing the latent heat of evaporation of the refrigerant. Can be provided. Further, since a cooling system independent of the engine cooling system is formed, the heat load of the engine cooling system does not increase even when a large amount of EGR gas is recirculated. As the refrigerant, water can be used as in the case of the engine cooling system and the like. By providing a check valve (not shown) in the return path 8, it is possible to more reliably prevent the refrigerant from flowing backward. . FIG. 3 is a schematic front view showing a second embodiment of the EGR cooler according to the present invention, and FIG. 4 is a sectional view taken along line AA of FIG. In the present embodiment, the evaporator 6 is constituted by a double pipe, an EGR gas flow path is formed inside the inner pipe 6a, and an annular ring formed between the inner pipe 6a and the outer pipe 6b. The passage 6c forms a flow path for the refrigerant. Also,
In the present embodiment, the tip of the return path 8 is connected to the annular passage 6c.
In addition, since the forward path 9 is extended from the other end of the annular path 6c and the opening heights thereof are substantially the same, a check valve 11 for preventing the backflow of the refrigerant is provided in the return path 8. ing. Further, in the present embodiment, a partition 13 forming a small chamber 12 is provided at the bottom of the capacitor 7, and the inside of the small chamber 12 communicates with the inside of the capacitor 7 via a small hole 14 provided at a lower portion of the side wall of the partition 13. I keep it. And
By making the outward path 9 protrude into the small chamber 12 from the bottom wall of the condenser 7 and opening its tip near the top of the small chamber 12, the steam sent from the outward path 9 is discharged into the small chamber 12, and the heat of the vapor is released. The vapor in the small chamber 12 and the refrigerant are returned from the small holes 14 into the condenser 7 while raising the temperature of the refrigerant in the small chamber 12 to maintain the heat retaining effect of the outward path 9 and avoid inadvertent condensation. . Therefore, according to the present embodiment, there is no need to connect the tip of the return path 8 to the bottom of the evaporator 6 as in the first embodiment, or the forward path 9 is connected to the condenser 7.
Since there is no need to extend to the top of the EGR cooler 5, there is an advantage that the return path 8 and the outward path 9 can be shortened and the EGR cooler 5 can be reduced in weight. In the above embodiment, the case where the evaporator 6 is constituted by a double pipe has been described.
The evaporator 6 does not necessarily need to be composed of a simple double pipe, and for example, as shown in FIG. 5, the heat exchange rate between the EGR gas and the refrigerant is determined by using an inner pipe 6a having a wall with irregularities extending along the axial direction. Can be increased, or the evaporator 6 can be constituted by a so-called multi-tube heat exchanger. As is apparent from the above description, the present invention is higher than the boiling type evaporator for exchanging heat between EGR gas and refrigerant flowing from the exhaust system to the intake system. An independent condenser is provided for condensing the steam generated by the evaporator by heat exchange with the outside air, and the leading end of the return path extending from the bottom of the condenser is connected to the evaporator, while the leading end of the outward path extending from the top of the evaporator. Is connected to the condenser at a position farther from the connection position with the return path, so that the EGR gas can be cooled using the latent heat of evaporation of the refrigerant. In addition, since the condenser is arranged at a higher position than the evaporator to allow the refrigerant to circulate naturally, there is no need to use forced circulation means such as a water pump, and the evaporator is provided independently of the engine cooling system. Therefore, even when cooling a large amount of EGR gas, the heat load of the engine cooling system does not increase.

【図面の簡単な説明】 【図1】EGRクーラを備えた過給式ディーゼルエンジ
ンの概略平面図である。 【図2】本発明に係るEGRクーラの第1実施形態を示
す概略正面図である。 【図3】本発明に係るEGRクーラの第2実施形態を示
す概略正面図である。 【図4】図3のA−A断面図である。 【図5】エバポレータの変形例を示す断面図である。 【符号の説明】 1 ディーゼルエンジン 2 排気マニホールド 3 吸気マニホールド 4 EGR通路 5 EGRクーラ 6 エバポレータ 6a 内管 6b 外管 6c 環状通路 7 コンデンサ 8 復路 9 往路 10 排気ターボチャージャ 11 逆止弁 12 小室 13 仕切り 14 小孔
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view of a supercharged diesel engine provided with an EGR cooler. FIG. 2 is a schematic front view showing a first embodiment of the EGR cooler according to the present invention. FIG. 3 is a schematic front view showing a second embodiment of the EGR cooler according to the present invention. FIG. 4 is a sectional view taken along line AA of FIG. 3; FIG. 5 is a sectional view showing a modified example of the evaporator. [Description of Signs] 1 Diesel engine 2 Exhaust manifold 3 Intake manifold 4 EGR passage 5 EGR cooler 6 Evaporator 6a Inner tube 6b Outer tube 6c Annular passage 7 Capacitor 8 Return path 9 Outbound path 10 Exhaust turbocharger 11 Check valve 12 Small chamber 13 Partition 14 Small hole

Claims (1)

【特許請求の範囲】 【請求項1】 排気系から吸気系に還流されるEGRガ
スと冷媒を熱交換させる沸騰式のエバポレータと、エン
ジン冷却系から独立して設けられて前記エバポレータで
発生した蒸気を外気との熱交換で凝縮させるコンデンサ
を備え、前記コンデンサをエバポレータより高所に配設
し、コンデンサの底部から延びる復路の先端をエバポレ
ータに接続する一方、エバポレータの頂部から延びる往
路の先端を復路との接続位置から離れた位置においてコ
ンデンサに接続したことを特徴とするEGRクーラ。
Claims: 1. A boiling evaporator for exchanging heat between a refrigerant and EGR gas recirculated from an exhaust system to an intake system, and steam generated by the evaporator provided independently of an engine cooling system. The condenser is disposed at a higher position than the evaporator, and the tip of the return path extending from the bottom of the condenser is connected to the evaporator, while the tip of the outward path extending from the top of the evaporator is connected to the return path. An EGR cooler characterized in that the EGR cooler is connected to a capacitor at a position distant from the connection position with the capacitor.
JP2002076275A 2002-03-19 2002-03-19 Egr cooler Pending JP2003278607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076275A JP2003278607A (en) 2002-03-19 2002-03-19 Egr cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076275A JP2003278607A (en) 2002-03-19 2002-03-19 Egr cooler

Publications (1)

Publication Number Publication Date
JP2003278607A true JP2003278607A (en) 2003-10-02

Family

ID=29227769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076275A Pending JP2003278607A (en) 2002-03-19 2002-03-19 Egr cooler

Country Status (1)

Country Link
JP (1) JP2003278607A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875856A1 (en) * 2004-09-27 2006-03-31 Renault Sas Tubular heat exchanger for e.g. heat engine, has calandria with twisted tubes inside which recycled exhaust gas circulates such that gas releases its heat to heat transfer fluid, where fluid is in heat exchange contact with coolant
FR2875857A1 (en) * 2004-09-27 2006-03-31 Renault Sas Heat exchanger for internal combustion engine, has tubes through which recycled exhaust gas passes, where tubes are disposed axially and horizontally in grille between tubular input plate and tubular output plate
WO2007086418A1 (en) * 2006-01-26 2007-08-02 Komatsu Ltd. Cooling apparatus of liquid
JP2008088810A (en) * 2006-09-29 2008-04-17 Nissan Diesel Motor Co Ltd Egr device
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device
JP2009250107A (en) * 2008-04-04 2009-10-29 Denso Corp Exhaust heat recovery system
US7721543B2 (en) * 2006-10-23 2010-05-25 Southwest Research Institute System and method for cooling a combustion gas charge

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875856A1 (en) * 2004-09-27 2006-03-31 Renault Sas Tubular heat exchanger for e.g. heat engine, has calandria with twisted tubes inside which recycled exhaust gas circulates such that gas releases its heat to heat transfer fluid, where fluid is in heat exchange contact with coolant
FR2875857A1 (en) * 2004-09-27 2006-03-31 Renault Sas Heat exchanger for internal combustion engine, has tubes through which recycled exhaust gas passes, where tubes are disposed axially and horizontally in grille between tubular input plate and tubular output plate
WO2007086418A1 (en) * 2006-01-26 2007-08-02 Komatsu Ltd. Cooling apparatus of liquid
DE112007000222T5 (en) 2006-01-26 2008-11-06 Komatsu Ltd. Cooling device for a fluid
JPWO2007086418A1 (en) * 2006-01-26 2009-06-18 株式会社小松製作所 Fluid cooling device
JP2008088810A (en) * 2006-09-29 2008-04-17 Nissan Diesel Motor Co Ltd Egr device
US7721543B2 (en) * 2006-10-23 2010-05-25 Southwest Research Institute System and method for cooling a combustion gas charge
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device
JP2009250107A (en) * 2008-04-04 2009-10-29 Denso Corp Exhaust heat recovery system

Similar Documents

Publication Publication Date Title
US7946112B2 (en) Exhaust heat recovery device
US20090020263A1 (en) Cooling Apparatus for Fluid
JPS5899660A (en) Air cooling device
JP6806524B2 (en) Hybrid intercooler system integrated with air conditioning system and its control method
TW200821801A (en) Case having phase-change heat dissipating device
US9261056B2 (en) Intake enhancement system for a vehicle
JP2003278607A (en) Egr cooler
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP2010249424A (en) Exhaust heat recovery device
JP2007332857A (en) Exhaust heat recovery equipment
JPH0226689B2 (en)
JP2007024423A (en) Exhaust heat recovery device
JPS6143213A (en) Evaporative cooling device of internal-combustion engine
CN115574493A (en) Condenser and air conditioning system
JP2002147291A (en) Exhaust gas recirculation device with cooler
CN205138006U (en) Sleeve pipe evaporative condenser
JPS6273053A (en) Air-cooled absorption refrigerator
JP3689761B2 (en) Cooling system
CN105937434A (en) Boiling cooling system
CN112746893B (en) Burette type pipeline intercooler and cooling system thereof
CN211352940U (en) Multi-temperature-zone liquid cooling system
CN214891593U (en) Phase change cooling system for communication machine room
JPH0330787Y2 (en)
KR101240982B1 (en) Multi-cooling module for vehicle
CN208900205U (en) A kind of cooling recirculation system and bull-dozer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010