JP2003267728A - Method for producing fine particle of niobium oxide - Google Patents

Method for producing fine particle of niobium oxide

Info

Publication number
JP2003267728A
JP2003267728A JP2002072382A JP2002072382A JP2003267728A JP 2003267728 A JP2003267728 A JP 2003267728A JP 2002072382 A JP2002072382 A JP 2002072382A JP 2002072382 A JP2002072382 A JP 2002072382A JP 2003267728 A JP2003267728 A JP 2003267728A
Authority
JP
Japan
Prior art keywords
niobium
niobium oxide
fine particles
raw material
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002072382A
Other languages
Japanese (ja)
Inventor
Yasumasa Hattori
靖匡 服部
Shuji Okada
修二 岡田
Atsushi Kanesaka
淳 金坂
Hirotaka Takahashi
洋孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002072382A priority Critical patent/JP2003267728A/en
Publication of JP2003267728A publication Critical patent/JP2003267728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing fine particles of niobium oxide having a fine particle size suited for obtaining niobium oxide powder having a larger specific surface area per unit mass by sintering. <P>SOLUTION: Fine particles of niobium oxide having a particle size of not more than 0.1 μm are obtained by the steps of vaporizing niobium chloride at 170-240°C, hydrolyzing with steam added to the raw material gas stream comprising the obtained niobium chloride vapor and obtaining the fine particles of niobium oxide in the gas stream. Alternatively, they may be obtained by vaporizing niobium oxychloride at a temperature of 300-400°C. It is desirable that the vaporizing and the hydrolyzing are conducted in a vertical reactor and that the hydrolyzing part of it is at a temperature of not lower than 400°C. It is also desirable that the steam flows from a lower part toward an upper part in the gas stream of the raw material ascending in the vertical reactor and that the obtained fine particles of niobium oxide are recovered from the upper part of the vertical reactor by suction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化ニオブ微粒子
の製造方法に関し、特に、キャパシタ用電極材料として
好適なニオブ粉末原料を作製するのに好適な酸化ニオブ
微粒子を、塩化ニオブ蒸気の加水分解により製造する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing niobium oxide fine particles, and in particular, niobium oxide fine particles suitable for producing a niobium powder raw material suitable as an electrode material for capacitors are hydrolyzed with niobium chloride vapor. It relates to a method of manufacturing.

【0002】[0002]

【従来の技術】キャパシタ用電極材料として使用するニ
オブ粉末原料を作製する酸化ニオブ粉末は、通常、以下
に述べる方法で作製する。ニオブを含む鉱石やスクラッ
プをフッ化水素(HF)にて溶解し、これを溶媒抽出剤
(MIBK)で他成分と分離し、Nbを有機相に抽出す
る。次に、希硫酸によりNbOF5 2-の形態で水相へ逆
抽出する。これにNH4OH水溶液を加えて水酸化物を
沈殿させ、ろ過、乾燥、か焼して酸化ニオブを得る。
2. Description of the Related Art Niobium oxide powder for producing a niobium powder raw material used as a capacitor electrode material is usually produced by the method described below. Ore or scrap containing niobium is dissolved with hydrogen fluoride (HF), and this is separated from other components with a solvent extractant (MIBK), and Nb is extracted into an organic phase. Then, back-extracted into the aqueous phase at NbOF 5 2- embodiment with dilute sulfuric acid. NH 4 OH aqueous solution is added to this to precipitate the hydroxide, which is filtered, dried and calcined to obtain niobium oxide.

【0003】このような方法で得られた平均粒径4μm
程度の酸化ニオブ粉末を、約1400℃で大気焼成し、
これを粉砕・分級することにより二次粒子径を所定の粒
径(例えば、50〜200μm)とし、さらに還元する
ことによりキャパシタ用電極材料のニオブ粉末原料を製
造するプロセスが知られている。二次粒子を構成する一
次粒子の平均粒径は出発原料の粒径よりわずかに成長
し、5〜6μm程度となる。
Average particle size 4 μm obtained by such a method
Niobium oxide powder is baked in the air at about 1400 ° C,
A process is known in which the secondary particle size is adjusted to a predetermined particle size (for example, 50 to 200 μm) by crushing and classifying this, and further reduction is performed to manufacture a niobium powder raw material for a capacitor electrode material. The average particle diameter of the primary particles constituting the secondary particles grows slightly from the particle diameter of the starting material and becomes about 5 to 6 μm.

【0004】しかしながら、還元工程における出発原料
の酸化ニオブ粉末の平均粒径が、上記のように5〜6μ
m程度であるために、還元により得られるニオブ粉末原
料の粒子間の空隙もμmオーダーとなる。この内部の空
隙の存在により、得られるニオブ粉末原料の単位質量あ
たりの比表面積は小さくなり(例えば0.1m2
g)、出発原料の酸化ニオブ粉末の大きい粒径(4μm
程度)が、結果として、キャパシタの電気容量を制限す
る一因になっていた。
However, the average particle size of the starting niobium oxide powder in the reduction step is 5 to 6 μm as described above.
Since it is about m, the voids between particles of the niobium powder raw material obtained by the reduction are also in the μm order. Due to the presence of the voids inside, the specific surface area of the obtained niobium powder raw material per unit mass becomes small (for example, 0.1 m 2 /
g), large particle size of starting niobium oxide powder (4 μm)
However, as a result, it has been a cause of limiting the capacitance of the capacitor.

【0005】[0005]

【発明が解決しようとする課題】本発明は、単位質量あ
たりの比表面積がより大きい(2m2/g程度)酸化ニ
オブ粉末を焼結で得るのに好適で、微細な粒径の酸化ニ
オブ微粒子の製造方法を提供することを課題とする。
The present invention is suitable for obtaining a niobium oxide powder having a larger specific surface area per unit mass (about 2 m 2 / g) by sintering, and niobium oxide fine particles having a fine particle size. It is an object to provide a manufacturing method of

【0006】[0006]

【課題を解決するための手段】本発明者らは、従来の酸
化ニオブ粉末に比べて、より微細な粒径の酸化ニオブ粉
末を得るための検討を進めた結果、1.0μm以下の粒
径(単位質量あたりの比表面積が1.5〜2.5m2
g)を有する酸化ニオブ微粒子を得るに至った。
Means for Solving the Problems As a result of investigations by the present inventors for obtaining a niobium oxide powder having a finer particle size than the conventional niobium oxide powder, a particle size of 1.0 μm or less was obtained. (Specific surface area per unit mass is 1.5 to 2.5 m 2 /
Thus, niobium oxide fine particles having g) are obtained.

【0007】すなわち、本発明の酸化ニオブ微粒子は、
塩化ニオブを不活性ガス気流中で揮発させ、この塩化ニ
オブ蒸気に水蒸気を反応させて気流中で加水分解するこ
とにより得られ、1.0μm以下の微細な粒径を有す
る。
That is, the niobium oxide fine particles of the present invention are
It is obtained by volatilizing niobium chloride in an inert gas stream, reacting this niobium chloride vapor with water vapor, and hydrolyzing it in the stream, and has a fine particle size of 1.0 μm or less.

【0008】本発明の酸化ニオブ微粒子の製造方法は、
塩化ニオブを170〜240℃の温度において揮発さ
せ、得られた塩化ニオブ蒸気からなる原料気流中に、水
蒸気を添加して加水分解し、気流中において粒径1.0
μm以下の酸化ニオブ微粒子を製造する方法である。
The method for producing fine particles of niobium oxide of the present invention comprises:
Niobium chloride is volatilized at a temperature of 170 to 240 ° C., and steam is added to the raw material air stream of the obtained niobium chloride vapor to hydrolyze it, and the particle size is 1.0 in the air stream.
It is a method for producing niobium oxide fine particles having a size of μm or less.

【0009】あるいは、オキシ塩化ニオブを300〜4
00℃の温度において揮発させ、得られたオキシ塩化ニ
オブ蒸気からなる原料気流中に、水蒸気を添加して加水
分解し、気流中において粒径1.0μm以下の酸化ニオ
ブ微粒子を製造する方法である。
Alternatively, 300 to 4 niobium oxychloride is added.
It is a method of producing niobium oxide fine particles having a particle size of 1.0 μm or less in an air stream by volatilizing at a temperature of 00 ° C. and adding water vapor to a raw material air stream made of the obtained niobium oxychloride to hydrolyze. .

【0010】前記の揮発および加水分解を、縦型反応器
内で行い、加水分解する部分の温度が400℃以上であ
ることが望ましい。
The above-mentioned volatilization and hydrolysis are carried out in a vertical reactor, and the temperature of the portion to be hydrolyzed is preferably 400 ° C. or higher.

【0011】また、縦型反応器内で上昇する前記原料気
流内を、前記水蒸気が下方から上方に向かって流れ、得
られる酸化ニオブ微粒子を縦型反応器の上方より吸引し
て回収することが望ましい。
Further, in the raw material air stream rising in the vertical reactor, the water vapor flows from the lower side to the upper side, and the obtained niobium oxide fine particles are sucked and collected from the upper side of the vertical reactor. desirable.

【0012】[0012]

【発明の実施の形態】キャパシタ用電極材料の原料とし
て、酸化ニオブを選んだ場合、酸化ニオブ粉末を焼結
後、アルカリ金属やアルカリ土類金属で還元する。この
とき、酸化ニオブ粉末の単位質量当りの比表面積を大き
くすることにより、換言すれば、酸化ニオブ粉末の平均
粒径を小さくすることにより、ニオブ粉末原料の単位質
量当りの比表面積を大きくすることができる。なお、平
均粒径と、単位質量あたりの比表面積とは、図4に示す
ようような関係がある。すなわち、酸化ニオブ粉末の平
均粒径を1.0μm以下にすれば、ニオブ粉末原料の単
位質量当たりの比表面積を1.5〜2.5m2/gにす
ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION When niobium oxide is selected as a raw material for a capacitor electrode material, niobium oxide powder is sintered and then reduced with an alkali metal or an alkaline earth metal. At this time, by increasing the specific surface area of the niobium oxide powder per unit mass, in other words, by decreasing the average particle size of the niobium oxide powder, increasing the specific surface area of the niobium powder raw material per unit mass. You can The average particle size and the specific surface area per unit mass have a relationship as shown in FIG. That is, if the average particle size of the niobium oxide powder is 1.0 μm or less, the specific surface area per unit mass of the niobium powder raw material can be 1.5 to 2.5 m 2 / g.

【0013】本発明の製造方法は、上記の目的で、平均
粒径が小さい微細な粒径の酸化ニオブ粉末(酸化ニオブ
微粒子)を得る方法であって、不活性ガス気流中で塩化
ニオブを170〜240℃で、あるいはオキシ塩化ニオ
ブを300〜400℃で、加熱することにより揮発さ
せ、400℃以上の高温である気流中に、水蒸気を添加
して加水分解し、気流中で酸化ニオブ微粒子を得る。
For the above-mentioned purpose, the production method of the present invention is a method for obtaining a niobium oxide powder (fine particles of niobium oxide) having a small average particle diameter and fine particles of niobium chloride in an inert gas stream. To 240 ° C. or niobium oxychloride is heated to 300 to 400 ° C. to volatilize, and steam is added to the air stream having a high temperature of 400 ° C. or higher to hydrolyze the niobium oxide fine particles in the air stream. obtain.

【0014】気流中の塩化ニオブ濃度を制御することに
より、加水分解により得られる酸化ニオブ微粒子の平均
粒径を制御することができる。すなわち、図5に示すよ
うに、加水分解気流中の塩化ニオブ濃度と、生成した酸
化ニオブ粒子の平均粒径の関係が得られる。すなわち、
塩化ニオブ濃度が、各々1.5%、1.0%、0.5%
のとき、酸化ニオブ粉末の平均粒径は、各々0.3μ
m、0.2μm、0.1μmのようになる。
By controlling the niobium chloride concentration in the air stream, the average particle size of the niobium oxide fine particles obtained by hydrolysis can be controlled. That is, as shown in FIG. 5, the relationship between the niobium chloride concentration in the hydrolysis gas stream and the average particle size of the generated niobium oxide particles is obtained. That is,
Niobium chloride concentration is 1.5%, 1.0%, 0.5%
, The average particle size of the niobium oxide powder is 0.3 μm
m, 0.2 μm, 0.1 μm.

【0015】また、本発明の方法において、原料の塩化
ニオブを揮発させる温度の上限である240℃と、原料
のオキシ塩化ニオブを揮発させる温度の上限である40
0℃は、それぞれの沸点であり、この上限以上に温度を
上昇させることの効果はない。
In the method of the present invention, the upper limit of the temperature at which the raw material niobium chloride is volatilized is 240 ° C. and the upper limit of the temperature at which the raw material niobium oxychloride is volatilized is 40.
0 ° C. is each boiling point, and there is no effect of raising the temperature above this upper limit.

【0016】また、本発明の方法において、原料の塩化
ニオブを揮発させる温度の下限である170℃と、原料
のオキシ塩化ニオブを揮発させる温度の下限である30
0℃は、工業的に実用的な温度であり、この下限以下に
温度を低下させると、蒸気圧が低下し、反応が進まなく
なる。
In the method of the present invention, the lower limit of the temperature at which the raw material niobium chloride is volatilized is 170 ° C. and the lower limit of the temperature at which the raw material niobium oxychloride is volatilized is 30.
0 ° C. is an industrially practical temperature, and if the temperature is lowered below this lower limit, the vapor pressure will drop and the reaction will not proceed.

【0017】また、加水分解温度を400℃以上とする
のは、塩化ニオブ(NbCl5)が、NbOCl3へ、さ
らにNb25へと、順次変化するので、固体のオキシ塩
化ニオブ(NbOCl3)が存在しない様に、その沸点
以上としておくためである。
Further, the hydrolysis temperature is set to 400 ° C. or higher because the niobium chloride (NbCl 5 ) is sequentially changed to NbOCl 3 and then to Nb 2 O 5 , so that solid niobium oxychloride (NbOCl 3) is used. This is because it is kept above its boiling point so that no) exists.

【0018】さらに、工業的には加水分解温度は600
℃から1000℃程度が好ましい。600℃以下である
と反応が進みにくく、1000℃を超えると、設備の選
定、保守またはエネルギー効率の面からも経済的でな
い。
Further, industrially, the hydrolysis temperature is 600.
C. to 1000.degree. C. are preferable. If it is 600 ° C or lower, the reaction is difficult to proceed, and if it exceeds 1000 ° C, it is not economical from the viewpoint of equipment selection, maintenance or energy efficiency.

【0019】本発明の方法を行なう装置として、前記塩
化ニオブまたはオキシ塩化ニオブの揮発、および下流で
の水蒸気による加水分解を図3に断面図を示すような縦
型反応器内で行い、塩化ニオブまたはオキシ塩化ニオブ
の蒸気からなる原料気流は、縦型反応器内を上昇させ、
水蒸気を、縦型反応器の下方から上方に向かって流して
加水分解を生じさせ、これにより得られる酸化ニオブ微
粒子を縦型反応器の上方より吸引して回収できる装置を
選択した。このような構成とすることは、水蒸気の逆流
を極力防止するためである。水蒸気が逆流すると、塩化
ニオブがオキシ塩化ニオブに変化し、得られる酸化ニオ
ブ微粒子の収率が低下したり、オキシ塩化ニオブが酸化
ニオブ微粒子中に混入することとなる。
As an apparatus for carrying out the method of the present invention, the niobium chloride or niobium oxychloride is volatilized, and the downstream hydrolysis is carried out in a vertical reactor as shown in the sectional view of FIG. Alternatively, a raw material air stream made of niobium oxychloride vapor rises in the vertical reactor,
A device was selected in which water vapor was caused to flow upward from below the vertical reactor to cause hydrolysis, and the niobium oxide fine particles thus obtained could be sucked and collected from above the vertical reactor. This structure is for preventing the reverse flow of water vapor as much as possible. When the water vapor flows backward, niobium chloride is changed to niobium oxychloride, the yield of the obtained niobium oxide fine particles is reduced, and niobium oxychloride is mixed in the niobium oxide fine particles.

【0020】また、本発明の方法において、生産効率を
上昇させるため、加水分解用の水蒸気を多段で吹き込む
方法や、水蒸気を予熱する方法も効果的である。
Further, in the method of the present invention, in order to increase the production efficiency, a method of blowing steam for hydrolysis in multiple stages and a method of preheating the steam are also effective.

【0021】[0021]

【実施例】(実施例1)塩化ニオブ30gを坩堝に入
れ、該坩堝を、縦型に配置した内径70mm×1700
mmの石英管に入れ、内部をアルゴンガスで置換した。
Example 1 Niobium chloride (30 g) was placed in a crucible, and the crucible was arranged in a vertical shape and an inner diameter of 70 mm × 1700.
It was put in a quartz tube of mm and the inside was replaced with argon gas.

【0022】さらに、加水分解を行う加水分解部の温度
を1000℃に昇温した。
Further, the temperature of the hydrolysis part for performing hydrolysis was raised to 1000.degree.

【0023】その後、5L/分のアルゴンガス気流中に
て前記塩化ニオブを185℃に加熱し、前記加水分解部
に、窒素を80℃の水に潜らせて得られた窒素中水蒸気
を200mL/分で流し、窒素中水蒸気と揮発した塩化
ニオブガスとを作用させて加水分解し、生成した微粒子
をフィルターで補集した。
Thereafter, the niobium chloride was heated to 185 ° C. in an argon gas stream of 5 L / min, and 200 mL of water vapor in nitrogen obtained by dipping nitrogen into water at 80 ° C. was added to the hydrolysis part. The mixture was allowed to flow for a minute, hydrolyzed by the action of water vapor and volatilized niobium chloride gas in nitrogen, and the produced fine particles were collected by a filter.

【0024】得られた微粒子は、X線回折の結果、Nb
25であることが確認された。
The obtained fine particles were confirmed to be Nb as a result of X-ray diffraction.
It was confirmed to be 2 O 5 .

【0025】また、表1に示すようにEPMAによる半
定量分析においても、塩素は検出されず、オキシ塩化ニ
オブの存在は確認されなかった。なお、Siが不可避的
に混入していた。
Further, as shown in Table 1, chlorine was not detected and the presence of niobium oxychloride was not confirmed in the semi-quantitative analysis by EPMA. In addition, Si was inevitably mixed.

【0026】[0026]

【表1】 [Table 1]

【0027】得られた微粒子をSEMで観察したとこ
ろ、図1に示すように、粒径0.1μm程度の超微細粒
子が、多数得られたことが確認された。
The SEM observation of the obtained fine particles confirmed that a large number of ultrafine particles having a particle size of about 0.1 μm were obtained as shown in FIG.

【0028】(実施例2)塩化ニオブを加熱する温度
を、200℃とした以外は、実施例1と同様にして、微
粒子を得た。
(Example 2) Fine particles were obtained in the same manner as in Example 1 except that the temperature at which niobium chloride was heated was 200 ° C.

【0029】得られた微粒子は、X線回折の結果、Nb
25であることが確認された。
The obtained fine particles were confirmed to be Nb as a result of X-ray diffraction.
It was confirmed to be 2 O 5 .

【0030】また、表2に示すようにEPMAによる半
定量分析においても、塩素は検出されず、オキシ塩化ニ
オブの存在は確認されなかった。
Also, as shown in Table 2, chlorine was not detected and the presence of niobium oxychloride was not confirmed in the semi-quantitative analysis by EPMA.

【0031】[0031]

【表2】 [Table 2]

【0032】得られた微粒子をSEMで観察したとこ
ろ、図2に示すように、粒径0.1μm以下の超微細粒
子も得られたが、粒径0.1〜1μmの比較的大きな微
粒子も、多数得られた。
When the obtained fine particles were observed by SEM, ultrafine particles having a particle size of 0.1 μm or less were obtained as shown in FIG. 2, but relatively large fine particles having a particle size of 0.1 to 1 μm were also obtained. , Obtained many.

【0033】(実施例3)酸化ニオブ(Nb25)原料
50gに、活性炭を加え、これに塩素ガスを通過させつ
つ、600℃に加熱して塩化した。
Example 3 Activated carbon was added to 50 g of a niobium oxide (Nb 2 O 5 ) raw material, and chlorine gas was passed through the activated carbon to heat it to 600 ° C. for chlorination.

【0034】その結果、得られた混合物には、塩化ニオ
ブNbCl5とオキシ塩化ニオブNbOCl3が混在して
いた。
As a result, the obtained mixture contained niobium chloride NbCl 5 and niobium oxychloride NbOCl 3 .

【0035】得られた混合物約60gを坩堝に入れ、該
坩堝を、縦型に配置した内径70mm×1700mmの
石英管に入れ、内部をアルゴンガスで置換した。
About 60 g of the obtained mixture was placed in a crucible, and the crucible was placed in a quartz tube having an inner diameter of 70 mm × 1700 mm arranged vertically, and the inside was replaced with argon gas.

【0036】さらに、加水分解を行う加水分解部の温度
を1000℃に昇温した。
Further, the temperature of the hydrolysis part for performing hydrolysis was raised to 1000.degree.

【0037】その後、5L/分のアルゴンガス気流中に
て前記混合物を200℃に加熱し、前記加水分解部に、
窒素を80℃の水に潜らせて得られた窒素中水蒸気を2
00mL/分で流し、窒素中水蒸気と揮発したガスとを
作用させて加水分解し、生成した微粒子をフィルターで
補集した。得られた微粒子は、Nb25であることが確
認された。
Thereafter, the mixture was heated to 200 ° C. in an argon gas stream of 5 L / min, and the hydrolysis section was heated to
Water vapor in nitrogen obtained by dipping nitrogen in water at 80 ° C
The mixture was flown at a rate of 00 mL / min, hydrolyzed by allowing water vapor and volatilized gas in nitrogen to act, and the generated fine particles were collected by a filter. It was confirmed that the obtained fine particles were Nb 2 O 5 .

【0038】坩堝内に残留物があり、オキシ塩化ニオブ
NbOCl3であった。これは、200℃の加熱では揮
発しないので、加水分解部に到達しないで残ったものと
思われる。
There was a residue in the crucible, which was niobium oxychloride NbOCl 3 . This does not volatilize by heating at 200 ° C., so it is considered that the residue did not reach the hydrolysis part.

【0039】引き続き、微粒子回収部を切り替えた後、
坩堝内の温度を350℃に加熱し、5L/分のアルゴン
ガス気流中にて揮発させ、加水分解部に、窒素を80℃
の水に潜らせて得られた窒素中水蒸気を200mL/分
で流し、窒素中水蒸気と揮発したガスを作用させて加水
分解した。
Subsequently, after switching the fine particle collecting section,
The temperature in the crucible is heated to 350 ° C, and the mixture is volatilized in an argon gas stream of 5 L / min, and nitrogen is added to the hydrolysis portion at 80 ° C.
The water vapor in nitrogen obtained by dipping in the water was flowed at 200 mL / min, and the water vapor in nitrogen and the vaporized gas were caused to act on each other for hydrolysis.

【0040】その結果、粒径0.1μm以下を多く含む
粒径1μm以下の酸化ニオブ微粒子が得られた。
As a result, niobium oxide fine particles having a particle size of 1 μm or less, which contained a large amount of 0.1 μm or less, were obtained.

【0041】[0041]

【発明の効果】以上、説明したように、本発明の方法に
よれば、従来より単位質量あたりの比表面積が大きい粒
径1.0μm以下の酸化ニオブ微粒子を、容易に得るこ
とができる。
As described above, according to the method of the present invention, it is possible to easily obtain niobium oxide fine particles having a particle size of 1.0 μm or less, which has a larger specific surface area per unit mass than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で得られた微粒子のSEM観察写真
である。
FIG. 1 is a SEM observation photograph of fine particles obtained in Example 1.

【図2】 実施例2で得られた微粒子のSEM観察写真
である。
FIG. 2 is an SEM observation photograph of fine particles obtained in Example 2.

【図3】 塩化ニオブの加熱部と、加水分解部との関係
を示す断面図である。
FIG. 3 is a cross-sectional view showing the relationship between a niobium chloride heating part and a hydrolysis part.

【図4】 酸化ニオブ粉末の平均粒径と単位質量あたり
の比表面積との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the average particle size of niobium oxide powder and the specific surface area per unit mass.

【図5】 加水分解気流中の塩化ニオブ濃度と、生成し
た酸化ニオブ粒子の平均粒径の関係を示すグラフであ
る。
FIG. 5 is a graph showing the relationship between the concentration of niobium chloride in the hydrolysis stream and the average particle size of the generated niobium oxide particles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金坂 淳 愛媛県新居浜市磯浦町17−5 住友金属鉱 山株式会社新居浜研究所内 (72)発明者 高橋 洋孝 愛媛県新居浜市西原町3−5−3 住友金 属鉱山株式会社別子事業所内 Fターム(参考) 4G048 AA02 AB02 AC08 AD03 AE06   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Atsushi Kanasaka             17-5 Isoura-cho, Niihama-shi, Ehime Sumitomo Metal Ore             Niihama Research Center, Yama Co., Ltd. (72) Inventor Hirotaka Takahashi             3-5-3 Nishihara-cho, Niihama-shi, Ehime Sumitomo Kin             Besshi Works, Inc. F-term (reference) 4G048 AA02 AB02 AC08 AD03 AE06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩化ニオブを170〜240℃の温度に
おいて揮発させ、得られた塩化ニオブ蒸気からなる原料
気流中に、水蒸気を添加して加水分解し、気流中におい
て粒径1.0μm以下の酸化ニオブ微粒子を得ることを
特徴とする酸化ニオブ微粒子の製造方法。
1. Niobium chloride is volatilized at a temperature of 170 to 240 ° C., and steam is added to the raw material stream of the obtained niobium chloride vapor to hydrolyze it. A method for producing fine particles of niobium oxide, which comprises obtaining fine particles of niobium oxide.
【請求項2】 オキシ塩化ニオブを300〜400℃の
温度において揮発させ、得られたオキシ塩化ニオブ蒸気
からなる原料気流中に、水蒸気を添加して加水分解し、
気流中において粒径1.0μm以下の酸化ニオブ微粒子
を得ることを特徴とする酸化ニオブ微粒子の製造方法。
2. Niobium oxychloride is volatilized at a temperature of 300 to 400.degree. C., and steam is added to the raw material stream of the obtained niobium oxychloride vapor for hydrolysis.
A method for producing fine niobium oxide particles, which comprises obtaining fine niobium oxide particles having a particle size of 1.0 μm or less in an air stream.
【請求項3】 前記の揮発および加水分解を、縦型反応
器内で行い、加水分解する部分の温度が400℃以上で
あることを特徴とする請求項1または2に記載の酸化ニ
オブ微粒子の製造方法。
3. The niobium oxide fine particles according to claim 1 or 2, wherein the volatilization and hydrolysis are carried out in a vertical reactor, and the temperature of the portion to be hydrolyzed is 400 ° C. or higher. Production method.
【請求項4】 縦型反応器内で、上昇する前記原料気流
内を、前記水蒸気が下方から上方に向かって流れ、加水
分解を生じさせ、これにより得られる酸化ニオブ微粒子
を縦型反応器の上方より吸引して回収することを特徴と
する請求項3に記載の酸化ニオブ微粒子の製造方法。
4. In the vertical reactor, the water vapor flows upward from the lower stream in the ascending raw material stream to cause hydrolysis, and the niobium oxide fine particles obtained by the hydrolysis are generated in the vertical reactor. The method for producing niobium oxide fine particles according to claim 3, wherein the fine particles are suctioned and collected from above.
JP2002072382A 2002-03-15 2002-03-15 Method for producing fine particle of niobium oxide Pending JP2003267728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002072382A JP2003267728A (en) 2002-03-15 2002-03-15 Method for producing fine particle of niobium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002072382A JP2003267728A (en) 2002-03-15 2002-03-15 Method for producing fine particle of niobium oxide

Publications (1)

Publication Number Publication Date
JP2003267728A true JP2003267728A (en) 2003-09-25

Family

ID=29202391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002072382A Pending JP2003267728A (en) 2002-03-15 2002-03-15 Method for producing fine particle of niobium oxide

Country Status (1)

Country Link
JP (1) JP2003267728A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073675A (en) * 2007-09-18 2009-04-09 Mitsui Mining & Smelting Co Ltd Metal oxide powder and method for producing the same
CN116443927A (en) * 2023-02-24 2023-07-18 浙江农林大学 Method for synthesizing mesoporous niobium pentoxide with high specific surface area by one-pot method
CN116514169A (en) * 2023-05-05 2023-08-01 南京工业大学 Niobium oxychloride-based composite positive electrode material for chloride ion battery and preparation method thereof
KR20230116777A (en) 2020-12-08 2023-08-04 디아이씨 가부시끼가이샤 Niobium oxide particles and method for producing niobium oxide particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009073675A (en) * 2007-09-18 2009-04-09 Mitsui Mining & Smelting Co Ltd Metal oxide powder and method for producing the same
KR20230116777A (en) 2020-12-08 2023-08-04 디아이씨 가부시끼가이샤 Niobium oxide particles and method for producing niobium oxide particles
DE112020007825T5 (en) 2020-12-08 2023-09-28 Dic Corporation NIOBOXIDE PARTICLES AND METHOD FOR PRODUCING NIOBOXIDE PARTICLES
CN116443927A (en) * 2023-02-24 2023-07-18 浙江农林大学 Method for synthesizing mesoporous niobium pentoxide with high specific surface area by one-pot method
CN116514169A (en) * 2023-05-05 2023-08-01 南京工业大学 Niobium oxychloride-based composite positive electrode material for chloride ion battery and preparation method thereof
CN116514169B (en) * 2023-05-05 2024-04-05 南京工业大学 Niobium oxychloride-based composite positive electrode material for chloride ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
CN108640153B (en) Method for preparing high-purity niobium oxide from niobium-tantalum-iron alloy
CN107287432B (en) A method of recycling zinc, copper, cadmium from the copper-cadmium slag of zinc hydrometallurgy
JP6011809B2 (en) Method for producing gold powder with high bulk density
JP6539922B1 (en) Method for producing nickel sulfate compound
JP2017119901A (en) Recovery method of titanium oxide for metal titanium production from ilmenite ore
JP4747286B2 (en) Fine tin oxide powder and its production method and use
JP2007530410A (en) Circulating vacuum chlorination process including lithium extraction
JP2003267728A (en) Method for producing fine particle of niobium oxide
CN111621646A (en) Zinc dross recycling method
WO2020174976A1 (en) Method for producing titanium powder, method for producing sponge titanium, titanium powder and gas collection device
CN102274978B (en) Method for quickly wet-process refining non-standard coarse gold powder
JP2894725B2 (en) Recovery method of high purity tantalum and its derivatives from tantalum scrap
JP7370919B2 (en) How to extract Sc
JP4715598B2 (en) Chloride leaching method of lead electrolysis slime
JP5881502B2 (en) Ruthenium recovery method
JP2011089176A (en) Method for refining molybdenum
JP5881469B2 (en) Ruthenium recovery method
JP2000144275A (en) Method for recovering rare earth element
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
JP2017179563A (en) Method for treating denitration catalyst
CN110482495B (en) Device and method for purifying crude selenium through oxidation-evaporation-carbothermic reduction
JP2021172843A (en) Method for recovering rare metal
JP2021172845A (en) Method for recovering rare metal
WO2014073399A1 (en) Method for separating heavy metals from glass
JP2006233317A (en) Recovering method of gold