JP2003277436A - Method for producing chlorinated vinyl chloride resin and apparatus therefor - Google Patents

Method for producing chlorinated vinyl chloride resin and apparatus therefor

Info

Publication number
JP2003277436A
JP2003277436A JP2002086490A JP2002086490A JP2003277436A JP 2003277436 A JP2003277436 A JP 2003277436A JP 2002086490 A JP2002086490 A JP 2002086490A JP 2002086490 A JP2002086490 A JP 2002086490A JP 2003277436 A JP2003277436 A JP 2003277436A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
chlorinated vinyl
chlorine
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002086490A
Other languages
Japanese (ja)
Inventor
Kenji Uejima
健二 上島
Takashi Wachi
俊 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2002086490A priority Critical patent/JP2003277436A/en
Publication of JP2003277436A publication Critical patent/JP2003277436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a chlorinated vinyl chloride resin by efficiently removing chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin obtained according to a gas-solid contact reactional method. <P>SOLUTION: The method for producing the chlorinated vinyl chloride resin is carried out by performing operations as follows. A powdery vinyl chloride resin is reacted with chlorine in a gas-solid contact reactional field to provide a powdery chlorinated vinyl chloride resin and keep the interior of the system containing the resin in a vacuum state for at least ≥10 min and/or the interior of the system containing the chlorinated vinyl chloride resin is kept in a vacuum state for ≥1 min to subsequently introduce an inert gas, increase the pressure and repeat the procedures at least twice or more. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、塩素と塩化ビニル
系樹脂とを気固接触場において反応させて得られる塩素
化塩化ビニル系樹脂に含有される塩素および塩化水素を
簡便な方法で効果的に除去し、塩素および塩化水素の含
有量が少ない塩素化塩化ビニル系樹脂を製造する技術に
関する。
TECHNICAL FIELD [0001] The present invention is effective in a simple method to effectively remove chlorine and hydrogen chloride contained in a chlorinated vinyl chloride resin obtained by reacting chlorine and a vinyl chloride resin in a gas-solid contact field. The present invention relates to a technique for producing a chlorinated vinyl chloride resin having a small content of chlorine and hydrogen chloride by removing it.

【0002】[0002]

【従来の技術】塩化ビニル系樹脂を後塩素化して得られ
る塩素化塩化ビニル系樹脂は、優れた耐熱性、難燃性、
機械強度、電気特性を有しており、様々な産業で利用さ
れている。例えば、通常の塩化ビニル系樹脂のガラス転
移温度は80℃程度であるが、塩素化塩化ビニル系樹脂
のガラス転移温度は、塩素含有量の増加と共に上昇し、
120〜130℃に達する。また、ビカット軟化温度も
同様に120℃程度の高い値を示す。この様な高い耐熱
性を有することから、塩素化塩化ビニル系樹脂は、耐熱
パイプ、耐熱継ぎ手、耐熱バルブ、耐熱シートなどに利
用されている。
2. Description of the Related Art Chlorinated vinyl chloride resin obtained by post-chlorination of vinyl chloride resin has excellent heat resistance, flame retardancy,
It has mechanical strength and electrical properties and is used in various industries. For example, the glass transition temperature of a normal vinyl chloride resin is about 80 ° C., but the glass transition temperature of a chlorinated vinyl chloride resin rises as the chlorine content increases,
Reach 120-130 ° C. The Vicat softening temperature also shows a high value of about 120 ° C. Due to such high heat resistance, chlorinated vinyl chloride resins are used in heat resistant pipes, heat resistant joints, heat resistant valves, heat resistant sheets, and the like.

【0003】塩素化塩化ビニル系樹脂の工業的な生産方
法は、塩化ビニル系単量体を重合して塩化ビニル系樹脂
を得る工程と、塩化ビニル系樹脂を後塩素化する工程の
2つの工程からなる。
The industrial production method of chlorinated vinyl chloride resin has two steps: a step of polymerizing vinyl chloride monomer to obtain vinyl chloride resin and a step of post-chlorinating vinyl chloride resin. Consists of.

【0004】従来の技術では、後段の後塩素化工程で
は、主に水懸濁塩素化法が用いられてきた。水懸濁塩素
化法は、固形分濃度が数%〜数十%である塩化ビニル系
樹脂の水懸濁液を反応器内に充填し、水懸濁液を攪拌し
ながら塩素を供給して反応を行う方法である。更に、こ
れだけでは塩素化反応が全く進行しないか、極めて遅い
ので、水懸濁液に反応促進のための光、熱、触媒などが
加えられる。水懸濁塩素化法には、粒子の攪拌や混合が
容易であること、水に溶解した低濃度の塩素を使用する
ため反応制御が容易であること、塩化ビニル系樹脂が水
により可塑化されて塩素が樹脂内部まで浸透しやすいこ
と等の様々な利点がある。この為、これまでに実用化さ
れている塩素化塩化ビニル系樹脂の製造設備の多くは水
懸濁塩素化法が採用されてきた。
In the prior art, the water suspension chlorination method has been mainly used in the subsequent post-chlorination step. In the water suspension chlorination method, an aqueous suspension of vinyl chloride resin having a solid content concentration of several% to several tens% is filled in a reactor, and chlorine is supplied while stirring the aqueous suspension. It is a method of carrying out the reaction. Further, since the chlorination reaction does not proceed at all or is extremely slow only by this, light, heat, a catalyst and the like for accelerating the reaction are added to the water suspension. In the water suspension chlorination method, it is easy to stir and mix particles, the reaction control is easy because a low concentration of chlorine dissolved in water is used, and vinyl chloride resin is plasticized by water. There are various advantages such as that chlorine easily penetrates into the resin. Therefore, the water suspension chlorination method has been adopted in most of the chlorinated vinyl chloride resin production facilities that have been put to practical use.

【0005】ところが、水懸濁塩素化法は本質的に解決
不可能な問題点を有している。塩化ビニル系樹脂と塩素
から塩素化塩化ビニル系樹脂が生成する反応では、式
(1)に示すように塩化水素が発生する。したがって、
反応中および反応終了後の塩素化塩化ビニル系樹脂は高
濃度の塩酸溶液に懸濁した状態になる。 (CH2−CHCl)n+mCl2→(CH2−CHCl)n-m (CHCl−CHCl)m +mHCl ・・・・・・(1) 塩素化塩化ビニル系樹脂の最終的な出荷形態は粉体状態
である必要があるし、不純物となる塩化水素を除去する
必要があるので、塩素化反応後の塩素化塩化ビニル系樹
脂の水懸濁液は脱水・水洗・乾燥される必要がある。こ
の為、水懸濁塩素化法のプロセスは後処理工程に大きな
設備費が必要である上に、乾燥、水洗に伴うランニング
コストが増大する。しかも、水と塩化水素は共沸状態に
なるので、最終的には完全に乾燥状態にするまで、塩化
水素を製品から除去することは出来ない。
However, the water suspension chlorination method has a problem that is essentially unsolvable. In a reaction in which a chlorinated vinyl chloride resin is produced from a vinyl chloride resin and chlorine, hydrogen chloride is generated as shown in formula (1). Therefore,
During and after the reaction, the chlorinated vinyl chloride resin is suspended in a high-concentration hydrochloric acid solution. (CH 2 -CHCl) n + mCl 2 → (CH 2 -CHCl) nm (CHCl-CHCl) m + mHCl (1) The final shipping form of the chlorinated vinyl chloride resin is in powder form. Since it is necessary to remove hydrogen chloride as an impurity, it is necessary to dehydrate, wash and dry the water suspension of the chlorinated vinyl chloride resin after the chlorination reaction. Therefore, in the process of the water suspension chlorination method, a large equipment cost is required for the post-treatment step, and the running cost associated with drying and washing increases. Moreover, since water and hydrogen chloride are in an azeotropic state, hydrogen chloride cannot be removed from the product until it is completely dried.

【0006】また、水懸濁塩素化法では、反応終了時に
は反応溶液が10重量%程度の高濃度の塩酸溶液にな
る。この為、水懸濁塩素化法では、反応器にはチタン系
やチタンパラジウム系の高価な耐食性金属材料を利用す
るか、グラスライニング、フッ素ライニング等の表面処
理を施した装置を利用する必要がある。更に、高濃度の
塩酸である反応溶液は前述の後処理工程に持ち込まれる
為、後処理工程にも高価な耐食材料を使用する必要があ
る。
Further, in the water suspension chlorination method, the reaction solution becomes a highly concentrated hydrochloric acid solution of about 10% by weight at the end of the reaction. Therefore, in the water suspension chlorination method, it is necessary to use an expensive titanium-based or titanium-palladium-based corrosion-resistant metal material for the reactor, or use a device that has been subjected to surface treatment such as glass lining and fluorine lining. is there. Furthermore, since the reaction solution having a high concentration of hydrochloric acid is brought into the above-mentioned post-treatment step, it is necessary to use an expensive corrosion-resistant material also in the post-treatment step.

【0007】この様に、水懸濁塩素化法の反応器は、そ
れ自体は比較的単純であり、制御が容易な装置である
が、後処理工程まで含めたプロセス全体を考慮すると、
設備コスト及びランニングコストに大きな負荷が掛かる
と言う欠点を有する装置であった。
Thus, the reactor of the water suspension chlorination method is relatively simple in itself and easy to control, but considering the whole process including the post-treatment step,
The device has a drawback that a large load is applied to equipment cost and running cost.

【0008】一方、この様な水懸濁塩素化法の欠点を補
う為に、塩化ビニル系樹脂の粉体粒子と塩素との気固接
触場を反応場とする気固接触塩素化法による塩素化塩化
ビニル系樹脂の合成方法も提案されている。例えば、特
開昭59−24705は、塩素中に少量の酸素を混入し
た塩素ガスと塩化ビニル系樹脂を気固接触場で反応させ
る事により、光の不在下で塩化ビニル系樹脂の塩素化を
進行させる方法である。また、特公昭60−2322
は、高圧低温下で塩化ビニル系樹脂に塩素を含浸させた
後に、加熱する事により、塩化ビニル系樹脂内において
熱ラジカルを発生させ、気固接触場での反応で塩素化塩
化ビニル系樹脂を得る方法である。更に、光をラジカル
発生源として用いる方法においても、塩素化塩化ビニル
系樹脂の品質を改善するための方法は提案されている。
特公昭54−39878や特公昭52−15638で
は、流動層型反応器内の粉体層中に光源を挿入し、粉体
層を塩素ガスで流動化させることにより、塩化ビニル系
樹脂と塩素とを気固接触場において反応させる方法が記
載されている。
On the other hand, in order to make up for the drawbacks of such a water suspension chlorination method, chlorine by a gas-solid contact chlorination method in which a gas-solid contact field between vinyl chloride resin powder particles and chlorine is used as a reaction field. A method for synthesizing a vinyl chloride resin has also been proposed. For example, JP-A-59-24705 discloses a method for chlorinating a vinyl chloride resin in the absence of light by reacting a chlorine gas containing a small amount of oxygen in chlorine with a vinyl chloride resin in a gas-solid contact field. It is a method of proceeding. In addition, Japanese Examined Japanese Patent Sho 60-2322
Is a high-pressure, low-temperature, vinyl chloride resin impregnated with chlorine, and then heated to generate thermal radicals in the vinyl chloride resin, which reacts in a gas-solid contact field to remove the chlorinated vinyl chloride resin. Is the way to get. Further, even in the method using light as a radical generation source, a method for improving the quality of the chlorinated vinyl chloride resin has been proposed.
In Japanese Examined Patent Publication No. 54-39878 and Japanese Examined Patent Publication No. 52-15638, a light source is inserted into a powder layer in a fluidized bed reactor, and the powder layer is fluidized with chlorine gas, whereby vinyl chloride resin and chlorine are separated. There is described a method of reacting with a gas-solid contact field.

【0009】気固接触塩素化法では、未反応の塩素や発
生した塩化水素は気体として系内から排出される。一般
的には、反応終了後に残存する塩素と塩化水素は、系内
を真空脱気するか、空気や窒素等のガスを流通して気流
洗浄することにより除去される。したがって、気固接触
塩素化法の後処理工程には、水洗・脱水・乾燥などの複
雑な工程を経由せず、不純物である塩素や塩化水素を低
減させることができる。
In the gas-solid catalytic chlorination method, unreacted chlorine and generated hydrogen chloride are discharged from the system as a gas. Generally, the chlorine and hydrogen chloride remaining after the reaction is removed by vacuum degassing the system, or by flushing with a gas such as air or nitrogen flowing. Therefore, in the post-treatment process of the gas-solid contact chlorination method, impurities such as chlorine and hydrogen chloride can be reduced without passing through complicated processes such as water washing, dehydration, and drying.

【0010】例えば、特開昭52−15638や特開昭
57−98507では、生成した塩素化塩化ビニル系樹
脂を真空下に置くか、不活性ガスを流通させることによ
り吸着した塩素及び塩化水素を除去することが記載され
ている。また、特公昭60−2322では、生成した塩
素化塩化ビニル系樹脂を窒素気流を用い、フラッシュす
ることにより塩素及び塩化水素を除去する方法やメタノ
ールとアルカリ溶液で洗浄する方法が記載されている。
これらの技術では、塩素化塩化ビニル系樹脂を気流と接
触させる気流洗浄方が主に利用されているが、後述する
ように気流洗浄法では長い洗浄時間を必要とするため、
工業的な生産性に劣る。また、本発明と同様に塩素化塩
化ビニル系樹脂を真空下に置き、塩素と塩化水素を除去
することが記載されているが、具体的な方法、条件、実
施例が一切記載されていない。
For example, in JP-A-52-15638 and JP-A-57-98507, the chlorine and hydrogen chloride adsorbed by placing the produced chlorinated vinyl chloride resin under a vacuum or by circulating an inert gas. It is described to be removed. Also, Japanese Patent Publication No. 60-2322 describes a method of removing chlorine and hydrogen chloride by flushing the produced chlorinated vinyl chloride resin with a nitrogen stream, and a method of washing with methanol and an alkaline solution.
In these techniques, a method of air flow cleaning in which a chlorinated vinyl chloride resin is brought into contact with an air flow is mainly used, but as described later, the air flow cleaning method requires a long cleaning time,
Poor industrial productivity. Further, it is described that chlorine and hydrogen chloride are removed by placing a chlorinated vinyl chloride resin under vacuum as in the present invention, but no specific method, condition, or example is described.

【0011】更に、気固接触塩素化法では、通常、反応
系内に水が存在しないか、若しくは微量の水分が粉体粒
子に吸着している状態で反応を実施する。この様な無水
若しくは微水の系では、金属材料に対する塩素および塩
化水素の腐食性は弱く、反応器にはニッケル系、ステン
レス系、鉄系の比較的安価な金属材料を使用することが
できる。更には、後処理工程に持ち込まれる粉体粒子に
は、微量の塩素と塩化水素が残留しているのみであるの
で、後処理工程にも安価な金属材料を利用することがで
きる。
Further, in the gas-solid catalytic chlorination method, the reaction is usually carried out in the state where water does not exist in the reaction system or a trace amount of water is adsorbed on the powder particles. In such an anhydrous or fine water system, the corrosiveness of chlorine and hydrogen chloride to the metal material is weak, and nickel-based, stainless-based, or iron-based relatively inexpensive metal materials can be used in the reactor. Furthermore, since only a trace amount of chlorine and hydrogen chloride remain in the powder particles brought into the post-treatment step, an inexpensive metal material can be used in the post-treatment step.

【0012】以上の様に、塩化ビニル系樹脂の粉体層と
塩素を反応させる気固接触塩素化法は、設備コスト、廃
水処理、安全性の面から優れた特徴を有する。
As described above, the gas-solid catalytic chlorination method in which a powder layer of a vinyl chloride resin is reacted with chlorine has excellent features in terms of equipment cost, wastewater treatment, and safety.

【0013】[0013]

【発明が解決しようとする課題】塩素化塩化ビニル系樹
脂の塩素および塩化水素の含有量は、保存する容器や包
装体の腐食の観点から、200ppm以下に減少させる
必要がある。しかしながら、一般的な気流洗浄法や真空
脱気法を用い、気固接触塩素化法で得られた塩素化塩化
ビニル系樹脂に含有される塩素と塩化水素を必要な濃度
以下に減少させるためには、長時間の洗浄操作を要する
と言う問題があった。
The chlorine and hydrogen chloride contents of the chlorinated vinyl chloride resin must be reduced to 200 ppm or less from the viewpoint of corrosion of the container or package to be stored. However, in order to reduce the chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin obtained by the gas-solid contact chlorination method to below the required concentration, using a general air flow cleaning method or vacuum degassing method. Had a problem that it required a long washing operation.

【0014】この問題は、塩素化塩化ビニル系樹脂の微
粒子の内部構造に起因するものである。一般的に、塩素
化塩化ビニル系樹脂の原料となる塩化ビニル系樹脂は、
懸濁重合法で合成される場合が多い。懸濁重合法で合成
された塩化ビニル系樹脂は、200μm前後の粉体粒子
であるが、その内部構造は1μm程度の粒径を有する一
次粒子の集合体である。この様な塩化ビニル系樹脂を原
料として得られた塩素化塩化ビニル系樹脂は同様の内部
構造を受け継いでおり、内部の細孔構造の容積、即ち細
孔容積は0.1〜0.3cc/g程度にのぼる。
This problem is due to the internal structure of the fine particles of the chlorinated vinyl chloride resin. Generally, the vinyl chloride resin that is the raw material for the chlorinated vinyl chloride resin is
Often synthesized by suspension polymerization. The vinyl chloride resin synthesized by the suspension polymerization method is powder particles of about 200 μm, and its internal structure is an aggregate of primary particles having a particle size of about 1 μm. The chlorinated vinyl chloride resin obtained from such vinyl chloride resin as a raw material inherits the same internal structure, and the volume of the internal pore structure, that is, the pore volume is 0.1 to 0.3 cc / It reaches about g.

【0015】この様な内部の細孔構造には、塩素および
塩化水素が充満しており、内部表面には塩素および塩化
水素が多量に吸着している。従来、塩素化塩化ビニル系
樹脂のから塩素及び塩化水素を除去する方法としては、
気流洗浄法が用いられていた。しかし、気流洗浄法は、
内部構造の空隙部分に残存している塩素や塩化水素の除
去は、これらの気体の拡散に頼る方法であった。細孔内
部の気体の拡散速度は遅く、内部構造に残存する塩素と
塩化水素を除去するためには、長時間を要するのであ
る。
Such an internal pore structure is filled with chlorine and hydrogen chloride, and a large amount of chlorine and hydrogen chloride are adsorbed on the internal surface. Conventionally, as a method for removing chlorine and hydrogen chloride from a chlorinated vinyl chloride resin,
The flushing method was used. However, the flushing method
The removal of chlorine and hydrogen chloride remaining in the voids of the internal structure has relied on the diffusion of these gases. The gas diffusion rate inside the pores is slow, and it takes a long time to remove chlorine and hydrogen chloride remaining in the internal structure.

【0016】本発明の目的は、気固接触反応法で得られ
た塩素化塩化ビニル系樹脂の細孔内部に存在する塩素お
よび塩化水素を短時間で除去し、塩素と塩化水素の含有
量が少ない塩素化塩化ビニル系樹脂を製造する方法と装
置を提供することにある。
The object of the present invention is to remove chlorine and hydrogen chloride present inside the pores of a chlorinated vinyl chloride resin obtained by a gas-solid contact reaction method in a short time, and to reduce the content of chlorine and hydrogen chloride. An object of the present invention is to provide a method and an apparatus for producing a small amount of chlorinated vinyl chloride resin.

【0017】[0017]

【課題を解決するための手段】本発明者らは、塩化ビニ
ル系樹脂と塩素を気固接触場で反応させて得られる塩素
化塩化ビニル系樹脂から、簡便な方法で効果的に塩素お
よび塩化水素を除去する方法を検討した。その結果、該
塩素化塩化ビニル系樹脂を含む系内を減圧状態に一定時
間保持し、好ましくは不活性の気体を導入する操作を少
なくとも1回以上、望ましくは2回以上繰り返すことに
より、効果的に塩素及び塩化水素を除去できることを見
出し、本発明を完成した。
[Means for Solving the Problem] The present inventors have found that a chlorinated vinyl chloride resin obtained by reacting a vinyl chloride resin with chlorine in a gas-solid contact field can effectively and effectively remove chlorine and chlorination from a chlorinated vinyl chloride resin. The method of removing hydrogen was examined. As a result, it is effective to maintain the inside of the system containing the chlorinated vinyl chloride resin in a depressurized state for a certain period of time, and to introduce an inert gas at least once, preferably twice or more. It was found that chlorine and hydrogen chloride can be removed, and the present invention has been completed.

【0018】即ち、本発明の第一は、(1)塩化ビニル
系樹脂を後塩素化反応させて塩素化塩化ビニル系樹脂を
製造する方法において、粉体状の塩化ビニル系樹脂と塩
素とを気固接触反応場で反応させて粉体状の塩素化塩化
ビニル系樹脂を得、得られた塩素化塩化ビニル系樹脂を
含む系内を減圧状態に少なくとも10分間以上保持する
操作、及び/又は塩素化塩化ビニル系樹脂を含む系内を
減圧状態に1分間以上保持した後に不活性の気体を導入
して昇圧することを少なくとも2回以上繰り返す操作を
実施し、塩素化塩化ビニル系樹脂に含有される塩素およ
び塩化水素を除去することを特徴とする塩素化塩化ビニ
ル系樹脂の製造方法(請求項1)、(2)不活性の気体
が、空気、窒素、酸素、二酸化炭素、アルゴン、ヘリウ
ムから選択される少なくとも1種以上の気体の混合物で
ある請求項1に記載の塩素化塩化ビニル系樹脂の製造方
法(請求項2)、(3)減圧状態の系内に保持する塩素
化塩化ビニル系樹脂の温度が、60℃以上、130℃以
下である請求項1、2に記載の塩素化塩化ビニル系樹脂
の製造方法(請求項3)、(4)減圧状態にした塩素化
塩化ビニル系樹脂を含む系内の圧力が、絶対圧で0.0
05〜0.02MPaである請求項1〜3に記載の塩素
化塩化ビニル系樹脂の製造方法(請求項4)、(5)減
圧状態にした塩素化塩化ビニル系樹脂を含む系内の圧力
が、絶対圧で0.005〜0.01MPaである請求項
1〜4に記載の塩素化塩化ビニル系樹脂の製造方法(請
求項5)、(6)不活性の気体を導入して昇圧した後の
塩素化塩化ビニル系樹脂を含む系内の圧力が、大気圧以
上、0.3MPa以下である請求項1〜5に記載の塩素
化塩化ビニル系樹脂の製造方法(請求項6)、(7)不
活性の気体を導入して昇圧した後の塩素化塩化ビニル系
樹脂を含む系内の圧力が、大気圧以上、0.11MPa
以下である請求項1〜6に記載の塩素化塩化ビニル系樹
脂の製造方法(請求項7)に関する。
That is, the first aspect of the present invention is to provide (1) a method of producing a chlorinated vinyl chloride resin by subjecting a vinyl chloride resin to a post-chlorination reaction to produce a powdered vinyl chloride resin and chlorine. An operation of reacting in a gas-solid contact reaction field to obtain a powdered chlorinated vinyl chloride resin, and maintaining the inside of the system containing the obtained chlorinated vinyl chloride resin in a reduced pressure state for at least 10 minutes or more, and / or Included in the chlorinated vinyl chloride resin by carrying out an operation of holding the inside of the system containing the chlorinated vinyl chloride resin in a depressurized state for 1 minute or more and then introducing an inert gas and increasing the pressure at least twice. Method for producing a chlorinated vinyl chloride resin characterized by removing the chlorine and hydrogen chloride (claim 1), (2) inert gas is air, nitrogen, oxygen, carbon dioxide, argon, helium Selected from The method for producing a chlorinated vinyl chloride resin according to claim 1 (claim 2), which is a mixture of at least one gas, and (3) the chlorinated vinyl chloride resin retained in the system under reduced pressure. The method for producing a chlorinated vinyl chloride resin according to claim 1 or 2, wherein the temperature is 60 ° C. or higher and 130 ° C. or lower (claim 3), and (4) including the chlorinated vinyl chloride resin in a reduced pressure state. Absolute pressure of the system is 0.0
The method for producing a chlorinated vinyl chloride resin according to claims 1 to 3 (claim 4), wherein the pressure in the system containing the chlorinated vinyl chloride resin in a reduced pressure state is from 05 to 0.02 MPa. The method for producing a chlorinated vinyl chloride resin according to claims 1 to 4, wherein the absolute pressure is 0.005 to 0.01 MPa (claim 5), and (6) after introducing an inert gas and increasing the pressure. The method for producing a chlorinated vinyl chloride resin according to any one of claims 1 to 5, wherein the pressure in the system containing the chlorinated vinyl chloride resin is from atmospheric pressure to 0.3 MPa (claim 6), (7). ) The pressure in the system containing the chlorinated vinyl chloride resin after introducing an inert gas and increasing the pressure is 0.11 MPa or more than the atmospheric pressure.
The following relates to a method for producing a chlorinated vinyl chloride resin according to claims 1 to 6 (claim 7).

【0019】本発明の第2は、(8)塩素化塩化ビニル
系樹脂を充填する容器、容器内部の気体を排出及び導入
する為の管、排出管及び/又は導入管に付属したバル
ブ、排出される気体に含有される塩素と塩化水素を吸収
する装置、減圧ポンプを備えてなる塩素化塩化ビニル系
樹脂に含有される塩素および塩化水素を除去する装置
(請求項8)、(9)排出される気体に含有される塩素
と塩化水素を吸収する装置が、水酸化ナトリウム、水酸
化カルシウム、炭酸ナトリウムから選択される少なくと
も1種以上の物質の混紡物の水溶液と排出される気体と
を接触させる装置である請求項8に記載の塩素化塩化ビ
ニル系樹脂に含有される塩素および塩化水素を除去する
装置(請求項9)、(10)排出される気体に含有され
る塩素と塩化水素を吸収する装置と減圧ポンプが、水酸
化ナトリウム、水酸化カルシウム、および炭酸ナトリウ
ムから選択される少なくとも1種以上の物質の混合物の
水溶液を流通させる水流ポンプである請求項8または9
に記載の塩素化塩化ビニル系樹脂に含有される塩素およ
び塩化水素を除去する装置(請求項10)に関する。な
お、上記(8)(9)又は(10)の装置は、上記
(1)〜(7)の何れかの方法に用いることができる装
置である。
The second aspect of the present invention is (8) a container filled with chlorinated vinyl chloride resin, a pipe for discharging and introducing gas inside the container, a discharge pipe and / or a valve attached to the introduction pipe, and a discharge Device for absorbing chlorine and hydrogen chloride contained in the gas to be treated, device for removing chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin, which is equipped with a vacuum pump (claim 8), (9) exhaust A device for absorbing chlorine and hydrogen chloride contained in the gas to be brought into contact with the discharged gas and an aqueous solution of a mixed spin of at least one substance selected from sodium hydroxide, calcium hydroxide and sodium carbonate. A device for removing chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin according to claim 8 (claim 9), (10) chlorine and hydrogen chloride contained in the gas to be discharged. Sucking Apparatus and vacuum pump is sodium hydroxide, calcium hydroxide claim 8 or 9 and an aqueous solution a water pump for circulating a mixture of at least one or more substances selected from sodium carbonate,
An apparatus (claim 10) for removing chlorine and hydrogen chloride contained in the chlorinated vinyl chloride-based resin according to item 1. The device of (8), (9) or (10) is a device that can be used in any of the methods of (1) to (7).

【0020】[0020]

【発明の実施の形態】本発明で用いる塩化ビニル系樹脂
は、任意の形態のものを使用できる。塩化ビニル系樹脂
が樹脂の内部まで均一に塩素化させると言う観点、およ
び反応効率を高める観点からは、粉体状の塩化ビニル系
樹脂を使用することが好ましい。本発明で言う粉体と
は、前述の様に気相中において単独に移動可能な粒子の
集合体であり、各粒子の粒径の目安としては、およそ1
0μm以上2000μm以下(平均粒径が50〜500
μm)の範囲にある。本発明では、気相中において単独
で移動可能な粒子の一つ一つを粉体粒子、粉体粒子の集
合体を粉体層と呼び区別する。
BEST MODE FOR CARRYING OUT THE INVENTION The vinyl chloride resin used in the present invention may be in any form. From the viewpoint of uniformly chlorinating the vinyl chloride resin to the inside of the resin and from the viewpoint of enhancing the reaction efficiency, it is preferable to use the powdery vinyl chloride resin. The powder referred to in the present invention is an aggregate of particles that can be independently moved in the gas phase as described above, and the particle size of each particle is about 1
0 μm or more and 2000 μm or less (average particle size is 50 to 500
μm) range. In the present invention, each of the particles that can move independently in the gas phase is called a powder particle, and an aggregate of powder particles is called a powder layer to distinguish them.

【0021】粉体粒子の粒径分布は、粉体の流動性を高
める観点、および反応を均一に進行させると言う観点か
ら、均一であることが好ましく、粒径の絶対値にも好ま
しい範囲がある。したがって、本発明で用いる塩化ビニ
ル系樹脂の粉体層は、50μm以上、500μm以下の
粒子径が主体となる粉体粒子(平均粒径が100〜30
0μm)の集合体であることが好ましい。個々の粉体粒
子は、塩化ビニル系樹脂の連続相からなっても良いし、
より小さな一次粒子の集合体であっても良い。
The particle size distribution of the powder particles is preferably uniform from the viewpoint of enhancing the fluidity of the powder and the viewpoint of allowing the reaction to proceed uniformly, and the range of the absolute value of the particle size is also preferable. is there. Therefore, the powder layer of the vinyl chloride resin used in the present invention is mainly composed of powder particles having an average particle diameter of 50 μm or more and 500 μm or less (average particle diameter of 100 to 30
0 μm) is preferable. The individual powder particles may consist of a continuous phase of vinyl chloride resin,
It may be an aggregate of smaller primary particles.

【0022】塩化ビニル系樹脂の製造方法は、懸濁重合
法、塊状重合法、気相重合法、乳化重合法等の様々な方
法があるが、本発明で用いる塩化ビニル系樹脂はいずれ
の方法で得られたものでも任意に使用できる。また、塩
化ビニルと酢酸ビニル等の不飽和炭化水素化合物との共
重合体を用いても良い。重合反応後に得られた塩化ビニ
ル系樹脂が水懸濁液で有れば、乾燥する必要があり、塊
状であれば粉砕等の操作を施す必要がある。塊状重合で
得られる塩化ビニル系樹脂は、粉砕工程が困難であり、
気相重合で合成する塩化ビニル系樹脂は通常は入手困難
である。また、乳化重合法で得られる塩化ビニル系樹脂
は乳化剤が多量に混入している。したがって、本発明に
用いる塩化ビニル系樹脂は、懸濁重合法で得られるもの
が好ましい。本発明では、塩化ビニル系樹脂が流動可能
な粉体層であれば、水分が含まれていても使用できる
が、含水量が多すぎると水懸濁法の説明で前述した様
に、反応により発生する塩化水素が樹脂中から除去し難
くなる。したがって、粉体層中の含水量が5重量%未満
であることが好ましい。又、静電気による粉体粒子の凝
集や容器への付着を防止するために、塩化ビニル系樹脂
の粉体に意図的に5重量%未満の水分を含ませることも
できる。
There are various methods for producing the vinyl chloride resin, such as suspension polymerization method, bulk polymerization method, gas phase polymerization method and emulsion polymerization method. Any method can be used for the vinyl chloride resin used in the present invention. The product obtained in step 1 can be used optionally. Further, a copolymer of vinyl chloride and an unsaturated hydrocarbon compound such as vinyl acetate may be used. If the vinyl chloride resin obtained after the polymerization reaction is an aqueous suspension, it needs to be dried, and if it is a lump, it is necessary to perform an operation such as pulverization. Vinyl chloride resin obtained by bulk polymerization is difficult to pulverize,
Vinyl chloride resins synthesized by gas phase polymerization are usually difficult to obtain. Further, the vinyl chloride resin obtained by the emulsion polymerization method contains a large amount of emulsifier. Therefore, the vinyl chloride resin used in the present invention is preferably obtained by a suspension polymerization method. In the present invention, as long as the vinyl chloride resin is a flowable powder layer, it can be used even if it contains water, but if the water content is too high, as described above in the explanation of the water suspension method, the reaction may be performed. It becomes difficult to remove the generated hydrogen chloride from the resin. Therefore, the water content in the powder layer is preferably less than 5% by weight. Further, in order to prevent the powder particles from agglomerating due to static electricity and adhering to the container, the vinyl chloride resin powder may intentionally contain less than 5% by weight of water.

【0023】懸濁重合法や乳化重合法により塩化ビニル
系樹脂を合成した場合には、塩化ビニル系樹脂の微粒子
が水に分散した状態であるので、乾燥するだけで粉体粒
子を得られる。しかし、この場合、粉体粒子表面にスキ
ン層と呼ばれる連続層が形成されており、塩素ガスの内
部への浸透を阻害し、反応速度が遅くなったり、反応率
が粉体粒子の半径方向に不均一になる場合がある。した
がって、本発明で用いる塩化ビニル系樹脂の粉体粒子
は、塩素化反応前に予め粉砕し、スキン層を破壊して用
いることも効果的である。
When the vinyl chloride resin is synthesized by the suspension polymerization method or the emulsion polymerization method, the fine particles of the vinyl chloride resin are in a state of being dispersed in water, so that powder particles can be obtained only by drying. However, in this case, a continuous layer called a skin layer is formed on the surface of the powder particles, which impedes the permeation of chlorine gas into the interior, slows the reaction rate, and the reaction rate increases in the radial direction of the powder particles. It may become uneven. Therefore, it is also effective to pulverize the powder particles of the vinyl chloride resin used in the present invention in advance before the chlorination reaction to destroy the skin layer for use.

【0024】本発明で用いる塩素は、一般に工業的に用
いられている塩素であれば、特に制限はなく使用するこ
とができる。但し、塩素中に酸素が含まれると、得られ
る塩素化塩化ビニル系樹脂の熱安定性や成型時に着色性
が悪化することがあるので、塩素中に含まれる酸素濃度
は100重量ppm以下であることが好ましく、20重
量ppm以下であることが最も好ましい。また、塩素中
に水分が含まれると、反応により発生する塩化水素が樹
脂中から除去し難くなったり、装置の腐食を引き起こす
ことがあるので、塩素ガス中の含水量は500重量pp
m以下であることが好ましく、50重量ppm以下で有
ることが最も好ましい。また、反応速度や反応温度を調
節するために、塩素を窒素やアルゴン等の不活性ガスで
希釈しても良い。この場合においても、希釈後のガス中
の酸素濃度は100ppm以下であることが好ましく、
20ppm以下であることが最も好ましい。また、希釈
後のガス中の含水量は500重量ppm以下であること
が好ましく、50重量ppm以下で有ることが最も好ま
しい。
The chlorine used in the present invention is not particularly limited as long as it is chlorine which is generally used industrially. However, when oxygen is contained in chlorine, the thermal stability of the obtained chlorinated vinyl chloride resin and the colorability during molding may be deteriorated. Therefore, the concentration of oxygen contained in chlorine is 100 ppm by weight or less. It is preferably 20 ppm by weight or less, and most preferably 20 ppm by weight or less. In addition, when water is contained in chlorine, hydrogen chloride generated by the reaction may be difficult to remove from the resin or may cause corrosion of the apparatus. Therefore, the water content in chlorine gas is 500 weight pp.
It is preferably m or less, and most preferably 50 ppm by weight or less. Further, chlorine may be diluted with an inert gas such as nitrogen or argon in order to control the reaction rate and reaction temperature. Even in this case, the oxygen concentration in the diluted gas is preferably 100 ppm or less,
Most preferably, it is 20 ppm or less. In addition, the water content in the diluted gas is preferably 500 ppm by weight or less, and most preferably 50 ppm by weight or less.

【0025】本発明で用いる塩素化反応の装置は塩素と
塩化ビニル系樹脂を気固接触場で反応させるものであれ
ば任意の方法と装置を使用することができる。塩化ビニ
ル系樹脂が樹脂の内部まで均一に塩素化させると言う観
点、および反応効率を高める観点からは、粉体状の塩化
ビニル系樹脂を流動化させながら塩素ガスと接触させる
方法を用いることが好ましい。塩素化反応を推進するた
めには、塩素ラジカルを発生させる必要がある。塩素ラ
ジカルを発生させる方法としては、触媒によりラジカル
を発生させる方法、100℃以上の熱の作用により塩素
ラジカルを発生させる方法、光のエネルギーによりラジ
カル発生させる方法、およびこれらの方法を併用する方
法が上げられる。反応制御の簡便さ、樹脂を熱劣化から
保護するという観点から、光ラジカル発生を利用するこ
とが好ましい。
The apparatus for the chlorination reaction used in the present invention may be any method and apparatus as long as it reacts chlorine with a vinyl chloride resin in a gas-solid contact field. From the viewpoint of uniformly chlorinating the vinyl chloride resin to the inside of the resin, and from the viewpoint of increasing the reaction efficiency, it is possible to use a method in which the powdery vinyl chloride resin is brought into contact with chlorine gas while being fluidized. preferable. In order to promote the chlorination reaction, it is necessary to generate chlorine radicals. As a method of generating a chlorine radical, there are a method of generating a radical by a catalyst, a method of generating a chlorine radical by the action of heat of 100 ° C. or higher, a method of generating a radical by light energy, and a method of using these methods in combination. Can be raised. From the viewpoint of easy reaction control and protection of the resin from thermal deterioration, it is preferable to utilize photoradical generation.

【0026】本発明で用いる光源の種類について説明す
る。本発明での光の役割は、塩素を励起して塩素ラジカ
ルを発生させ、塩化ビニル系樹脂への塩素付加反応を促
進させることにある。塩素は、可視域から紫外線までの
幅広い波長にエネルギー吸収帯域を有するので、本発明
では太陽光、人工光の様々な光源を使用することができ
る。塩素は波長が320〜360nmの紫外線に対して
最も強い吸収帯を有するので、この波長範囲を多く含む
光源を用いることが好ましい。具体的には、低圧水銀
灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ
等の紫外線を多く放出する光源が上げられる。光源の保
護、冷却などの目的に応じて、光源を透明のカバーで覆
う事もできる。この場合、透明カバーの材質は、石英、
パイレックス(登録商標)、硬質ガラス、軟質ガラス管
等を使用することが出来るが、塩素化反応に効果的な紫
外線領域の波長を有効に利用する為には、石英若しくは
パイレックス(登録商標)を用いることが好ましく、石
英を用いることが最も好ましい。
The types of light sources used in the present invention will be described. The role of light in the present invention is to excite chlorine to generate chlorine radicals and accelerate the chlorine addition reaction to the vinyl chloride resin. Since chlorine has an energy absorption band in a wide wavelength range from the visible range to the ultraviolet ray, various light sources such as sunlight and artificial light can be used in the present invention. Since chlorine has the strongest absorption band for ultraviolet rays having a wavelength of 320 to 360 nm, it is preferable to use a light source including a large number of this wavelength range. Specifically, a light source that emits a large amount of ultraviolet rays, such as a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp can be used. The light source can be covered with a transparent cover depending on the purpose of protecting the light source, cooling or the like. In this case, the material of the transparent cover is quartz,
Pyrex (registered trademark), hard glass, soft glass tube or the like can be used, but quartz or Pyrex (registered trademark) is used to effectively use the wavelength in the ultraviolet region effective for the chlorination reaction. Preferably, quartz is most preferably used.

【0027】本発明において、塩素化塩化ビニル系樹脂
から塩素および塩化水素を除去する際の、塩素化塩化ビ
ニル系樹脂を含む系の定義について説明する。塩素化塩
化ビニル系樹脂を含む系は、塩素化塩化ビニル系樹脂の
周囲の気体に対して排気、吸気の操作が出来、系内の圧
力を任意に調節出来る空間系で有れば、どのような系で
も構わない。密閉系でも良いし、気体を流入させながら
流入量以上の気体を排出することにより系内の圧力を昇
降できる半開放系であっても構わない。
In the present invention, the definition of a system containing a chlorinated vinyl chloride resin when removing chlorine and hydrogen chloride from the chlorinated vinyl chloride resin will be described. What if the system containing chlorinated vinyl chloride resin is a space system that can operate the exhaust and intake of the gas around the chlorinated vinyl chloride resin and can adjust the pressure in the system arbitrarily? Any system is fine. A closed system may be used, or a semi-open system may be used in which the pressure in the system can be raised and lowered by discharging the gas in excess of the inflow amount while allowing the gas to flow in.

【0028】塩素化塩化ビニル系樹脂から塩素および塩
化水素を除去すると言う本発明の目的からすれば、系内
の昇圧の為に導入する不活性の気体は、無害な気体で有
れば何れでも良い。具体的には、空気、窒素、酸素、二
酸化炭素、アルゴン、ヘリウムを用いると良い。塩素ま
たは塩化水素は、水との親和性が高い為、導入する気体
に水分が含有されていると、塩素化塩化ビニル系樹脂の
内部の細孔構造に水と共に塩素又は塩化水素が吸着し、
除去しづらくなる。したがって、導入する気体に含有さ
れる水分は、2000重量ppm以下であることが好ま
しく、500重量ppm以下で有ることが最も好まし
い。
For the purpose of the present invention of removing chlorine and hydrogen chloride from the chlorinated vinyl chloride resin, the inert gas introduced for increasing the pressure in the system may be any harmless gas. good. Specifically, air, nitrogen, oxygen, carbon dioxide, argon, or helium may be used. Since chlorine or hydrogen chloride has a high affinity with water, if the gas to be introduced contains water, chlorine or hydrogen chloride is adsorbed together with water in the pore structure inside the chlorinated vinyl chloride resin,
It becomes difficult to remove. Therefore, the water content of the introduced gas is preferably 2000 ppm by weight or less, and most preferably 500 ppm by weight or less.

【0029】塩素化塩化ビニル系樹脂を含む系内を減圧
状態に保持する時間について説明する。本発明では、塩
素化塩化ビニル系樹脂を減圧状態に曝すことにより、塩
素化塩化ビニル系樹脂の表面や内部の細孔構造に吸着さ
れている塩素および塩化水素を除去する。 大気圧下で
の塩化ビニル系樹脂からの塩素の拡散速度を調べたWa
chiらの報告では、塩素を飽和状態まで含有した塩化
ビニル系樹脂からは、1分間で約70%、10分間で約
90%、30分間で約95%の塩素が拡散により脱着す
る(Wachi et.al AIChE Journ
al Vol.34 No.10 P1683(198
8))。 したがって、塩素化塩化ビニル系樹脂を含
む系内を減圧状態に保持する時間が長い方が、含有され
る塩素や塩化水素を低濃度まで除去することができ、少
なくとも1分以上保持することが好ましく、10分以上
保持することがより好ましく、30分以上であることが
最も好ましい。
The time for which the system containing the chlorinated vinyl chloride resin is kept under reduced pressure will be described. In the present invention, the chlorinated vinyl chloride resin is exposed to a reduced pressure to remove chlorine and hydrogen chloride adsorbed on the pore structure of the surface and the inside of the chlorinated vinyl chloride resin. Wa for investigating the diffusion rate of chlorine from vinyl chloride resin under atmospheric pressure
According to the report of chi et al., about 70% of chlorine in 1 minute is adsorbed by diffusion in about 70% in 1 minute, about 90% in 10 minutes and about 95% in 30 minutes (Wachi et al. .Al AIChE Journal
al Vol. 34 No. 10 P1683 (198
8)). Therefore, it is possible to remove chlorine and hydrogen chloride contained in the system containing the chlorinated vinyl chloride resin in a reduced pressure state for a longer period of time to a low concentration, and it is preferable to retain for at least 1 minute or more. It is more preferable to hold it for 10 minutes or longer, and it is most preferable to hold it for 30 minutes or longer.

【0030】減圧状態の系内に保持する塩素化塩化ビニ
ル系樹脂の温度について説明する。減圧状態の系内に保
持されている塩素化塩化ビニル系樹脂の表面、細孔面か
らは吸着している塩素及び塩化水素が脱着しているの
で、温度が高い方が脱着速度は早くなる。また、塩素化
塩化ビニル系樹脂の内部に含浸されてる塩素及び塩化水
素は樹脂内部を拡散して排出される為、温度が高い方が
拡散速度が向上する。したがって、塩素及び塩化水素の
除去の観点からは、減圧状態の系内に保持する塩素化塩
化ビニル系樹脂の温度は高い方が好ましく、脱着と拡散
が促進される60℃以上の温度であることがより好まし
い。一方、温度が高すぎると、塩素化塩化ビニル系樹脂
の品質を低下させる恐れが有るため、温度は130℃以
下であることが好ましく、110℃以下であることがよ
り好ましい。
The temperature of the chlorinated vinyl chloride resin held in the system under reduced pressure will be described. Since the adsorbed chlorine and hydrogen chloride are desorbed from the surface and pore surface of the chlorinated vinyl chloride resin held in the system under reduced pressure, the higher the temperature, the faster the desorption rate. In addition, since chlorine and hydrogen chloride impregnated inside the chlorinated vinyl chloride resin are diffused and discharged inside the resin, the higher the temperature, the higher the diffusion rate. Therefore, from the viewpoint of removing chlorine and hydrogen chloride, it is preferable that the temperature of the chlorinated vinyl chloride resin held in the system under reduced pressure is higher, and the temperature is 60 ° C. or higher at which desorption and diffusion are promoted. Is more preferable. On the other hand, if the temperature is too high, the quality of the chlorinated vinyl chloride resin may be deteriorated. Therefore, the temperature is preferably 130 ° C. or lower, and more preferably 110 ° C. or lower.

【0031】塩素化塩化ビニル系樹脂を含む系内を減圧
状態にした後に、不活性の気体を導入して昇圧する操作
を少なくとも2回以上繰り返す操作の効果について説明
する。長時間に渡り減圧状態を保持すれば、塩素や塩化
水素の含有量は低下するのであるが、長時間にわたり連
続的に系内を減圧状態に保持していても、塩素や塩化水
素が塩素化塩化ビニル系樹脂内部から拡散して除去され
る量は減少していく。一方、不活性の気体を塩素化塩化
ビニル系樹脂に導入すれば、導入した気体分子が、塩素
化塩化ビニル系樹脂内部の細孔構造に吸着している塩素
や塩化水素の分子と置換する。系内を再び減圧状態にす
ることにより、これらの塩素や塩化水素分子は、効果的
に塩素化塩化ビニル系樹脂の内部の細孔構造から除去さ
れる。本発明者の検討結果では、このような吸着分子の
置換が十分行われる為には、1分間以上要する。したが
って、塩素と塩化水素の除去効果と工業的な生産性を考
慮すると、塩素化塩化ビニル系樹脂を含む系内を減圧状
態に保持する時間を1分以上、好ましくは30分間以下
とし、不活性の気体を導入して昇圧する操作を、少なく
とも2回以上繰り返すことが好ましく、3回以上繰り返
すことがより好ましい。
The effect of repeating the operation of reducing the pressure of the system containing the chlorinated vinyl chloride resin and then introducing an inert gas and increasing the pressure at least twice or more will be described. If the depressurized state is maintained for a long time, the contents of chlorine and hydrogen chloride will decrease.However, even if the system is continuously depressurized for a long time, chlorine and hydrogen chloride will be chlorinated. The amount diffused and removed from the inside of the vinyl chloride resin decreases. On the other hand, when an inert gas is introduced into the chlorinated vinyl chloride resin, the introduced gas molecules replace the chlorine and hydrogen chloride molecules adsorbed in the pore structure inside the chlorinated vinyl chloride resin. When the inside of the system is depressurized again, these chlorine and hydrogen chloride molecules are effectively removed from the pore structure inside the chlorinated vinyl chloride resin. According to the results of studies by the present inventors, it takes one minute or more for such replacement of adsorbed molecules to be sufficiently performed. Therefore, in consideration of the removal effect of chlorine and hydrogen chloride and industrial productivity, the time period for maintaining the inside of the system containing the chlorinated vinyl chloride resin in a reduced pressure state is set to 1 minute or more, preferably 30 minutes or less, and inert. The operation of introducing the gas and increasing the pressure is preferably repeated at least twice, more preferably three times or more.

【0032】本発明では、圧力の表現には絶対圧を用い
ることとする。絶対圧では、完全に真空の状態は0Pa
であり、大気圧は約0.1MPaとなる。減圧状態にし
た時の塩素化塩化ビニル系樹脂を含む系内の圧力は、出
来るだけ低い方が効果的であるが、必要以上に低圧力に
設定することは設備費用を高騰させるため望ましくな
い。したがって、減圧状態にした時の塩素化塩化ビニル
系樹脂を含む系内の圧力は、塩素と塩化水素の除去能力
を高める観点からは、0.2MPa以下であることが好
ましく、設備コストの観点からは、0.003MPa以
上であることが好ましい。
In the present invention, absolute pressure is used to express pressure. At absolute pressure, a completely vacuum state is 0 Pa
And the atmospheric pressure is about 0.1 MPa. It is effective that the pressure in the system containing the chlorinated vinyl chloride resin when the pressure is reduced is as low as possible, but it is not desirable to set the pressure lower than necessary because the equipment cost rises. Therefore, the pressure in the system containing the chlorinated vinyl chloride resin when the pressure is reduced is preferably 0.2 MPa or less from the viewpoint of enhancing the removal ability of chlorine and hydrogen chloride, and from the viewpoint of equipment cost. Is preferably 0.003 MPa or more.

【0033】不活性の気体を導入して昇圧した後の塩素
化塩化ビニル系樹脂を含む系内の圧力を出来るだけ高く
し、減圧状態と昇圧状態の圧力差を大きくした方が、塩
素と塩化水素の除去能力が高まる。したがって、昇圧時
の圧力は少なくとも大気圧以上であることが好ましい。
一方、昇圧時の圧力を必要以上に高くすると設備コスト
が高騰するため、現実的には0.3MPa以下であるこ
とが好ましく、0.11MPa以下であることがより好
ましい。更には、昇圧時の系内を大気に対して開放状態
にすれば、装置の圧力制御をする必要が無く、設備が簡
略化される。
It is preferable to increase the pressure in the system containing the chlorinated vinyl chloride resin after introducing an inert gas to increase the pressure and increase the pressure difference between the reduced pressure state and the increased pressure state. The ability to remove hydrogen increases. Therefore, the pressure at the time of pressurization is preferably at least atmospheric pressure or higher.
On the other hand, if the pressure at the time of pressurization is increased more than necessary, the equipment cost rises. Therefore, in reality, it is preferably 0.3 MPa or less, and more preferably 0.11 MPa or less. Furthermore, if the system is opened to the atmosphere at the time of pressurization, it is not necessary to control the pressure of the device, and the equipment is simplified.

【0034】本発明において、塩素化塩化ビニル系樹脂
から塩素と塩化水素を除去する為の装置について説明す
る。本発明で用いる装置は、塩素化塩化ビニル系樹脂の
周囲の気体に対して排気、吸気の操作が可能であり、系
内の圧力を任意に調節出来る装置で有れば、どのような
構造でも構わない。例えば、塩化ビニル系樹脂を塩素化
する為の反応器を減圧と昇圧が出来る構造にしておき、
塩素化反応が終了した後、反応器の中で塩素化塩化ビニ
ル系樹脂から塩素と塩化水素を除去できるようにしても
良い。しかし、工業的な生産性を考慮すると、塩化ビニ
ル系樹脂を塩素化する装置とは別に塩素化塩化ビニル系
樹脂から塩素と塩化水素を除去する為の装置を設置する
ことが好ましい。塩素化塩化ビニル系樹脂から塩素と塩
化水素を除去する際に排気する気体は塩素および塩化水
素の混合気体であり、腐食性と毒性が高い。したがっ
て、塩素化塩化ビニル系樹脂から除去された塩素と塩化
水素を捕捉する必要がある。好ましい構造としては、塩
素化塩化ビニル系樹脂を充填する容器、気体を排出及び
導入する為の管、排出管及び導入管に付属したバルブ、
排出される気体に含有される塩素と塩化水素を吸収する
装置、減圧ポンプから構成される構造である。
In the present invention, an apparatus for removing chlorine and hydrogen chloride from a chlorinated vinyl chloride resin will be described. The device used in the present invention can be of any structure as long as it is a device capable of operating the exhaust and intake of the gas around the chlorinated vinyl chloride resin and adjusting the pressure in the system arbitrarily. I do not care. For example, the reactor for chlorinating vinyl chloride resin has a structure capable of depressurizing and pressurizing,
After completion of the chlorination reaction, chlorine and hydrogen chloride may be removed from the chlorinated vinyl chloride resin in the reactor. However, in consideration of industrial productivity, it is preferable to install a device for removing chlorine and hydrogen chloride from the chlorinated vinyl chloride resin, in addition to the device for chlorinating the vinyl chloride resin. The gas exhausted when removing chlorine and hydrogen chloride from the chlorinated vinyl chloride resin is a mixed gas of chlorine and hydrogen chloride, and is highly corrosive and toxic. Therefore, it is necessary to capture the chlorine and hydrogen chloride removed from the chlorinated vinyl chloride resin. As a preferred structure, a container filled with chlorinated vinyl chloride resin, a pipe for discharging and introducing gas, a valve attached to the discharge pipe and the introduction pipe,
This structure is composed of a device for absorbing chlorine and hydrogen chloride contained in the discharged gas and a decompression pump.

【0035】排出される気体に含有される塩素と塩化水
素を吸収する装置(吸収装置)は、塩素と塩化水素の中
和剤と接触させる必要があり、スクラバーや気泡塔を使
用することが好ましい。中和剤としては、水酸化ナトリ
ウム、水酸化カルシウム、および炭酸ナトリウムから選
択される少なくとも1種以上の物質の混合物の水溶液が
好ましい。また、減圧ポンプとして、アスピレーターの
様な水流ポンプを使用し、流通させる水に中和剤を含有
させることにより、塩素と塩化水素を吸収させることも
できる。
The device for absorbing chlorine and hydrogen chloride contained in the discharged gas (absorption device) must be brought into contact with a neutralizer for chlorine and hydrogen chloride, and it is preferable to use a scrubber or a bubble column. . The neutralizing agent is preferably an aqueous solution of a mixture of at least one substance selected from sodium hydroxide, calcium hydroxide, and sodium carbonate. It is also possible to absorb chlorine and hydrogen chloride by using a water pump such as an aspirator as the decompression pump and adding a neutralizing agent to the water to be circulated.

【0036】図1〜図4に、塩素化塩化ビニル系樹脂か
ら塩素と塩化水素を除去する為の装置の具体的な構造の
例を上げる。図1に示すように、密閉容器に1つ以上の
排気口と吸気口を設け、減圧ポンプ等を用いて気体の出
し入れをする構造でも良い。完全には密閉することが出
来ない構造であっても、外部より流入する気体量よりも
多くの気体を排出する能力を持った排出装置を接続する
ことにより、減圧状態と昇圧状態を実現できる構造でも
良い。また、図2に示すように、減圧容器と昇圧容器を
別々に用意し、二つの容器の間を塩素化塩化ビニル系樹
脂が移動することにより、塩素化塩化ビニル系樹脂を含
む系を減圧状態と昇圧状態にできる構造でも良い。図3
に示すような二重円筒の構造体の外筒と内筒を回転させ
ることにより、内筒に充填された塩素化塩化ビニル系樹
脂が、外筒に設置された排気口と吸気口を交互に移動す
るような構造であっても良い。更には、図4の様な構造
にすることにより、連続的な処理が可能となる。
1 to 4 show examples of specific structures of an apparatus for removing chlorine and hydrogen chloride from a chlorinated vinyl chloride resin. As shown in FIG. 1, a closed container may be provided with one or more exhaust ports and intake ports, and a gas may be taken in and out using a decompression pump or the like. Even if the structure cannot be completely sealed, it is possible to realize a decompressed state and a boosted state by connecting an exhaust device capable of exhausting more gas than the amount of gas flowing in from the outside. But good. In addition, as shown in FIG. 2, a pressure reducing container and a pressure increasing container are separately prepared, and the system containing the chlorinated vinyl chloride resin is depressurized by moving the chlorinated vinyl chloride resin between the two containers. It is also possible to adopt a structure capable of increasing the pressure. Figure 3
By rotating the outer cylinder and the inner cylinder of the double cylinder structure as shown in Fig. 3, the chlorinated vinyl chloride resin filled in the inner cylinder alternates between the exhaust port and the intake port installed in the outer cylinder. The structure may be such that it moves. Furthermore, by adopting the structure as shown in FIG. 4, continuous processing becomes possible.

【0037】[0037]

【実施例】(実施例1)図5に実施例1に使用した塩素
化反応装置を示す。
EXAMPLE (Example 1) FIG. 5 shows a chlorination reactor used in Example 1.

【0038】反応器(容量が1500mlのPYREX
(登録商標)製ナス型フラスコ)には、塩化ビニル系樹
脂Aの粉体を充填し、温浴に浸して回転させながら粉体
層の温度を調節する。粉体層の温度は、粉体層内に差し
込んだ熱電対で測定できる。反応器から排出される塩素
および塩化水素の混合ガスは、脱塩化水素器に導入され
る。脱塩化水素器(容量が1000mlのPYREX
(登録商標)製容器)には、水が充填されており、排出
ガスは水中に吹き込まれて塩化水素が吸収される。脱塩
化水素器の底部にはコックが付いており、任意の時間に
塩化水素を吸収した水をサンプリングし塩化水素発生量
および塩素化塩化ビニル系樹脂の塩素含有量を継続的に
算出することが出来る。脱塩化水素器から排出されたガ
スは、高濃度の塩素ガスであるので、150g/Lの濃
度の水酸化ナトリウム溶液を満たした塩素吸収容器に導
入され、吸収される。
Reactor (PYREX with a capacity of 1500 ml
(Registered trademark) eggplant-shaped flask) is filled with powder of vinyl chloride resin A, and the temperature of the powder layer is adjusted by immersing in a warm bath and rotating. The temperature of the powder layer can be measured with a thermocouple inserted in the powder layer. The mixed gas of chlorine and hydrogen chloride discharged from the reactor is introduced into the dehydrochlorination unit. Dehydrochlorinator (PYREX with a capacity of 1000 ml
(Registered trademark) container is filled with water, and the exhaust gas is blown into the water to absorb hydrogen chloride. A cock is attached to the bottom of the dehydrochlorination unit, and it is possible to continuously calculate the amount of hydrogen chloride generated and the chlorine content of chlorinated vinyl chloride resin by sampling the water that has absorbed hydrogen chloride at any time. I can. Since the gas discharged from the dehydrochlorination unit is a high concentration chlorine gas, it is introduced into a chlorine absorption container filled with a sodium hydroxide solution having a concentration of 150 g / L and absorbed.

【0039】後塩素化反応に利用する塩化ビニル系樹脂
は以下の方法で作製した。攪拌翼を装備したステンレス
製オ−トクレ−ブに、イオン交換水400部、平均分子
量200万のポリエチレンオキサイドを0.005重量
部、ヒドロキシプロピルメチルセルロースを0.04重
量部、濃度70%のジ−2−エチルヘキシルパ−オキシ
ジカ−ボネ−トのイソパラフィン溶液0.05重量部を
仕込み、オ−トクレ−ブ内を真空脱気した後、塩化ビニ
ル系単量体100重量部を仕込んだ。その後、攪拌下で
懸濁重合を行い、重合度が約1000である塩化ビニル
系樹脂を得た。塩化ビニル系樹脂の懸濁液を脱水、乾燥
し、粉体状の塩化ビニル系樹脂を得た。これを塩化ビニ
ル系樹脂A(嵩比重:0.5g/cm3、平均粒子径:
220μ、塩素含有率:56.8重量%)とした。
The vinyl chloride resin used in the post-chlorination reaction was prepared by the following method. In a stainless steel autoclave equipped with a stirring blade, 400 parts of ion-exchanged water, 0.005 part by weight of polyethylene oxide having an average molecular weight of 2,000,000, 0.04 part by weight of hydroxypropylmethylcellulose, and a dilute having a concentration of 70% were used. 0.05 parts by weight of an isoparaffin solution of 2-ethylhexyl peroxydicarbonate was charged, the interior of the autoclave was deaerated under vacuum, and then 100 parts by weight of a vinyl chloride monomer was charged. Then, suspension polymerization was performed under stirring to obtain a vinyl chloride resin having a degree of polymerization of about 1000. The suspension of vinyl chloride resin was dehydrated and dried to obtain a powdery vinyl chloride resin. Vinyl chloride resin A (bulk specific gravity: 0.5 g / cm 3 , average particle size:
220μ, chlorine content: 56.8% by weight).

【0040】図5に示す反応器に塩化ビニル系樹脂Aの
粉体を187.5g=3molを充填した。反応器を6
0℃の温浴に浸して回転させながら、反応器の空間部分
に200ml/分の流量で窒素ガスを60分間流通し、
更に200ml/分の流量で塩素ガスを30分間流通し
た。反応器に導入されるガス量が600ml/分になる
ように流量調節バルブを調節し、粉体層上面から35c
m離した位置に設置した400Wの高圧水銀灯を用い
て、粉体層表面に紫外線を照射した。水銀灯を点灯させ
ると反応が開始し、塩化水素と塩素の混合ガスが発生し
た。反応開始後は、反応熱により内部温度が80℃まで
上昇する。その後は、温浴の温度を調節することによ
り、内部温度を80℃に保った。
The reactor shown in FIG. 5 was filled with 187.5 g = 3 mol of powder of vinyl chloride resin A. 6 reactors
Nitrogen gas was passed through the space of the reactor at a flow rate of 200 ml / min for 60 minutes while being immersed in a 0 ° C. hot bath and rotated,
Further, chlorine gas was circulated for 30 minutes at a flow rate of 200 ml / min. Adjust the flow rate control valve so that the amount of gas introduced into the reactor is 600 ml / min.
The surface of the powder layer was irradiated with ultraviolet rays using a 400 W high pressure mercury lamp installed at a position separated by m. When the mercury lamp was turned on, the reaction started and a mixed gas of hydrogen chloride and chlorine was generated. After the reaction starts, the internal temperature rises to 80 ° C. due to the heat of reaction. After that, the internal temperature was maintained at 80 ° C. by adjusting the temperature of the warm bath.

【0041】反応時間が150分経過した時点で水銀灯
を消灯し、反応を終了させた。反応終了時の塩素化塩化
ビニル系樹脂の塩素含有率は、66.9重量%であっ
た。この時点では得られた塩素化塩化ビニル系樹脂には
塩素および塩化水素が残留しており、これをサンプル1
とした。
When the reaction time of 150 minutes had elapsed, the mercury lamp was turned off to terminate the reaction. The chlorine content of the chlorinated vinyl chloride resin at the end of the reaction was 66.9% by weight. At this point, chlorine and hydrogen chloride remained in the obtained chlorinated vinyl chloride resin.
And

【0042】サンプル1が充填された反応器の温度を6
0℃に保ちながら、ロータリー型真空ポンプを用い、絶
対圧で0.009MPaまで減圧して塩素と塩化水素を
除去した。この場合、ロータリーポンプの前段のライン
に設けた塩化水素除去装置と塩素吸収装置により、塩素
と塩化水素を除去しながら、減圧状態を20分間継続し
た後、反応器内に大気を導入して大気圧に戻し、塩素と
塩化水素を除去された塩素化塩化ビニル系樹脂を得た。
The temperature of the reactor filled with sample 1 was set to 6
While maintaining the temperature at 0 ° C., a rotary vacuum pump was used to reduce the absolute pressure to 0.009 MPa to remove chlorine and hydrogen chloride. In this case, while removing chlorine and hydrogen chloride with the hydrogen chloride removing device and chlorine absorbing device installed in the line before the rotary pump, the depressurized state was continued for 20 minutes, and then the atmosphere was introduced into the reactor to a large extent. The pressure was returned to atmospheric pressure to obtain a chlorinated vinyl chloride resin from which chlorine and hydrogen chloride were removed.

【0043】塩素化塩化ビニル系樹脂中に残存する塩素
および塩化水素の量は、以下に示す中和滴定法により測
定した。まず、約1gのサンプルを精秤し、40mlの
テトラヒドラフランに溶解する。完全に溶解した後、2
5mlのメタノールと5mlの蒸留水の混合液を添加す
ると直ちに塩素化塩化ビニル系樹脂が析出するので、数
分間攪拌した後に50mlの蒸留水を更に添加する。次
に、得られた溶液のpHを測定しながら、0.01Nの
NaOH溶液で中和滴定を行い、pH7になる滴定量a
[ml]を求める。更に、塩素化塩化ビニル系樹脂を添
加しないテトラヒドラフラン、メタノール、蒸留水の混
合液を同様の方法で中和滴定し、滴定値b[ml]を求
める。a、bと(2)式より、塩素と塩化水素の含有量
を塩化水素の含有量として換算した値CHCl[ppm]
を算出する。ここで、Mはサンプルの重量[g]であ
る。
The amounts of chlorine and hydrogen chloride remaining in the chlorinated vinyl chloride resin were measured by the neutralization titration method shown below. First, about 1 g of a sample is precisely weighed and dissolved in 40 ml of tetrahydrafuran. 2 after completely dissolved
When a mixed solution of 5 ml of methanol and 5 ml of distilled water is added, a chlorinated vinyl chloride resin is immediately precipitated, so after stirring for several minutes, 50 ml of distilled water is further added. Next, while measuring the pH of the resulting solution, neutralization titration was performed with a 0.01 N NaOH solution to obtain a pH of 7
Calculate [ml]. Further, a mixture of tetrahydrafuran, methanol and distilled water containing no chlorinated vinyl chloride resin is neutralized and titrated by the same method to obtain a titration value b [ml]. Value obtained by converting the contents of chlorine and hydrogen chloride as the content of hydrogen chloride from a, b and the formula (2) C HCl [ppm]
To calculate. Here, M is the weight [g] of the sample.

【0044】 CHCl =(a−b)×0.01×36.5/M×103 ・・・(2) その結果、本発明の方法で得られた塩素化塩化ビニル系
樹脂の塩素と塩化水素の含有量は、 CHCl =200p
pmで有ることが判明した。また、塩素と塩化水素を除
去する前の反応直後のサンプル1のCHCl 値を同様の方
法で測定したところ、1550ppmであった。
C HCl = (ab) × 0.01 × 36.5 / M × 10 3 (2) As a result, chlorine of the chlorinated vinyl chloride resin obtained by the method of the present invention The content of hydrogen chloride is C HCl = 200p
It was found to be in pm. Further, the C HCl value of Sample 1 immediately after the reaction before removing chlorine and hydrogen chloride was measured by the same method, and it was 1550 ppm.

【0045】(比較例1)実施例1で使用した物と同じ
塩化ビニル系樹脂Aを実施例1と同じ方法で塩素化して
比較サンプル1を得た。比較サンプル1を充填した反応
器の温度を60℃に保ちながら、反応器内に600ml
/分の流速で窒素を流通し、塩素化塩化ビニル系樹脂に
含有される塩素および塩化水素を気流洗浄により除去し
た。気流洗浄を20分間継続し、塩素化塩化ビニル系樹
脂を得た。
Comparative Example 1 The same vinyl chloride resin A as that used in Example 1 was chlorinated in the same manner as in Example 1 to obtain Comparative Sample 1. While maintaining the temperature of the reactor filled with the comparative sample 1 at 60 ° C., 600 ml was put in the reactor.
Nitrogen was passed through at a flow rate of 1 / min to remove chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin by flushing. Flow cleaning was continued for 20 minutes to obtain a chlorinated vinyl chloride resin.

【0046】得られた塩素化塩化ビニル系樹脂および比
較サンプル1のCHCl 値を実施例1と同じ方法で測定し
た。その結果、反応終了後の比較サンプル1のCHCl
は1030ppmであり、塩素化塩化ビニル系樹脂のC
HCl 値は480ppmであった。
The C HCl values of the obtained chlorinated vinyl chloride resin and Comparative Sample 1 were measured by the same method as in Example 1. As a result, the C HCl value of Comparative Sample 1 after the reaction was 1030 ppm, which indicates that C of the chlorinated vinyl chloride resin was
The HCl value was 480 ppm.

【0047】表1に実施例1と比較例1の結果をまとめ
たものを示す。表1の結果より、本発明の方法は、気流
洗浄よりも処理効果が高いことが分かる。
Table 1 shows a summary of the results of Example 1 and Comparative Example 1. From the results in Table 1, it can be seen that the method of the present invention has a higher treatment effect than the airflow cleaning.

【0048】(実施例2)実施例1で使用した物と同じ
塩化ビニル系樹脂Aを実施例1と同じ方法で塩素化し、
サンプル2を得た。反応終了後、図6に示す様に、約1
gのサンプル2を採取した試験管を温浴で保温し、三方
コックを通して試験管を循環型の水流ポンプ(アスピレ
ーター)に接続した。水流ポンプの水槽部には腐食防止
の為に、0.01Nの水酸化ナトリウム溶液を満たし
た。同様の試験管サンプルを数本作製し、水流ポンプで
試験管内部を0.003MPaまで減圧した後に大気を
導入する操作を1回〜3回反復し、各塩素化塩化ビニル
系樹脂のCHCl 値を測定した。その結果を表2に示す。
(Example 2) The same vinyl chloride resin A as that used in Example 1 was chlorinated by the same method as in Example 1,
Sample 2 was obtained. After the reaction is completed, as shown in FIG.
The test tube from which g of sample 2 was collected was kept warm in a warm bath, and the test tube was connected to a circulation type water flow pump (aspirator) through a three-way cock. The water tank of the water-jet pump was filled with 0.01N sodium hydroxide solution to prevent corrosion. The same test tube sample was prepared, and the operation of introducing the atmosphere after depressurizing the inside of the test tube to 0.003 MPa with a water pump was repeated 1 to 3 times, and the C HCl value of each chlorinated vinyl chloride resin was repeated. Was measured. The results are shown in Table 2.

【0049】(比較例2)実施例2で得たサンプル2の
内の150gを図5に示した反応器内に充填し、反応器
の温度を60℃に保ちながら、反応器内に600ml/
分の流速で窒素を流通し、塩素化塩化ビニル系樹脂に含
有される塩素および塩化水素を気流洗浄により除去し
た。気流洗浄を30分間継続し、塩素化塩化ビニル系樹
脂を得た。
(Comparative Example 2) 150 g of the sample 2 obtained in Example 2 was charged into the reactor shown in FIG. 5, and the temperature of the reactor was kept at 60 ° C., and 600 ml / in the reactor.
Nitrogen was passed at a flow rate of minutes, and chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin were removed by flushing. Flow cleaning was continued for 30 minutes to obtain a chlorinated vinyl chloride resin.

【0050】実施例2と比較例2の結果を表2に示す。
本発明の方法で得られた塩素化塩化ビニル系樹脂は、塩
化水素除去処理が短時間であるにもかかわらず、塩素含
有量が低下していることが分かる。また、減圧状態を長
時間継続するよりも、短時間の減圧を繰り返した方が、
塩素と塩化水素の除去効果が高いことが分かる。更に、
減圧を実施する際のサンプルの温度が高い方が、塩素と
塩化水素の除去効果が高く、60℃以上で処理をするこ
とが効果的である。
The results of Example 2 and Comparative Example 2 are shown in Table 2.
It can be seen that the chlorine content of the chlorinated vinyl chloride resin obtained by the method of the present invention is low even though the hydrogen chloride removal treatment is short. Also, rather than continuing the depressurized state for a long time, it is better to repeat depressurization for a short time
It can be seen that the effect of removing chlorine and hydrogen chloride is high. Furthermore,
The higher the temperature of the sample when performing the depressurization, the higher the effect of removing chlorine and hydrogen chloride, and the treatment at 60 ° C. or higher is effective.

【0051】(実施例3)図7に実施例3に使用した塩
素化反応装置を示す。
(Example 3) FIG. 7 shows a chlorination reaction apparatus used in Example 3.

【0052】反応器(容量が10Lのハステロイ(登録
商標)製の円筒型反応器)に、実施例1で使用した物と
同じ塩化ビニル系樹脂Aの粉体を充填できる。円筒型反
応器には100Wの紫外線ランプが内蔵されており、容
器の外部には加温用のジャケットが取り付けられてい
る。粉体層の温度は、粉体層内に差し込んだ熱電対で測
定できる。反応器から排出される塩素および塩化水素の
混合ガスは、脱塩化水素器に導入される。脱塩化水素器
(容量が10Lの塩化ビニル製容器)には、水が充填さ
れており、排出ガスは水中に吹き込まれて塩化水素が吸
収される。脱塩化水素器の底部にはコックが付いてお
り、任意の時間に塩化水素を吸収した水をサンプリング
し塩化水素発生量および塩素化塩化ビニル系樹脂の塩素
含有量を継続的に算出することが出来る。脱塩化水素器
から排出されたガスは、高濃度の塩素ガスであるので、
250g/Lの濃度の水酸化ナトリウム溶液を満たした
塩素吸収容器(容量が10Lの塩化ビニル製容器)に導
入される。
A reactor (a cylindrical reactor made of Hastelloy (registered trademark) having a capacity of 10 L) can be filled with the same vinyl chloride resin A powder as that used in Example 1. A 100 W ultraviolet lamp is built in the cylindrical reactor, and a heating jacket is attached to the outside of the container. The temperature of the powder layer can be measured with a thermocouple inserted in the powder layer. The mixed gas of chlorine and hydrogen chloride discharged from the reactor is introduced into the dehydrochlorination unit. A dehydrochlorination device (a vinyl chloride container having a capacity of 10 L) is filled with water, and the exhaust gas is blown into the water to absorb the hydrogen chloride. A cock is attached to the bottom of the dehydrochlorination unit, and it is possible to continuously calculate the amount of hydrogen chloride generated and the chlorine content of chlorinated vinyl chloride resin by sampling the water that has absorbed hydrogen chloride at any time. I can. Since the gas discharged from the dehydrochlorination unit is a high concentration chlorine gas,
It is introduced into a chlorine absorption container (a vinyl chloride container having a volume of 10 L) filled with a sodium hydroxide solution having a concentration of 250 g / L.

【0053】1500gの塩化ビニル系樹脂Aを充填し
た円筒型反応器のジャケットに温水を流通して反応器内
の塩化ビニル系樹脂Aの温度を40℃まで昇温し、窒素
ガスを5L/分の割合で30分間流通した。更に、塩素
ガスを5L/分の割合で30分間流通した後、紫外線ラ
ンプを点灯し反応を開始すると、塩化水素と塩素の混合
ガスが発生した。反応開始後は、反応熱により内部温度
が80℃まで上昇する。その後は、ジャケット中の水の
温度を調節することにより、内部温度を80℃に保持し
た。
Hot water was circulated through the jacket of a cylindrical reactor filled with 1500 g of vinyl chloride resin A to raise the temperature of the vinyl chloride resin A in the reactor to 40 ° C., and nitrogen gas at 5 L / min. Was distributed for 30 minutes. Further, when a chlorine gas was circulated at a rate of 5 L / min for 30 minutes and then an ultraviolet lamp was turned on to start the reaction, a mixed gas of hydrogen chloride and chlorine was generated. After the reaction starts, the internal temperature rises to 80 ° C. due to the heat of reaction. After that, the internal temperature was kept at 80 ° C. by adjusting the temperature of the water in the jacket.

【0054】反応時間が130分経過した時点で水銀灯
を消灯し、反応を終了させた。反応終了時の塩素化塩化
ビニル系樹脂の塩素含有率は、63.1重量%であっ
た。この時点では得られた塩素化塩化ビニル系樹脂には
塩素および塩化水素が残留しており、これをサンプル3
とした。
When the reaction time of 130 minutes had elapsed, the mercury lamp was turned off to terminate the reaction. The chlorine content of the chlorinated vinyl chloride resin at the end of the reaction was 63.1% by weight. At this point, chlorine and hydrogen chloride remained in the obtained chlorinated vinyl chloride resin.
And

【0055】サンプル3を反応器に充填し、75〜80
℃に温度を保ったまま、真空ポンプを用いて反応器の内
圧を絶対圧で0.003MPaまで減圧した。減圧状態
を7分間保持した後、窒素ボンベから窒素を導入し、内
圧を0.1MPaまで昇圧した。反応器から少量の塩素
化塩化ビニル系樹脂を採取した後、反応器の内圧を再度
0.003MPaまで減圧し、窒素で昇圧する操作を繰
り返した後、反応器から塩素化塩化ビニル系樹脂を採取
した。
Sample 3 was charged into the reactor and 75-80
While maintaining the temperature at ℃, the internal pressure of the reactor was reduced to an absolute pressure of 0.003 MPa using a vacuum pump. After maintaining the reduced pressure state for 7 minutes, nitrogen was introduced from a nitrogen cylinder to raise the internal pressure to 0.1 MPa. After collecting a small amount of chlorinated vinyl chloride resin from the reactor, depressurize the internal pressure of the reactor to 0.003 MPa again, and pressurize with nitrogen repeatedly, then collect the chlorinated vinyl chloride resin from the reactor. did.

【0056】得られた塩素化塩化ビニル系樹脂のCHCl
値を実施例1および2と同じ方法で測定した結果を表3
に示す。表3の結果より、本発明の方法で得られた塩素
化塩化ビニル系樹脂は、短時間の処理にも関わらず、塩
素と塩化水素を効果的に除去することが可能であること
がわかる。また、短時間の処理を複数回数繰り返すこと
により、処理効果が高まることが分かる。
[0056] The resulting chlorinated vinyl chloride resin C HCl
The results obtained by measuring the values in the same manner as in Examples 1 and 2 are shown in Table 3.
Shown in. From the results shown in Table 3, it is understood that the chlorinated vinyl chloride resin obtained by the method of the present invention can effectively remove chlorine and hydrogen chloride despite the short-time treatment. Further, it is understood that the processing effect is enhanced by repeating the processing for a short time a plurality of times.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】[0060]

【発明の効果】気固接触反応での後塩素化反応が終了し
た後の塩素化塩化ビニル系樹脂を減圧状態にした後、気
体を導入して昇圧することにより、簡便な方法で且つ短
時間に塩素化塩化ビニル系樹脂に含有される塩素及び塩
化水素を除去することが出来る。
EFFECTS OF THE INVENTION After the post-chlorination reaction in the gas-solid contact reaction is completed, the chlorinated vinyl chloride resin is depressurized, and then gas is introduced to increase the pressure. It is possible to remove chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る塩素化塩化ビニル系樹脂から塩素
と塩化水素を除去する為の装置の例である。
FIG. 1 is an example of an apparatus for removing chlorine and hydrogen chloride from a chlorinated vinyl chloride resin according to the present invention.

【図2】本発明に係る塩素化塩化ビニル系樹脂から塩素
と塩化水素を除去する為の装置の別の例である。
FIG. 2 is another example of an apparatus for removing chlorine and hydrogen chloride from a chlorinated vinyl chloride resin according to the present invention.

【図3】本発明に係る塩素化塩化ビニル系樹脂から塩素
と塩化水素を除去する為の装置の別の例である。
FIG. 3 is another example of an apparatus for removing chlorine and hydrogen chloride from a chlorinated vinyl chloride resin according to the present invention.

【図4】本発明に係る塩素化塩化ビニル系樹脂から塩素
と塩化水素を除去する操作を連続的に実施する為の装置
の例である。
FIG. 4 is an example of an apparatus for continuously performing an operation of removing chlorine and hydrogen chloride from a chlorinated vinyl chloride resin according to the present invention.

【図5】本発明に係る塩化ビニル系樹脂を後塩素化させ
塩素化塩化ビニル系樹脂から塩素と塩化水素を除去する
為の装置の例である。
FIG. 5 is an example of an apparatus for post-chlorinating a vinyl chloride resin according to the present invention to remove chlorine and hydrogen chloride from the chlorinated vinyl chloride resin.

【図6】本発明に係る塩素化塩化ビニル系樹脂から塩素
と塩化水素を除去する為の装置の別のである。
FIG. 6 shows another apparatus for removing chlorine and hydrogen chloride from a chlorinated vinyl chloride resin according to the present invention.

【図7】本発明に係る塩化ビニル系樹脂を後塩素化させ
塩素化塩化ビニル系樹脂から塩素と塩化水素を除去する
為の装置の別の例である。
FIG. 7 is another example of the apparatus for post-chlorinating a vinyl chloride resin according to the present invention to remove chlorine and hydrogen chloride from the chlorinated vinyl chloride resin.

【符号の説明】[Explanation of symbols]

1 塩素化塩化ビニル系樹脂 2 容器 3 減圧用バルブ 4 昇圧用バルブ 5 気体排出管 6 気体導入管 7 塩素および塩化水素の除去装置 8 減圧ポンプ 9 窒素ボンベ 10 減圧容器 11 塩素化塩化ビニル系樹脂 12 昇圧容器 13 移動した塩素化塩化ビニル系樹脂 14 塩素化塩化ビニル系樹脂 15 外筒 16 内筒 17 気体導入口 18 気体排出口 19 塩素化塩化ビニル系樹脂供給口 20 塩素化塩化ビニル系樹脂排出口 21 塩素ボンベ 22 窒素ボンベ 23 反応器 24 高圧水銀灯 25 塩化水素除去装置(水充填) 26 塩素吸収装置(NaOH溶液充填) 27 バルブ 28 温浴 29 塩素化塩化ビニル系樹脂 30 水流ポンプ(アスピレーター) 31 0.01N−NaOH溶液 32 反応器 33 反応器回転台 34 窒素ボンベ 35 塩素ボンベ 36 脱塩化水素装置 37 塩素吸収装置 38 塩素吸収装置 1 Chlorinated vinyl chloride resin 2 containers 3 Pressure reducing valve 4 Booster valve 5 Gas exhaust pipe 6 Gas introduction tube 7 Chlorine and hydrogen chloride removal equipment 8 decompression pump 9 nitrogen cylinder 10 Decompression container 11 Chlorinated vinyl chloride resin 12 booster container 13 Transferred chlorinated vinyl chloride resin 14 Chlorinated vinyl chloride resin 15 Outer cylinder 16 inner cylinder 17 Gas inlet 18 Gas outlet 19 Chlorinated vinyl chloride resin supply port 20 Chlorinated vinyl chloride resin outlet 21 Chlorine cylinder 22 Nitrogen cylinder 23 reactor 24 High pressure mercury lamp 25 Hydrogen chloride removal device (water filling) 26 Chlorine absorber (filled with NaOH solution) 27 valves 28 Hot bath 29 Chlorinated vinyl chloride resin 30 Water pump (aspirator) 31 0.01 N-NaOH solution 32 reactor 33 Reactor turntable 34 Nitrogen cylinder 35 Chlorine cylinder 36 Dehydrochlorination equipment 37 Chlorine absorber 38 Chlorine absorber

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 塩化ビニル系樹脂を後塩素化反応させて
塩素化塩化ビニル系樹脂を製造する方法において、粉体
状の塩化ビニル系樹脂と塩素とを気固接触反応場で反応
させて粉体状の塩素化塩化ビニル系樹脂を得、得られた
塩素化塩化ビニル系樹脂を含む系内を減圧状態に少なく
とも10分以上保持する操作、及び/又は塩素化塩化ビ
ニル系樹脂を含む系内を減圧状態に1分間以上保持した
後に不活性の気体を導入して昇圧することを少なくとも
2回以上繰り返す操作を実施し、塩素化塩化ビニル系樹
脂に含有される塩素および塩化水素を除去することを特
徴とする塩素化塩化ビニル系樹脂の製造方法。
1. A method for producing a chlorinated vinyl chloride resin by subjecting a vinyl chloride resin to a post-chlorination reaction, wherein a powdery vinyl chloride resin and chlorine are reacted in a gas-solid contact reaction field to produce a powder. An operation of obtaining a chlorinated vinyl chloride resin in the form of a body, and maintaining the inside of the obtained system containing the chlorinated vinyl chloride resin in a reduced pressure state for at least 10 minutes, and / or inside the system containing the chlorinated vinyl chloride resin To remove chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin by carrying out an operation in which the pressure is kept under reduced pressure for 1 minute or more and then an inert gas is introduced and the pressure is increased at least twice. A method for producing a chlorinated vinyl chloride resin characterized by the above.
【請求項2】 不活性の気体が、空気、窒素、酸素、二
酸化炭素、アルゴン、ヘリウムから選択される少なくと
も1種以上の気体の混合物である請求項1に記載の塩素
化塩化ビニル系樹脂の製造方法。
2. The chlorinated vinyl chloride resin according to claim 1, wherein the inert gas is a mixture of at least one gas selected from air, nitrogen, oxygen, carbon dioxide, argon and helium. Production method.
【請求項3】 減圧状態の系内に保持する塩素化塩化ビ
ニル系樹脂の温度が、60℃以上、130℃以下である
請求項1または2に記載の塩素化塩化ビニル系樹脂の製
造方法。
3. The method for producing a chlorinated vinyl chloride resin according to claim 1, wherein the temperature of the chlorinated vinyl chloride resin held in the system under reduced pressure is 60 ° C. or higher and 130 ° C. or lower.
【請求項4】 減圧状態にした塩素化塩化ビニル系樹脂
を含む系内の圧力が、絶対圧で0.003〜0.02M
Paである請求項1〜3の何れかに記載の塩素化塩化ビ
ニル系樹脂の製造方法。
4. The absolute pressure of the system containing the chlorinated vinyl chloride resin in a reduced pressure is 0.003 to 0.02M.
Pa is the manufacturing method of the chlorinated vinyl chloride resin in any one of Claims 1-3.
【請求項5】 減圧状態にした塩素化塩化ビニル系樹脂
を含む系内の圧力が、絶対圧で0.003〜0.01M
Paである請求項1〜4に記載の塩素化塩化ビニル系樹
脂の製造方法。
5. The pressure in the system containing the chlorinated vinyl chloride resin in a reduced pressure is 0.003 to 0.01 M in absolute pressure.
It is Pa, The manufacturing method of the chlorinated vinyl chloride resin of Claims 1-4.
【請求項6】 不活性の気体を導入して昇圧した後の塩
素化塩化ビニル系樹脂を含む系内の圧力が、大気圧以
上、0.3MPa(絶対圧)以下である請求項1〜5に
記載の塩素化塩化ビニル系樹脂の製造方法。
6. The pressure in the system containing the chlorinated vinyl chloride resin after introducing an inert gas and increasing the pressure is not less than atmospheric pressure and not more than 0.3 MPa (absolute pressure). The method for producing a chlorinated vinyl chloride resin according to 1.
【請求項7】 不活性の気体を導入して昇圧した後の塩
素化塩化ビニル系樹脂を含む系内の圧力が、大気圧以
上、0.11MPa(絶対圧)以下である請求項1〜6
に記載の塩素化塩化ビニル系樹脂の製造方法。
7. The pressure in the system containing the chlorinated vinyl chloride resin after introducing an inert gas and increasing the pressure is not less than atmospheric pressure and not more than 0.11 MPa (absolute pressure).
The method for producing a chlorinated vinyl chloride resin according to 1.
【請求項8】 塩素化塩化ビニル系樹脂を充填する容
器、気体を排出及び導入する為の管、排出管及び導入管
に付属したバルブ、排出される気体に含有される塩素と
塩化水素を吸収する装置、減圧ポンプを備えてなる請求
項1〜7の何れかに記載の方法に用いる塩素化塩化ビニ
ル系樹脂に含有される塩素および塩化水素を除去する装
置。
8. A container filled with a chlorinated vinyl chloride resin, a pipe for discharging and introducing gas, a valve attached to the discharge pipe and the introduction pipe, and absorbing chlorine and hydrogen chloride contained in the discharged gas. An apparatus for removing chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin used in the method according to any one of claims 1 to 7, which comprises an apparatus for reducing pressure and a vacuum pump.
【請求項9】 排出される気体に含有される塩素と塩化
水素を吸収する装置が、水酸化ナトリウム、水酸化カル
シウム、および炭酸ナトリウムから選択される少なくと
も1種以上の物質の混合物の水溶液と排出される気体と
を接触させる装置である請求項8に記載の塩素化塩化ビ
ニル系樹脂に含有される塩素および塩化水素を除去する
装置。
9. An apparatus for absorbing chlorine and hydrogen chloride contained in discharged gas, wherein the apparatus discharges an aqueous solution of a mixture of at least one substance selected from sodium hydroxide, calcium hydroxide, and sodium carbonate. The device for removing chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin according to claim 8, which is a device for contacting the gas with the gas.
【請求項10】 排出される気体に含有される塩素と塩
化水素を吸収する装置と減圧ポンプが、水酸化ナトリウ
ム、水酸化カルシウム、および炭酸ナトリウムから選択
される少なくとも1種以上の物質の混合物の水溶液を流
通させる水流ポンプである請求項8または9に記載の塩
素化塩化ビニル系樹脂に含有される塩素および塩化水素
を除去する装置。
10. A device for absorbing chlorine and hydrogen chloride contained in the discharged gas and a vacuum pump are provided with a mixture of at least one substance selected from sodium hydroxide, calcium hydroxide, and sodium carbonate. The apparatus for removing chlorine and hydrogen chloride contained in the chlorinated vinyl chloride resin according to claim 8 or 9, which is a water flow pump for circulating an aqueous solution.
JP2002086490A 2002-03-26 2002-03-26 Method for producing chlorinated vinyl chloride resin and apparatus therefor Pending JP2003277436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086490A JP2003277436A (en) 2002-03-26 2002-03-26 Method for producing chlorinated vinyl chloride resin and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086490A JP2003277436A (en) 2002-03-26 2002-03-26 Method for producing chlorinated vinyl chloride resin and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2003277436A true JP2003277436A (en) 2003-10-02

Family

ID=29233076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086490A Pending JP2003277436A (en) 2002-03-26 2002-03-26 Method for producing chlorinated vinyl chloride resin and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2003277436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157346A1 (en) * 2013-03-29 2014-10-02 株式会社カネカ Production method and production device for chlorinated vinyl chloride-based resin
WO2017145864A1 (en) * 2016-02-25 2017-08-31 株式会社カネカ Method for producing chlorinated vinyl chloride resin
US11629204B2 (en) 2017-10-25 2023-04-18 Hanwha Solutions Corporation Method for preparing chlorinated polyvinyl chloride resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157346A1 (en) * 2013-03-29 2014-10-02 株式会社カネカ Production method and production device for chlorinated vinyl chloride-based resin
US9399687B2 (en) 2013-03-29 2016-07-26 Kaneka Corportion Method and apparatus for producing chlorinated vinyl chloride-based resin
WO2017145864A1 (en) * 2016-02-25 2017-08-31 株式会社カネカ Method for producing chlorinated vinyl chloride resin
CN108602911A (en) * 2016-02-25 2018-09-28 株式会社钟化 The manufacturing method of chlorinated vinyl chloride-based resin
US10590210B2 (en) 2016-02-25 2020-03-17 Kaneka Corporation Method for producing chlorinated vinyl chloride resin
US11629204B2 (en) 2017-10-25 2023-04-18 Hanwha Solutions Corporation Method for preparing chlorinated polyvinyl chloride resin

Similar Documents

Publication Publication Date Title
TWI361102B (en) Process for treating exhaust gas and treating apparatus of exhaust gas
TWI500663B (en) A continuous process for the production of a superabsorbent polymer
JP7379575B2 (en) Method for chlorinating polyvinyl chloride
CN109264848A (en) A kind of use in waste water treatment ozone pressurization air-dissolved catalytic oxidation system and method
JP5511826B2 (en) Process for the production of superabsorbent polymers
JP2003277436A (en) Method for producing chlorinated vinyl chloride resin and apparatus therefor
JP2003183320A (en) Method and apparatus for producing chlorinated polyvinyl chloride resin
JPH10182861A (en) Apparatus for treating with fluorine and method for surface-treating substrate
JP6800159B2 (en) Manufacturing method of chlorinated vinyl chloride resin
JPH0824629A (en) Photo-catalytic reaction tank
TW200829327A (en) Apparatus for treating a gas stream
JPS6212921B2 (en)
JPH0671594B2 (en) Method and apparatus for removing dissolved oxygen in water
JP5219372B2 (en) Production method of high purity liquefied chlorine
WO2002055565A1 (en) Method and apparatus for producing chlorinated vinyl chloride resin
CN113171753A (en) Preparation of sodium alginate-zirconium phosphate composite beads and adsorption application of sodium alginate-zirconium phosphate composite beads in nuclear waste liquid
JP6837050B2 (en) Manufacturing method of chlorinated vinyl chloride resin
JP3476039B2 (en) How to remove dissolved oxygen
JP2006289231A (en) Method and system for decomposing and treating organic chlorine compound
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
JP3699844B2 (en) Treatment method of exhaust gas containing oxidizing gas
JP2002136867A (en) Adsorbent regeneration treatment process and equipment for the same
JP2002317011A (en) Method for producing chlorinated vinyl chloride-based resin
JP5194433B2 (en) Manufacturing method of electrolyte membrane
JP3647730B2 (en) Ozone removing material and ozone removing filter using the same