JP2003257677A - Organic electroluminescence element and its manufacturing method - Google Patents

Organic electroluminescence element and its manufacturing method

Info

Publication number
JP2003257677A
JP2003257677A JP2002057521A JP2002057521A JP2003257677A JP 2003257677 A JP2003257677 A JP 2003257677A JP 2002057521 A JP2002057521 A JP 2002057521A JP 2002057521 A JP2002057521 A JP 2002057521A JP 2003257677 A JP2003257677 A JP 2003257677A
Authority
JP
Japan
Prior art keywords
layer
organic electroluminescence
chemical formula
chemical
anode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002057521A
Other languages
Japanese (ja)
Inventor
Hodaka Tsuge
穂高 柘植
Akihiro Komatsuzaki
明広 小松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002057521A priority Critical patent/JP2003257677A/en
Publication of JP2003257677A publication Critical patent/JP2003257677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescence element and its manufacturing method capable of reducing by a simple method a barrier for hole injection into the adjoining light emitting layer and/or hole transport layer and having an anode layer assuring certain performance of hole injection. <P>SOLUTION: The organic electroluminescence element is fabricated through such procedures that a transparent metal oxide film consisting of indium-tin oxide is laminated on a glass base board and that the metal oxide is subjected to a plasma surface processing using oxygen where the fluorine content is below 1 wt.%, and thereby an anode layer 10 is formed. The fluorine contained in the oxygen takes the form of fluoro-resin constituting atoms such as carbon tetrafluoride or polyethylene tetrafluoride. The obtained anode layer 10 has an ionizing potential of 5.5 eV or more, so that an increase of the hole injection barrier can be suppressed even though a material having a high ionizing potential such as phosphorescent host agent or conductive highpolymer is used as the adjoining light emitting layer or hole transport layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高輝度での発光が
可能な有機エレクトロルミネッセンス素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence device capable of emitting light with high brightness.

【0002】[0002]

【従来の技術】有機エレクトロルミネッセンス素子に用
いる透明陽極層の材料としてインジウム錫酸化物膜(I
TO膜)が代表的である。このものは、透明性と導電性
とに優れ、良好な特性の透明導電膜を歩留まり良く形成
することができる。
2. Description of the Related Art Indium tin oxide film (I) is used as a material for a transparent anode layer used in an organic electroluminescence device.
A TO film) is typical. This is excellent in transparency and conductivity, and can form a transparent conductive film having good characteristics with good yield.

【0003】ところで、ITO膜のイオン化ポテンシャ
ルは、一般に4.5eV以下と比較的小さいため、これ
を有機エレクトロルミネッセンス素子の陽極層に用いた
場合、陽極層に隣接して形成される正孔注入層や正孔輸
送層を構成する正孔注入性物質や正孔輸送性物質のイオ
ン化ポテンシャルとの格差が生じ、これに起因して正孔
注入障壁が高くなる。そして、この結果、高い駆動電圧
が必要となり有機エレクトロルミネッセンス素子の発光
効率が悪化する。
By the way, since the ionization potential of the ITO film is generally as small as 4.5 eV or less, when it is used for the anode layer of the organic electroluminescence device, the hole injection layer formed adjacent to the anode layer. And the ionization potential of the hole-injecting substance or the hole-transporting substance forming the hole-transporting layer is different, which causes the hole-injection barrier to increase. As a result, a high driving voltage is required, and the luminous efficiency of the organic electroluminescent element deteriorates.

【0004】このため、従来、ITO膜に対してUVオ
ゾン処理や酸素プラズマ処理を行って、ITO膜を清浄
すると共にこのもののイオン化ポテンシャルを向上させ
ることが知られている。このようにして、ITO膜のイ
オン化ポテンシャルは、UVオゾン処理による場合に最
大5.1eV、酸素プラズマ処理による場合に最大5.
5eVに増大させることができる。このようにイオン化
ポテンシャルを向上させたITO膜は、例えば、正孔注
入性低分子及び正孔輸送性低分子として代表的な、
Therefore, it is conventionally known that the ITO film is subjected to UV ozone treatment or oxygen plasma treatment to clean the ITO film and improve the ionization potential of the ITO film. In this way, the ionization potential of the ITO film is 5.1 eV at the maximum when the UV ozone treatment is performed, and is 5. 5 at the maximum when the oxygen plasma treatment is performed.
It can be increased to 5 eV. The ITO film having improved ionization potential as described above is, for example, typical as a hole injecting low molecule and a hole transporting low molecule,

【0005】[0005]

【化1】 [Chemical 1]

【0006】[化1]に示すカッパーフタロシアニン
(以下CuPcとも言う。)のイオン化ポテンシャル
(5.4eV)や、正孔注入性高分子として代表的な、
The ionization potential (5.4 eV) of copper phthalocyanine (hereinafter also referred to as CuPc) shown in [Chemical formula 1], and a typical hole-injecting polymer,

【0007】[0007]

【化2】 [Chemical 2]

【0008】[化2]に示すポリ(3,4)エチレンジ
オキシチオフェン(以下PEDTともいう。)のイオン
化ポテンシャル(5.1eV)と同水準であり、上記の
正孔注入障壁は軽減される。
It is at the same level as the ionization potential (5.1 eV) of poly (3,4) ethylenedioxythiophene (hereinafter also referred to as PEDT) shown in [Chemical formula 2], and the above hole injection barrier is reduced. .

【0009】[0009]

【発明が解決しようとする課題】ところで、さらなる駆
動電圧の低下により素子の発光効率を向上させるため、
発光層や正孔輸送層に導電性高分子を用いることが検討
されている。このような導電性高分子として、
By the way, in order to improve the luminous efficiency of the device by further lowering the driving voltage,
The use of a conductive polymer for the light emitting layer and the hole transport layer has been studied. As such a conductive polymer,

【0010】[0010]

【化3】 [Chemical 3]

【0011】(一般式[化3]中、Rは水素、脂肪族炭
化水素基、芳香族炭化水素基、エーテル基または複素環
基のいずれかを示す。) 一般式[化3]で表される繰り返し単位を有するポリフル
オレン化合物、例えば、
(In the general formula [Chemical Formula 3], R represents hydrogen, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an ether group or a heterocyclic group.) A polyfluorene compound having a repeating unit of, for example,

【0012】[0012]

【化4】 [Chemical 4]

【0013】[化4]で示されるジノルマルオクチルポ
リフルオレンを挙げることができる。
An example is dinormal octyl polyfluorene represented by the formula [4].

【0014】ところが、この[化4]で示されるジノル
マルオクチルポリフルオレンのイオン化ポテンシャルは
5.8eVとさらに高い。
However, the ionization potential of the dinormal octyl polyfluorene represented by [Chemical Formula 4] is as high as 5.8 eV.

【0015】一方、上記従来の有機エレクトロルミネッ
センス素子の発光方法として、励起三重項状態からの発
光、即ち、燐光を用いると、発光の量子効率を向上させ
ることができる。励起一重項状態による発光、即ち、蛍
光のみを利用して発光させる場合の内部量子効率の理論
的限界が25%であるのに対し、燐光による発光は、三
重項状態の励起エネルギーが発光に寄与するため内部量
子効率の理論的限界を100%と考えてよい。したがっ
て、駆動電圧に対する発光輝度で定義される発光効率の
向上が期待でき、このような燐光発光による有機エレク
トロルミネッセンス素子が検討されている。
On the other hand, when light emission from an excited triplet state, that is, phosphorescence is used as a light emission method of the above-mentioned conventional organic electroluminescence device, the quantum efficiency of light emission can be improved. The theoretical limit of internal quantum efficiency is 25% in the case of light emission by excited singlet state, that is, in the case of emitting light only by fluorescence, whereas in light emission by phosphorescence, excitation energy of triplet state contributes to light emission. Therefore, the theoretical limit of the internal quantum efficiency may be considered to be 100%. Therefore, it is expected that the light emission efficiency defined by the light emission luminance with respect to the driving voltage is improved, and such an organic electroluminescence device by phosphorescence emission has been studied.

【0016】このとき、燐光発光のための発光層ホスト
剤として一般的な、
At this time, a general host material for the light emitting layer for phosphorescence emission,

【0017】[0017]

【化5】 [Chemical 5]

【0018】[化5]に示すカルバゾールビフェニル
(以下、CBPとも言う。)のイオン化ポテンシャルも
6.1eVとさらに高く、このとき、正孔輸送層に用い
る正孔輸送性物質にも大きなイオン化ポテンシャルを有
するものを用いた方が、発光層と正孔輸送層との間の正
孔注入障壁が小さくなる。このような正孔輸送性物質と
しては、イオン化ポテンシャルが6.0eVの、
The ionization potential of carbazole biphenyl (hereinafter also referred to as CBP) shown in [Chemical formula 5] is as high as 6.1 eV, and at this time, a large ionization potential is also present in the hole transporting material used in the hole transport layer. The hole injection barrier between the light emitting layer and the hole transport layer becomes smaller when the one having the above is used. Such a hole-transporting substance has an ionization potential of 6.0 eV,

【0019】[0019]

【化6】 [Chemical 6]

【0020】[化6]で表されるポリ(N−ビニルカルバ
ゾール)(以下PVKとも言う。)が挙げられるが、こ
れを用いると、今度は陽極層と正孔輸送層との間の障壁
が大きくなってしまう。
Poly (N-vinylcarbazole) represented by [Chemical Formula 6] (hereinafter, also referred to as PVK) can be mentioned. When this is used, a barrier between the anode layer and the hole transport layer is formed. It gets bigger.

【0021】そこで、陽極層に用いるITO膜のイオン
化ポテンシャルをさらに向上させるため、陽極層の形成
時に成膜条件を変更して、ITO膜の隣接層側にイオン
化ポテンシャルが比較的大きい界面層を形成することが
考えられる。例えば、特開2000−68073号公報
においては、ITO膜の成膜用のスパッタガス中の酸素
濃度を高くして上記界面層のイオン化ポテンシャルを向
上させ、このようにして形成された陽極層からの正孔注
入を容易にしている。
Therefore, in order to further improve the ionization potential of the ITO film used for the anode layer, the film formation conditions are changed at the time of forming the anode layer to form an interface layer having a relatively large ionization potential on the adjacent layer side of the ITO film. It is possible to do it. For example, in Japanese Unexamined Patent Publication No. 2000-68073, the oxygen concentration in the sputtering gas for forming the ITO film is increased to improve the ionization potential of the interface layer. It facilitates hole injection.

【0022】しかしながら、このように陽極層上に中間
層を介在させると工程が増加し、成膜条件の管理が必要
になるという不具合が避けられない。
However, if the intermediate layer is interposed on the anode layer in this way, the number of processes is increased, and it is inevitable that the film formation conditions must be controlled.

【0023】本発明は、上記問題点に鑑み、隣接層に対
して簡便に正孔注入障壁を軽減し、確実に正孔注入を行
うことが可能な陽極層を有する有機エレクトロルミネッ
センス素子及びこれを製造する方法を提供することを課
題としている。
In view of the above problems, the present invention provides an organic electroluminescence device having an anode layer capable of easily reducing a hole injection barrier to an adjacent layer and surely injecting holes, and an organic electroluminescence device including the anode layer. It is an object to provide a manufacturing method.

【0024】[0024]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、陽極層及び陰極層の両電極層とこの両電
極層間に形成される発光層を有する有機エレクトロルミ
ネッセンス素子において、陽極層として、フッ素含有量
を1重量%以下とする酸素を用いたプラズマ表面処理を
施した透明性金属酸化物を用いる。
In order to solve the above problems, the present invention provides an organic electroluminescence device having both electrode layers of an anode layer and a cathode layer and a light emitting layer formed between the electrode layers. As the transparent metal oxide, a transparent metal oxide subjected to plasma surface treatment with oxygen having a fluorine content of 1% by weight or less is used.

【0025】このものでは、フッ素を含有した酸素によ
るプラズマ処理により、表面のみで金属フッ化物が形成
され、これにより陽極層のバンドギャップが拡大されて
イオン化ポテンシャルが増大するものと考えられる。
In this case, it is considered that the metal fluoride is formed only on the surface by the plasma treatment with the oxygen containing fluorine, whereby the band gap of the anode layer is expanded and the ionization potential is increased.

【0026】そして、このような陽極層は、5.5eV
以上の比較的高いイオン化ポテンシャルを有することが
できるため、隣接する発光層や正孔輸送層に導電性高分
子を用いる場合、または発光層における発光を燐光によ
るものとする場合に、高いイオン化ポテンシャルを有す
る発光層や正孔輸送層と同水準のイオン化ポテンシャル
に簡易に揃えることができる。即ち、陽極層とこれに隣
接する発光層や正孔輸送層との間の正孔注入障壁を軽減
でき、互いに隣接する両層間で確実な正孔注入を行うこ
とができる。なお、上記の陽極層のイオン化ポテンシャ
ルの上限は6.5eV程度である。
And, such an anode layer has 5.5 eV.
Since it can have a relatively high ionization potential as described above, when a conductive polymer is used for the adjacent light emitting layer or hole transporting layer, or when light emission in the light emitting layer is caused by phosphorescence, a high ionization potential is required. The ionization potential can be easily adjusted to the same level as that of the light emitting layer and the hole transporting layer. That is, the hole injection barrier between the anode layer and the light emitting layer or hole transport layer adjacent thereto can be reduced, and reliable hole injection can be performed between both layers adjacent to each other. The upper limit of the ionization potential of the anode layer is about 6.5 eV.

【0027】そして、上記した酸素中のフッ素は、実際
には、四フッ化炭素の構成原子やポリ4フッ化エチレン
などのフッ素樹脂として酸素中に含有して供給するのが
好適である。
The above-mentioned fluorine in oxygen is actually preferably contained in oxygen as a constituent atom of carbon tetrafluoride or a fluorine resin such as polytetrafluoroethylene and supplied.

【0028】また、陽極層に隣接して積層される発光層
や正孔輸送層や正孔注入層などの有機層を構成する有機
化合物として、イオン化ポテンシャルが5.5eV以上
のものを使用する時、上記した正孔注入障壁の軽減効果
が大きくなる。
When an organic compound having an ionization potential of 5.5 eV or more is used as an organic compound forming an organic layer such as a light emitting layer, a hole transporting layer or a hole injecting layer which is laminated adjacent to the anode layer. The effect of reducing the above-mentioned hole injection barrier is increased.

【0029】さらに、陽極層に用いるものとして上記し
た透明性金属酸化物をインジウム錫酸化物(ITO)で
構成することが最適である。
Further, it is optimal that the above-mentioned transparent metal oxide used as the anode layer is composed of indium tin oxide (ITO).

【0030】また、ガラス基板上に透明性金属酸化物を
積層した後に、この透明性金属酸化物に対して、フッ素
含有量を1重量%以下とする酸素を用いたプラズマ表面
処理を行って陽極層を形成する際に、同じ真空プロセス
内で透明性金属酸化物の積層成膜とプラズマ表面処理と
を行うようにすれば、簡便な方法で有機エレクトロルミ
ネッセンス素子を製造することが可能となる。
Further, after laminating a transparent metal oxide on a glass substrate, the transparent metal oxide is subjected to plasma surface treatment using oxygen having a fluorine content of 1% by weight or less, and an anode is formed. When forming a layer, if the laminated film formation of the transparent metal oxide and the plasma surface treatment are performed in the same vacuum process, the organic electroluminescence device can be manufactured by a simple method.

【0031】[0031]

【発明の実施の形態】図1は、発光効率の向上を目的と
して多層に積層された素子構造を有する有機エレクトロ
ルミネッセンス素子の基本構造を示す。有機エレクトロ
ルミネッセンス素子の素子構造は、図外の基板上に形成
された陽極層10に、正孔輸送層20、電子ブロック層
30、発光層40、正孔ブロック層50及び電子輸送層
60の各薄膜層が、陽極層10と陰極層70との両電極
層間で順次積層されて成る多層積層構造であり、発光層
40は、発光層ドープ剤41と発光層ホスト剤42とを
有して構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a basic structure of an organic electroluminescence device having a device structure laminated in multiple layers for the purpose of improving luminous efficiency. The element structure of the organic electroluminescence element is such that each of the hole transport layer 20, the electron block layer 30, the light emitting layer 40, the hole block layer 50, and the electron transport layer 60 is formed on the anode layer 10 formed on a substrate (not shown). The thin film layer has a multi-layered structure in which the anode layer 10 and the cathode layer 70 are sequentially laminated between both electrode layers, and the light emitting layer 40 includes a light emitting layer doping agent 41 and a light emitting layer host agent 42. Has been done.

【0032】図1で示される素子構造において、陽極層
10は、例えばガラス基板のような透明絶縁性支持体に
形成された透明な導電性物質が用いられ、その材料とし
ては、酸化錫、酸化インジウム、酸化錫インジウム(I
TO)などの導電性酸化物、あるいは、金、銀、クロム
などの金属、よう化銅、硫化銅などの無機導電性物質、
ポリチオフェン、ポリピロール、ポリアニリン等の導電
性ポリマーなどを用いることができる。
In the element structure shown in FIG. 1, for the anode layer 10, a transparent conductive substance formed on a transparent insulating support such as a glass substrate is used, and the material thereof is tin oxide or oxide. Indium, indium tin oxide (I
Conductive oxides such as TO) or metals such as gold, silver and chromium, inorganic conductive substances such as copper iodide and copper sulfide,
Conductive polymers such as polythiophene, polypyrrole, and polyaniline can be used.

【0033】また、図1で示される素子構造において、
陰極層70には、ニオブ、リチウム、ナトリウム、カリ
ウム、ルビジウム、セシウム、マグネシウム、カルシウ
ム、ストロンチウム、バリウム、硼素、アルミニウム、
銅、銀、金などの単体または合金が使用できる。さら
に、これらを積層して使用することもできる。また、テ
トラヒドロアルミン酸塩により湿式で形成することもで
きる。この場合、陰極層70に用いられるテトラヒドロ
アルミン酸塩としては、特に、水素化アルミニウムリチ
ウム、水素化アルミニウムカリウム、水素化アルミニウ
ムマグネシウム、水素化アルミニウムカルシウムを挙げ
ることができる。この中で、水素化アルミニウムリチウ
ムが、特に電子輸送層への電子注入性に優れている。
Further, in the device structure shown in FIG.
The cathode layer 70 includes niobium, lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, boron, aluminum,
A simple substance such as copper, silver or gold or an alloy can be used. Further, these may be laminated and used. It can also be formed by a wet process using tetrahydroaluminate. In this case, examples of the tetrahydroaluminate used for the cathode layer 70 include lithium aluminum hydride, potassium aluminum hydride, magnesium aluminum hydride, and aluminum calcium hydride. Among these, lithium aluminum hydride is particularly excellent in the electron injection property into the electron transport layer.

【0034】また、正孔輸送層20は、陽極層10から
注入される正孔を輸送するための層であり、正孔輸送性
有機物を含む有機層である。正孔輸送層性有機物の例と
して、一般式[化3]で表される繰り返し単位を有するポ
リフルオレン化合物、例えば、[化4]で示されるジノ
ルマルオクチルポリフルオレン、[化6]に示すPV
K、
The hole transport layer 20 is a layer for transporting holes injected from the anode layer 10, and is an organic layer containing a hole transporting organic substance. As an example of the hole transport layer organic compound, a polyfluorene compound having a repeating unit represented by the general formula [Chemical Formula 3], for example, dinormal octyl polyfluorene represented by the [Chemical Formula 4], and a PV represented by the [Chemical Formula 6]
K,

【0035】[0035]

【化7】 [Chemical 7]

【0036】[化7]に示すポリ(パラ−フェニレンビ
ニレン)などの高分子からなることが好ましい。
It is preferably composed of a polymer such as poly (para-phenylene vinylene) shown in [Chemical Formula 7].

【0037】あるいは、[化1]に示すカッパーフタロ
シアニン、[化5]に示すCBP、
Alternatively, copper phthalocyanine represented by [Chemical formula 1], CBP represented by [Chemical formula 5],

【0038】[0038]

【化8】 [Chemical 8]

【0039】[化8]に示すN,N’−ジフェニル−
N,N’−ビス(1−ナフチル)―1,1’−ビフェニ
ル−4,4’−ジアミン(以下NPDとも言う。)、
N, N'-diphenyl-shown in [Chemical Formula 8]
N, N′-bis (1-naphthyl) -1,1′-biphenyl-4,4′-diamine (hereinafter also referred to as NPD),

【0040】[0040]

【化9】 [Chemical 9]

【0041】[化9]に示すN,N’−ジフェニル−
N,N’−ビス(3−メチルフェニル)−1,1’−ビ
フェニル−4,4’−ジアミン(以下TPDともい
う。)、
N, N'-diphenyl-shown in [Chemical Formula 9]
N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (hereinafter also referred to as TPD),

【0042】[0042]

【化10】 [Chemical 10]

【0043】[化10]に示す4,4’−ビス(10−
フェノチアジニル)ビフェニルなどの低分子を用いるこ
ともできる。
4,4'-bis (10-
Smaller molecules such as phenothiazinyl) biphenyl can also be used.

【0044】また、電子ブロック層30は、陰極層70
から発光層40へ注入された電子がそのまま陽極層10
へ通過してしまうことを防ぐため電子をブロックするた
めの層であり、電子ブロック性物質で構成される。電子
ブロック性物質としては、例えば、[化5]に示すCB
P、[化6]に示すPVK、[化7]に示すポリ(パラ
−フェニレンビニレン)、[化8]に示すNPD、[化
9]に示すTPD、[化10]に示す4,4’−ビス
(10−フェノチアジニル)ビフェニルや、
The electron block layer 30 is the cathode layer 70.
Electrons injected into the light emitting layer 40 from the anode layer 10 as they are.
It is a layer for blocking electrons in order to prevent it from passing through, and is composed of an electron blocking substance. Examples of the electron blocking substance include CB shown in [Chemical Formula 5].
P, PVK shown in [Chemical Formula 6], poly (para-phenylene vinylene) shown in [Chemical Formula 7], NPD shown in [Chemical Formula 8], TPD shown in [Chemical Formula 9], 4,4 ′ shown in [Chemical Formula 10] -Bis (10-phenothiazinyl) biphenyl,

【0045】[0045]

【化11】 [Chemical 11]

【0046】[化11]に示す2,4,6−トリフェニル
−1,3,5−トリアゾール、
2,4,6-triphenyl-1,3,5-triazole represented by [Chemical Formula 11],

【0047】[0047]

【化12】 [Chemical 12]

【0048】[化12]に示すフローレンなどを挙げるこ
とができる。
Examples include fluorene shown in [Chemical Formula 12] and the like.

【0049】また、発光層40はドープ剤41とホスト
剤42とを有し、これらドープ剤41とホスト剤42と
を均一に分散させるため、バインダ高分子を添加するこ
とも可能である。ホスト剤42は、陽極層10及び陰極
層70からそれぞれ注入された正孔と電子とが発光層4
0において再結合する際に賦活されて励起子として作用
する物質であり、[化3]に示す繰り返し単位を有する
ポリフルオレン化合物(例えば[化4]で示されるジノ
ルマルオクチルポリフルオレン)、[化5]に示すCB
P、[化6]に示すPVKや、
Further, the light emitting layer 40 has a doping agent 41 and a host agent 42, and in order to disperse the doping agent 41 and the host agent 42 uniformly, it is possible to add a binder polymer. In the host agent 42, holes and electrons injected from the anode layer 10 and the cathode layer 70, respectively, are emitted from the light emitting layer 4.
Is a substance that is activated when recombining at 0 and acts as an exciton, and has a repeating unit represented by [Chemical Formula 3] (for example, dinormaloctylpolyfluorene represented by [Chemical Formula 4]), CB shown in [5]
P, PVK shown in [Chemical 6],

【0050】[0050]

【化13】 [Chemical 13]

【0051】[化13]に示すポリ(2-メトキシ-5-
(2-エチルヘキシオキシ)-1,4-フェニレンビニレ
ン)(以下MEH-PPVとも言う。)
Poly (2-methoxy-5-) shown in [Chemical Formula 13]
(2-Ethylhexoxy) -1,4-phenylene vinylene) (hereinafter also referred to as MEH-PPV)

【0052】[0052]

【化14】 [Chemical 14]

【0053】[化14]に示すポリ(3-ヘキシルチオフ
ェン)、
Poly (3-hexylthiophene) shown in [Chemical Formula 14],

【0054】[0054]

【化15】 [Chemical 15]

【0055】[化15]に示す1,3,5−トリ(5−
(4−tert−ブチルフェニル)−1,3,4−オキ
サジアゾール)フェニル(以下OXD−1ともい
う。)、
1,3,5-tri (5-
(4-tert-butylphenyl) -1,3,4-oxadiazole) phenyl (hereinafter also referred to as OXD-1),

【0056】[0056]

【化16】 [Chemical 16]

【0057】[化16]に示される1,3―ジ(5−
(4−tert−ブチルフェニル)−1,3,4−オキ
サジアゾール)フェニル(以下OXD−7ともい
う。)、
1,3-di (5-
(4-tert-butylphenyl) -1,3,4-oxadiazole) phenyl (hereinafter also referred to as OXD-7),

【0058】[0058]

【化17】 [Chemical 17]

【0059】[化17] に示す2−(4−ビフェニリ
ル)−5−(4−tert−ブチルフェニル)−1,
3,4−オキサジアゾール、(以下PBDともい
う。)、
2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1, shown in [Chemical Formula 17],
3,4-oxadiazole, (hereinafter also referred to as PBD),

【0060】[0060]

【化18】 [Chemical 18]

【0061】[化18]で示されるN-フェニルポリカ
ルバゾール、
N-phenyl polycarbazole represented by the formula:

【0062】[0062]

【化19】 [Chemical 19]

【0063】[化19]に示すバソキュプロイン(以下B
CPともいう。)、
Bathocuproine (hereinafter referred to as B)
Also called CP. ),

【0064】[0064]

【化20】 [Chemical 20]

【0065】[化20]に示すトリス(8−ヒドロキシ
キノリナート)アルミニウム(以下Alq3ともい
う。)などが挙げられる。
Examples include tris (8-hydroxyquinolinato) aluminum (hereinafter also referred to as Alq3) shown in [Chemical Formula 20].

【0066】一方、発光層40のドープ剤41は、励起
子たるホスト剤42の励起エネルギーにより燐光を放射
する物質であり、
On the other hand, the doping agent 41 of the light emitting layer 40 is a substance which emits phosphorescence by the excitation energy of the host agent 42 which is an exciton,

【0067】[0067]

【化21】 [Chemical 21]

【0068】[化21]に示すトリ(2フェニルピリジ
ン)イリジウム錯体(以下Ir(ppy)3とも言
う。)、
A tri (2phenylpyridine) iridium complex represented by [Chemical Formula 21] (hereinafter, also referred to as Ir (ppy) 3 ),

【0069】[0069]

【化22】 [Chemical formula 22]

【0070】[0070]

【化23】 [Chemical formula 23]

【0071】[0071]

【化24】 [Chemical formula 24]

【0072】[0072]

【化25】 [Chemical 25]

【0073】[0073]

【化26】 [Chemical formula 26]

【0074】[0074]

【化27】 [Chemical 27]

【0075】(化学式[化27]中、acacは、(In the chemical formula [Chemical Formula 27], acac is

【0076】[0076]

【化28】 [Chemical 28]

【0077】[化28]で示される官能基を示す。下記
[化29]乃至[化33]に示す化学式において同じ。)
The functional group represented by [Chemical Formula 28] is shown below. following
The same applies to the chemical formulas shown in [Chemical Formula 29] to [Chemical Formula 33]. )

【0078】[0078]

【化29】 [Chemical 29]

【0079】[0079]

【化30】 [Chemical 30]

【0080】[0080]

【化31】 [Chemical 31]

【0081】[0081]

【化32】 [Chemical 32]

【0082】[0082]

【化33】 [Chemical 33]

【0083】[化22]乃至[化27]、[化29]乃至[化
33]で示されるイリジウム錯体化合物、
Iridium complex compounds represented by [Chemical formula 22] to [Chemical formula 27] and [Chemical formula 29] to [Chemical formula 33],

【0084】[0084]

【化34】 [Chemical 34]

【0085】[化34]に示す2,3,7,8,12,
13,17,18−オクタエチル−21H,23H−白
金(II)ポルフィン(以下PtOEPとも言う。)、
2, 3, 7, 8, 12, shown in [Chemical 34]
13,17,18-octaethyl-21H, 23H-platinum (II) porphine (hereinafter also referred to as PtOEP),

【0086】[0086]

【化35】 [Chemical 35]

【0087】[化35]に示す3-(2’-ベンゾチアゾ
リル)-7-ジエチルアミノクマリン(以下、クマリン6
とも言う。)
3- (2'-benzothiazolyl) -7-diethylaminocoumarin (hereinafter referred to as coumarin 6) shown in [Chemical Formula 35]
Also say. )

【0088】[0088]

【化36】 [Chemical 36]

【0089】[化36]に示す(2-メチル-6-(2-
(2,3,6,7-テトラハイドロ-1H、5H-ベンゾ
(ij)クイノリジン-9-イル)エテニル)-4H-ピラ
ン-4-イリデン)プロパン-ジニトリル(以下DCM2
とも言う。)などを挙げることができる。
[2-methyl-6- (2-
(2,3,6,7-Tetrahydro-1H, 5H-benzo (ij) quinolidin-9-yl) ethenyl) -4H-pyran-4-ylidene) propane-dinitrile (hereinafter DCM2
Also say. ) And the like.

【0090】また、発光層40に添加可能なバインダ高
分子の例として、ポリスチレン、ポリビニルビフェニ
ル、ポリビニルフェナントレン、ポリビニルアントラセ
ン、ポリビニルペリレン、ポリ(エチレン−co−ビニ
ルアセテート)、ポリブタジエンのcisとtran
s、ポリ(2−ビニルナフタレン)、ポリビニルピロリ
ドン、ポリスチレン、ポリ(メチルメタクリレート)、
ポリ(ビニルアセテート)、ポリ(2−ビニルピリジン
−co−スチレン)、ポリアセナフチレン、ポリ(アク
リロニトリル−co−ブタジエン)、ポリ(ベンジルメ
タクリレート)、ポリ(ビニルトルエン)、ポリ(スチ
レン−co−アクリロニトリル)、ポリ(4−ビニルビ
フェニル)、ポリエチレングリコールなどが挙げられ
る。
Examples of the binder polymer that can be added to the light emitting layer 40 include polystyrene, polyvinyl biphenyl, polyvinyl phenanthrene, polyvinyl anthracene, polyvinyl perylene, poly (ethylene-co-vinyl acetate), polybutadiene cis and tran.
s, poly (2-vinylnaphthalene), polyvinylpyrrolidone, polystyrene, poly (methylmethacrylate),
Poly (vinyl acetate), poly (2-vinyl pyridine-co-styrene), polyacenaphthylene, poly (acrylonitrile-co-butadiene), poly (benzyl methacrylate), poly (vinyltoluene), poly (styrene-co-) Acrylonitrile), poly (4-vinylbiphenyl), polyethylene glycol and the like.

【0091】また、正孔ブロック層50は、陽極層10
から発光層40へ注入された正孔がそのまま陰極層70
へ通過してしまうことを防ぐため正孔をブロックするた
めの層であり、正孔ブロック性物質で構成される。正孔
ブロック性物質としては、例えば、[化15]に示すOX
D−1、[化17] に示すPBD、 [化19]に示すBC
P、[化20]に示すAlq3、
Further, the hole blocking layer 50 is the anode layer 10
The holes injected into the light emitting layer 40 from the cathode layer 70 as they are.
It is a layer for blocking holes in order to prevent the holes from passing through and is composed of a hole blocking substance. Examples of the hole blocking substance include OX shown in [Chemical Formula 15].
D-1, PBD shown in [Chemical Formula 17], BC shown in [Chemical Formula 19]
P, Alq3 shown in [Chemical Formula 20],

【化37】 [Chemical 37]

【0092】[化37]に示す3−(4−ビフェニリ
ル)−5−(4−tert−ブチルフェニル)−4−フ
ェニル−1,2,4−トリアゾール(以下、TAZとも
いう。)、
3- (4-biphenylyl) -5- (4-tert-butylphenyl) -4-phenyl-1,2,4-triazole (hereinafter also referred to as TAZ) shown in [Chemical Formula 37],

【0093】[0093]

【化38】 [Chemical 38]

【0094】[化38]に示す4,4’−ビス(1,1
−ジフェニルエテニル)ビフェニル(以下にDPVBi
ともいう。)、
4,4'-bis (1,1) shown in [Chemical Formula 38]
-Diphenylethenyl) biphenyl (hereinafter DPVBi
Also called. ),

【0095】[0095]

【化39】 [Chemical Formula 39]

【0096】[化39]に示す2,5−ビス(1−ナフ
チル)−1.3.4−オキサジアゾール(以下にBND
ともいう。)
2,5-bis (1-naphthyl) -1.3.4-oxadiazole (hereinafter referred to as BND
Also called. )

【0097】[0097]

【化40】 [Chemical 40]

【0098】[化40]に示される4,4’−ビス
(1,1−ビス(4−メチルフェニル)エテニル)ビフ
ェニル(以下DTVBiとも言う。)、
4,4'-bis (1,1-bis (4-methylphenyl) ethenyl) biphenyl (hereinafter also referred to as DTVBi) represented by [Chemical Formula 40],

【0099】[0099]

【化41】 [Chemical 41]

【0100】[化41]に示される2,5−ビス(4−
ビフェニリル)−1,3,4−オキサジアゾール(以下
BBDともいう。)、
2,5-bis (4-) shown in [Chemical Formula 41]
Biphenylyl) -1,3,4-oxadiazole (hereinafter also referred to as BBD),

【0101】[0101]

【化42】 [Chemical 42]

【0102】[化42]に示すようなポリビニルオキサ
ジアゾール系高分子化合物(以下PV-OXDとも言
う。)などを挙げることができる。
Examples thereof include polyvinyl oxadiazole type polymer compounds (hereinafter also referred to as PV-OXD) as shown in [Chemical Formula 42].

【0103】また、電子輸送層60は、陰極層70から
注入される電子を輸送するための層であり、電子輸送剤
を含む。電子輸送剤は、電子輸送性高分子で構成され、
さらに電子輸送性低分子を含む構成が可能である。
The electron transport layer 60 is a layer for transporting electrons injected from the cathode layer 70, and contains an electron transport agent. The electron transport agent is composed of an electron transporting polymer,
Further, a structure containing a low molecule having an electron transport property is possible.

【0104】ここで、電子輸送性低分子の例として、
[化16]に示されるOXD−7、[化17]に示すP
BD、[化19]に示すBCP、[化20]に示すAlq
3、[化37]に示すTAZ、[化38]に示すDPV
Bi、[化39]に示すBND、[化40]に示すDT
VBi、[化41]に示すBBD、
Here, as an example of the electron transporting low molecule,
OXD-7 shown in [Chemical Formula 16] and P shown in [Chemical Formula 17]
BD, BCP shown in [Chemical formula 19], Alq shown in [Chemical formula 20]
3, TAZ shown in [Chemical 37], DPV shown in [Chemical 38]
Bi, BND shown in [Chemical 39], DT shown in [Chemical 40]
VBi, the BBD shown in [Chemical 41],

【0105】[0105]

【化43】 [Chemical 43]

【0106】[化43]で示される2,5-ジフェニル-
1,3,4-オキサジアゾール(以下PPDとも言
う。)などがある。
2,5-diphenyl-represented by [Chemical Formula 43]
1,3,4-oxadiazole (hereinafter also referred to as PPD) and the like.

【0107】また、電子輸送性高分子の例として、[化
42]に示すPV-OXDなどが挙げられる。
Further, as an example of the electron transporting polymer, PV-OXD shown in [Chemical Formula 42] and the like can be mentioned.

【0108】構造の簡素化のため、図1に示す有機エレ
クトロルミネッセンス素子の基本構造に変更を加えたも
のとして、図2に示す素子構造が可能である。
For simplification of the structure, the element structure shown in FIG. 2 is possible by modifying the basic structure of the organic electroluminescence element shown in FIG.

【0109】図2で示される有機エレクトロルミネッセ
ンス素子の素子構造は、本発明による有機エレクトロル
ミネッセンス素子の実施形態を示す。図1で示す素子構
造において、電子ブロック層30と正孔ブロック層50
と電子輸送層60とを省略したものである。
The element structure of the organic electroluminescent element shown in FIG. 2 shows an embodiment of the organic electroluminescent element according to the present invention. In the device structure shown in FIG. 1, the electron blocking layer 30 and the hole blocking layer 50
And the electron transport layer 60 are omitted.

【0110】次に、本発明の実施形態たる図2に示す素
子構造を用いて、有機エレクトロルミネッセンス素子の
製造方法を説明する。
Next, a method of manufacturing an organic electroluminescence device will be described using the device structure shown in FIG. 2, which is an embodiment of the present invention.

【0111】まず、基板(図示せず)となる透明絶縁性
支持体、例えばガラス基板上に陽極層10を蒸着法また
はスパッタ法にて形成する。そして、陽極層10の表面
に対して、四フッ化炭素やポリ四フッ化エチレン樹脂を
混入させてフッ素含有量を1重量%以下とした酸素を用
いたプラズマ表面処理を行う。このとき、同じ真空プロ
セス内において、基板上の陽極層の積層成膜とこれに対
するプラズマ表面処理とを行うようにすれば工程が簡便
になる。
First, the anode layer 10 is formed on a transparent insulating support, which is a substrate (not shown), such as a glass substrate, by a vapor deposition method or a sputtering method. Then, the surface of the anode layer 10 is subjected to plasma surface treatment using oxygen in which carbon tetrafluoride or polytetrafluoroethylene resin is mixed to make the fluorine content 1% by weight or less. At this time, if the laminated film formation of the anode layer on the substrate and the plasma surface treatment for the same are performed in the same vacuum process, the process becomes simple.

【0112】次に、正孔輸送性高分子または正孔輸送性
低分子を溶媒に溶解または分散した第1の溶液を作成す
る。ここで、第1の溶液に、さらにバインダ高分子を溶
解または分散することも可能である。そして、第1の溶
液を用いた湿式法によって、陽極層10上に、正孔輸送
層20を形成する。
Next, a first solution is prepared by dissolving or dispersing the hole transporting polymer or the hole transporting low molecule in a solvent. Here, it is also possible to further dissolve or disperse the binder polymer in the first solution. Then, the hole transport layer 20 is formed on the anode layer 10 by a wet method using the first solution.

【0113】さらに、発光層40のドープ剤41とホス
ト剤42とを溶媒に溶解または分散した第2の溶液を作
成する。ここで、第2の溶液に、さらにバインダ高分子
を溶解または分散することも可能である。そして、その
第2の溶液を用いた湿式法によって、上記正孔輸送層2
0上に発光層40を形成する。
Further, a second solution is prepared by dissolving or dispersing the doping agent 41 and the host agent 42 of the light emitting layer 40 in a solvent. Here, it is also possible to further dissolve or disperse the binder polymer in the second solution. Then, the hole transport layer 2 is formed by the wet method using the second solution.
The light emitting layer 40 is formed on the transparent layer 0.

【0114】また、第2の溶液に用いた溶媒の溶解度パ
ラメータは、発光層40の成膜温度において、正孔輸送
層20に含まれる物質(正孔輸送性高分子または正孔輸
送性低分子など)に対して可溶範囲外を示す値を有し、
このような溶媒を用いた湿式法による発光層40の形成
において、下層の正孔輸送層20に含まれる有機物を溶
解することがない。
The solubility parameter of the solvent used in the second solution is determined by the substance contained in the hole transport layer 20 (hole transporting polymer or hole transporting low molecule) at the film formation temperature of the light emitting layer 40. Etc.) has a value outside the soluble range,
When the light emitting layer 40 is formed by a wet method using such a solvent, the organic substance contained in the lower hole transport layer 20 is not dissolved.

【0115】このとき上記の第1または第2の溶液に用
いる溶媒は自然乾燥によって蒸発することにより、正孔
輸送層20と発光層40とが形成される。この場合、加
熱、紫外線の照射による重合、硬化等の処理を行う必要
がなく、従って製造工程が簡単であり生産効率を向上さ
せることができる。
At this time, the solvent used for the above-mentioned first or second solution is evaporated by natural drying to form the hole transport layer 20 and the light emitting layer 40. In this case, there is no need to perform treatments such as heating, polymerization by irradiation of ultraviolet rays, and curing, and therefore the manufacturing process is simple and the production efficiency can be improved.

【0116】本発明で使用される湿式法には、たとえば
キャスティング法、ブレードコート法、浸漬塗工法、ス
ピンコート法、スプレイコート法、ロール塗工法、イン
クジェット塗工法などの通常の塗工法が含まれる。
The wet method used in the present invention includes ordinary coating methods such as casting method, blade coating method, dip coating method, spin coating method, spray coating method, roll coating method and ink jet coating method. .

【0117】最後に、発光層40上に、蒸着法などを用
いて陰極層70を形成し、本発明による有機エレクトロ
ルミネッセンス素子が得られる。
Finally, the cathode layer 70 is formed on the light emitting layer 40 by using the vapor deposition method or the like to obtain the organic electroluminescence device according to the present invention.

【0118】なお、溶解度パラメータSPは、モル蒸発
熱ΔH、モル体積Vの液体の絶対温度Tにおいて、 SP={(ΔH−RT)/V}1/2 で定義される。ただし、上記式中、SPは溶解度パラメ
ータ(単位:(cal/cm31/2)であり、ΔHはモ
ル蒸発熱(単位:cal/mol)であり、Rは気体定
数(単位:cal/(mol・K))であり、Tは絶対
温度(単位:K)であり、Vはモル体積(単位:cm3
/mol)である。
The solubility parameter SP is defined by SP = {(ΔH-RT) / V} 1/2 at the absolute temperature T of the liquid having a molar evaporation heat ΔH and a molar volume V. However, in the above formula, SP is a solubility parameter (unit: (cal / cm 3 ) 1/2 ), ΔH is a heat of molar evaporation (unit: cal / mol), and R is a gas constant (unit: cal / mol). (Mol · K)), T is the absolute temperature (unit: K), and V is the molar volume (unit: cm 3).
/ Mol).

【0119】[0119]

【実施例】[実施例1]ダウンフロー式のプラズマ装置
にて、0.5kW、酸素流量150cc/min、四フ
ッ化炭素流量1cc/min、処理時間1分の条件でプ
ラズマ処理を行ったITOガラス基板(市販ITO、旭
硝子社製:20Ω/□以下、イオン化ポテンシャル5.
9eV)上に、ゲルパーエイションクロマトグラフィー
により測定したポリスチレン換算重量平均量(以下分子
量と言う。)として54,000の[化6]で示される
PVKとして7mgを1mlのジクロロエタンに溶解さ
せて作成した溶液1を用いて、1000rpmで1秒間
スピンコートを行い、50nmの膜厚の正孔輸送層を形
成した。
[Example 1] ITO subjected to plasma treatment in a down-flow type plasma apparatus under the conditions of 0.5 kW, oxygen flow rate 150 cc / min, carbon tetrafluoride flow rate 1 cc / min, and treatment time 1 minute. Glass substrate (commercial ITO, manufactured by Asahi Glass Co., Ltd .: 20 Ω / □ or less, ionization potential 5.
9 eV) was prepared by dissolving 7 mg of PVK represented by [Chemical Formula 6] of 54,000 as a polystyrene-reduced weight average amount (hereinafter referred to as molecular weight) measured by gel permeation chromatography in 1 ml of dichloroethane. The solution 1 prepared above was spin-coated at 1000 rpm for 1 second to form a hole transport layer having a film thickness of 50 nm.

【0120】さらに、真空蒸着装置を用い、圧力条件
1.0×10-3Pa、蒸着速度1nm/secで、[化
20]に示すAlq3を蒸着して、正孔輸送層上に50
nmの膜厚の電子輸送性発光層を形成した。
Further, using a vacuum vapor deposition apparatus, Alq3 shown in [Chemical Formula 20] is vapor-deposited under a pressure condition of 1.0 × 10 −3 Pa and a vapor deposition rate of 1 nm / sec.
An electron-transporting light-emitting layer having a thickness of nm was formed.

【0121】さらに、電子輸送性発光層上に、抵抗加熱
方式の蒸着装置を用いて0.2nm/secの蒸着速度
で、マグネシウムが90wt%となるように重量比を調
整した銀とマグネシウムとの共蒸着を行い、2.0nm
の膜厚の金属膜を形成して、さらにその上にカバーとし
て銀のみを用いて0.5nm/secの蒸着速度で蒸着
を行い、200nmの膜厚の金属膜を形成して陰極と
し、図2に示す素子を作成した。
Further, on the electron-transporting light-emitting layer, the weight ratio of silver and magnesium was adjusted by a resistance heating type vapor deposition apparatus at a vapor deposition rate of 0.2 nm / sec so that magnesium was 90 wt%. Co-deposited to 2.0 nm
A metal film having a film thickness of 5 nm, and then using only silver as a cover on the metal film at a deposition rate of 0.5 nm / sec to form a metal film having a film thickness of 200 nm as a cathode. The element shown in 2 was prepared.

【0122】この時、駆動電圧6.0V、電流密度20
mA/cm2で1000cd/m2の輝度の発光が得られ
た。
At this time, the driving voltage was 6.0 V and the current density was 20.
emission luminance of 1000 cd / m 2 was obtained in mA / cm 2.

【0123】なお、ITO基板のイオン化ポテンシャル
の測定は、大気中紫外線光電子分光装置(理研計器製A
C−1)で行った。
The measurement of the ionization potential of the ITO substrate was carried out in the atmosphere using an ultraviolet photoelectron spectrometer (A, manufactured by Riken Keiki Co., Ltd.).
C-1).

【0124】[比較例1]ITO基板のプラズマ処理時
に、四フッ化炭素を用いず、酸素のみ流量150cc/
min、処理時間1分の条件とした以外は[実施例1]
と同様にして図2に示す素子を作成した。このときのI
TO基板のイオン化ポテンシャルは5.5eVである。
[Comparative Example 1] At the time of plasma treatment of an ITO substrate, carbon tetrafluoride was not used and only oxygen was supplied at a flow rate of 150 cc /
Example 1 except that the conditions were min and processing time was 1 minute.
A device shown in FIG. 2 was prepared in the same manner as in. I at this time
The ionization potential of the TO substrate is 5.5 eV.

【0125】この時、駆動電圧9.0V、電流密度20
mA/cm2で1000cd/m2の輝度の発光が得られ
た。
At this time, the driving voltage was 9.0 V and the current density was 20.
emission luminance of 1000 cd / m 2 was obtained in mA / cm 2.

【0126】[実施例1]と[比較例1]とにより、四
フッ化炭素を含有させてプラズマ処理をした方がITO
基板のイオン化ポテンシャルが増大して、素子を低電圧
で駆動できる事が分る。
According to [Example 1] and [Comparative Example 1], it was better to perform the plasma treatment with the inclusion of carbon tetrafluoride.
It can be seen that the ionization potential of the substrate increases and the device can be driven at a low voltage.

【0127】[実施例2〜4]四フッ化炭素の流量を下
記[表1]に示すようにした以外は[実施例1]と同様
にして図2に示す素子を作成したところ、[実施例1]
と同じ1000cd/m2の輝度の発光を得るための発
光効率は[表1]に示すようになった。
[Examples 2 to 4] The elements shown in FIG. 2 were prepared in the same manner as in [Example 1] except that the flow rate of carbon tetrafluoride was changed as shown in [Table 1] below. Example 1]
Luminous efficiency for obtaining light emission with the same luminance of 1000 cd / m 2 as shown in [Table 1].

【0128】[0128]

【表1】 [Table 1]

【0129】[表1]により、四フッ化炭素の流量を増
やすとITO基板のイオン化ポテンシャルは増大する
が、[比較例2]及び[比較例3]のようにその流量が
1.5cc/minより大きくなるとPVKとの濡れ性
が悪くなり、成膜が困難になり発光性能が低下すること
が分る。
[Table 1] shows that when the flow rate of carbon tetrafluoride is increased, the ionization potential of the ITO substrate is increased, but the flow rate is 1.5 cc / min as in [Comparative Example 2] and [Comparative Example 3]. It can be seen that the larger the value, the poorer the wettability with PVK, the more difficult the film formation becomes, and the lower the light emitting performance.

【0130】[実施例5]ダウンフロー式のプラズマ装
置にて、0.5kW、酸素流量150cc/min、四
フッ化炭素流量1cc/min、処理時間1分の条件で
プラズマ処理を行ったITOガラス基板(市販ITO、
旭硝子社製:20Ω/□以下、イオン化ポテンシャル
5.9eV)上に、真空蒸着装置を用い、圧力条件1.
0×10-3Pa、蒸着速度1nm/secで、[化5]
で示されるCBPを蒸着して50nmの膜厚の正孔輸送
層を形成した。
[Embodiment 5] ITO glass plasma-treated in a down-flow type plasma apparatus under the conditions of 0.5 kW, oxygen flow rate 150 cc / min, carbon tetrafluoride flow rate 1 cc / min, and treatment time 1 minute. Substrate (commercial ITO,
Asahi Glass Co., Ltd .: 20 Ω / □ or less, ionization potential of 5.9 eV), a vacuum deposition apparatus was used, and pressure conditions were 1.
[Chemical formula 5] at 0 × 10 −3 Pa and vapor deposition rate of 1 nm / sec.
CBP was vapor-deposited to form a hole transport layer having a thickness of 50 nm.

【0131】さらに、真空蒸着装置を用い、圧力条件
1.0×10-3Pa、蒸着速度1nm/secで、[化
15]に示すOXD−1を蒸着して、正孔輸送層上に5
0nmの膜厚の電子輸送性発光層を形成した。
Further, OXD-1 shown in [Chemical Formula 15] was vapor-deposited using a vacuum vapor deposition apparatus at a pressure condition of 1.0 × 10 −3 Pa and a vapor deposition rate of 1 nm / sec, and 5 was deposited on the hole transport layer.
An electron-transporting light-emitting layer having a thickness of 0 nm was formed.

【0132】さらに、電子輸送性発光層上に、抵抗加熱
方式の蒸着装置を用いて0.2nm/secの蒸着速度
で、マグネシウムが90wt%となるように重量比を調
整した銀とマグネシウムとの共蒸着を行い、2.0nm
の膜厚の金属膜を形成して、さらにその上にカバーとし
て銀のみを用いて0.5nm/secの蒸着速度で蒸着
を行い、200nmの膜厚の金属膜を形成して陰極と
し、図2に示す素子を作成した。
Further, on the electron transporting light emitting layer, a weight ratio of silver and magnesium was adjusted by a resistance heating type vapor deposition apparatus at a vapor deposition rate of 0.2 nm / sec so that magnesium was 90 wt%. Co-deposited to 2.0 nm
A metal film having a film thickness of 5 nm, and then using only silver as a cover on the metal film at a deposition rate of 0.5 nm / sec to form a metal film having a film thickness of 200 nm as a cathode. The element shown in 2 was prepared.

【0133】この時、駆動電圧6.0V、電流密度25
mA/cm2で1000cd/m2の輝度の発光が得られ
た。
At this time, the driving voltage was 6.0 V and the current density was 25.
emission luminance of 1000 cd / m 2 was obtained in mA / cm 2.

【0134】[比較例4]ITO基板のプラズマ処理時
に、四フッ化炭素を用いず、酸素のみ流量150cc/
min、処理時間1分の条件とした以外は[実施例5]
と同様にして図2に示す素子を作成した。このとき、駆
動電圧10V、電流密度25mA/cm2で1000c
d/m2の輝度の発光が得られた。
[Comparative Example 4] At the time of plasma treatment of an ITO substrate, carbon tetrafluoride was not used and only oxygen was supplied at a flow rate of 150 cc /
Example 5 except that the conditions were min and processing time was 1 minute.
A device shown in FIG. 2 was prepared in the same manner as in. At this time, 1000c at a driving voltage of 10V and a current density of 25mA / cm 2 .
Light emission with a brightness of d / m 2 was obtained.

【0135】[実施例6〜8]四フッ化炭素の流量を下
記[表2]に示すようにした以外は[実施例5]と同様
にして図2に示す素子を作成したところ、[実施例5]
と同じ1000cd/m2の輝度の発光を得るための発
光効率は[表2]に示すようになった。
[Examples 6 to 8] The devices shown in Fig. 2 were prepared in the same manner as in [Example 5] except that the flow rate of carbon tetrafluoride was changed as shown in [Table 2] below. Example 5]
The light emission efficiency for obtaining light emission with the same luminance of 1000 cd / m 2 as shown in [Table 2].

【0136】[0136]

【表2】 [Table 2]

【0137】[表2]により、[比較例5]及び[比較
例6]のように四フッ化炭素の流量が1.5cc/mi
nより大きくなると成膜が困難になり発光性能が低下す
ることが分る。
According to [Table 2], the flow rate of carbon tetrafluoride was 1.5 cc / mi as in [Comparative Example 5] and [Comparative Example 6].
It can be seen that if it is larger than n, film formation becomes difficult and the light emission performance is deteriorated.

【0138】[実施例9]ダウンフロー式のプラズマ装
置にて、プラズマを発生させる石英管中にポリ四フッ化
エチレンを入れフッ素源とし、0.5kW、酸素流量1
50cc/min、処理時間1分の条件でプラズマ処理
を行ったITOガラス基板(市販ITO、旭硝子社製:
20Ω/□以下、イオン化ポテンシャル5.9eV)上
に、分子量54,000の[化6]で示されるPVKと
して7mgを1mlのジクロロエタンに溶解させて作成
した溶液1を用いて、1000rpmで1秒間スピンコ
ートを行い、50nmの膜厚の正孔輸送層を形成した。
[Embodiment 9] In a down-flow type plasma apparatus, polytetrafluoroethylene was put in a quartz tube for generating plasma to be a fluorine source, 0.5 kW, and an oxygen flow rate was 1
An ITO glass substrate (commercial ITO, manufactured by Asahi Glass Co., Ltd.) subjected to plasma treatment under the conditions of 50 cc / min and a treatment time of 1 minute:
A solution 1 prepared by dissolving 7 mg of PVK represented by [Chemical Formula 6] having a molecular weight of 54,000 in 1 ml of dichloroethane on 20 Ω / □ or less and an ionization potential of 5.9 eV was spun at 1000 rpm for 1 second. Coating was performed to form a hole transport layer having a film thickness of 50 nm.

【0139】さらに、真空蒸着装置を用い、圧力条件
1.0×10-3Pa、蒸着速度1nm/secで、[化
20]に示すAlq3を蒸着して、正孔輸送層上に50
nmの膜厚の電子輸送性発光層を形成した。
Further, Alq3 shown in [Chemical Formula 20] is vapor-deposited using a vacuum vapor deposition apparatus under a pressure condition of 1.0 × 10 −3 Pa and a vapor deposition rate of 1 nm / sec, and 50 is deposited on the hole transport layer.
An electron-transporting light-emitting layer having a thickness of nm was formed.

【0140】さらに、電子輸送性発光層上に、抵抗加熱
方式の蒸着装置を用いて0.2nm/secの蒸着速度
で、マグネシウムが90wt%となるように重量比を調
整した銀とマグネシウムとの共蒸着を行い、2.0nm
の膜厚の金属膜を形成して、さらにその上にカバーとし
て銀のみを用いて0.5nm/secの蒸着速度で蒸着
を行い、200nmの膜厚の金属膜を形成して陰極と
し、図2に示す素子を作成した。
Further, on the electron-transporting light-emitting layer, the weight ratio of silver and magnesium was adjusted by a resistance heating type vapor deposition apparatus at a vapor deposition rate of 0.2 nm / sec so that magnesium was 90 wt%. Co-deposited to 2.0 nm
A metal film having a film thickness of 5 nm, and then using only silver as a cover on the metal film at a deposition rate of 0.5 nm / sec to form a metal film having a film thickness of 200 nm as a cathode. The element shown in 2 was prepared.

【0141】この時、駆動電圧5.5V、電流密度18
mA/cm2で1000cd/m2の輝度の発光が得られ
た。
At this time, the driving voltage was 5.5 V and the current density was 18
emission luminance of 1000 cd / m 2 was obtained in mA / cm 2.

【0142】[0142]

【発明の効果】以上の説明から明らかなように、本発明
による有機エレクトロルミネッセンス素子は、これを構
成するITOなどの金属酸化物から成る陽極層がフッ素
を含有した酸素のプラズマ表面処理を経て、5.5eV
以上の比較的高いイオン化ポテンシャルを有して形成さ
れるので、陽極層に隣接して形成される発光層や正孔輸
送層に導電性高分子を用いる場合や燐光発光のための発
光層ホスト剤を用いる場合でも正孔注入障壁を軽減でき
る。このため、正孔注入層や陽極層中の界面層を介設し
なくても陽極層から発光層へ正孔が確実に注入できて電
気的接合が向上し、駆動電圧を低下することができる。
このような陽極層は簡便なプラズマ表面処理により形成
されるので、これを用いた有機エレクトロルミネッセン
ス素子は簡易に形成でき、また、良好な発光効率を備え
ている。
As is clear from the above description, the organic electroluminescence device according to the present invention is obtained by subjecting the anode layer made of a metal oxide such as ITO constituting the anode layer to plasma surface treatment of oxygen containing fluorine, 5.5 eV
Since it is formed with a relatively high ionization potential as described above, when a conductive polymer is used in the light emitting layer or hole transporting layer formed adjacent to the anode layer, or a light emitting layer host agent for phosphorescence emission Even when using, the hole injection barrier can be reduced. For this reason, holes can be surely injected from the anode layer to the light emitting layer without interposing an interface layer in the hole injection layer or the anode layer, electrical connection is improved, and the driving voltage can be lowered. .
Since such an anode layer is formed by a simple plasma surface treatment, an organic electroluminescence device using the same can be easily formed and has good luminous efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】有機エレクトロルミネッセンス素子の素子構造FIG. 1 is a device structure of an organic electroluminescence device.

【図2】本発明により形成した素子構造の実施形態FIG. 2 is an embodiment of a device structure formed according to the present invention.

【符号の説明】[Explanation of symbols]

10 陽極層 40 発光層 70 陰極層 10 Anode layer 40 light emitting layer 70 cathode layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】陽極層及び陰極層の両電極層と該両電極層
間に形成される発光層を有する有機エレクトロルミネッ
センス素子において、前記陽極層が、フッ素含有量を1
重量%以下とする酸素を用いたプラズマ表面処理を施し
た透明性金属酸化物から成ることを特徴とする有機エレ
クトロルミネッセンス素子。
1. In an organic electroluminescence device having both electrode layers of an anode layer and a cathode layer and a light emitting layer formed between the both electrode layers, the anode layer has a fluorine content of 1 or less.
An organic electroluminescence device comprising a transparent metal oxide which has been subjected to plasma surface treatment using oxygen in an amount of not more than 10% by weight.
【請求項2】前記フッ素は、四フッ化炭素の構成原子と
して前記酸素中に含有されることを特徴とする請求項1
に記載の有機エレクトロルミネッセンス素子。
2. The fluorine is contained in the oxygen as a constituent atom of carbon tetrafluoride.
The organic electroluminescence device described in 1.
【請求項3】前記フッ素は、フッ素樹脂の構成原子とし
て前記酸素中に含有されることを特徴とする請求項1に
記載の有機エレクトロルミネッセンス素子。
3. The organic electroluminescence device according to claim 1, wherein the fluorine is contained in the oxygen as a constituent atom of the fluororesin.
【請求項4】前記陽極層に積層する有機層を構成する有
機化合物のイオン化ポテンシャルが5.5eV以上であ
ることを特徴とする請求項1乃至3のいずれか1項に記
載の有機エレクトロルミネッセンス素子。
4. The organic electroluminescence device according to claim 1, wherein the organic compound forming the organic layer laminated on the anode layer has an ionization potential of 5.5 eV or more. .
【請求項5】前記透明性金属酸化物が、インジウム錫酸
化物から成ることを特徴とする請求項1乃至4のいずれ
か1項に記載の有機エレクトロルミネッセンス素子。
5. The organic electroluminescence device according to claim 1, wherein the transparent metal oxide is indium tin oxide.
【請求項6】陽極層及び陰極層の両電極層と該両電極層
間に形成される発光層を有する有機エレクトロルミネッ
センス素子を製造する方法において、ガラス基板上に透
明性金属酸化物を積層した後に、該透明性金属酸化物に
対して、フッ素含有量を1重量%以下とする酸素を用い
たプラズマ表面処理を行って前記陽極層を形成すること
を特徴とする有機エレクトロルミネッセンス素子の製造
方法。
6. A method for producing an organic electroluminescent device having both electrode layers of an anode layer and a cathode layer and a light emitting layer formed between the electrode layers, wherein a transparent metal oxide is laminated on a glass substrate. A method for producing an organic electroluminescence device, comprising: performing a plasma surface treatment on the transparent metal oxide with oxygen having a fluorine content of 1% by weight or less to form the anode layer.
JP2002057521A 2002-03-04 2002-03-04 Organic electroluminescence element and its manufacturing method Pending JP2003257677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057521A JP2003257677A (en) 2002-03-04 2002-03-04 Organic electroluminescence element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057521A JP2003257677A (en) 2002-03-04 2002-03-04 Organic electroluminescence element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003257677A true JP2003257677A (en) 2003-09-12

Family

ID=28667758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057521A Pending JP2003257677A (en) 2002-03-04 2002-03-04 Organic electroluminescence element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003257677A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100625032B1 (en) 2004-12-07 2006-09-20 엘지전자 주식회사 Organic Electro-Luminescence Display Device And Fabricating Method Thereof
JP2007115800A (en) * 2005-10-19 2007-05-10 Hitachi Displays Ltd Organic el display and its manufacturing method
JP2007134210A (en) * 2005-11-11 2007-05-31 Nippon Seiki Co Ltd Organic electroluminescent element
JP2007266160A (en) * 2006-03-28 2007-10-11 Canon Inc Organic light emitting element array
JP2009267393A (en) * 2008-04-02 2009-11-12 Hitachi Chem Co Ltd Organic electronics material
JP2010225997A (en) * 2009-03-25 2010-10-07 Tdk Corp Organic el element
JP2011501369A (en) * 2007-10-24 2011-01-06 メルク パテント ゲーエムベーハー Optoelectronic device
WO2019188750A1 (en) * 2018-03-30 2019-10-03 国立大学法人信州大学 Inspection method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100625032B1 (en) 2004-12-07 2006-09-20 엘지전자 주식회사 Organic Electro-Luminescence Display Device And Fabricating Method Thereof
JP2007115800A (en) * 2005-10-19 2007-05-10 Hitachi Displays Ltd Organic el display and its manufacturing method
JP2007134210A (en) * 2005-11-11 2007-05-31 Nippon Seiki Co Ltd Organic electroluminescent element
JP2007266160A (en) * 2006-03-28 2007-10-11 Canon Inc Organic light emitting element array
JP2011501369A (en) * 2007-10-24 2011-01-06 メルク パテント ゲーエムベーハー Optoelectronic device
KR101508800B1 (en) * 2007-10-24 2015-04-06 메르크 파텐트 게엠베하 Optoelectronic device
JP2009267393A (en) * 2008-04-02 2009-11-12 Hitachi Chem Co Ltd Organic electronics material
JP2010225997A (en) * 2009-03-25 2010-10-07 Tdk Corp Organic el element
WO2019188750A1 (en) * 2018-03-30 2019-10-03 国立大学法人信州大学 Inspection method
KR20200117036A (en) * 2018-03-30 2020-10-13 신슈 다이가쿠 method of inspection
CN111902977A (en) * 2018-03-30 2020-11-06 国立大学法人信州大学 Detection method
JPWO2019188750A1 (en) * 2018-03-30 2021-02-12 国立大学法人信州大学 Inspection methods
KR102278258B1 (en) 2018-03-30 2021-07-15 신슈 다이가쿠 method of inspection
CN111902977B (en) * 2018-03-30 2021-09-24 国立大学法人信州大学 Detection method

Similar Documents

Publication Publication Date Title
Vaeth et al. Light-emitting diodes based on phosphorescent guest/polymeric host systems
JP2002324679A (en) Organic electroluminescent element
JP2003217862A (en) Organic electroluminescent element
JP2002352957A (en) Organic electoluminescence element
US6900588B2 (en) Highly efficient OLEDs using doped ambipolar conductive molecular organic thin films
US7285432B2 (en) Structure and method of fabricating organic devices
US7045952B2 (en) OLEDs with mixed host emissive layer
JP3945123B2 (en) Organic electroluminescence device
KR101688317B1 (en) Organic light emitting diode having low operating voltage and method for fabricating the same
JP2003007467A (en) Organic electroluminescence element
KR101000620B1 (en) Organic electro luminescence device and manufacturing method thereof
JP2003077673A (en) Organic electroluminescent element
JP2009124138A (en) Organic light-emitting element
JP2003217863A (en) Method of fabricating organic electroluminescent element
JP2003288981A (en) Light emitting element
JP2001319781A (en) Selecting method of organic luminous element material and organic luminous element using its material
JP2005063947A (en) Organic electroluminescent element using anode surface reforming layer
JP3978976B2 (en) Organic electroluminescence device
JP2003257674A (en) Organic electroluminescence element
JP2007096023A (en) Organic light emitting device
US20040096570A1 (en) Structure and method of fabricating organic devices
JP3981331B2 (en) Organic electroluminescence device
JP2003257677A (en) Organic electroluminescence element and its manufacturing method
JP2002299061A (en) Organic electroluminescence element
JP4783526B2 (en) Organic electroluminescence device