JP2003268719A - Steel-concrete composite beam and its installation method - Google Patents

Steel-concrete composite beam and its installation method

Info

Publication number
JP2003268719A
JP2003268719A JP2002068403A JP2002068403A JP2003268719A JP 2003268719 A JP2003268719 A JP 2003268719A JP 2002068403 A JP2002068403 A JP 2002068403A JP 2002068403 A JP2002068403 A JP 2002068403A JP 2003268719 A JP2003268719 A JP 2003268719A
Authority
JP
Japan
Prior art keywords
girder
concrete
web
steel
corrugated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002068403A
Other languages
Japanese (ja)
Inventor
Takashi Oura
隆 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2002068403A priority Critical patent/JP2003268719A/en
Publication of JP2003268719A publication Critical patent/JP2003268719A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for installing a steel-concrete composite beam having corrugated steel plate webs. <P>SOLUTION: Precast prestressed concrete beams 1A and 1B formed of upper and lower concrete flanges 11 and 12 and corrugated steel plate webs 13 so as to be transported are manufactured and by a pretension system and transported. The end parts of the webs are joined to each other near an installation position to form the plurality of beams in a connection body for one span. The connected beam is installed between bridge piers. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、橋梁の建設に使用
される鋼・コンクリート複合桁及びその架設方法に関
し、さらに詳しくはコンクリートと波形鋼板との複合構
造の長スパンの鋼・コンクリート複合桁及びその架設方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel / concrete composite girder used in the construction of bridges and a method of erection thereof, and more particularly to a long-span steel / concrete composite girder having a composite structure of concrete and corrugated steel plates. Regarding the erection method.

【0002】[0002]

【従来の技術】コンクリート上下フランジと波形鋼板ウ
エブとから成るプレストレストコンクリート(PC)桁
が多用されている。このような桁は、コンクリート上下
フランジにプレストレスを導入するとき、ウエブがプレ
ストレスの導入をなんら妨げないので、プレストレス導
入が容易であり、コンクリートを高強度とすることが容
易である。従ってウエブを軽量化するばかりでなく、フ
ランジを高強度コンクリートとして寸法を小さくし、全
体として桁を軽量化することができ、合理的な橋梁を形
成することができる。
2. Description of the Related Art Prestressed concrete (PC) girders consisting of concrete upper and lower flanges and corrugated steel webs are often used. In such a girder, when the prestress is introduced into the concrete upper and lower flanges, the web does not hinder the introduction of the prestress, so that the prestress can be easily introduced and the concrete can be easily made to have high strength. Therefore, not only can the weight of the web be reduced, but also the flange can be made of high-strength concrete so that the dimensions can be reduced and the girder can be reduced as a whole, and a rational bridge can be formed.

【0003】このような鋼・コンクリート複合プレスト
レストコンクリート桁をスパン25m以上の橋脚間に架
設するには、従来、(a)桁行方向長さが3〜5m程度
の短尺のセグメントブロックとして製造しこのブロック
を張出し又はスパンバイスパンに並べてポストテンショ
ン方式でセグメントブロックを結合して橋梁を形成する
か、又は(b)現場で波形鋼板を組立てセットし、上下
フランジの型枠を組立て、型枠内に現場打ちコンクリー
トを打設するかの何れかの手段によって架設されてい
た。
In order to lay such a steel / concrete composite prestressed concrete girder between bridge piers with a span of 25 m or more, (a) a girder length in the row direction is conventionally manufactured as a short segment block of about 3 to 5 m. To form a bridge by connecting segment blocks by post tension method by arranging overhangs or span-by-span, or (b) assembling and setting corrugated steel plates on site and assembling the formwork of the upper and lower flanges, and constructing in the formwork site. It was erected by either means of pouring concrete.

【0004】上記の(a)のポストテンション方式では
グラウチングを必要とし、グラウト充填不十分となるお
それがある。また上記の(b)の現場打コンクリートに
よる施工では、セットする波形鋼板の支持や組立調整が
容易でなく、型枠取付取外し手間も大掛りであった。
The post-tensioning method (a) requires grouting, which may result in insufficient grout filling. Further, in the construction using cast-in-place concrete in the above (b), it is not easy to support and adjust the corrugated steel sheet to be set, and it takes a lot of time to attach and detach the formwork.

【0005】なお、一般に、コンクリート橋の建設技術
としては、架橋位置に直接構築する場所打ちコンクリー
トによる技術、架橋位置近傍にコンクリート桁製作ヤー
ドを設けプレキャストコンクリート桁を製作して運搬架
設する技術、又は架橋位置と直接関係のない位置にある
桁製造工場でプレキャストコンクリート桁を製作してト
レーラーなどで運搬して架設する技術などがあり、実情
に応じてこれらの手段を適宜選択して橋梁の建設が行な
われてきた。なお、工場製品コンクリート桁は、高品質
で高精度の桁である。
Generally, as the construction technique of the concrete bridge, a technique of cast-in-place concrete directly constructed at the bridge position, a technique of constructing a concrete girder production yard in the vicinity of the bridge position and manufacturing and transporting precast concrete girders, or There is technology such as manufacturing precast concrete girders at a girder manufacturing plant that is not directly related to the bridge position and transporting them with a trailer or the like, and constructing a bridge by appropriately selecting these means depending on the actual situation. Has been done. It should be noted that the factory-produced concrete girder is of high quality and high precision.

【0006】鋼・コンクリート複合桁は、横断面がほぼ
I形又はT形をなすプレキャスト桁であって、上フラン
ジ及び下フランジがコンクリートで形成され、それをつ
なぐウエブを鋼板とし、実質的にウエブを薄くして軽量
な桁とする。そのときウエブの鋼板を桁長手方向に凹凸
が繰り返し連続する波形鋼板とすることにより、ウエブ
の上下方向の剛性を大きくすることができ、リブやスチ
フナーの取付を必要とせずに必要な剛性を確保すること
ができる。従って、波形鋼板を用いると、鋼板の切断加
工・溶接手間などを大幅に節減することが可能である。
The steel-concrete composite girder is a precast girder having a substantially I-shaped or T-shaped cross section, in which the upper flange and the lower flange are made of concrete, and the web connecting them is a steel plate, and the web is substantially To make the girder lighter. At that time, the rigidity of the web in the vertical direction can be increased by making the steel plate of the web a corrugated steel plate in which unevenness is repeated continuously in the longitudinal direction of the web, and the necessary rigidity is secured without the need to install ribs or stiffeners. can do. Therefore, when the corrugated steel sheet is used, it is possible to significantly reduce the cutting work and welding work of the steel sheet.

【0007】さらに波形鋼板ウエブを備えた鋼・コンク
リート複合桁は、フランジにプレストレスを導入するこ
とによって桁自重及び活荷重による曲げモーメントに対
する抵抗を大きくすることが可能であり、単なる鋼・コ
ンクリート複合桁とは異なる高性能の複合桁を提供する
ことができる。本発明は、ウエブを波形鋼板にすること
によって桁の軽量化を図ると共に、コンクリート上下フ
ランジにプレストレスを導入する(桁長手軸方向に圧縮
力を付与する)ときのコンクリートの微妙な変位を拘束
することなく、効率よくコンクリートにプレストレスを
与えることができる。従って、同量のプレストレスを導
入する場合、PC鋼材の量を節減できることとなり、よ
り作業性、経済性が向上することとなる。波形鋼板ウエ
ブは長手軸方向の変形が自由であり、コンクリートヘの
プレストレス伝達にロスが生じないのでプレストレスを
最も有効に利用できる。
Further, the steel-concrete composite girder provided with the corrugated steel plate web can increase the resistance to the bending moment due to the weight of the girder and the live load by introducing prestress to the flange. It is possible to provide a high-performance composite girder different from the girder. INDUSTRIAL APPLICABILITY The present invention aims to reduce the weight of the girder by using a corrugated steel plate for the web, and restrains the subtle displacement of concrete when introducing prestress to the concrete upper and lower flanges (applying a compressive force in the girder longitudinal axis direction). It is possible to prestress concrete efficiently without doing. Therefore, when the same amount of prestress is introduced, the amount of PC steel can be reduced, and workability and economy can be further improved. The corrugated steel sheet web is freely deformable in the longitudinal axis direction, and there is no loss in prestress transmission to concrete, so prestress can be used most effectively.

【0008】このような桁はウエブが桁自重や活荷重に
より生じる曲げモーメントに抵抗する必要がなく、ウエ
ブを可及的に薄くすることが可能となり、市販のデッキ
プレート等でも利用することができる。従って、コスト
の低減を図ることができる。プレストレスの導入は、プ
レテンション方式又はポストテンション方式の何れでも
よく、さらに、プレテンション方式で一次プレストレス
を導入しておき、架設後ポストテンション方式で二次プ
レストレスを導入可能なようにシースダクトを形成して
おくこともできる。
In such a girder, the web does not need to resist the bending moment generated by the girder's own weight or live load, the web can be made as thin as possible, and the girder can be used in a commercially available deck plate or the like. . Therefore, the cost can be reduced. The pre-stress may be introduced by either the pre-tension method or the post-tension method. Furthermore, the primary pre-stress is introduced by the pre-tension method, and the secondary pre-stress can be introduced by the post-tension method after installation. Can also be formed.

【0009】[0009]

【発明が解決しようとする課題】場所打ちコンクリート
による架設又は近傍ヤードによる製作・架設手段では大
型の桁を製作可能であるが、工場製作ではプレキャスト
桁の運搬・架設に当って、桁長や重量について輸送上の
制約がある。本発明は、管理の行き届いた工場でプレス
トレストコンクリートと波形鋼の特徴を組み合わせた可
搬長の桁(例えば桁長22.5m以下)を製作し、可及
的に軽量化を図ると共に長尺化して長スパンの橋脚間に
容易に架設できるようにするという課題を達成するもの
である。
Large girders can be manufactured by means of erection by cast-in-place concrete or construction / erection by nearby yards. However, in the factory production, the girder length and weight are required for the transportation / erection of precast girders. There are transportation restrictions. INDUSTRIAL APPLICABILITY The present invention manufactures a girder having a transportable length (for example, girder length of 22.5 m or less) that combines the features of prestressed concrete and corrugated steel in a well-managed factory to reduce the weight and lengthen it as much as possible. The objective is to make it possible to easily install between long-span piers.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を達
成するためになされたもので、その技術手段は、コンク
リート上下フランジと波形鋼板ウエブとを備えた複数の
プレテンション方式のプレキャストプレストレストコン
クリート桁から成り、ウエブ端部の上下端に補強部材を
取付け、波形鋼板ウエブ及び前記補強材を桁軸方向に結
合した連結体であることを特徴とする鋼・コンクリート
複合桁である。波形鋼板ウエブ端部及びその補強材の結
合は、溶接、ボルト結合その他でもよく、重ね継手又は
ガゼットプレートを用いる結合とすればよい。補強材と
しては波形鋼板の端部の上下面に鋼フランジを取付けて
おき、この鋼フランジをつき合わせ溶接又はガゼットプ
レートを用いて、溶接又はボルト結合する。なお、前記
桁は、コンクリート上下フランジと波形鋼板ウエブとを
備えた箱桁であってもよい。
The present invention has been made in order to achieve the above-mentioned object, and its technical means is to provide a plurality of pretensioned precast prestressed concretes having upper and lower concrete flanges and corrugated steel sheet webs. A steel-concrete composite girder comprising a girder, a reinforcing member attached to upper and lower ends of a web end, and a corrugated steel plate web and a connecting body in which the reinforcing member is coupled in an axial direction of the girder. The corrugated steel sheet web end portion and the reinforcing material thereof may be connected by welding, bolt connection or the like, and may be a connection using a lap joint or a gusset plate. As the reinforcing material, steel flanges are attached to the upper and lower surfaces of the ends of the corrugated steel sheet, and the steel flanges are welded or bolted together by butt welding or using a gusset plate. The girder may be a box girder provided with concrete upper and lower flanges and a corrugated steel plate web.

【0011】上記鋼・コンクリート複合桁の架設方法
は、コンクリート上下フランジと波形鋼板ウエブとから
成る可搬長のプレキャストプレストレストコンクリート
桁をプレテンション方式で製作し、架設すべき位置の近
傍に搬送し、隣接する桁のウエブ端部及び端部補強材を
桁軸方向に結合し、該結合した桁を橋脚間に架設するこ
とを特徴とする鋼・コンクリート複合桁の架設方法であ
る。可搬長の桁とは、桁製作位置から架橋位置までの道
路事情や、桁の寸法・重量などによる道路交通法の規制
などによる制約の下で運搬可能な長さの桁である。複数
の可搬長の桁を桁端でウエブ及びその補強材を結合する
ことによって、1スパン分の長さの連結体とする。この
架設方法では、搬送可能な長さの鋼・コンクリート複合
桁をプレテンション方式で製造し、架設現場で波形鋼板
ウエブ端部を接合して長尺の連結体を製造することがで
き、グラウンチングに伴うトラブルを皆無としたことに
特徴がある。さらに前記結合した連結体の桁に外ケーブ
ルを施すことにより、例えばスパン100mに及ぶ長ス
パンの鋼・コンクリート複合桁を橋脚間に架設すること
ができる。
The steel / concrete composite girder is constructed by manufacturing a precast prestressed concrete girder having a transportable length consisting of concrete upper and lower flanges and a corrugated steel plate web by a pretensioning method, and transporting it to the vicinity of the position to be erected. A method of constructing a steel-concrete composite girder, characterized in that the web ends and end reinforcements of adjacent girders are joined in the girder axial direction, and the joined girders are installed between bridge piers. A portable length girder is a girder of a length that can be carried under the road conditions from the girder production position to the bridge position, and restrictions such as the size and weight of the girder, which are regulated by the Road Traffic Law. A plurality of transportable length girders are connected at their ends to the web and its reinforcing material to form a connected body having a length of one span. In this erection method, steel-concrete composite girders of transportable length can be manufactured by the pre-tensioning method, and at the erection site, the end portions of the corrugated steel plate webs can be joined to manufacture a long connecting body. It is characterized in that there was no trouble with. Further, by applying an outer cable to the girders of the coupled body, a steel / concrete composite girder with a long span of 100 m can be installed between the piers.

【0012】[0012]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1に本発明の実施例の隣接する鋼・コン
クリート複合桁1A,1Bの結合部の側面図を示した。
また、図1のA−A矢視断面図を図2の左半分に、図1
のB−B矢視断面図を図2の右半分に示した。この鋼・
コンクリート複合桁1A、1Bは、波形鋼板からなるウ
エブ13と、コンクリートからなる上フランジ11と、
プレストレストコンクリートからなる下フランジ12と
から構成されている。図2の左半分に示すように、鋼・
コンクリート複合桁1のコンクリート上フランジ11は
主鉄筋と横補強鉄筋を内包し、ウエブ13はその内部ま
で挿入されている。コンクリート上フランジ11はPC
緊張材を内包したものでもよい。コンクリート下フラン
ジ12は主鉄筋、横補強鉄筋及びPC緊張材を内包し、
ウエブ13がその内部まで挿入されてウエブと下フラン
ジとが一体化されている。図2の右半分は継ぎ手部に取
付けた鋼上フランジ17、鋼下フランジ18を示すもの
である。この鋼フランジ17、18は波形鋼板ウエブ1
3の上下に固着され、一部はコンクリート内に埋設さ
れ、継手部では露出している。この鋼フランジ17、1
8も隣接桁同士間で、つき合わせ溶接、ガセットプレー
トを介して溶接又はボルト結合などによって連結する。
連結後コンクリート等で被覆するとよい。
FIG. 1 shows a side view of a joint portion between adjacent steel / concrete composite girders 1A and 1B according to an embodiment of the present invention.
In addition, a cross-sectional view taken along the line AA of FIG. 1 is shown in the left half of FIG.
2 is a sectional view taken along the line BB in the right half of FIG. This steel
The concrete composite girders 1A and 1B include a web 13 made of corrugated steel plate, an upper flange 11 made of concrete,
The lower flange 12 is made of prestressed concrete. As shown in the left half of Fig. 2, steel
The concrete upper flange 11 of the concrete composite girder 1 includes main reinforcing bars and lateral reinforcing bars, and the web 13 is inserted to the inside thereof. PC on concrete flange 11
It may contain a tension material. The lower concrete flange 12 contains main reinforcing bars, lateral reinforcing bars and PC tension members,
The web 13 is inserted to the inside thereof, and the web and the lower flange are integrated. The right half of FIG. 2 shows the steel upper flange 17 and the steel lower flange 18 attached to the joint portion. The steel flanges 17 and 18 are corrugated steel plate webs 1.
It is fixed to the top and bottom of 3, and is partially embedded in concrete, and is exposed at the joint part. This steel flange 17,1
8 is also connected between adjacent girders by butt welding, welding via a gusset plate, or bolt connection.
It is recommended to coat with concrete after connecting.

【0014】図3に示すように、ウエブ13は長手方向
に波形が連続する断面形状を有する。隣接する桁1A、
1Bの波形鋼板13の端部14は重ね継手15を形成す
るように、溶接16を施して結合され、桁は連結体を形
成している。波形鋼板は、板厚が薄くても鉛直方向の曲
げ剛性、倒れ剛性が高い。波形鋼板の重ね継手15は隣
接する桁1A、1Bと同等の剪断力及び曲げ剛性を確保
する。なお、このウエブの連結は、ボルトを用いる形式
のものでも差支えない。
As shown in FIG. 3, the web 13 has a cross-sectional shape in which the corrugations are continuous in the longitudinal direction. Adjacent digit 1A,
The ends 14 of the corrugated steel plate 13 of 1B are joined together by welding 16 so as to form a lap joint 15, and the girders form a connecting body. The corrugated steel plate has high bending rigidity and falling rigidity in the vertical direction even if the plate thickness is thin. The lap joint 15 made of corrugated steel plate secures shearing force and bending rigidity equivalent to those of the adjacent girders 1A and 1B. The web may be connected by a bolt.

【0015】図1〜図3に示す鋼・コンクリート複合桁
1を、工場において可搬長(例えば長さ22.5m以
下)のプレテンション方式のプレキャストプレストレス
トコンクリート桁として製造し、このプレキャスト桁を
桁軸方向に結合して長尺の連結体を形成する。単桁では
この連結体を橋脚間に架設する。また、多数本の単桁を
橋脚間に並列に並べて架設し、これらを横つなぎ材で結
合し、その上面にプレキャストまたは現場打ち舗装版コ
ンクリートを形成してもよい。
The steel / concrete composite girder 1 shown in FIGS. 1 to 3 is manufactured in a factory as a pretensioning type precast prestressed concrete girder having a transportable length (for example, a length of 22.5 m or less), and this precast girder is used. Along the axial direction, a long connecting body is formed. In a single girder, this connecting body is installed between the piers. In addition, a large number of single girders may be installed side by side in parallel between the piers, these may be connected by a horizontal tie member, and precast or cast-in-place pavement concrete may be formed on the upper surface thereof.

【0016】上記プレキャスト桁を橋脚間に架設する手
段としては桁の規模、橋脚のスパンの大小等に応じて、
公知の適切な架設手段を用いればよい。図2に断面を示
す単桁に代り、図4に示す箱桁2を用いてもよい。箱桁
2は上床版21、下床版22、複数の波形鋼板ウエブ2
3から構成されている。この箱桁2も工場において可搬
長のプレテンション方式のプレキャストプレストレスト
コンクリート桁として製造し、架設現場に運搬し隣接す
る桁のウエブ23同士を重ね継手溶接して連結し、連結
体とする。この場合、外ケーブルを用いることによっ
て、長さ100mにも及ぶ長尺の連結体を形成すること
ができ、大スパンの架橋も可能となる。
As means for erection of the above precast girder between bridge piers, depending on the scale of the girder, the size of the span of the pier, etc.,
Any known suitable erection means may be used. The box girder 2 shown in FIG. 4 may be used instead of the single girder whose cross section is shown in FIG. The box girder 2 is an upper floor plate 21, a lower floor plate 22, and a plurality of corrugated steel plate webs 2.
It consists of three. This box girder 2 is also manufactured as a pretension type precast prestressed concrete girder having a portable length in the factory, transported to an erection site, and webs 23 of adjacent girders are joined by lap joint welding to form a connected body. In this case, by using the outer cable, it is possible to form a long connecting body having a length of 100 m, and it is possible to bridge over a large span.

【0017】[0017]

【発明の効果】本発明によれば、波形鋼板をウエブとす
る長尺の鋼・コンクリート複合桁を製作して長スパンの
桁橋を架設することができ、施工手間が少なく、軽量で
合理的な橋の構築を安価に施工することができるように
なった。
According to the present invention, a long steel-concrete composite girder having a corrugated steel plate as a web can be manufactured to construct a long-span girder bridge, which requires less work, is lightweight and is rational. It became possible to construct a simple bridge at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のウエブ溶接結合部の側面図である。FIG. 1 is a side view of a web welded joint of an embodiment.

【図2】図1のA−A矢視断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】図1のB−B矢視断面図である。3 is a cross-sectional view taken along the line BB of FIG.

【図4】箱桁の横断面図である。FIG. 4 is a cross-sectional view of the box girder.

【符号の説明】 1(1A、1B)、2 鋼・コンクリート複合桁 11 上フランジ 12 下フランジ 13 ウエブ 14 端部 15 重ね継手 16 溶接 17 鋼上フランジ 18 鋼下フランジ 21 上床版 22 下床版 23 ウエブ[Explanation of symbols] 1 (1A, 1B), 2 Steel / concrete composite girder 11 Upper flange 12 Lower flange 13 Web 14 Edge 15 lap joint 16 welding 17 Steel upper flange 18 Steel bottom flange 21 Upper deck 22 Underfloor 23 Web

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート上下フランジと波形鋼板ウ
エブとを備えた複数のプレテンション方式のプレキャス
トプレストレストコンクリート桁から成り、ウエブ端部
の上下端に補強部材を取付け、波形鋼板ウエブ及び前記
補強材を桁軸方向に結合した連結体であることを特徴と
する鋼・コンクリート複合桁。
1. A precast prestressed concrete girder comprising a plurality of pretensioning type flanges provided with concrete upper and lower flanges and a corrugated steel plate web. Reinforcing members are attached to the upper and lower ends of the web end, and the corrugated steel plate web and the reinforcing member are girders. A steel-concrete composite girder characterized by a connected body that is connected in the axial direction.
【請求項2】 前記桁は、コンクリート上下フランジと
波形鋼板ウエブとを備えた箱桁であることを特徴とする
請求項1記載の鋼・コンクリート複合桁。
2. The steel-concrete composite girder according to claim 1, wherein the girder is a box girder provided with concrete upper and lower flanges and a corrugated steel plate web.
【請求項3】 コンクリート上下フランジと波形鋼板ウ
エブとから成る可搬長のプレキャストプレストレストコ
ンクリート桁をプレテンション方式で製作し、架設すべ
き位置の近傍に搬送し、隣接する桁のウエブ端部及び端
部補強材を桁軸方向に結合し、該結合した桁を橋脚間に
架設することを特徴とする鋼・コンクリート複合桁の架
設方法。
3. A transportable precast prestressed concrete girder comprising concrete upper and lower flanges and a corrugated steel plate web is manufactured by a pretensioning method, transported to the vicinity of a position to be erected, and web ends and ends of adjacent girders. A method for erection of a steel-concrete composite girder, characterized in that part reinforcements are connected in the girder axial direction, and the connected girders are installed between bridge piers.
【請求項4】 前記結合した桁に外ケーブルを施すこと
を特徴とする請求項3記載の鋼・コンクリート複合桁の
架設方法。
4. The method for constructing a steel-concrete composite girder according to claim 3, wherein an outer cable is applied to the joined girder.
JP2002068403A 2002-03-13 2002-03-13 Steel-concrete composite beam and its installation method Withdrawn JP2003268719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068403A JP2003268719A (en) 2002-03-13 2002-03-13 Steel-concrete composite beam and its installation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068403A JP2003268719A (en) 2002-03-13 2002-03-13 Steel-concrete composite beam and its installation method

Publications (1)

Publication Number Publication Date
JP2003268719A true JP2003268719A (en) 2003-09-25

Family

ID=29199515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068403A Withdrawn JP2003268719A (en) 2002-03-13 2002-03-13 Steel-concrete composite beam and its installation method

Country Status (1)

Country Link
JP (1) JP2003268719A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022595A (en) * 2004-07-09 2006-01-26 Taisei Corp Main pilot girder, main girder structure for erection of box girder bridge and erection method of the box girder bridge
JP2006316580A (en) * 2005-05-16 2006-11-24 Ps Mitsubishi Construction Co Ltd Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
JP2009221714A (en) * 2008-03-14 2009-10-01 Ps Mitsubishi Construction Co Ltd Composite girder bridge of prestressing steel concrete, and its erection method
CN103422616A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Continuous box girder adopting corrugated steel web steel and concrete composite structure
CN103422614A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Continuous box girder adopting corrugated steel web steel structure
CN103422613A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Simply supported I beam adopting corrugated steel web steel structure
CN103422611A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Continuous I beam adopting corrugated steel web steel structure
CN103422421A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Corrugated steel web steel structure simply-supported box beam
CN103422617A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Continuous I beam adopting corrugated steel web steel and concrete composite structure
CN103758027A (en) * 2013-12-25 2014-04-30 广西科技大学 Steel web and prestressed concrete (PC) combined box girder
CN103924505A (en) * 2014-05-07 2014-07-16 河南省交通规划勘察设计院有限责任公司 Prefabricated steel-concrete combination T beam with corrugated steel web and construction method
CN104032666A (en) * 2014-06-28 2014-09-10 福州大学 Vertical prestressed steel-concrete composite rigid frame bridge and method for constructing same
CN104674647A (en) * 2015-02-05 2015-06-03 中铁大桥局集团武汉桥梁科学研究院有限公司 Steel-concrete combination structure for hybrid girder bridge
CN104846732A (en) * 2015-05-19 2015-08-19 卢国林 Total-activity powder concrete application-based corrugated plate box beam of bridge
CN105926425A (en) * 2016-04-28 2016-09-07 四川省交通运输厅公路规划勘察设计研究院 Method for manufacturing prestressed steel box concrete beam through pre-tensioning method
CN106012791A (en) * 2016-07-14 2016-10-12 湖南联智桥隧技术有限公司 Three-span antinode I-shaped beam-transverse wave-three-steel and concrete combined T-shaped continuous beam
KR101698807B1 (en) * 2016-06-21 2017-01-23 주식회사 후레씨네코리아 Manufacturing method of the psc girder using the corrugated steel plate and the psc girder manufactured thereby
KR101747157B1 (en) * 2016-06-02 2017-06-14 (주)케이디이엔지 Manufacturing method of the prestressed girder with corrugated steel web and corrugated girder or the bridge thereby
CN112239991A (en) * 2020-09-01 2021-01-19 中铁工程设计咨询集团有限公司 Common span emergency repair simply-supported steel-concrete combined beam for railway
CN113338152A (en) * 2021-06-22 2021-09-03 广西北投公路建设投资集团有限公司 Steel-concrete composite web and construction method thereof
CN115928557A (en) * 2023-01-04 2023-04-07 内蒙古工业大学 Light-weight high-strength high-toughness concrete plate steel box girder combined assembly type structure and preparation method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022595A (en) * 2004-07-09 2006-01-26 Taisei Corp Main pilot girder, main girder structure for erection of box girder bridge and erection method of the box girder bridge
JP4528042B2 (en) * 2004-07-09 2010-08-18 大成建設株式会社 Construction method of box girder bridge
JP2006316580A (en) * 2005-05-16 2006-11-24 Ps Mitsubishi Construction Co Ltd Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
JP2009221714A (en) * 2008-03-14 2009-10-01 Ps Mitsubishi Construction Co Ltd Composite girder bridge of prestressing steel concrete, and its erection method
CN103422614B (en) * 2013-07-18 2016-08-10 浙江中隧桥波形钢腹板有限公司 Wavelike steel webplate steel construction continuous box girder
CN103422617B (en) * 2013-07-18 2016-04-20 浙江中隧桥波形钢腹板有限公司 The continuous i beam of Wavelike steel webplate steel-concrete combined structure
CN103422613A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Simply supported I beam adopting corrugated steel web steel structure
CN103422611A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Continuous I beam adopting corrugated steel web steel structure
CN103422421A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Corrugated steel web steel structure simply-supported box beam
CN103422617A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Continuous I beam adopting corrugated steel web steel and concrete composite structure
CN103422614A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Continuous box girder adopting corrugated steel web steel structure
CN103422616A (en) * 2013-07-18 2013-12-04 杭州博数土木工程技术有限公司 Continuous box girder adopting corrugated steel web steel and concrete composite structure
CN103422611B (en) * 2013-07-18 2016-08-10 杭州博数土木工程技术有限公司 The continuous I-beam of Wavelike steel webplate steel construction
CN103422613B (en) * 2013-07-18 2016-08-10 杭州博数土木工程技术有限公司 Wavelike steel webplate steel construction simply supported l beam
CN103422421B (en) * 2013-07-18 2016-02-24 浙江中隧桥波形钢腹板有限公司 Wavelike steel webplate steel work simple supported box beam
CN103422616B (en) * 2013-07-18 2016-05-25 浙江中隧桥波形钢腹板有限公司 Wavelike steel webplate steel-concrete combined structure continuous box girder
CN103758027A (en) * 2013-12-25 2014-04-30 广西科技大学 Steel web and prestressed concrete (PC) combined box girder
CN103924505A (en) * 2014-05-07 2014-07-16 河南省交通规划勘察设计院有限责任公司 Prefabricated steel-concrete combination T beam with corrugated steel web and construction method
CN104032666B (en) * 2014-06-28 2016-02-24 福州大学 A kind of vertical prestressing steel-concrete compound rigid frame bridge and construction method
CN104032666A (en) * 2014-06-28 2014-09-10 福州大学 Vertical prestressed steel-concrete composite rigid frame bridge and method for constructing same
CN104674647A (en) * 2015-02-05 2015-06-03 中铁大桥局集团武汉桥梁科学研究院有限公司 Steel-concrete combination structure for hybrid girder bridge
CN104846732A (en) * 2015-05-19 2015-08-19 卢国林 Total-activity powder concrete application-based corrugated plate box beam of bridge
CN105926425A (en) * 2016-04-28 2016-09-07 四川省交通运输厅公路规划勘察设计研究院 Method for manufacturing prestressed steel box concrete beam through pre-tensioning method
KR101747157B1 (en) * 2016-06-02 2017-06-14 (주)케이디이엔지 Manufacturing method of the prestressed girder with corrugated steel web and corrugated girder or the bridge thereby
KR101698807B1 (en) * 2016-06-21 2017-01-23 주식회사 후레씨네코리아 Manufacturing method of the psc girder using the corrugated steel plate and the psc girder manufactured thereby
CN106012791A (en) * 2016-07-14 2016-10-12 湖南联智桥隧技术有限公司 Three-span antinode I-shaped beam-transverse wave-three-steel and concrete combined T-shaped continuous beam
CN112239991A (en) * 2020-09-01 2021-01-19 中铁工程设计咨询集团有限公司 Common span emergency repair simply-supported steel-concrete combined beam for railway
CN113338152A (en) * 2021-06-22 2021-09-03 广西北投公路建设投资集团有限公司 Steel-concrete composite web and construction method thereof
CN115928557A (en) * 2023-01-04 2023-04-07 内蒙古工业大学 Light-weight high-strength high-toughness concrete plate steel box girder combined assembly type structure and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100423757B1 (en) Prestressed composite truss girder and construction method of the same
JP2003268719A (en) Steel-concrete composite beam and its installation method
KR100609304B1 (en) Precast Composition I-Beam with Concrete Panel and Corrugated Steel Web Girder
CN107245934A (en) A kind of assembled steel profiled sheet concrete combined board small box girder
CN108221634A (en) The Wavelike steel webplate I-shaped composite beam bridge of maximum assembling
CN105002816A (en) Prefabricated-assembling fish-bellied I-shaped prestress steel-concrete combination continuous beam bridge and construction method
KR20020071612A (en) Pssc complex girder
CN102691257A (en) Continuous box girder made of corrugated steel web pre-tensioned prestressed concrete and construction method
US5457839A (en) Bridge deck system
JP2007016594A (en) Synthetic panel structure, panel bridge structure, and construction method for continuous synthetic beam bridge
CN105064200B (en) The fish belly truss prestressing force steel reinforced concrete combination simply supported girder bridge of precast assembly and its construction method
CN110656566A (en) Assembled combined box girder and construction method thereof
CN110846996A (en) Construction method of continuous composite beam bridge and continuous composite beam bridge
CN211522899U (en) Long-span steel-concrete composite beam convenient to erect by bridge girder erection machine
JP2006009449A (en) Truss panel girder and precast truss panel
KR20140144035A (en) The hybrid girder structures prestressed by using the external prestressing mechanism, and the construction method by rigid connection
CN207846187U (en) A kind of Wavelike steel webplate I-shaped composite beam bridge of maximum assembling
KR101209674B1 (en) The site built-up hybrid girder which is prestressed by gap difference of connection face of blocks
CN108221636B (en) Steel-concrete composite beam bridge constructed by adopting bracket-free scheme for midspan and bridge forming method
CN205188793U (en) Prefabricated fish belly I shape prestressing force steel and concrete composite continuous bridge of assembling
CN211735002U (en) Steel-concrete combined beam bridge capable of being installed quickly
KR200431821Y1 (en) The Method of Construction for Continuous Bridge made by Prestressed Concrete I-Shape Girder
US5966764A (en) Roll beam girder system for bridges
CN114592440B (en) Upper structure of assembled steel-concrete combined bridge and construction process thereof
CN110863417A (en) Steel-concrete combined beam bridge capable of being installed quickly and construction method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607