JP2003277805A - Magnetostrictive material and manufacturing method - Google Patents

Magnetostrictive material and manufacturing method

Info

Publication number
JP2003277805A
JP2003277805A JP2002078270A JP2002078270A JP2003277805A JP 2003277805 A JP2003277805 A JP 2003277805A JP 2002078270 A JP2002078270 A JP 2002078270A JP 2002078270 A JP2002078270 A JP 2002078270A JP 2003277805 A JP2003277805 A JP 2003277805A
Authority
JP
Japan
Prior art keywords
magnetostrictive material
shock wave
explosive
powder
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002078270A
Other languages
Japanese (ja)
Inventor
Etsuji Kakimoto
悦二 柿本
Kiyotaka Doke
清孝 道家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002078270A priority Critical patent/JP2003277805A/en
Publication of JP2003277805A publication Critical patent/JP2003277805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high-performance, high-density pressed magnetostrictive material having polycrystal anisotropy. <P>SOLUTION: Powder of the magnetostrictive material is preformed in a magnetic field and then compacted using a shock wave. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,磁気−機械変位変
換デバイス等に用いられる磁歪成形材料およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive molding material used for a magnetic-mechanical displacement conversion device and the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術】磁性体には、外部から磁場を印加すると
変形する磁歪という性質がある。この磁歪を応用して、
いろいろな磁気−機械変位変換デバイス(以下デバイス
という)が作られている。磁性体のうち磁歪の性能の高
い材料を特に磁歪材料と言い、通常飽和磁歪λsとして
1000×10-6以上を有する磁歪材料が使用されてい
る。
2. Description of the Related Art A magnetic material has a property called magnetostriction that deforms when a magnetic field is applied from the outside. Applying this magnetostriction,
Various magnetic-mechanical displacement conversion devices (hereinafter referred to as devices) have been made. Of the magnetic materials, a material having a high magnetostriction performance is called a magnetostrictive material, and a magnetostrictive material having a saturated magnetostriction λs of 1000 × 10 −6 or more is usually used.

【0003】このような磁歪材料として大きな磁歪値を
示すように磁歪の異方性をもつ結晶を得る方法として、
特開昭62−109946号公報及び特開昭63−24
2442号公報に記載されるような一軸単結晶成長法に
よって、その性能を確保する方法がとられているが、コ
スト高の問題があり、圧電素子等のデバイスへの置き換
えには大きな課題となっていた。それ故、特開平4―2
97545号公報に記載されるように、熱勾配を与えた
鋳造方法により異方性を与えて製造コストを下げる方法
等が考えられたり、HIP等の粉体焼結方法に磁場中予
備成形を適用する等の方法が利用されていた。
As a method for obtaining a crystal having magnetostriction anisotropy so as to show a large magnetostriction value as such a magnetostrictive material,
JP-A-62-109946 and JP-A-63-24
Although a method for securing the performance is adopted by the uniaxial single crystal growth method as described in Japanese Patent No. 2442, there is a problem of high cost, and replacement with a device such as a piezoelectric element is a big problem. Was there. Therefore, Japanese Patent Laid-Open No. 4-2
As described in Japanese Patent Publication No. 97545, a method of giving anisotropy by a casting method with a thermal gradient to reduce the manufacturing cost, or the like, or applying preforming in a magnetic field to a powder sintering method such as HIP is applied. The method of doing was used.

【0004】[0004]

【発明が解決しようとする課題】前記鋳造方法は、磁歪
材料の結晶化時に局部的な組成の不均一が発生し易いと
いう問題を抱えていた。特に得られる磁歪材料の密度が
低いものであった、また、前記HIP等の粉体焼結方法
に磁場中予備成形を適用する方法は、焼結温度を高くせ
ざるを得ず、焼結時の結晶の成長の制御が必ずしも容易
でなく、その結果得られる磁歪材料の性能は鋳造方法で
得られるものより劣るものであった。この方法によって
得られる磁歪材料もまた密度が低く、相対密度で80%
程度のものでしかなかった。それ故、密度の高い、安価
な異方性多結晶磁歪材料とその容易な製造方法の出現が
望まれていた。
The above-mentioned casting method has a problem that local nonuniformity of the composition is likely to occur during crystallization of the magnetostrictive material. In particular, the density of the obtained magnetostrictive material was low, and the method of applying preforming in a magnetic field to the powder sintering method such as HIP had to raise the sintering temperature and It was not always easy to control the growth of crystals, and the performance of the resulting magnetostrictive material was inferior to that obtained by the casting method. The magnetostrictive material obtained by this method also has a low density, and the relative density is 80%.
It was only a degree. Therefore, the advent of an anisotropic polycrystalline magnetostrictive material having a high density and a low cost and an easy manufacturing method thereof has been desired.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記の問
題を解決し、特に密度の高い磁歪材料を得るために鋭意
検討を行った結果、磁歪材料粉体を磁場中で予備成形
し、衝撃波を用いて圧縮固化することにより、異方性を
有して85%以上の高密度の多結晶磁歪成形材料を得る
ことができることを見出し、本発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems and obtain a magnetostrictive material having a particularly high density. As a result, the magnetostrictive material powder is preformed in a magnetic field. The inventors have found that a polycrystalline magnetostrictive molding material having anisotropy and a high density of 85% or more can be obtained by compressing and solidifying using a shock wave, and has completed the present invention.

【0006】すなわち、本発明の態様は以下のとおりで
ある。 (1) 磁歪材料粉体を固化してなり、相対密度が85
%以上である磁歪材料。 (2) 磁歪材料粉体を衝撃波により固化してなる上記
(1)に記載の磁歪材料。 (3) 磁歪材料粉体を磁場中にて予備成形し、その後
衝撃波により固化してなる上記(1)または(2)に記
載の磁歪材料。 (4) 磁歪材料粉体を衝撃波により固化する磁歪材料
の製造方法。
That is, the aspects of the present invention are as follows. (1) Magnetostrictive material powder is solidified and has a relative density of 85
% Magnetostrictive material. (2) The magnetostrictive material according to (1) above, which is obtained by solidifying a magnetostrictive material powder by a shock wave. (3) The magnetostrictive material according to (1) or (2) above, which is obtained by preforming the magnetostrictive material powder in a magnetic field and then solidifying the powder by a shock wave. (4) A method of manufacturing a magnetostrictive material, in which a magnetostrictive material powder is solidified by a shock wave.

【0007】(5) 磁歪材料粉体を磁場中にて予備成
形し、その後衝撃波により固化する上記(4)に記載の
磁歪材料の製造方法。 (6) 液体を介して衝撃波を導入する上記(4)また
は(5)に記載の磁歪材料の製造方法。 (7) 衝撃波を用いて圧縮成形した後、熱処理をする
上記(4)〜(6)のいずれかに記載の磁歪材料の製造
方法。
(5) The method for producing a magnetostrictive material according to the above (4), wherein the magnetostrictive material powder is preformed in a magnetic field and then solidified by a shock wave. (6) The method for producing a magnetostrictive material according to the above (4) or (5), wherein a shock wave is introduced through a liquid. (7) The method for producing a magnetostrictive material according to any one of the above (4) to (6), which comprises performing compression molding using a shock wave and then performing heat treatment.

【0008】(8) 衝撃波を用いて圧縮成形した後、
磁場中で熱処理をする上記(7)に記載の磁歪材料の製
造方法。 本発明の磁歪材料は、相対密度が更に好ましくは90%
以上、更に好ましくは95%以上、更に好ましくは98
%以上である。
(8) After compression molding using a shock wave,
The method for producing a magnetostrictive material according to (7), wherein the heat treatment is performed in a magnetic field. The magnetostrictive material of the present invention more preferably has a relative density of 90%.
Or more, more preferably 95% or more, further preferably 98
% Or more.

【0009】以下本発明の態様について更に詳細に説明
する。ここで用いられる磁歪材料粉体としては、磁歪特
性を有する、例えば、希土類−鉄合金、Ni基合金、F
e−Co合金、フェライト系材料などの粉末を用いるこ
とが可能である。希土類−鉄合金の場合は、希土類とし
てLa、Ce、Pr、Nd、Pm、Eu、Gd、Tb、
Dy、Ho、Er、Tm、Yb、Luが使用できる。又
希土類元素が2種以上の希土類元素の組み合わせである
場合には、Tb−DY、Tb−Ho、Tb−Pr、Sm
−Yb、Tb−Dy−Ho、Tb−Ry−Pr、Tb−
Pr−Hoなどの組み合わせが好ましい。
The embodiments of the present invention will be described in more detail below. The magnetostrictive material powder used here has magnetostrictive properties, for example, rare earth-iron alloy, Ni-based alloy, F
It is possible to use powders such as e-Co alloys and ferrite materials. In the case of rare earth-iron alloy, rare earth elements such as La, Ce, Pr, Nd, Pm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb and Lu can be used. When the rare earth element is a combination of two or more rare earth elements, Tb-DY, Tb-Ho, Tb-Pr, Sm.
-Yb, Tb-Dy-Ho, Tb-Ry-Pr, Tb-
Combinations such as Pr-Ho are preferred.

【0010】磁歪合金を構成する他の元素はFeである
が、低温での使用を可能にしたり、耐食性を改善するた
めにFeの一部をCoで置換することが可能である。但
し、置換量は、磁歪量の低下を招くため、95atm%
以下が好ましい。また、必要に応じてFeの一部を、更
にMnで置換しても良い。希土類−鉄系の磁歪材料は、
Mnを含有させると、希土類の磁気異方性が変化し、高
磁界のみならず、低磁界においても優れた磁歪特性が得
られる。MnによるFeの置換量は50mol%以下で
あり、これを越えるとキューリー温度が低下し、磁歪特
性が劣化する。
The other element constituting the magnetostrictive alloy is Fe, but it is possible to replace part of Fe with Co in order to enable use at low temperatures and to improve corrosion resistance. However, the substitution amount causes a decrease in the magnetostriction amount, and thus 95 atm%
The following are preferred. Further, if necessary, part of Fe may be further replaced with Mn. Rare earth-iron based magnetostrictive material,
When Mn is contained, the magnetic anisotropy of the rare earth element changes, and excellent magnetostrictive properties can be obtained not only in a high magnetic field but also in a low magnetic field. The substitution amount of Fe by Mn is 50 mol% or less, and if it exceeds this, the Curie temperature is lowered and the magnetostriction characteristic is deteriorated.

【0011】この他、Feは、材料の機械的強度、耐食
性、飽和磁歪などの向上を目的として、Ni,Mg,A
l,Ga,Zn,V,Zr,Hf,Ti,Nb,Cu,
Ag、Sn、Mo、Cr、Ta、Pd、In、Sb、I
r、Pt、Au、Pb、W、Si、Bなどで更に置換し
ても良い。ただし、これらFeを置換する置換元素の量
は、磁歪量を低下させないように、Mnの置換量も含
め、Feの50mol%以下が良い。希土類元素とFe
の原子比Xは、1.5≦X≦4が好ましい。更に好まし
くは、1.7≦X≦2.5である。なお、磁歪材料粉体
の粒径は、ともに1〜800ミクロンが良い。
In addition, Fe is used for the purpose of improving the mechanical strength, corrosion resistance, saturation magnetostriction, etc. of the material.
l, Ga, Zn, V, Zr, Hf, Ti, Nb, Cu,
Ag, Sn, Mo, Cr, Ta, Pd, In, Sb, I
You may further substitute by r, Pt, Au, Pb, W, Si, B, etc. However, the amount of the substituting element substituting for Fe is preferably 50 mol% or less of Fe including the substituting amount of Mn so as not to reduce the magnetostriction amount. Rare earth elements and Fe
The atomic ratio X of is preferably 1.5 ≦ X ≦ 4. More preferably, 1.7 ≦ X ≦ 2.5. The particle size of the magnetostrictive material powder is preferably 1 to 800 microns.

【0012】衝撃波を得るには、爆薬を用いるのが良
く、爆薬としては、低爆速粉状爆薬(例えば、旭化成株
式会社製の爆発圧着用爆薬(商品名PAVEX))、A
NFO、含水爆薬、エマルジョン爆薬、高性能爆薬等一
般的に利用される爆薬を選択することが可能である。爆
速としては、2,000m/sから9,500m/sま
での範囲の爆薬組成物が利用でき、磁歪材料粉体の特性
により、その爆薬が適宜選択される。高爆速の爆薬を用
いる場合は、磁歪材料粉体と爆薬の間の介在物の厚みを
低爆速の場合より大きくし、衝撃波を制御することによ
り利用可能になる。
To obtain a shock wave, explosives are preferably used. As explosives, low-explosive powdery explosives (for example, explosive compression explosives manufactured by Asahi Kasei Co., Ltd. (trade name PAVEX)), A
It is possible to select commonly used explosives such as NFO, water-containing explosives, emulsion explosives, and high-performance explosives. As the detonation speed, explosive compositions in the range of 2,000 m / s to 9,500 m / s can be used, and the explosive is appropriately selected depending on the characteristics of the magnetostrictive material powder. When a high-explosive explosive is used, it can be used by increasing the thickness of the inclusions between the magnetostrictive material powder and the explosive as compared with the low-explosive velocity and controlling the shock wave.

【0013】爆薬による衝撃波によって磁歪料粉体を圧
縮するには、円筒収束衝撃波を用いて圧縮する方法、一
軸方向に衝撃波を加えて圧縮する方法等を適用すること
が可能である。その際の爆薬量は、爆薬質量と被圧縮体
の質量比で、使用する爆薬の種類により、0.5〜15
の範囲を好ましく選択することができる。より好ましく
は1〜8である。衝撃波は、液体を媒体として目的とす
る磁歪材料粉体等に作用させることが空気を媒体とする
よりも好ましい。液体としては水が好適である。
In order to compress the magnetostrictive powder by a shock wave caused by an explosive, it is possible to apply a method of compressing using a cylindrical converging shock wave, a method of applying a shock wave in a uniaxial direction, and the like. The amount of explosive at that time is 0.5 to 15 depending on the type of explosive used, which is the mass ratio of the explosive mass to the compressed object.
The range can be preferably selected. More preferably, it is 1-8. It is preferable that the shock wave is caused to act on the target magnetostrictive material powder or the like by using a liquid as a medium, rather than by using air as a medium. Water is suitable as the liquid.

【0014】水を媒体とした衝撃波(以下水中衝撃波と
いう)を用いた場合、衝撃圧力自体の持続時間は、空気
を媒体とした衝撃波を用いた場合と比較して長いため、
圧搾固化する場合の圧力を低くする事が可能になるので
好ましい。衝撃圧縮による内部の熱については、水中衝
撃波を用いた場合は、空気を媒体とした衝撃波を用いる
場合よりも、残留温度を低く保つことが非常に容易であ
る。
When a shock wave using water as a medium (hereinafter referred to as an underwater shock wave) is used, the duration of the shock pressure itself is longer than that when using a shock wave using air as a medium.
This is preferable because it is possible to lower the pressure when the material is pressed and solidified. Regarding the internal heat due to shock compression, it is much easier to keep the residual temperature lower when using an underwater shock wave than when using a shock wave using air as a medium.

【0015】すなわち、 (a)水中衝撃波の圧力は、爆薬と水のユゴニオ関係に
よって決まり、圧力Pは概略次式で示される。 P=288(MPa){(ρ/ρ07.25−1} 上式より、水中衝撃波を用いた場合には、水の密度ρの
基準時密度ρ0に対する変化に関して圧力Pの増加量が
非常に大きいため、爆薬量の調節により容易に超高圧が
得られ、その際の磁歪材料の温度は従来の衝撃波を用い
た場合に比べて容易に低温度に保持される。 (b)衝撃圧力自体の持続時間が従来の衝撃波を用いた
場合よりも長い。
That is, (a) the pressure of the underwater shock wave is determined by the Yugonio relationship between the explosive and the water, and the pressure P is roughly expressed by the following equation. P = 288 (MPa) {(ρ / ρ 0 ) 7.25 −1} From the above equation, when the underwater shock wave is used, the increase amount of the pressure P is extremely large with respect to the change of the water density ρ with respect to the reference time density ρ 0 . Because of its large size, the ultrahigh pressure can be easily obtained by adjusting the amount of explosive, and the temperature of the magnetostrictive material at that time can be easily maintained at a low temperature as compared with the case of using a conventional shock wave. (B) The duration of the impact pressure itself is longer than that when a conventional shock wave is used.

【0016】(c)体積圧縮と衝撃波の非線型現象に基
づくエントロピーの増加による磁歪材料の温度上昇は極
めて短時間に消失する。 (d)磁歪材料の温度は、その後高く保持されることが
少なく、又、長く保持されることが少ない。 (e)衝撃圧力が被圧縮体に対して均一に負荷される。
水中衝撃波の持つこれらの優れた特徴により、高密度に
容易に圧縮固化され、固形化される。
(C) The temperature rise of the magnetostrictive material due to the increase in entropy due to the volume compression and the nonlinear phenomenon of the shock wave disappears in an extremely short time. (D) The temperature of the magnetostrictive material is rarely kept high thereafter, and is rarely kept long. (E) Impact pressure is evenly applied to the object to be compressed.
Due to these excellent characteristics of the underwater shock wave, it is easily compressed and solidified to a high density and solidified.

【0017】[0017]

【発明の実施の形態】本発明について、図及び実施例を
用いて具体的に説明する。図1は、衝撃波を水を介して
円筒収束型で作用させる装置の概略図である。図1にお
いて、磁歪材料粉体8は粉体充填用金属製パイプ1の中
にセットされる。水充填用金属製パイプ3の中には水7
を入れておく。爆薬5は紙筒4の中にセットされる。こ
れらは金属製プラグ2により封じておく。起爆部6によ
り爆薬5を起爆すると、磁歪材料粉体8は、爆薬5の発
する衝撃波によって水7を介して半径方向に圧縮され
る。この方法によって、圧縮成形された磁歪材料を得る
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described with reference to the drawings and the embodiments. FIG. 1 is a schematic view of a device that causes a shock wave to act in a cylindrical converging type via water. In FIG. 1, the magnetostrictive material powder 8 is set in the powder filling metal pipe 1. There is water 7 in the water filling metal pipe 3.
Put in. The explosive 5 is set in the paper cylinder 4. These are sealed by the metal plug 2. When the explosive 5 is detonated by the detonator 6, the magnetostrictive material powder 8 is radially compressed by the shock wave generated by the explosive 5 through the water 7. By this method, a compression-molded magnetostrictive material can be obtained.

【0018】又この場合、爆薬等をセットする前に、例
えば、粉体充填用金属製パイプ1の外周部にコイルを設
置し、磁歪材料粉体に磁場をかけ、予備成形を行うこと
が可能である。その後、爆薬をセットし、衝撃波によっ
て磁歪材を圧縮成型する。このことにより、磁歪材の成
形体の結晶粒の配向を制御し、異方性の成形体を得るこ
とが可能である。この場合、通常の焼結のように熱負荷
が少なく、結晶は予備成形された異方性を保持しやすく
なる。
Further, in this case, before setting explosives or the like, for example, a coil may be installed on the outer peripheral portion of the powder filling metal pipe 1 and a magnetic field may be applied to the magnetostrictive material powder for preforming. Is. After that, an explosive is set and the magnetostrictive material is compression-molded by a shock wave. This makes it possible to control the crystal grain orientation of the magnetostrictive material compact and obtain an anisotropic compact. In this case, the heat load is small as in normal sintering, and the crystals are likely to retain the preformed anisotropy.

【0019】又コア部材を磁歪材料粉体の中の中心部に
入れることも可能である。コア部材は、金属、セラミッ
ク、樹脂などの材質が使用でき、棒状固形材料または、
前記円筒容器内に同心円状にコア用円筒容器を配置し、
その中に粉状、粒状、液体状の材料を配置することがで
きる。特に、純アルミニウム等の易切削性金属を用いる
ことは、後加工の点で取り扱いやすい。粉体充填用金属
製パイプ1は、衝撃に追従し変形するものであればよ
く、その名称にかかわらず、金属のみでなく熱可塑樹脂
等も使用できる。
It is also possible to put the core member in the center of the magnetostrictive material powder. The core member can be made of a material such as metal, ceramic, resin, etc.
Arrange the core cylindrical container in a concentric shape in the cylindrical container,
A powdery, granular, or liquid material can be placed therein. In particular, the use of an easily machinable metal such as pure aluminum is easy to handle in terms of post-processing. The powder filling metal pipe 1 may be any one as long as it can be deformed following an impact, and regardless of its name, not only metal but also thermoplastic resin or the like can be used.

【0020】図2は、衝撃波を水を介して一軸圧縮型で
作用させる装置の概略図である。図2において、磁歪材
料粉体16は磁歪材料粉体容器17の中にセットされ
る。水収納部14の中には水13を入れてシール12及
びシール13で封じておく。爆薬10は爆薬ケース11
の中にセットされる。起爆部9により爆薬10を起爆す
ると、磁歪材料粉体16は、爆薬10の発する衝撃波に
よって水13を介して軸方向に圧縮される。
FIG. 2 is a schematic view of a device for applying a shock wave in a uniaxial compression type through water. In FIG. 2, the magnetostrictive material powder 16 is set in the magnetostrictive material powder container 17. Water 13 is placed in the water storage portion 14 and sealed with the seal 12 and the seal 13. Explosive 10 is explosive case 11
Set in. When the explosive 10 is detonated by the detonator 9, the magnetostrictive material powder 16 is axially compressed via the water 13 by the shock wave generated by the explosive 10.

【0021】図1及び図2には、水を用いた場合の図を
記載したが、水の入る層を取り除いた構造でも本発明の
一定の目的は達成できる。試料をセットするには、対象
とする磁歪材料粉体をタッピング密度、又は予備圧縮し
て相対密度が例えば50%程度になるように装填してお
き、次に衝撃波で圧縮する。衝撃圧縮した圧縮体の相対
密度は、85%以上になるよう爆薬量等を調整する。こ
のとき、更に好ましくは相対密度90%以上、更に好ま
しくは95%以上、更に好ましくは98%以上とする。
Although FIGS. 1 and 2 show the case where water is used, a certain object of the present invention can be achieved with a structure in which the water-containing layer is removed. To set the sample, the target magnetostrictive material powder is tapped or precompressed and loaded so that the relative density is, for example, about 50%, and then compressed by shock waves. The explosive amount and the like are adjusted so that the relative density of the shock-compressed compressed body is 85% or more. At this time, the relative density is more preferably 90% or more, further preferably 95% or more, further preferably 98% or more.

【0022】又、圧縮後に熱処理を実施する事も可能で
ある。この熱処理は、磁歪材料粉体の固化体の内部応力
を解放し、磁歪材料の性能を安定化させる。但し、熱処
理は、磁歪材料の酸化劣化を防ぐために、真空中か不活
性のガス中で行うのが好ましい。時間的には、0.5〜
2時間程度で充分である。更には、熱処理温度が高い場
合は、熱処理時に起こる結晶成長等を制御する上で、予
備成形と同じ方向に磁場を配置した中で熱処理をするこ
とが好ましい。
It is also possible to carry out heat treatment after compression. This heat treatment releases the internal stress of the solidified body of the magnetostrictive material powder and stabilizes the performance of the magnetostrictive material. However, the heat treatment is preferably performed in vacuum or in an inert gas in order to prevent oxidative deterioration of the magnetostrictive material. In terms of time, 0.5-
About 2 hours is enough. Further, when the heat treatment temperature is high, it is preferable to perform the heat treatment in a magnetic field arranged in the same direction as the preforming in order to control crystal growth and the like that occur during the heat treatment.

【0023】[0023]

【実施例1】磁歪材料粉体として、原子比でTb0.35
0.65(Fe0.85Mn0.152となるよう各元素を調整
し、Ar雰囲気下でアーク溶解を行い、合金インゴット
を得、その後ミルで平均粒径30ミクロンまでに粉砕し
たものを用いた。図1に示す装置を用い、筒状の磁場発
生ヨークを粉体充填用金属製パイプ(1mmのSUS、
内径10mm)の外側に配置し、磁場中で予備圧縮密度
50%まで圧縮した。その予備圧搾試料を爆薬を含め、
治具等にセットした。爆薬として前記PAVEXを用
い、爆薬/粉体比=6とした。水充填用パイプは1mm
厚の銅を用いた。衝撃波により圧縮固化した結果、圧縮
比より計算し、相対密度93%の磁歪材料が得られた。
[Example 1] As a magnetostrictive material powder, an atomic ratio of Tb 0.35 D
Each element was adjusted to y 0.65 (Fe 0.85 Mn 0.15 ) 2 and arc melting was performed in an Ar atmosphere to obtain an alloy ingot, which was then crushed by a mill to an average particle size of 30 microns. Using the apparatus shown in FIG. 1, a cylindrical magnetic field generation yoke is connected to a powder filling metal pipe (1 mm SUS,
It was placed outside the inner diameter (10 mm) and compressed in a magnetic field to a preliminary compression density of 50%. Including the explosives,
It was set on a jig. The PAVEX was used as the explosive, and the explosive / powder ratio = 6. 1 mm for water filling pipe
Thick copper was used. As a result of compression and solidification by shock waves, a magnetostrictive material having a relative density of 93% was obtained, which was calculated from the compression ratio.

【0024】[0024]

【発明の効果】本発明により、多結晶異方性の磁歪材料
粉体が密度85%以上の高密度圧縮成形体として得られ
るようになった。
According to the present invention, polycrystalline anisotropic magnetostrictive material powder can be obtained as a high-density compression molded product having a density of 85% or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】衝撃波を水を介して円筒収束型で作用させる装
置の概略図である。
FIG. 1 is a schematic view of a device that causes a shock wave to act in a cylindrical converging type via water.

【図2】衝撃波を水を介して一軸圧縮型で作用させる装
置の概略図である。
FIG. 2 is a schematic view of an apparatus that causes a shock wave to act in a uniaxial compression type through water.

【符号の説明】[Explanation of symbols]

1.粉体充填用金属製パイプ 2.金属製プラグ 3.水充填用金属製パイプ 4.紙筒 5.爆薬 6.起爆部 7.水 8.磁歪材料粉体 9.起爆部 10.爆薬 11.爆薬ケース 12.シール 13.水 14.水収納部 15.シール 16.磁歪材料粉体 17.磁歪材料粉体容器 1. Metal pipe for powder filling 2. Metal plug 3. Metal pipe for water filling 4. Paper cylinder 5. explosive 6. Detonator 7. water 8. Magnetostrictive material powder 9. Detonator 10. explosive 11. Explosive case 12. sticker 13. water 14. Water storage 15. sticker 16. Magnetostrictive material powder 17. Magnetostrictive material powder container

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 41/20 H01L 41/20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 41/20 H01L 41/20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 磁歪材料粉体を固化してなり、相対密度
が85%以上である磁歪材料。
1. A magnetostrictive material obtained by solidifying a magnetostrictive material powder and having a relative density of 85% or more.
【請求項2】 磁歪材料粉体を衝撃波により固化してな
る請求項1に記載の磁歪材料。
2. The magnetostrictive material according to claim 1, wherein the magnetostrictive material powder is solidified by a shock wave.
【請求項3】 磁歪材料粉体を磁場中にて予備成形し、
その後衝撃波により固化してなる請求項1または2に記
載の磁歪材料。
3. A magnetostrictive material powder is preformed in a magnetic field,
The magnetostrictive material according to claim 1, which is subsequently solidified by a shock wave.
【請求項4】 磁歪材料粉体を衝撃波により固化する磁
歪材料の製造方法。
4. A method of manufacturing a magnetostrictive material, which comprises solidifying a magnetostrictive material powder by a shock wave.
【請求項5】 磁歪材料粉体を磁場中にて予備成形し、
その後衝撃波により固化する請求項4に記載の磁歪材料
の製造方法。
5. A magnetostrictive material powder is preformed in a magnetic field,
The method for producing a magnetostrictive material according to claim 4, wherein the method is subsequently solidified by a shock wave.
【請求項6】 液体を介して衝撃波を導入する請求項4
または5に記載の磁歪材料の製造方法。
6. The shock wave is introduced through a liquid.
Alternatively, the method of manufacturing the magnetostrictive material according to 5 above.
【請求項7】 衝撃波を用いて圧縮成形した後、熱処理
をする請求項4〜6のいずれかに記載の磁歪材料の製造
方法。
7. The method for producing a magnetostrictive material according to claim 4, wherein the heat treatment is performed after compression molding using a shock wave.
【請求項8】 衝撃波を用いて圧縮成形した後、磁場中
で熱処理をする請求項7に記載の磁歪材料の製造方法。
8. The method for producing a magnetostrictive material according to claim 7, wherein after compression molding using shock waves, heat treatment is performed in a magnetic field.
JP2002078270A 2002-03-20 2002-03-20 Magnetostrictive material and manufacturing method Pending JP2003277805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078270A JP2003277805A (en) 2002-03-20 2002-03-20 Magnetostrictive material and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078270A JP2003277805A (en) 2002-03-20 2002-03-20 Magnetostrictive material and manufacturing method

Publications (1)

Publication Number Publication Date
JP2003277805A true JP2003277805A (en) 2003-10-02

Family

ID=29228312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078270A Pending JP2003277805A (en) 2002-03-20 2002-03-20 Magnetostrictive material and manufacturing method

Country Status (1)

Country Link
JP (1) JP2003277805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107052331A (en) * 2017-06-14 2017-08-18 南京理工大学 Can pressure release type explosive sintering nanometer aluminium bar device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107052331A (en) * 2017-06-14 2017-08-18 南京理工大学 Can pressure release type explosive sintering nanometer aluminium bar device and method
CN107052331B (en) * 2017-06-14 2020-04-10 南京理工大学 Device and method for explosion sintering of nano aluminum bar capable of releasing pressure

Similar Documents

Publication Publication Date Title
CA2811451C (en) Production method of rare earth magnet
US5993565A (en) Magnetostrictive composites
JP2001358377A (en) Ultra-magnetostriction material, its manufacturing method, and magnetostriction actuator and magnetostriction sensor using the same
JPH08277403A (en) Production of permanent magnet alloy powder for bond magnet and apparatus therefor
JP3540438B2 (en) Magnet and manufacturing method thereof
JPH07286249A (en) Production of magnetostriction material
JP3108232B2 (en) Manufacturing method of rare earth / iron / nitrogen permanent magnet
JP2003277805A (en) Magnetostrictive material and manufacturing method
JP4790927B2 (en) Solid material for magnet and method for producing the same
JP3432967B2 (en) Self-biased magnetostrictive material
JP2571244B2 (en) Method for producing rare earth-Fe-B based magnet laminate
JP4873516B2 (en) Solid material for magnet and method for producing the same
JPH09263913A (en) Hard magnetic alloy compacted body and its production
WO1999007006A1 (en) Method of producing r-t-b-base radial anisotropic annular sintered magnet
US20050258403A1 (en) Method of preparing polymer composite using unidirectionally solidified giant magnetostrictive material
JP4790933B2 (en) Solid material for magnet and method for producing the same
JP3105929B2 (en) Magnetostrictive material
JP4058510B2 (en) Giant magnetostrictive material and manufacturing method thereof
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JP2007162064A (en) Method of manufacturing magnetostriction material powder, and method of manufacturing magnetostrictor
JP2003224007A (en) Anisotropic rare earth magnetic powder and method for manufacturing the same
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same
JP2003243213A (en) Magnetic formed material and its manufacturing method
JPH048923B2 (en)
JP2003342618A (en) Method for manufacturing anisotropic rare-earth magnet powder