JP2003258073A - Plasma treatment apparatus and sample stage therefor - Google Patents

Plasma treatment apparatus and sample stage therefor

Info

Publication number
JP2003258073A
JP2003258073A JP2002054896A JP2002054896A JP2003258073A JP 2003258073 A JP2003258073 A JP 2003258073A JP 2002054896 A JP2002054896 A JP 2002054896A JP 2002054896 A JP2002054896 A JP 2002054896A JP 2003258073 A JP2003258073 A JP 2003258073A
Authority
JP
Japan
Prior art keywords
sample stage
wafer
dielectric film
groove
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002054896A
Other languages
Japanese (ja)
Inventor
Tsutomu Tauchi
勤 田内
Minoru Yatomi
実 矢富
Masamichi Sakaguchi
正道 坂口
Yasuyuki Miyamoto
泰之 宮本
Hideki Kihara
秀樹 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2002054896A priority Critical patent/JP2003258073A/en
Publication of JP2003258073A publication Critical patent/JP2003258073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment apparatus for uniformly treating by plasma an object being treated, such as a wafer or the like, which, in particular, uniformly performs treatment to the object that has an insulator, such as a quartz wafer or the like, as a substrate thereof by suitably adjusting the depth of a groove in a dielectric film for static absorption provided on a sample stage, and to provide a sample stage therefor. <P>SOLUTION: In the plasma treatment apparatus for treating by plasma 5 the object being treated such as the wafer 6 or the like, the depth of the groove for coolant gas provided at the dielectric film is reduced to 10% of the dielectric film or below, and thereby the distribution of application of high frequency from the underside of the dielectric of the sample stage to the object being treated on the insulation substrate is substantially uniformed and the object being treated is uniformly treated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、減圧雰囲気におい
て、プラズマによりウェハ等の被処理物を処理するプラ
ズマ処理装置に係り、特にその試料台表面に設けられた
静電吸着のための誘電体膜内の溝深さを適正なものとす
ることにより、処理すべき石英ウェハ等の絶縁体を基板
とする被処理物を、均一に処理するプラズマ処理装置及
びその試料台に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus for processing an object to be processed such as a wafer by plasma in a reduced pressure atmosphere, and particularly to a dielectric film for electrostatic adsorption provided on the surface of a sample table. The present invention relates to a plasma processing apparatus for uniformly processing an object to be processed having an insulator such as a quartz wafer to be processed as a substrate by setting an appropriate groove depth therein, and a sample stage thereof.

【0002】[0002]

【従来の技術】一般に、ウエハ等を処理するプラズマ処
理装置は、有磁場マイクロ波エッチング装置の場合、プ
ラズマ処理室上方からマイクロ波を処理室へ放射するマ
イクロ波発生装置と、同処理室下部にウエハを載置する
試料台と、同試料台の電極へ高周波を印加する高周波電
源と、処理室上部の外周部に磁場コイルとを設け、マイ
クロ波発生装置より放射されるマイクロ波と磁場コイル
による磁場との相互作用により、処理室内部に導入され
た処理ガスをプラズマ化し、ウエハの処理を行ってい
た。
2. Description of the Related Art Generally, in the case of a magnetic field microwave etching apparatus, a plasma processing apparatus for processing a wafer or the like has a microwave generator for radiating microwaves from above the plasma processing chamber to the processing chamber and a microwave processing apparatus at the bottom of the processing chamber. A sample stage on which a wafer is placed, a high-frequency power source for applying a high frequency to the electrodes of the sample stage, and a magnetic field coil on the outer peripheral part of the upper part of the processing chamber are provided, and microwaves radiated from a microwave generator and magnetic field coils Due to the interaction with the magnetic field, the processing gas introduced into the processing chamber is turned into plasma to process the wafer.

【0003】この種のプラズマ処理装置においては、ウ
エハを均一に処理するため、ウエハの温度は所定の温度
で、しかも均一に調整する必要がある。
In this type of plasma processing apparatus, in order to process a wafer uniformly, it is necessary to adjust the temperature of the wafer to a predetermined temperature and evenly.

【0004】このため、例えば特公昭56−53853
号公報又は特公昭57−44747号公報記載のもので
は、試料台上のウェハの温度分布を均一にするため、静
電吸着手段を用いてウエハを試料台上に静電吸着し、プ
ラズマにより処理することが提案されている。
For this reason, for example, Japanese Patent Publication No. 56-53853.
In JP-B No. 57-44747 or JP-B No. 57-44747, in order to make the temperature distribution of the wafer on the sample table uniform, the wafer is electrostatically adsorbed on the sample table using electrostatic adsorption means and processed by plasma. It is suggested to do so.

【0005】また、例えば特開昭58−32410号公
報又は特開昭60−115226号公報に記載のよう
に、試料台と基板との熱伝導を良くするため、試料台に
1系統の冷媒を導入し、静電吸着手段で基板を試料台上
に静電吸着した後、基板裏面に冷却ガスを導入してガス
の熱伝導、自由対流、強制対流を利用して、ウエハを加
熱あるいは冷却しながら処理することが提案されてい
る。
Further, as described in, for example, Japanese Patent Application Laid-Open No. 58-32410 or Japanese Patent Application Laid-Open No. 60-115226, in order to improve heat conduction between the sample table and the substrate, one system of refrigerant is provided on the sample table. After introducing and electrostatically adsorbing the substrate on the sample table by electrostatic adsorption means, a cooling gas is introduced on the back surface of the substrate to heat or cool the wafer by utilizing heat conduction, free convection and forced convection of the gas. While it is proposed to process.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、試料台
に設置される被処理物が絶縁基板を有している場合、上
記従来技術では、絶縁基板上に備えられた被処理物に高
周波を印加し、被処理物を均一に処理するための配慮が
されているとはいえなかった。
However, when the object to be processed installed on the sample table has an insulating substrate, the above-mentioned conventional technique applies a high frequency to the object to be processed provided on the insulating substrate. However, it cannot be said that consideration was given to uniformly treating the object to be treated.

【0007】すなわち、被処理物が絶縁基板上に備えら
れている場合、静電吸着のための誘電体膜に冷却ガスを
導く溝等が存在すると、この溝等は印加される高周波に
対し、インピーダンスとして作用するので、この溝の部
分と絶縁基板裏面が接触している島の部分とでインピー
ダンスが異なり、この絶縁基板に沿って横方向に電荷の
移動は抑制されるので、絶縁基板の場所によって処理速
度が異なり、絶縁基板上の被処理物が均一に処理されな
いという問題が生じていた。
That is, when the object to be processed is provided on the insulating substrate, if a groove or the like for guiding the cooling gas is present in the dielectric film for electrostatic attraction, the groove or the like is applied to the applied high frequency. Since it acts as an impedance, impedance is different between this groove part and the island part where the back surface of the insulating substrate is in contact, and the movement of charges is suppressed laterally along this insulating substrate. Depending on the processing speed, the problem is that the object to be processed on the insulating substrate is not uniformly processed.

【0008】本発明の目的は、被処理物の不均一な処理
を低減できるプラズマ処理装置を提供することにある。
An object of the present invention is to provide a plasma processing apparatus capable of reducing non-uniform processing of an object to be processed.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明のプラズマ処理装置は、処理時に試料台と絶
縁体上に処理対象の部材を備えた被処理基板との間にガ
スを媒体とした冷却を行なうプラズマ処理装置におい
て、前記ガスの分配のために前記試料台表面に設けられ
る静電吸着用誘電体膜の溝深さを、誘電体膜の厚さの1
0%以下とするものである。
In order to achieve the above object, the plasma processing apparatus of the present invention uses a gas between a sample stage and a substrate having a member to be processed on an insulator during processing. In a plasma processing apparatus for cooling using a medium as a medium, the groove depth of the electrostatic attraction dielectric film provided on the surface of the sample table for the distribution of the gas is set to 1 of the thickness of the dielectric film.
It should be 0% or less.

【0010】[0010]

【発明の実施の形態】以下、図面に例示するところに従
い、本発明の実施例を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1及び図2は、いずれも本発明に係る有
磁場マイクロ波エッチング装置の全体的構成を示すもの
であり、これらの図において、処理室3内には図1に示
すように、マグネトロン18により発生したマイクロ波
が導入され、ソレノイドコイル17との相互作用によ
り、ガス導入口2より処理室3へ導入された処理ガスが
プラズマ化される。
1 and 2 show the overall structure of the magnetic field microwave etching apparatus according to the present invention. In these figures, the inside of the processing chamber 3 is as shown in FIG. The microwave generated by the magnetron 18 is introduced, and by interaction with the solenoid coil 17, the processing gas introduced into the processing chamber 3 from the gas inlet 2 is turned into plasma.

【0012】処理室3は、真空ポンプ16により処理ガ
スを排気できるようにしてあり、所定の減圧雰囲気にお
いて、被処理物のプラズマによる処理が行えるようにな
っている。
The processing chamber 3 is designed so that a processing gas can be exhausted by a vacuum pump 16 so that the object to be processed can be processed by plasma in a predetermined reduced pressure atmosphere.

【0013】処理室3の詳細は図2に示すが、処理室の
上端はセラミック又は石英等からなるマイクロ波導入窓
1で構成され、内部に絶縁基板、例えば石英ウエハ6の
載置される試料台4が備えられている。
The details of the processing chamber 3 are shown in FIG. 2. The upper end of the processing chamber is composed of a microwave introduction window 1 made of ceramic or quartz, and an insulating substrate, for example, a quartz wafer 6 is mounted on the sample. A stand 4 is provided.

【0014】試料台4は、アルミ製の電極部材の上に、
静電吸着のためのアルミナセラミックス等の誘電体膜が
溶射されており、外周部にアルミナ又は石英等で形成さ
れる試料台カバー8が被せてある。
The sample table 4 is mounted on an electrode member made of aluminum.
A dielectric film such as alumina ceramics for electrostatic adsorption is sprayed, and a sample table cover 8 made of alumina, quartz, or the like is covered on the outer peripheral portion.

【0015】試料台4の下面には、冷媒を流すための溝
が表面の温度分布を考慮して設けられ、この冷媒溝の両
端には、導入口9a及び出口9bが温度調整循環器10
に接続されるよう形成されている。
On the lower surface of the sample table 4, a groove for flowing a refrigerant is provided in consideration of the temperature distribution on the surface, and an inlet 9a and an outlet 9b are provided at both ends of the refrigerant groove, and a temperature control circulator 10 is provided.
Is formed to be connected to.

【0016】また、試料台4の電極部材は、絶縁軸13
内を介して直流電源11及び高周波電源12に接続さ
れ、この直流電源11により、誘電体膜15に直流電圧
が印加され、その誘電体膜15の静電吸着力により、ウ
エハ6の保持が行われる。
The electrode member of the sample table 4 is the insulating shaft 13
It is connected to a DC power supply 11 and a high frequency power supply 12 through the inside, and a DC voltage is applied to the dielectric film 15 by this DC power supply 11, and the electrostatic attraction force of the dielectric film 15 holds the wafer 6. Be seen.

【0017】さらに、高周波電源12のバイアス電力を
調整することにより、プラズマ中のイオン及びラジカル
を制御して被処理物の処理を行っている。
Further, by adjusting the bias power of the high frequency power source 12, the ions and radicals in the plasma are controlled to process the object to be processed.

【0018】絶縁軸13内には、試料台4の中央部の穴
を経てウエハ6の載置面に達する伝熱ガス供給路が形成
されており、この伝熱ガス供給路の下端には、伝熱ガス
導入管が接続され、Heなどの冷却ガスが、ウエハ載置
面とウエハ6間の伝熱ガス圧力が所定値になるよう、伝
熱ガス圧力制御系7によりその供給量が制御されてい
る。
A heat transfer gas supply passage is formed in the insulating shaft 13 to reach the mounting surface of the wafer 6 through a hole in the center of the sample table 4. At the lower end of the heat transfer gas supply passage, The heat transfer gas introduction pipe is connected, and the supply amount of the cooling gas such as He is controlled by the heat transfer gas pressure control system 7 so that the heat transfer gas pressure between the wafer mounting surface and the wafer 6 becomes a predetermined value. ing.

【0019】図3又は図4に示されるような、試料台4
の表面に設けられる冷却ガス用の溝14は、従来は冷却
ガスの圧力分布及び溝14の加工し易さなどから、溝の
深さ及び形状が決定しており、高周波電源12により印
加される高周波の電圧によって得られるウエハの加工を
より均一にするという配慮はなされていなかった。
A sample table 4 as shown in FIG. 3 or FIG.
Conventionally, the depth and shape of the groove 14 for cooling gas provided on the surface of the cooling gas have been determined based on the pressure distribution of the cooling gas, the ease of processing the groove 14, etc., and are applied by the high frequency power source 12. No consideration was given to making the processing of the wafer obtained by the high frequency voltage more uniform.

【0020】すなわち、ウエハ6がシリコン等の導電性
であれば、ウエハ6の内部で高周波が電気的に均一とな
り問題とならないが、ウエハ6が石英又はセラミック等
の絶縁体で形成される場合、ウエハ6内での電気的導通
性は無く、試料台4とウエハ6上の被処理物間の高周波
に対するインピーダンス成分が均一とはならず、ウエハ
を均一に処理する上で問題を生ずることになる。
That is, if the wafer 6 is made of a conductive material such as silicon, the high frequency is electrically uniform inside the wafer 6 and there is no problem. However, when the wafer 6 is made of an insulator such as quartz or ceramic, There is no electrical conductivity in the wafer 6, and the impedance component for the high frequency between the sample table 4 and the object to be processed on the wafer 6 is not uniform, which causes a problem in uniformly processing the wafer. .

【0021】つまり、表面溝14は電気的には高周波に
対しインピーダンス成分となることから、溝の有無によ
りその上のウエハの電位が異なることになる。
That is, since the surface groove 14 electrically becomes an impedance component with respect to a high frequency, the potential of the wafer on the groove varies depending on the presence or absence of the groove.

【0022】一方で、このインピーダンス成分を均一に
するには、表面溝14のない試料台4を製作すればよい
のであるが、ウエハ6の冷却のために冷却ガスは必要で
あり、溝を廃止することはできない。
On the other hand, in order to make this impedance component uniform, it is sufficient to fabricate the sample stage 4 without the surface groove 14, but a cooling gas is necessary for cooling the wafer 6, and the groove is eliminated. You cannot do it.

【0023】実験の結果によれば、試料台上のガス溝1
4の深さを試料台4の表面に設けられた誘電体膜15の
厚さの10%以下にすることにより、被処理物をほぼ均
一に加工できることが分かった。
According to the result of the experiment, the gas groove 1 on the sample table 1
It has been found that by setting the depth of 4 to 10% or less of the thickness of the dielectric film 15 provided on the surface of the sample table 4, the object to be processed can be processed substantially uniformly.

【0024】例えば、誘電体膜15の厚さが300μm
の場合、試料台上のガス溝14の深さを30μm以下に
すれば、ウエハ6をほぼ均一に処理を行うことができ
る。
For example, the thickness of the dielectric film 15 is 300 μm.
In this case, if the depth of the gas groove 14 on the sample table is set to 30 μm or less, the wafer 6 can be processed substantially uniformly.

【0025】図5に本実施例におけるウエハ6の処理速
度とガス溝14の深さとの関係を示す。
FIG. 5 shows the relationship between the processing speed of the wafer 6 and the depth of the gas groove 14 in this embodiment.

【0026】図によれば、処理速度は溝深さが膜厚さの
10%を超えた範囲で急激に減少するが、誘電体膜の厚
さに対する溝深さを10%以下とすることにより、処理
速度を島部と溝部でほぼ同じとすることが可能となり、
基板の処理を均一に行えることが分かる。
According to the figure, the processing speed sharply decreases in the range where the groove depth exceeds 10% of the film thickness, but by setting the groove depth to the thickness of the dielectric film to 10% or less, , The processing speed can be made almost the same for the island and the groove,
It can be seen that the substrate can be uniformly processed.

【0027】なお、図中◆で示すデータは、誘電体膜厚
さが600μmの場合、図中■で示すデータは、誘電体
膜厚さが300μmの場合で、いずれも溝の形状を後述
する角形状としたデータを表している。
The data indicated by ♦ in the figure is for the case where the dielectric film thickness is 600 μm, and the data indicated by ▪ in the figure is for the case where the dielectric film thickness is 300 μm. The data is shown as a rectangular shape.

【0028】図5におけるこのような特徴は、図6に示
すように、ウエハ6の処理速度と印加される高周波のパ
ワーとの間に、ある値以上の高周波パワーを印加しない
と大きな処理速度が得られないという点、あるいはその
値以上の高周波パワーの範囲ではパワーが大きくなると
処理速度も大きくなるという点の特徴があり、この点を
利用すると、ガス溝深さ14を誘電体膜15の厚さの1
0%以下にすることにより、島部と溝部の処理速度を、
現実には差を生じない領域で使用できるからである。
As shown in FIG. 6, such a characteristic in FIG. 5 has a large processing speed unless a high frequency power of a certain value or more is applied between the processing speed of the wafer 6 and the applied high frequency power. There is a feature that it cannot be obtained, or the processing speed increases as the power increases in the range of the high frequency power above that value. By utilizing this point, the gas groove depth 14 can be set to the thickness of the dielectric film 15. Sano 1
By setting it to 0% or less, the processing speed of the island and the groove is
This is because it can be used in an area where there is no difference in reality.

【0029】つまり、溝が存在すると、これにより印加
される高周波の電圧に対して抵抗が大きくなる。
That is, the presence of the groove increases the resistance to the high-frequency voltage applied by the groove.

【0030】本実施例では、誘電体膜厚さに対して溝の
最深部の深さを10%より大きくすると、上記抵抗によ
り処理速度を大きく損なってしまうことになる。
In this embodiment, if the depth of the deepest part of the groove is larger than 10% with respect to the thickness of the dielectric film, the processing speed will be greatly impaired by the resistance.

【0031】なお、試料台上の実際のガス溝14の深さ
は、冷却の効率をも考慮し、ウェハ6の温度分布との関
係などから決定すればよいが、温度分布は、試料台上の
ガス溝14の深さ、本数、ガスの供給元圧などにより決
定されるため、最適なバランスを考えて決定すればよ
く、本実施例では誘電体膜厚さ300μmに対し20μ
mとしている。
The actual depth of the gas groove 14 on the sample table may be determined from the relationship with the temperature distribution of the wafer 6 in consideration of the cooling efficiency as well. Since it is determined by the depth of the gas grooves 14, the number of the gas grooves 14, the pressure of the gas supply source, etc., it may be determined in consideration of the optimum balance.
m.

【0032】図4に、本実施例におけるガス溝14のパ
ターンの一例を示す。
FIG. 4 shows an example of the pattern of the gas grooves 14 in this embodiment.

【0033】本実施例では、中央にHe導入口19を設
け、放射状に円周方向に広がるパターンとしたが、He
導入口19が外周にあり、中心方向に流れる方式でも、
ウエハ6の処理を均一に行なうことが可能である。
In the present embodiment, the He introduction port 19 is provided in the center so as to radially spread in the circumferential direction.
Even if the system has the inlet 19 on the outer circumference and flows toward the center,
It is possible to uniformly process the wafer 6.

【0034】また、図7、図8又は図9に示すように、
ガス溝14の形状は、角形状、三角形状又は丸形状で
も、問題なく処理を行なうことが出来る。
Further, as shown in FIG. 7, FIG. 8 or FIG.
The gas groove 14 may have a square shape, a triangular shape, or a round shape, and the treatment can be performed without any problem.

【0035】次に、本発明は、有磁場マイクロ波エッチ
ング装置以外の方式の処理装置、例えば平行平板形のR
IE装置にも適用できる。
Next, the present invention relates to a processing apparatus other than the magnetic field microwave etching apparatus, for example, a parallel plate type R.
It can also be applied to the IE device.

【0036】その場合、有磁場マイクロ波エッチング装
置と異なるところは、マイクロ波とソレノイドの磁場の
相互作用によりプラズマを生成する替わりに、試料台4
に対向する上部電極を設けて、この電極間にバイアス印
加用高周波電源により高周波を印加してプラズマを生成
するようにしたところである。
In that case, the difference from the magnetic field microwave etching apparatus is that instead of generating plasma by the interaction between the microwave and the magnetic field of the solenoid, the sample stage 4 is used.
An upper electrode opposed to the above is provided, and high frequency is applied between the electrodes by a high frequency power source for bias application to generate plasma.

【0037】前述した実施例とはプラズマの生成方法が
異なるだけで、試料台4を上記各実施例と同様に構成す
ることにより、同様なエッチング処理を行うことができ
る。
The same etching process can be performed by configuring the sample stage 4 in the same manner as in each of the above-described embodiments except that the plasma generation method is different from that in the above-described embodiments.

【0038】また、上述した実施例では説明を省略した
が、ウエハを試料台へ吸着する静電吸着手段として、試
料台4を単極としウエハ6びプラズマ5を介して閉じた
回路を形成するいわゆる単極方式のほか、試料台4自体
を双極とし試料台4及びウエハ6のみで閉じた回路を形
成するいわゆる双極方式を採用することもできる。
Although not described in the above-mentioned embodiment, as the electrostatic attraction means for attracting the wafer to the sample stage, the sample stage 4 is a single pole and a closed circuit is formed via the wafer 6 and the plasma 5. In addition to the so-called monopolar method, a so-called bipolar method in which the sample table 4 itself is bipolar and a closed circuit is formed only by the sample table 4 and the wafer 6 can be adopted.

【0039】上記双極方式を採用することで、単極方式
のようにプラズマを介した閉じた回路を形成する必要は
なく、静電吸着手段の構成を簡略化でき、使い勝手を向
上させることができる。
By adopting the above-mentioned bipolar system, it is not necessary to form a closed circuit via plasma as in the monopolar system, the structure of the electrostatic attraction means can be simplified and the usability can be improved. .

【0040】以上説明したように、本発明は、ウエハ等
の絶縁基板の場合、高周波を印加しながら、プラズマに
より被処理物を処理する処理装置の試料台に広く適用す
ることができる。
As described above, in the case of an insulating substrate such as a wafer, the present invention can be widely applied to a sample stage of a processing apparatus that processes an object to be processed with plasma while applying a high frequency.

【0041】[0041]

【発明の効果】以上のように本発明によれば、試料台表
面の誘電体膜に設けられた冷却ガス用の溝の深さを誘電
体膜の厚さの10%以下にすることにより、試料台の誘
電体下面から絶縁基板上の被処理物への高周波の印加分
布をほぼ均一にし、被処理物の処理を均一に行なうこと
ができる。
As described above, according to the present invention, the depth of the groove for cooling gas provided in the dielectric film on the surface of the sample table is set to 10% or less of the thickness of the dielectric film. The high frequency application distribution from the lower surface of the dielectric of the sample table to the object to be processed on the insulating substrate can be made substantially uniform, and the object to be processed can be uniformly processed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る有磁場マイクロ波エッチング装
置の一実施例を示す全体図
FIG. 1 is an overall view showing an embodiment of a magnetic field microwave etching apparatus according to the present invention.

【図2】 図1における処理室の詳細を示す拡大図FIG. 2 is an enlarged view showing details of a processing chamber in FIG.

【図3】 図2における試料台表面を示す拡大図FIG. 3 is an enlarged view showing the surface of the sample table in FIG.

【図4】 試料台表面のガス溝パターンの一例を示す平
面図
FIG. 4 is a plan view showing an example of a gas groove pattern on the surface of the sample table.

【図5】 処理速度と溝深さの関係を示すグラフFIG. 5 is a graph showing the relationship between processing speed and groove depth.

【図6】 処理速度と高周波パワーの関係を示すグラフFIG. 6 is a graph showing the relationship between processing speed and high frequency power.

【図7】 誘電体膜部のガス溝の一例としての角溝形状
を示す拡大断面図
FIG. 7 is an enlarged cross-sectional view showing a square groove shape as an example of a gas groove of a dielectric film portion.

【図8】 誘電体膜部のガス溝の一例としての三角溝形
状を示す拡大断面図
FIG. 8 is an enlarged cross-sectional view showing a triangular groove shape as an example of gas grooves in the dielectric film portion.

【図9】 誘電体膜部のガス溝の一例としての丸溝形状
を示す拡大断面図
FIG. 9 is an enlarged cross-sectional view showing a circular groove shape as an example of a gas groove of a dielectric film portion.

【符号の説明】[Explanation of symbols]

1・・・マイクロ波導入窓、2・・・ガス導入口、3・
・・処理室、4・・・試料台、5・・・プラズマ、6・
・・ウエハ、7・・・伝熱ガス圧力制御系、8・・・試
料台カバー、9a・・・導入口、9b・・・出口、10
・・・温度調節循環器、11・・・直流電源、12・・
・高周波電源、13…絶縁軸、14・・・試料台上のガ
ス溝、15…誘電体膜、16…真空ポンプ、17…ソレ
ノイドコイル、18…マグネトロン、19…He導入口
1 ... Microwave introduction window, 2 ... Gas introduction port, 3 ...
..Processing chamber, 4 ... sample stage, 5 ... plasma, 6 ...
..Wafer, 7 ... Heat transfer gas pressure control system, 8 ... Sample stand cover, 9a ... Inlet port, 9b ... Outlet, 10
... Temperature control circulator, 11 ... DC power supply, 12 ...
・ High frequency power source, 13 ... Insulating shaft, 14 ... Gas groove on sample base, 15 ... Dielectric film, 16 ... Vacuum pump, 17 ... Solenoid coil, 18 ... Magnetron, 19 ... He inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂口 正道 山口県下松市大字東豊井794番地 日立笠 戸エンジニアリング株式会社機器設計部内 (72)発明者 宮本 泰之 山口県下松市大字東豊井794番地 日立笠 戸エンジニアリング株式会社機器設計部内 (72)発明者 木原 秀樹 山口県下松市大字東豊井794番地 株式会 社日立ハイテクノロジーズ笠戸事業所内 Fターム(参考) 4K030 FA02 GA02 JA01 5F004 AA01 BA16 BB18 BB22 BB25 CA06 5F031 HA18 HA38 HA40 MA28 MA32   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masamichi Sakaguchi             Hitachi-Kasa, 794 Higashi-Toyoi, Kudamatsu City, Yamaguchi Prefecture             To Engineering Co., Ltd. (72) Inventor Yasuyuki Miyamoto             Hitachi-Kasa, 794 Higashi-Toyoi, Kudamatsu City, Yamaguchi Prefecture             To Engineering Co., Ltd. (72) Inventor Hideki Kihara             Yamaguchi Prefecture Kudamatsu City Oita Toyoi 794 Stock Association             Hitachi High-Technologies Kasado Works F-term (reference) 4K030 FA02 GA02 JA01                 5F004 AA01 BA16 BB18 BB22 BB25                       CA06                 5F031 HA18 HA38 HA40 MA28 MA32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 処理時に試料台と絶縁体上に処理対象の
部材を備えた被処理基板との間にガスを媒体とした冷却
を行なうプラズマ処理装置において、前記ガスの分配の
ために前記試料台表面に設けられる静電吸着用誘電体膜
の溝深さを、誘電体膜の厚さの10%以下とすることを
特徴としたプラズマ処理装置。
1. A plasma processing apparatus for performing cooling with a gas as a medium between a sample stage and a substrate to be processed having a member to be processed on an insulator at the time of processing, wherein the sample is distributed for distributing the gas. A plasma processing apparatus characterized in that a groove depth of the electrostatic attraction dielectric film provided on the surface of the table is 10% or less of the thickness of the dielectric film.
【請求項2】 処理時に試料台と絶縁体を備えた処理す
べき基板の間にガスを媒体とした冷却を行なう試料台に
おいて、前記ガスの分配のために前記試料台表面に設け
られる静電吸着用誘電体膜の溝深さを、当該誘電体膜の
厚さの10%以下とすることを特徴とする絶縁体基板用
の試料台。
2. A sample stage for performing cooling with a gas as a medium between a sample stage and a substrate to be processed having an insulator at the time of processing, wherein an electrostatic provided on the surface of the sample stage for distributing the gas. A sample stage for an insulating substrate, wherein the groove depth of the dielectric film for adsorption is 10% or less of the thickness of the dielectric film.
【請求項3】 静電吸着用誘電体膜の前記溝は、互いに
離間し同心円上に配置されていることを特徴とする請求
項2記載の試料台。
3. The sample stage according to claim 2, wherein the grooves of the electrostatic attraction dielectric film are spaced apart from each other and arranged concentrically.
【請求項4】 前記試料台の静電吸着が双極方式で行わ
れていることを特徴とする請求項2記載の試料台。
4. The sample stage according to claim 2, wherein electrostatic attraction of the sample stage is performed by a bipolar method.
JP2002054896A 2002-02-28 2002-02-28 Plasma treatment apparatus and sample stage therefor Pending JP2003258073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002054896A JP2003258073A (en) 2002-02-28 2002-02-28 Plasma treatment apparatus and sample stage therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002054896A JP2003258073A (en) 2002-02-28 2002-02-28 Plasma treatment apparatus and sample stage therefor

Publications (1)

Publication Number Publication Date
JP2003258073A true JP2003258073A (en) 2003-09-12

Family

ID=28665911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002054896A Pending JP2003258073A (en) 2002-02-28 2002-02-28 Plasma treatment apparatus and sample stage therefor

Country Status (1)

Country Link
JP (1) JP2003258073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280518A (en) * 2014-05-30 2016-01-27 盛美半导体设备(上海)有限公司 Semiconductor substrate heat treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280518A (en) * 2014-05-30 2016-01-27 盛美半导体设备(上海)有限公司 Semiconductor substrate heat treatment device

Similar Documents

Publication Publication Date Title
KR100924855B1 (en) Loading table for plasma processing apparatus and plasma processing apparatus
KR101592613B1 (en) Mono-energetic neutral beam activated chemical processing system and method of using
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
EP1166323B1 (en) Method and apparatus for compensating non-uniform wafer processing in plasma processing
WO2004049420A1 (en) Plasma processing apparatus and method
CN109935511B (en) Plasma processing apparatus
TWI734185B (en) Plasma processing apparatus
KR102432857B1 (en) plasma processing apparatus and manufacturing method of semiconductor device using the same
CN109559987A (en) Method of plasma processing
JPH11260596A (en) Plasma processing device and plasma processing method
JP2021141050A (en) Plasma processing device and plasma processing method
JPH04279044A (en) Sample-retention device
JP6932070B2 (en) Focus ring and semiconductor manufacturing equipment
TW202117913A (en) Substrate support and plasma processing apparatus
JP2003258073A (en) Plasma treatment apparatus and sample stage therefor
JPH10256238A (en) Plasma processing method and apparatus
TWI738309B (en) Plasma processing device
JP2001319920A (en) Apparatus and method for plasma treatment
JP3024148B2 (en) Etching equipment
JP2003017472A (en) Plasma treatment method and apparatus
JP5479061B2 (en) Plasma processing equipment
JP2003068718A (en) Plasma processing apparatus
TW202022944A (en) Etching method and plasma processing device
JPH02312231A (en) Dryetching device
JP2000164563A (en) Plasma processing device