JP2003278027A - Polypropylene fiber and method for producing the same - Google Patents

Polypropylene fiber and method for producing the same

Info

Publication number
JP2003278027A
JP2003278027A JP2002073715A JP2002073715A JP2003278027A JP 2003278027 A JP2003278027 A JP 2003278027A JP 2002073715 A JP2002073715 A JP 2002073715A JP 2002073715 A JP2002073715 A JP 2002073715A JP 2003278027 A JP2003278027 A JP 2003278027A
Authority
JP
Japan
Prior art keywords
polypropylene
fiber
dtex
creep strain
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002073715A
Other languages
Japanese (ja)
Inventor
Yasuyuki Fujii
泰行 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002073715A priority Critical patent/JP2003278027A/en
Publication of JP2003278027A publication Critical patent/JP2003278027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypropylene fiber scarcely being deformed and excellent in recoverableness from the deformation, and having a soft texture and strength at the same time, and to provide a method for producing the same. <P>SOLUTION: This polypropylene fiber is obtained by melt-spinning a polypropylene having a MFR of 10-50 g/10 min and a degree of crystallization of 60-95%, wherein the fiber has a Young's modulus of 5-15 cN/dtex, a creep deformation percentage of ≤50% measured after a stress of 1 cN/dtex is loaded thereon for 24 hr, and a percentage recovery from the creep deformation of ≥35% measured after the loaded stress is removed and the fiber is allowed to stand for 24 hr. The method for producing the polypropylene fiber comprises melt-spinning the polypropylene at a spinning draft of 50-500 to form undrawn yarn, then drawing the undrawn yarn 1.8-3.8 times in a draw ratio at a temperature lower than a melting point of the polypropylene by 20-80°C to form drawn yarn, and further thermally treating the drawn yarn, wherein the thermal treatment of the drawn yarn is conducted for 30-300 sec at a temperature lower than the melting point of the polypropylene by 10-40°C but higher than the drawing temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ひずみが少なく、
また更にひずみの回復性に優れたポリプロピレン繊維及
びその製造方法に関する。
TECHNICAL FIELD The present invention has a low distortion,
Further, the present invention relates to a polypropylene fiber excellent in strain recovery and a method for producing the same.

【0002】[0002]

【従来の技術】ポリプロピレン繊維は、撥水性、非吸水
性及び耐摩擦性に優れ、低比重であるため軽く、また変
色や退色がないことからロープやネット等の産業資材、
建造物や自動車等の内装材、医療・衛生材、衣料素材等
に広く用いられており、更にリサイクル性に優れること
から、再生ポリプロピレン繊維としての使用量も増えて
きている。
2. Description of the Related Art Polypropylene fiber is excellent in water repellency, non-water absorption and abrasion resistance, and is light because of its low specific gravity, and since it does not discolor or fade, it is an industrial material such as rope or net.
It is widely used as an interior material for buildings and automobiles, medical / sanitary materials, clothing materials, and the like, and because of its excellent recyclability, the amount of recycled polypropylene fiber used is also increasing.

【0003】しかしながら、ポリプロピレン繊維は、荷
重をかけたときに生じた変形ひずみが除荷後も消失しに
くい傾向があり、特に、長期間使用した際に問題とな
る。例えば、ポリプロピレン繊維を建造物の内装材とし
てフロアカーペットに用いた場合、人の歩行や家具等を
置くことによってカーペットが圧縮され、荷重を取り除
いてもカーペットの厚さが回復しなくなる「へたり」と
呼ばれる現象を生じる。この「へたり」現象は、荷重が
付加された状態が長時間続く所謂クリープ荷重によって
塑性変形(クリープひずみ)を生じ、更に除荷後のひず
みの回復率が低いことに起因する。
However, polypropylene fibers tend not to lose the deformation strain generated when a load is applied even after unloading, which is a problem particularly when used for a long period of time. For example, when polypropylene fiber is used as an interior material of a building for a floor carpet, the carpet will be compressed when a person walks on it or put furniture on it, and the thickness of the carpet will not recover even if the load is removed. Causes a phenomenon called. This "fatigue" phenomenon is caused by a so-called creep load in which a load is applied for a long period of time, causing plastic deformation (creep strain), and the strain recovery rate after unloading is low.

【0004】カーペットや不織布マット等のひずみを低
減する或いはひずみのない状態への回復性を改善する手
段としては、1)収縮性等の力学特性の異なる繊維を混
繊する方法(特開平11−181639号公報等)、
2)並列型又は芯鞘型の複合紡糸繊維を用いる方法(特
開平10−110379号公報等)、3)共重合成分の
導入やポリマーブレンドによりポリマーを改質する方法
(特開平5−209311号公報等)、4)ポリプロピ
レン繊維の繊維構造を制御する方法(特開平11−81
035号公報等)等が提案されている。
As means for reducing the strain of carpets and non-woven mats or for improving the recoverability to a strain-free state, 1) a method of mixing fibers having different mechanical properties such as shrinkability (JP-A-11- No. 181639),
2) Method using parallel type or core-sheath type composite spun fiber (JP-A-10-110379, etc.), 3) Method of modifying polymer by introducing copolymer component or polymer blending (JP-A-5-209311). 4) Method for controlling the fiber structure of polypropylene fiber (JP-A-11-81)
No. 035, etc.) has been proposed.

【0005】ところが、これらの方法では、製造プロセ
スが複雑になったり、リサイクル性に優れるというポリ
プロピレンの特長を損なう等の問題がある他、ポリプロ
ピレン繊維の繊維構造を制御する方法においては、熱延
伸等によって繊維中のポリマー分子の配向度を高める必
要があり、必然的に繊維のヤング率が高くなるために風
合いの硬い繊維となるといった問題がある。
However, these methods have problems such as a complicated manufacturing process and impairing the characteristic of polypropylene that is excellent in recyclability, and in the method of controlling the fiber structure of polypropylene fiber, hot drawing and the like. Therefore, it is necessary to increase the degree of orientation of polymer molecules in the fiber, which inevitably increases the Young's modulus of the fiber, resulting in a fiber having a hard texture.

【0006】一方、ポリプロピレンの弾性繊維は、高い
弾性回復率を示すことで従来から広く知られているが、
延伸倍率の低い条件で繊維化する必要があり、引張変形
時のヤング率及び破断強度が低いため、特に、ロープや
ネット等の産業資材用途、建造物や自動車等の内装材用
途には不適切である。
On the other hand, the elastic fiber of polypropylene is widely known from the past because of its high elastic recovery rate.
Since it needs to be made into fibers under conditions of low draw ratio, and its Young's modulus and tensile strength at the time of tensile deformation are low, it is especially unsuitable for industrial materials such as ropes and nets, and interior materials such as buildings and automobiles. Is.

【0007】更に、ロープやネット等の産業資材、建造
物や自動車等の内装材に用いるポリプロピレン繊維の製
造方法としては、ポリプロピレンを溶融押出機で溶融し
てノズルから吐出し、冷却固化した後に熱延伸され、そ
の後用途に応じて、交絡又は捲縮等の処理が施されるの
が一般的であり、得られるポリプロピレン繊維の機械的
特性は、例えば後述の方法によって測定されるヤング率
が5〜6cN/dtexであり、クリープひずみが80
〜150%、クリープひずみの回復率が15〜25%で
ある。
Further, as a method for producing polypropylene fibers used for industrial materials such as ropes and nets and interior materials for buildings and automobiles, polypropylene is melted by a melt extruder, discharged from a nozzle, cooled and solidified, and then heated. It is generally stretched and then subjected to a treatment such as entanglement or crimping depending on the application, and the mechanical properties of the obtained polypropylene fiber are, for example, Young's modulus of 5 to 5 measured by the method described below. 6 cN / dtex and creep strain of 80
~ 150%, the recovery rate of creep strain is 15 ~ 25%.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、ポリ
マーをブレンドしたり、複合繊維化することなく、繊維
内部の構造を制御することによって、ポリプロピレン単
独で、ひずみが少なく、また更に、ひずみのない状態に
復する、所謂ひずみの回復性に優れ、かつ、柔らかい風
合いと強度とを兼ね備えたポリプロピレン繊維を提供す
ることにある。
It is an object of the present invention to control the internal structure of a fiber without blending a polymer or forming a composite fiber, so that polypropylene alone has a low strain, and further, a strain. An object of the present invention is to provide a polypropylene fiber that has a so-called strain recovery property that returns to a normal state and that has both a soft texture and strength.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、メルト
フローレート(MFR)が10〜50g/10分、結晶
化度が60〜95%のポリプロピレンを溶融紡糸して得
られる繊維であって、ヤング率が5〜15cN/dte
xであり、1cN/dtexの応力を24hr負荷した
ときのクリープひずみが50%以下であり、又は更に1
cN/dtexの応力を24hr負荷し、除荷して24
hr後のクリープひずみの回復率が35%以上であるこ
とを特徴とするポリプロピレン繊維、及び、MFRが1
0〜50g/10分、結晶化度が60〜95%のポリプ
ロピレンを紡糸ドラフト50〜500で溶融紡糸し、紡
出糸をポリプロピレンポリマーの融点より20〜80℃
低い温度で延伸倍率1.8〜3.8倍に延伸する製糸工
程において、延伸に引き続きポリプロピレンポリマーの
融点より10〜40℃低い温度でかつ延伸温度以上の温
度で30〜300秒間熱処理することを特徴とするポリ
プロピレン繊維の製造方法、にある。
The gist of the present invention is a fiber obtained by melt spinning polypropylene having a melt flow rate (MFR) of 10 to 50 g / 10 minutes and a crystallinity of 60 to 95%. , Young's modulus is 5 to 15 cN / dte
x, the creep strain when a stress of 1 cN / dtex is applied for 24 hours is 50% or less, or 1
The stress of cN / dtex is applied for 24 hours, and then unloading is applied to 24
Polypropylene fiber characterized in that the recovery rate of creep strain after hr is 35% or more, and MFR is 1
Polypropylene having a crystallinity of 0 to 50 g / 10 minutes and a crystallinity of 60 to 95% is melt-spun in a spinning draft of 50 to 500, and the spun yarn is 20 to 80 ° C. from the melting point of the polypropylene polymer.
In the yarn-forming step of drawing at a draw ratio of 1.8 to 3.8 times at a low temperature, subsequent to drawing, heat treatment is performed at a temperature 10 to 40 ° C. lower than the melting point of the polypropylene polymer and a temperature equal to or higher than the drawing temperature for 30 to 300 seconds. A method for producing polypropylene fiber, which is characterized by the above.

【0010】[0010]

【発明の実施の形態】本発明のポリプロピレン繊維を構
成する或いはポリプロピレン繊維の製造に用いるポリプ
ロピレンとしては、JIS K7210に従って230
℃で測定したMFRが10〜50g/10分、好ましく
は15〜40g/10分のポリプロピレンである。
BEST MODE FOR CARRYING OUT THE INVENTION The polypropylene constituting the polypropylene fiber of the present invention or used for producing the polypropylene fiber is 230 in accordance with JIS K7210.
It is polypropylene having an MFR measured at 0 ° C of 10 to 50 g / 10 minutes, preferably 15 to 40 g / 10 minutes.

【0011】MFRが10g/10分未満の場合には、
溶融紡糸時又は延伸時に糸切れが発生し易く、MFRが
50g/10分を超える場合には、得られる繊維の破断
強度が低下するので、いずれも好ましくない。また、ポ
リプロピレンは、一般的にチーグラー触媒又はメタロセ
ン触媒を用いて合成される場合は、その結晶化度が60
〜95%であり、この範囲のものであれば用いることが
できる。結晶化度が60%未満のポリプロピレンの場合
には、繊維内部の構造形成が不十分となるために不適当
である。
When the MFR is less than 10 g / 10 minutes,
Yarn breakage is likely to occur during melt spinning or drawing, and when the MFR exceeds 50 g / 10 minutes, the breaking strength of the obtained fiber is reduced, and thus both are not preferable. Polypropylene generally has a crystallinity of 60 when synthesized using a Ziegler catalyst or a metallocene catalyst.
It is up to 95%, and if it is in this range, it can be used. Polypropylene having a crystallinity of less than 60% is not suitable because the structure formation inside the fiber is insufficient.

【0012】また、本発明におけるポリプロピレンとし
ては、上記MFRの範囲内でMFRの異なる2種以上の
ポリプロピレンを混合して用いることもでき、更に未使
用のポリプロピレンに限定されるものではなく、リサイ
クル品のような使用済みのポリプロピレンと未使用のポ
リプロピレンとを混合して用いることもできる。
Further, as the polypropylene in the present invention, it is possible to use a mixture of two or more kinds of polypropylenes having different MFRs within the above MFR range, and it is not limited to unused polypropylenes, and recycled products. It is also possible to use a mixture of such used polypropylene and unused polypropylene.

【0013】本発明のポリプロピレンには、繊維を着色
するための顔料が添加されていてもよい。用いられる顔
料としては、アゾ系顔料、フタロシアニン系顔料、レー
キ顔料、蛍光顔料、キナクリドン系顔料、ジオキサジン
系顔料、イソインドリノン系顔料、金属塩系顔料等の有
機系顔料、クロム酸塩系、硫化物系、酸化物系、シアン
化物系等の無機系合成顔料、その他タルクやカーボンブ
ラック等が挙げられる。更に、本発明のポリプロピレン
には、必要に応じて公知の加工助剤、紫外線吸収剤、酸
化安定剤、抗菌剤、帯電防止剤、難燃化剤、核剤、無機
充填剤等が添加されていてもよい。
A pigment for coloring fibers may be added to the polypropylene of the present invention. Examples of the pigment used include azo pigments, phthalocyanine pigments, lake pigments, fluorescent pigments, quinacridone pigments, dioxazine pigments, isoindolinone pigments, organic pigments such as metal salt pigments, chromate pigments, and sulfur pigments. Inorganic synthetic pigments such as physical pigments, oxide pigments, and cyanide pigments, as well as talc and carbon black. Further, the polypropylene of the present invention is added with known processing aids, ultraviolet absorbers, oxidation stabilizers, antibacterial agents, antistatic agents, flame retardants, nucleating agents, inorganic fillers, etc., if necessary. May be.

【0014】本発明のポリプロピレン繊維は、MFRが
10〜50g/10分、結晶化度が60〜95%ののポ
リプロピレンを溶融紡糸して得られる繊維であって、ヤ
ング率が5〜15cN/dtex、好ましくは5〜10
cN/dtexであり、1cN/dtexの応力を24
hr負荷したときのクリープひずみが50%以下、好ま
しくは40%以下であり、又は更に1cN/dtexの
応力を24hr負荷し、除荷して24hr後のクリープ
ひずみの回復率が35%以上、好ましくは40%以上で
あるという特徴を有する。
The polypropylene fiber of the present invention is a fiber obtained by melt spinning polypropylene having an MFR of 10 to 50 g / 10 minutes and a crystallinity of 60 to 95%, and a Young's modulus of 5 to 15 cN / dtex. , Preferably 5-10
cN / dtex, stress of 1 cN / dtex is 24
The creep strain when loaded for hr is 50% or less, preferably 40% or less, or the stress of 1 cN / dtex is further loaded for 24 hr, and the recovery rate of the creep strain after 24 hr after unloading is 35% or more, preferably. Is 40% or more.

【0015】ヤング率が5cN/dtex未満の場合
は、繊維の強度が低くなるため産業資材用途や内装材用
途には適さなくなり、ヤング率が15cN/dtexを
超える場合は、繊維の強度は高くなるものの硬い繊維と
なるため内装材用途、医療・衛生材用途、衣料素材用途
に適さなくなる。また1cN/dtexの応力を24h
r負荷したときのクリープひずみが50%を超える、或
いは1cN/dtexの応力を24hr負荷し、除荷し
て24hr後のクリープひずみの回復率が35%未満で
ある場合は、ポリプロピレン繊維のひずみ特性が改善さ
れず、本発明の目的が達成されない。
If the Young's modulus is less than 5 cN / dtex, the strength of the fiber will be low and it will not be suitable for industrial materials or interior materials. If the Young's modulus exceeds 15 cN / dtex, the strength of the fiber will be high. Since it is a hard fiber, it is no longer suitable for interior materials, medical / sanitary materials, and clothing materials. Moreover, the stress of 1 cN / dtex is applied for 24 h.
When the creep strain when r-loaded exceeds 50%, or when the stress of 1 cN / dtex is loaded for 24 hr and the recovery rate of creep strain after 24 hr after unloading is less than 35%, the strain characteristics of polypropylene fiber Is not improved and the object of the present invention is not achieved.

【0016】また、本発明のポリプロピレン繊維の形態
は、モノフィラメント又はマルチフィラメントの長繊
維、或いは短繊維のいずれであってもよいが、クリープ
ひずみが少なくまたクリープひずみの回復性に優れると
いう特性を十分に生かす上ではモノフィラメント又はマ
ルチフィラメントの長繊維であることが好ましい。また
ポリプロピレン繊維の断面形状も円形断面、三角断面等
の異形断面のいずれであってもよい。
Further, the form of the polypropylene fiber of the present invention may be either monofilament or multifilament long fiber or short fiber, but sufficient characteristics that creep strain is small and creep strain recovery is excellent are sufficient. In order to make good use of it, monofilament or multifilament long fibers are preferable. Further, the cross-sectional shape of the polypropylene fiber may be any of a circular cross section and a modified cross section such as a triangular cross section.

【0017】本発明のポリプロピレン繊維は、ヤング率
が5〜15cN/dtexであることから、ロープやネ
ット等の産業資材用途、建造物や自動車等の内装材用途
にも適用することができ、また1cN/dtexの応力
を24hr負荷したときのクリープひずみが50%以下
であり、又は更に1cN/dtexの応力を24hr負
荷し、除荷して24hr後のクリープひずみの回復率が
35%以上であることから、特にカーペットや不織布マ
ット等の建造物や自動車等の内装材用途に好ましく適用
されるものである。
Since the polypropylene fiber of the present invention has a Young's modulus of 5 to 15 cN / dtex, it can be applied to industrial materials such as ropes and nets and interior materials such as buildings and automobiles. Creep strain is 50% or less when a stress of 1 cN / dtex is applied for 24 hours, or the recovery rate of creep strain is 24% after an additional 24 hours of stress of 1 cN / dtex and is unloaded. Therefore, it is particularly preferably applied to the construction of carpets, non-woven mats and the like and interior materials such as automobiles.

【0018】本発明のポリプロピレン繊維がひずみが少
なく、又は更にひずみの回復性に優れることは、繊維内
部の結晶領域と非晶領域との境界が明瞭であり、結晶領
域が規則正しく配列しているという繊維内部の構造が十
分に形成されていることを示すものであり、かかる繊維
内部の構造は、小角X線散乱法(SAXS)において長
周期像が観測されることで評価できる。
The fact that the polypropylene fiber of the present invention has little strain or is excellent in strain recovery is that the boundary between the crystalline region and the amorphous region inside the fiber is clear and the crystalline regions are regularly arranged. This shows that the internal structure of the fiber is sufficiently formed, and the internal structure of the fiber can be evaluated by observing a long-period image in the small-angle X-ray scattering method (SAXS).

【0019】長周期像を与える構造としては、例えばラ
メラ晶が規則的に積層した構造が挙げられるが、ポリプ
ロピレン繊維は薄板状のラメラ晶が繊維軸方向に積層し
た構造を形成しており、結晶領域と非晶領域との界面が
明確になってそれぞれの領域が明確に区別されるように
なると、ラメラ晶の積層に起因する散乱がSAXS像の
子午線方向に現れる。従い、SAXSでの長周期像の有
無によって上記繊維内部の構造の形成が確認できる。
As a structure which gives a long-period image, for example, a structure in which lamellae are regularly laminated can be mentioned. However, polypropylene fibers have a structure in which thin plate-like lamellae are laminated in the fiber axis direction. When the interface between the region and the amorphous region becomes clear and the respective regions are clearly distinguished, scattering due to the stacking of lamellae appears in the meridian direction of the SAXS image. Therefore, the formation of the structure inside the fiber can be confirmed by the presence or absence of the long-period image in SAXS.

【0020】次に本発明のポリプロピレン繊維の製造方
法を説明する。本発明のポリプロピレン繊維は、MFR
が10〜50g/10分、結晶化度が60〜95%のポ
リプロピレンを引取速度/吐出線速度の比である紡糸ド
ラフト50〜500、好ましくは100〜500で溶融
紡糸し、一旦ボビン等に巻き取り或いは巻き取ることな
く、紡出糸をポリプロピレンポリマーの融点より20〜
80℃低い温度で延伸倍率1.8〜3.8倍、好ましく
は2.0〜3.0に延伸し、この延伸に引き続きポリプ
ロピレンポリマーの融点より10〜40℃低い温度でか
つ延伸温度以上の温度で30〜300秒間熱処理するこ
とにより得られる。上記溶融紡糸には、常法どおりの紡
糸ノズルからの吐出、吐出後のエアーによる冷却固化が
含まれる。
Next, a method for producing the polypropylene fiber of the present invention will be described. The polypropylene fiber of the present invention has MFR
Is 10 to 50 g / 10 minutes and the degree of crystallinity is 60 to 95% is melt-spun at a drafting speed of 50 to 500, preferably 100 to 500, which is a ratio of take-up speed / discharge linear speed, and once wound on a bobbin or the like. Without taking up or winding, the spun yarn is 20 ~
Stretching ratio is 1.8 to 3.8 times, preferably 2.0 to 3.0 at a temperature lower than 80 ° C., and subsequent to this stretching, the temperature is lower than the melting point of the polypropylene polymer by 10 to 40 ° C. and higher than the stretching temperature. It is obtained by heat-treating at a temperature for 30 to 300 seconds. The melt-spinning includes discharge from a spinning nozzle in the usual manner and cooling and solidification by air after the discharge.

【0021】本発明の製造方法においては、ポリプロピ
レン繊維のひずみ特性を改善するために、繊維内部に結
晶領域と非晶領域との境界が明瞭で、かつ結晶領域の配
列の規則性が高い構造を形成するための手段として、ポ
リプロピレンのMFR、結晶化度、紡糸ドラフト、延伸
での温度、延伸倍率、熱処理での温度、時間を一体的に
特定の組み合わせとしたものであり、かかる手段によっ
て本発明の目的のポリプロピレン繊維を得ることができ
る。
In the production method of the present invention, in order to improve the strain characteristics of the polypropylene fiber, a structure in which the boundary between the crystalline region and the amorphous region is clear and the arrangement of the crystalline regions is highly regular is formed inside the fiber. As means for forming, the MFR of polypropylene, the degree of crystallinity, the spinning draft, the temperature in stretching, the stretching ratio, the temperature in heat treatment, and the time in a specific combination are integrally combined. It is possible to obtain the intended polypropylene fiber.

【0022】ポリプロピレンの溶融紡糸においては、紡
糸ドラフトが50未満では、ヤング率を5cN/dte
x以上にするために延伸での延伸倍率を高くしなければ
ならず繊維の破断の恐れがあり、紡糸ドラフトが500
を超えると、紡出時に繊維の破断の恐れがある。紡出糸
の延伸においては、繊維に必要な強度及び伸度に加え、
ヤング率を付与するものであり、特に延伸倍率が1.8
未満では、ヤング率が5cN/dtex未満、クリープ
ひずみが50%を超え、クリープひずみの回復率が35
%未満のものとなり、3.8倍を超えると、ヤング率が
15cN/dtexを超え、クリープひずみの回復率が
35%未満のものとなる。
In the melt spinning of polypropylene, the Young's modulus is 5 cN / dte when the spinning draft is less than 50.
In order to achieve x or more, the draw ratio in drawing must be increased, and there is a risk of fiber breakage, and the spinning draft is 500.
If it exceeds, there is a risk of fiber breakage during spinning. In drawing the spun yarn, in addition to the strength and elongation required for the fiber,
Young's modulus is imparted, and especially the draw ratio is 1.8.
When it is less than 1, Young's modulus is less than 5 cN / dtex, creep strain exceeds 50%, and recovery rate of creep strain is 35%.
%, The Young's modulus exceeds 15 cN / dtex and the creep strain recovery rate is less than 35%.

【0023】延伸後の熱処理においては、好ましくはポ
リプロピレンポリマーの融点より10〜30℃低い温度
でかつ延伸温度以上の温度で30〜300秒間熱処理す
るが、熱処理温度がポリプロピレンポリマーより40℃
低い温度未満では、十分な熱処理効果がなくSAXSで
の長周期像が顕れず、クリープひずみが50%を超え、
クリープひずみからの回復率が35%未満のものとな
り、ポリプロピレンポリマーより10℃低い温度を超え
ると、繊維が溶融する危険がある。また熱処理時間が3
0秒未満では、SAXSでの長周期像が顕れず、クリー
プひずみが50%を超え、クリープひずみの回復率が3
5%未満のものとなる。
In the heat treatment after stretching, the heat treatment is preferably carried out at a temperature 10 to 30 ° C. lower than the melting point of the polypropylene polymer and at a temperature not lower than the stretching temperature for 30 to 300 seconds.
Below a low temperature, there is no sufficient heat treatment effect, a long period image in SAXS does not appear, and creep strain exceeds 50%,
When the recovery rate from creep strain is less than 35%, and there is a risk of melting the fibers when the temperature exceeds 10 ° C. lower than that of polypropylene polymer. Also, the heat treatment time is 3
If it is less than 0 seconds, the long period image in SAXS does not appear, the creep strain exceeds 50%, and the recovery rate of the creep strain is 3%.
It is less than 5%.

【0024】本発明の製造方法における熱処理には、加
熱ローラーや加熱板に所定時間接触させて加熱する方
法、加熱炉や加熱筒中で非接触状態で所定時間加熱する
方法等の乾熱処理が用いられ、熱処理は、ヤング率が5
〜15cN/dtexとなる範囲内であれば、定長下の
熱処理であってもよいし、伸長下或いは緩和下の熱処理
であってもよく、繊維の引張強伸度曲線において、ヤン
グ率を実質的に変化させずに、初期の直線領域、即ち見
かけの弾性限界応力を増大させることができ、伸長変形
時の塑性ひずみ成分が低減されてクリープひずみを減少
させるものである。
For the heat treatment in the production method of the present invention, dry heat treatment such as a method of heating by contact with a heating roller or a heating plate for a predetermined time, a method of heating in a non-contact state in a heating furnace or a heating cylinder for a predetermined time is used. The heat treatment has a Young's modulus of 5
As long as it is within the range of 15 cN / dtex, it may be a heat treatment under a fixed length, a heat treatment under elongation or a relaxation, and the Young's modulus is substantially equal to the tensile strength / elongation curve of the fiber. It is possible to increase the initial linear region, that is, the apparent elastic limit stress without changing the physical properties, reduce the plastic strain component during extensional deformation, and reduce the creep strain.

【0025】例えば、熱処理前のヤング率が7.7cN
/dtex、クリープひずみが88.4%、クリープひ
ずみの回復率が14.4%の延伸糸を、140℃で60
秒間熱処理すると、得られた繊維はヤング率が8.3c
N/dtex、クリープひずみが36.0%、クリープ
ひずみの回復率が44.1%となり、本発明の製造方法
において特に熱処理は、ポリプロピレン繊維のひずみ特
性の改善に顕著な効果を奏する重要な要件となる。
For example, Young's modulus before heat treatment is 7.7 cN
/ Dtex, creep strain 88.4%, creep strain recovery rate 14.4%, drawn yarn at 140 ℃ 60
After heat treatment for seconds, the obtained fiber has Young's modulus of 8.3c
N / dtex, creep strain is 36.0%, recovery rate of creep strain is 44.1%, and in the production method of the present invention, heat treatment is an important factor that exerts a remarkable effect in improving the strain characteristics of polypropylene fiber. Becomes

【0026】[0026]

【実施例】以下、本発明を実施例により具体的に説明す
る。なお、実施例中、諸物性の評価は以下の方法に拠っ
た。
EXAMPLES The present invention will be specifically described below with reference to examples. In the examples, evaluation of various physical properties was based on the following methods.

【0027】ヤング率;JIS L1015に準じて、
定速伸長型引張試験機((株)オリエンテック社製UT
M−II)を用いて測定した。つかみ間隔は20mmと
し、変形速度をつかみ間隔に対して100%/minと
して伸長して、ひずみが5〜20%の範囲での応力変化
から算出した。単繊維を10本測定して、平均値を求め
た。
Young's modulus; according to JIS L1015,
Constant speed extension type tensile tester (UT made by Orientec Co., Ltd.)
M-II). The grip interval was 20 mm, the deformation rate was 100% / min with respect to the grip interval, elongation was performed, and the strain was calculated from the stress change in the range of 5 to 20%. Ten single fibers were measured and the average value was calculated.

【0028】クリープひずみ;繊維の一端を固定して、
他端に繊維にかかる張力が1cN/dtexとなる荷重
を吊り下げ、24hr経過した後に、その長さ(Lc
1)を測定し、初期長さ(Lc0)に対してどれだけ伸
びたかで次式によってクリープひずみを求めた。初期長
さは、(5.88mN×表示テックス数)の初荷重をか
けた状態での長さとした。単繊維を10本測定して平均
値を求めた。 クリープひずみ(%)=[(Lc1−Lc0)/Lc
0]×100
Creep strain; fixing one end of the fiber,
At the other end, a load such that the tension applied to the fiber was 1 cN / dtex was suspended, and after 24 hours had passed, the length (Lc
1) was measured, and the creep strain was determined by the following equation based on how much the elongation was relative to the initial length (Lc0). The initial length was the length in the state where an initial load of (5.88 mN × display tex number) was applied. The average value was obtained by measuring 10 single fibers. Creep strain (%) = [(Lc1-Lc0) / Lc
0] × 100

【0029】クリープひずみの回復率(ERc);クリ
ープひずみ(Lc1)と、クリープひずみ測定後に荷重
を初荷重に戻して24hr経過した後に回復するひずみ
量(Lc2)とから、次式によって求めた。単繊維を1
0本測定して平均値を求めた。 ERc(%)=(Lc2/Lc1)×100
Recovery rate of creep strain (ERc); Creep strain (Lc1) and the amount of strain (Lc2) recovered after 24 hours have passed since the load was returned to the initial load after the creep strain was measured. 1 single fiber
An average value was obtained by measuring 0 pieces. ERc (%) = (Lc2 / Lc1) × 100

【0030】長周期像;(株)リガク社製ultraX
18を用い、管電圧40kV、管電流200mA、カメ
ラ長1180mm、露光時間2hrの条件で、小角散乱
像(SAXS)をイメージングプレートに記録し、長周
期像の有無を判定した。
Long-period image; ultraX manufactured by Rigaku Corporation
18 was used to record a small-angle scattered image (SAXS) on an imaging plate under the conditions of a tube voltage of 40 kV, a tube current of 200 mA, a camera length of 1180 mm, and an exposure time of 2 hr, and the presence or absence of a long-period image was determined.

【0031】(実施例1)ポリプロピレンとして日本ポ
リケム社製、TA−30(MFR=30g/10分、結
晶化度65%、融点165℃)を用い、20mm径の単
軸押出機にて200℃で溶融した後、孔径0.5mmの
ノズルを用いて温度230℃、吐出線速度1m/min
の条件でポリマーを吐出し、長さ60cmの冷却筒中で
繊維と対向して室温の空気を流しながら冷却固化し、引
取速度150m/min(紡糸ドラフト150)で引き
取って巻き取り未延伸糸を得た。この未延伸糸を10m
/minで送り出しながら、100℃の加熱ローラー間
で100℃の熱板に接触させ、2.7倍に熱延伸して延
伸糸を得た。引き続き、この延伸糸を140℃に設定し
た熱風循環式の乾熱炉中で、定長で60秒間熱処理して
240dtex/12fの繊維を得た。得られた繊維に
ついての長周期像、ヤング率、クリープひずみ特性の評
価結果を表1に示した。
(Example 1) TA-30 (MFR = 30 g / 10 minutes, crystallinity 65%, melting point 165 ° C.) manufactured by Nippon Polychem Co., Ltd. was used as polypropylene, and the temperature was 200 ° C. with a single screw extruder having a diameter of 20 mm. After being melted by using a nozzle with a hole diameter of 0.5 mm, the temperature is 230 ° C. and the discharge linear velocity is 1 m / min.
The polymer was discharged under the conditions described above, and it was cooled and solidified in a cooling cylinder having a length of 60 cm while flowing air at room temperature facing the fiber, and was taken up at a take-up speed of 150 m / min (spinning draft 150) to obtain an undrawn yarn. It was This undrawn yarn is 10m
While being sent out at a heating rate of / min, a heating plate of 100 ° C. was brought into contact with a hot plate of 100 ° C., and hot drawing was performed at a draw ratio of 2.7 to obtain a drawn yarn. Subsequently, this drawn yarn was heat-treated for 60 seconds at a constant length in a hot air circulation type dry heat furnace set at 140 ° C. to obtain 240 dtex / 12f fiber. Table 1 shows the evaluation results of the long-period image, Young's modulus, and creep strain characteristics of the obtained fiber.

【0032】(実施例2)実施例1において、溶融紡糸
の際の引取速度を300m/min(紡糸ドラフト30
0)、延伸の際の延伸倍率を2.0倍とした以外は、実
施例1と同様にしてポリプロピレン繊維を得た。得られ
た繊維についての長周期像、ヤング率、クリープひずみ
特性の評価結果を表1に示した。
Example 2 In Example 1, the take-up speed during melt spinning was 300 m / min (spinning draft 30).
0), polypropylene fibers were obtained in the same manner as in Example 1 except that the draw ratio during drawing was 2.0. Table 1 shows the evaluation results of the long-period image, Young's modulus, and creep strain characteristics of the obtained fiber.

【0033】(実施例3)実施例1において、ポリプロ
ピレンとしてフタロシアニン系顔料をマスターバッチ法
で0.2wt%含有させたポリプロピレンを用いる以外
は、実施例1と同様にしてポリプロピレン繊維を得た。
得られた繊維についての長周期像、ヤング率、クリープ
ひずみ特性の評価結果を表1に示した。
(Example 3) A polypropylene fiber was obtained in the same manner as in Example 1 except that polypropylene containing 0.2 wt% of a phthalocyanine pigment was used as polypropylene in the masterbatch method.
Table 1 shows the evaluation results of the long-period image, Young's modulus, and creep strain characteristics of the obtained fiber.

【0034】(実施例4)実施例1において、熱処理の
際、変形速度1×104%/minの条件で10%伸長
した以外は、実施例1と同様にしてポリプロピレン繊維
を得た。得られた繊維についての長周期像、ヤング率、
クリープひずみ特性の評価結果を表1に示した。
(Example 4) A polypropylene fiber was obtained in the same manner as in Example 1 except that the heat treatment was carried out by 10% elongation at a deformation rate of 1 x 104% / min. Long-period image, Young's modulus of the obtained fiber,
Table 1 shows the evaluation results of creep strain characteristics.

【0035】(実施例5)実施例1において、熱処理の
際、変形速度20%/minの条件で5%緩和させた以
外は、実施例1と同様にしてポリプロピレン繊維を得
た。得られた繊維についての長周期像、ヤング率、クリ
ープひずみ特性の評価結果を表1に示した。
(Example 5) A polypropylene fiber was obtained in the same manner as in Example 1 except that the heat treatment in Example 1 was relaxed by 5% at a deformation rate of 20% / min. Table 1 shows the evaluation results of the long-period image, Young's modulus, and creep strain characteristics of the obtained fiber.

【0036】[0036]

【表1】 [Table 1]

【0037】(比較例1)実施例1において、延伸の際
の延伸倍率を4.0倍とした以外は、実施例1と同様に
してポリプロピレン繊維を得た。得られた繊維について
の長周期像、ヤング率、クリープひずみ特性の評価結果
を表2に示した。
(Comparative Example 1) A polypropylene fiber was obtained in the same manner as in Example 1 except that the stretching ratio in stretching was 4.0 times. Table 2 shows the evaluation results of the long-period image, Young's modulus, and creep strain characteristics of the obtained fiber.

【0038】(比較例2)実施例2において、延伸の際
の延伸倍率を1.5倍とした以外は、実施例2と同様に
してポリプロピレン繊維を得た。得られた繊維について
の長周期像、ヤング率、クリープひずみ特性の評価した
結果を表2に示した。
(Comparative Example 2) A polypropylene fiber was obtained in the same manner as in Example 2 except that the stretching ratio in stretching was 1.5 times. Table 2 shows the evaluation results of the long-period image, Young's modulus, and creep strain characteristics of the obtained fiber.

【0039】(比較例3)実施例1において、熱処理の
際の温度を120℃とした以外は、実施例1と同様にし
てポリプロピレン繊維を得た。得られた繊維についての
長周期像、ヤング率、クリープひずみ特性の評価結果を
表2に示した。
(Comparative Example 3) A polypropylene fiber was obtained in the same manner as in Example 1 except that the temperature during the heat treatment was 120 ° C. Table 2 shows the evaluation results of the long-period image, Young's modulus, and creep strain characteristics of the obtained fiber.

【0040】(比較例4)実施例1において、熱処理の
際の時間を15秒とした以外は、実施例1と同様にして
ポリプロピレン繊維を得た。得られた繊維についての長
周期像、ヤング率、クリープひずみ特性の評価結果を表
2に示した。
(Comparative Example 4) A polypropylene fiber was obtained in the same manner as in Example 1, except that the heat treatment time was changed to 15 seconds. Table 2 shows the evaluation results of the long-period image, Young's modulus, and creep strain characteristics of the obtained fiber.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】本発明のポリプロピレン繊維は、他のポ
リマーをブレンドしたり、又は複合繊維化することな
く、従来のポリプロピレン繊維の比べて著しくひずみが
低減され、またひずみの回復性が向上したものであり、
かつ柔らかい風合いと強度を兼ね備えるため、特にカー
ペット用途等の内装材用やロープやネット等の産業資材
用に好適なるものである。また、本発明の製造方法によ
れば、かかるポリプロピレン繊維を安定に生産性高く得
ることができる。
INDUSTRIAL APPLICABILITY The polypropylene fiber of the present invention has a significantly reduced strain and improved strain recoverability as compared with the conventional polypropylene fiber without blending with another polymer or forming a composite fiber. And
Since it has both a soft texture and strength, it is suitable for interior materials such as carpets and industrial materials such as ropes and nets. Further, according to the production method of the present invention, such polypropylene fiber can be stably obtained with high productivity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 メルトフローレートが10〜50g/1
0分、結晶化度が60〜95%のポリプロピレンを溶融
紡糸して得られる繊維であって、ヤング率が5〜15c
N/dtexであり、1cN/dtexの応力を24h
r負荷したときのクリープひずみが50%以下であるこ
とを特徴とするポリプロピレン繊維。
1. A melt flow rate of 10 to 50 g / 1
A fiber obtained by melt spinning polypropylene having a crystallinity of 60 to 95% at 0 minutes and having a Young's modulus of 5 to 15c.
N / dtex, stress of 1 cN / dtex for 24 h
A polypropylene fiber having a creep strain of 50% or less when r-loaded.
【請求項2】 1cN/dtexの応力を24hr負荷
し、除荷して24hr後のクリープひずみの回復率が3
5%以上である請求項1に記載のポリプロピレン繊維。
2. A creep strain recovery rate of 3 hours after 24 hours after loading and unloading a stress of 1 cN / dtex for 24 hours.
The polypropylene fiber according to claim 1, which is 5% or more.
【請求項3】 繊維が長繊維である請求項1又は請求項
2に記載のポリプロピレン繊維。
3. The polypropylene fiber according to claim 1, wherein the fiber is a long fiber.
【請求項4】 メルトフローレートが10〜50g/1
0分、結晶化度が60〜95%のポリプロピレンを紡糸
ドラフト50〜500で溶融紡糸し、紡出糸をポリプロ
ピレンポリマーの融点より20〜80℃低い温度で延伸
倍率1.8〜3.8倍に延伸する製糸工程において、延
伸に引き続きポリプロピレンポリマーの融点より10〜
40℃低い温度でかつ延伸温度以上の温度で30〜30
0秒間熱処理することを特徴とするポリプロピレン繊維
の製造方法。
4. The melt flow rate is 10 to 50 g / 1.
At 0 minutes, polypropylene having a crystallinity of 60 to 95% is melt-spun with a spinning draft of 50 to 500, and the spun yarn is drawn at a temperature of 20 to 80 ° C. lower than the melting point of the polypropylene polymer and a draw ratio of 1.8 to 3.8 times. In the yarn-forming step of stretching in 10 to 10 from the melting point of the polypropylene polymer following stretching.
30 to 30 at a low temperature of 40 ° C. and a temperature higher than the stretching temperature
A method for producing a polypropylene fiber, which comprises heat treatment for 0 seconds.
JP2002073715A 2002-03-18 2002-03-18 Polypropylene fiber and method for producing the same Pending JP2003278027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073715A JP2003278027A (en) 2002-03-18 2002-03-18 Polypropylene fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073715A JP2003278027A (en) 2002-03-18 2002-03-18 Polypropylene fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003278027A true JP2003278027A (en) 2003-10-02

Family

ID=29227691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073715A Pending JP2003278027A (en) 2002-03-18 2002-03-18 Polypropylene fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003278027A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306676A (en) * 2004-04-22 2005-11-04 Dainichi Seikan Kk Polypropylene short fiber for concrete reinforcement
JP2008519180A (en) * 2004-11-05 2008-06-05 インナグリティー リミテッド ライアビリティ カンパニー Method for forming melt spun multifilament polyolefin yarn and yarn formed by this method
WO2013183342A1 (en) * 2012-06-08 2013-12-12 積水化学工業株式会社 Process for producing polypropylene-based material, and polypropylene-based material
JP2013249554A (en) * 2012-05-31 2013-12-12 Toyota Motor Corp High strength-high modulus polypropylene fiber and method for producing the same
JP5607827B2 (en) * 2011-05-30 2014-10-15 トヨタ自動車株式会社 High-strength polypropylene fiber and method for producing the same
JP2015112785A (en) * 2013-12-11 2015-06-22 宇部エクシモ株式会社 Method for producing fabric-reinforced resin molding, and fabric-reinforced resin molding
JP2015112784A (en) * 2013-12-11 2015-06-22 宇部エクシモ株式会社 Method for producing fabric-reinforced resin molding, and fabric-reinforced resin molding
US10633467B2 (en) 2015-12-23 2020-04-28 Lg Chem, Ltd. Method for preparing long fiber-reinforcing olefin polymer and long fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306676A (en) * 2004-04-22 2005-11-04 Dainichi Seikan Kk Polypropylene short fiber for concrete reinforcement
JP4611660B2 (en) * 2004-04-22 2011-01-12 大日製罐株式会社 Method for producing polypropylene short fiber for concrete reinforcement
JP2008519180A (en) * 2004-11-05 2008-06-05 インナグリティー リミテッド ライアビリティ カンパニー Method for forming melt spun multifilament polyolefin yarn and yarn formed by this method
JP5607827B2 (en) * 2011-05-30 2014-10-15 トヨタ自動車株式会社 High-strength polypropylene fiber and method for producing the same
JP2013249554A (en) * 2012-05-31 2013-12-12 Toyota Motor Corp High strength-high modulus polypropylene fiber and method for producing the same
WO2013183342A1 (en) * 2012-06-08 2013-12-12 積水化学工業株式会社 Process for producing polypropylene-based material, and polypropylene-based material
JPWO2013183342A1 (en) * 2012-06-08 2016-01-28 積水化学工業株式会社 Method for producing polypropylene material and polypropylene material
JP2015112785A (en) * 2013-12-11 2015-06-22 宇部エクシモ株式会社 Method for producing fabric-reinforced resin molding, and fabric-reinforced resin molding
JP2015112784A (en) * 2013-12-11 2015-06-22 宇部エクシモ株式会社 Method for producing fabric-reinforced resin molding, and fabric-reinforced resin molding
US10633467B2 (en) 2015-12-23 2020-04-28 Lg Chem, Ltd. Method for preparing long fiber-reinforcing olefin polymer and long fiber

Similar Documents

Publication Publication Date Title
JP2003278027A (en) Polypropylene fiber and method for producing the same
JP6684697B2 (en) Core-sheath composite fiber
JPH08134723A (en) Biodegradable conjugate fiber
JP3734077B2 (en) High strength polyethylene fiber
JP4570273B2 (en) Polyketone fiber, cord and method for producing the same
JP2007197886A (en) Crimped yarn, method for producing the same and fibrous structural material
JP6838282B2 (en) Polypropylene fiber and manufacturing method of polypropylene fiber
JP4151295B2 (en) Method for producing polylactic acid fiber
JP2004232117A (en) Polypropylene fiber and method for producing the same
JP2002020926A (en) Method for producing polypropylene multifilament yarn
JP6458873B2 (en) Polyolefin fiber and method for producing the same
JP2000239921A (en) Production of polyester fiber
JP7239410B2 (en) Method for producing liquid crystal polyester fiber
JP3167677B2 (en) Polyester irregular cross section fiber
JP3895190B2 (en) Polyester composite false twisted yarn for cut pile knitted fabric and method for producing the same
JPH0765263B2 (en) Open nonwoven fabric
JP2001226821A (en) Polylactic acid fiber
JP2005113309A (en) Modified cross-section polytrimethylene terephthalate fiber
JP4081338B2 (en) Polypropylene-based fluid disturbed fiber and method for producing the same
JP2000096377A (en) Production of high density composite filament
JPS6059116A (en) Acrylic fiber as precursor for carbon fiber
JPH09275881A (en) Insect screening and its manufacture
JP2007530813A (en) Monofilament based on polypropylene with improved properties
JPH10325018A (en) Conjugate filament having high specific gravity and its production
JPH11302925A (en) Polylactic acid-based filament and its production