JP2003251375A - Treatment method for organic wastewater - Google Patents

Treatment method for organic wastewater

Info

Publication number
JP2003251375A
JP2003251375A JP2002051698A JP2002051698A JP2003251375A JP 2003251375 A JP2003251375 A JP 2003251375A JP 2002051698 A JP2002051698 A JP 2002051698A JP 2002051698 A JP2002051698 A JP 2002051698A JP 2003251375 A JP2003251375 A JP 2003251375A
Authority
JP
Japan
Prior art keywords
organic wastewater
inorganic carrier
granular inorganic
organic
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002051698A
Other languages
Japanese (ja)
Inventor
Shogo Anzai
奬吾 安財
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002051698A priority Critical patent/JP2003251375A/en
Publication of JP2003251375A publication Critical patent/JP2003251375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently oxidize and decompose an organic pollutant component by the small addition amount of a chlorine agent by allowing the chlorine agent such as sodium hypochlorite or the like to effectively act on the decomposition of the organic pollutant component in the treatment of organic wastewater by a catalytic oxidation method. <P>SOLUTION: This treatment method for organic wastewater is constituted so as to oxidize and decompose the organic pollutant component in organic wastewater by bringing the organic wastewater into contact with a catalyst, which is obtained by supporting a catalytically active component on a granular inorganic carrier, in the presence of the chlorine agent. The granular inorganic carrier has a mean particle size of 0.5 mm or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機性排水中の有
機汚濁成分を酸化分解する方法に係り、詳しくは、有機
性排水中を、塩素剤の存在下に、粒状無機担体に触媒活
性成分を担持させてなる触媒と接触させることにより、
該有機性排水中の有機汚濁成分を酸化分解する有機性排
水の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for oxidatively decomposing organic pollutants in organic wastewater, and more specifically, to a catalytically active component in a granular inorganic carrier in organic wastewater in the presence of a chlorine agent. By contacting with a catalyst supporting
The present invention relates to a method for treating organic wastewater by oxidizing and decomposing organic pollutants in the organic wastewater.

【0002】[0002]

【従来の技術】従来、し尿処理水等の有機汚濁成分を含
む有機性着色汚水の処理方法としては、生物学的処理方
法や活性炭吸着法、オゾン酸化法、塩素酸化法、フェン
トン法、触媒酸化法などが知られており、既に実用化さ
れている。このうち、触媒酸化法は、次亜塩素酸ナトリ
ウムやオゾン等の酸化剤と、ゼオライトやアルミナ等の
担体に過酸化ニッケルや過酸化コバルトを担持した触媒
とを組み合わせて、有機性排水中の有機汚濁成分を接触
酸化分解するものであり(特公昭58−8307号公
報)、生物学的処理法等に比べて省スペースであり、再
生等のメンテナンス頻度も少なく、しかも塩素酸化法等
に比べて分解効率が高く、汚泥発生の問題もないといっ
た利点を有する。
2. Description of the Related Art Conventionally, as a method for treating organic colored wastewater containing organic pollutants such as treated human waste water, biological treatment method, activated carbon adsorption method, ozone oxidation method, chlorine oxidation method, Fenton method, catalytic oxidation method. The law is known and has already been put to practical use. Among them, the catalytic oxidation method is a combination of an oxidizing agent such as sodium hypochlorite or ozone and a catalyst in which nickel peroxide or cobalt peroxide is supported on a carrier such as zeolite or alumina, and the organic matter in the organic waste water is combined. It is a method for catalytically oxidizing and decomposing polluted components (Japanese Patent Publication No. 58-8307), which saves space compared to biological treatment methods and the like, requires less maintenance frequency such as regeneration, and is more efficient than chlorine oxidation method and the like. It has the advantages of high decomposition efficiency and no sludge generation problem.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、触媒酸
化法では、触媒表面上において、次亜塩素酸ナトリウム
等の塩素剤の一部が自己分解反応を起こし、有機汚濁成
分の酸化分解に使用されることなく消失してしまう。こ
のため、有機性排水中の有機汚濁成分の酸化分解に必要
な理論量よりも過剰に塩素剤を添加する必要があり、処
理コストが高くつくという問題があった。
However, in the catalytic oxidation method, a part of the chlorine agent such as sodium hypochlorite causes a self-decomposition reaction on the surface of the catalyst and is used for the oxidative decomposition of organic pollutant components. It disappears without any notice. Therefore, it is necessary to add the chlorine agent in excess of the theoretical amount required for the oxidative decomposition of the organic pollutant component in the organic waste water, which causes a problem of high treatment cost.

【0004】本発明は上記従来の問題点を解決し、触媒
酸化法による有機性排水の処理において、次亜塩素酸ナ
トリウム等の塩素剤を有機汚濁成分の分解に有効に作用
させることにより、少ない塩素剤添加量で有機汚濁成分
を効率的に酸化分解する方法を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems, and in the treatment of organic waste water by the catalytic oxidation method, the chlorine agent such as sodium hypochlorite effectively acts on the decomposition of organic pollutant components, thereby reducing It is an object of the present invention to provide a method for efficiently oxidizing and decomposing organic pollutant components with the addition amount of a chlorine agent.

【0005】[0005]

【課題を解決するための手段】本発明の有機性排水の処
理方法は、有機性排水中を、塩素剤の存在下に、粒状無
機担体に触媒活性成分を担持させてなる触媒と接触させ
ることにより、該有機性排水中の有機汚濁成分を酸化分
解する有機性排水の処理方法において、該触媒の粒状無
機担体として、平均粒径0.5mm以下の粒状無機担体
を用いることを特徴とする。
According to the method for treating organic wastewater of the present invention, the organic wastewater is contacted with a catalyst comprising a granular inorganic carrier carrying a catalytically active component in the presence of a chlorine agent. Thus, in the method for treating organic wastewater in which the organic pollutant component in the organic wastewater is oxidatively decomposed, a granular inorganic carrier having an average particle diameter of 0.5 mm or less is used as the granular inorganic carrier of the catalyst.

【0006】本発明者は、触媒酸化法における次亜塩素
酸ナトリウム等の塩素剤の自己分解を防止すべく鋭意検
討を重ねた結果、平均粒径0.5mm以下の粒状無機担
体を用いることにより、有機汚濁成分の分解効率が向上
するだけでなく、次亜塩素酸ナトリウム等の塩素剤を有
機汚濁成分の分解に有効に作用させることが可能となる
ことを見出した。
The present inventor has conducted extensive studies to prevent self-decomposition of a chlorine agent such as sodium hypochlorite in the catalytic oxidation method, and as a result, by using a granular inorganic carrier having an average particle size of 0.5 mm or less, It has been found that not only the efficiency of decomposing organic pollutants is improved, but also a chlorine agent such as sodium hypochlorite can effectively act on the decomposition of organic pollutants.

【0007】触媒の担体として平均粒径0.5mm以下
の粒状無機担体を用いることによる本発明の作用機構の
詳細は明らかではないが、平均粒径0.5mm以下で比
表面積が大幅にふえた粒状無機担体を用いることにより
担体表面に担持された触媒量が増加し、その結果触媒活
性が高められ、この高い触媒活性で有機汚濁成分の分解
が促進される。一方、塩素剤の自己分解は、主に担体の
細孔中で行われると考えられるが、平均粒径が小さいと
比表面積に比べ、細孔容量が小さいので塩素剤が自己分
解する度合が少なくなり、有機汚濁成分と優先的に反応
するようになることによるものと推定される。
Although the details of the mechanism of action of the present invention by using a granular inorganic carrier having an average particle size of 0.5 mm or less as a catalyst carrier are not clear, the specific surface area is significantly increased at an average particle size of 0.5 mm or less. By using the granular inorganic carrier, the amount of the catalyst supported on the surface of the carrier increases, and as a result, the catalytic activity is enhanced, and the decomposition of the organic pollutant component is promoted by this high catalytic activity. On the other hand, the self-decomposition of the chlorine agent is considered to be carried out mainly in the pores of the carrier, but when the average particle size is small, the pore volume is smaller than the specific surface area, so the degree of self-decomposition of the chlorine agent is small. It is presumed that this is due to the preferential reaction with organic pollutants.

【0008】本発明において、粒状無機担体としては、
クリノプチロライト系天然ゼオライト及び/又はモルデ
ナイト系天然ゼオライトが好ましく、塩素剤としては次
亜塩素酸ナトリウムが、また、触媒活性成分としては過
酸化ニッケルが好ましい。
In the present invention, as the granular inorganic carrier,
Clinoptilolite type natural zeolite and / or mordenite type natural zeolite are preferable, sodium hypochlorite is preferable as the chlorine agent, and nickel peroxide is preferable as the catalytically active component.

【0009】[0009]

【発明の実施の形態】以下に本発明の有機性排水の処理
方法の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the method for treating organic waste water according to the present invention will be described in detail below.

【0010】まず、本発明で用いる触媒について説明す
る。
First, the catalyst used in the present invention will be described.

【0011】本発明においては、触媒酸化法における触
媒の粒状無機担体として、平均粒径0.5mm以下の粒
状無機担体を用いる。後述の実施例及び比較例の結果か
らも明らかなように、平均粒径は小さい程有機汚濁成分
の分解効率、次亜塩素酸ナトリウム等の塩素剤の利用効
率は高くなる傾向にあるが、過度に平均粒径の小さい粒
状無機担体は、取り扱い性や価格の面で好ましくないこ
とから、平均粒径0.05〜0.5mm、特に0.1〜
0.4mmの粒状無機担体を用いることが好ましい。
In the present invention, a granular inorganic carrier having an average particle diameter of 0.5 mm or less is used as the granular inorganic carrier of the catalyst in the catalytic oxidation method. As is clear from the results of Examples and Comparative Examples described below, the smaller the average particle size, the higher the decomposition efficiency of organic pollutant components, the higher the utilization efficiency of chlorine agents such as sodium hypochlorite, but excessive. Since the granular inorganic carrier having a small average particle size is not preferable in terms of handleability and price, the average particle size is 0.05 to 0.5 mm, particularly 0.1 to 0.5 mm.
It is preferable to use a 0.4 mm granular inorganic carrier.

【0012】この粒状無機担体としては、ゼオライト、
アルミナ等を用いることができるが、特にゼオライトが
好ましい。ゼオライトとしては、天然ゼオライト、合成
ゼオライトのいずれでも良いが、硬質で、耐磨耗性に優
れることから、クリノプチロライト系天然ゼオライト、
及び/又はモルデナイト系天然ゼオライトを用いること
が好ましい。
As the granular inorganic carrier, zeolite,
Alumina or the like can be used, but zeolite is particularly preferable. As the zeolite, either natural zeolite or synthetic zeolite may be used, but since it is hard and has excellent abrasion resistance, clinoptilolite-based natural zeolite,
And / or mordenite type natural zeolite is preferably used.

【0013】このような粒状無機担体に担持させる触媒
活性成分としては、ニッケル及び/又はコバルト好まし
くはニッケル酸化物又はコバルト酸化物が挙げられ、特
に過酸化ニッケル又は過酸化コバルトが好ましい。粒状
無機担体に過酸化ニッケルを担持させるには、硫酸ニッ
ケル、硝酸ニッケル、塩化ニッケル等の水溶液に粒状無
機担体を浸漬させるなどして接触させた後、必要に応じ
て洗浄し、その後塩素剤を含むアルカリ溶液で処理して
洗浄すれば良い。
Examples of the catalytically active component supported on such a granular inorganic carrier include nickel and / or cobalt, preferably nickel oxide or cobalt oxide, and nickel peroxide or cobalt peroxide is particularly preferable. In order to support nickel peroxide on the granular inorganic carrier, the granular inorganic carrier is contacted by immersing it in an aqueous solution of nickel sulfate, nickel nitrate, nickel chloride, etc., and then washed if necessary, and then a chlorine agent is added. It may be cleaned by treating with an alkaline solution containing it.

【0014】粒状無機担体への触媒活性成分の担持処理
条件は適宜決定されるが、本発明によれば、平均粒径が
0.5mm以下という微粒状の粒状無機担体を用いるこ
とにより、触媒活性成分を効率的に担持させることがで
き、触媒活性の高い触媒を調製することができる。
Although the conditions for carrying the catalytically active component on the granular inorganic carrier are appropriately determined, according to the present invention, the catalytic activity can be improved by using the fine granular inorganic carrier having an average particle size of 0.5 mm or less. The components can be efficiently supported, and a catalyst having high catalytic activity can be prepared.

【0015】塩素剤としては、次亜塩素酸ナトリウム、
塩素ガス、電解により発生させた塩素などの遊離塩素を
発生する薬剤、好ましくは次亜塩素酸ナトリウムを用い
ることができる。
As the chlorine agent, sodium hypochlorite,
A chlorine gas, an agent that generates free chlorine such as chlorine generated by electrolysis, preferably sodium hypochlorite can be used.

【0016】本発明では、処理する有機性排水に塩素剤
を添加し、これを前記触媒の充填カラムに通水するか、
触媒を添加して混合するなどして触媒と接触させる。
In the present invention, a chlorine agent is added to the organic wastewater to be treated and this is passed through a packed column of the catalyst, or
The catalyst is added and mixed to bring it into contact with the catalyst.

【0017】本発明では、用いる触媒の粒径が小さいの
でカラムは流動床で通水する方が好ましい。この通水速
度はLV1.5m/hr以上とする。
In the present invention, since the catalyst used has a small particle size, it is preferable to pass water through the column in a fluidized bed. This water flow rate shall be LV 1.5 m / hr or more.

【0018】有機性排水に添加する塩素剤の添加量は、
有機性排水中の有機汚濁成分量に応じて適宜決定される
が、本発明では、平均粒径0.5mm以下の粒状無機担
体を用いることにより、塩素剤の使用量を低減すること
ができ、有機性排水中のCODMnに対して塩素換算の
添加量として4〜10重量倍程度の添加量で十分な分解
効率を得ることができる。
The amount of chlorine agent added to the organic wastewater is
The amount of the chlorine agent can be reduced by using a granular inorganic carrier having an average particle size of 0.5 mm or less, though it is appropriately determined according to the amount of organic pollutant components in the organic waste water. Sufficient decomposition efficiency can be obtained by adding chlorine in an amount of about 4 to 10 times by weight with respect to COD Mn in the organic waste water.

【0019】塩素剤を添加した有機性排水を触媒充填カ
ラムに通水する場合、その通水条件は、塩素剤の添加量
や有機性排水の有機汚濁成分量等によって適宜決定され
る。
When the organic wastewater containing the chlorine agent is passed through the catalyst-filled column, the water passage conditions are appropriately determined depending on the amount of the chlorine agent added and the amount of organic pollutants in the organic wastewater.

【0020】このような本発明の有機性排水の処理方法
は、し尿処理水、その他の着色有機性排水の脱色及びC
OD除去処理に有効であり、塩素剤及び触媒使用量の低
減により、イニシャルコスト、ランニングコストの削減
を図ることができる。
Such a method for treating organic wastewater according to the present invention is a method for decolorizing human waste water and other colored organic wastewater, and C
It is effective for OD removal treatment, and the initial cost and running cost can be reduced by reducing the amounts of chlorine agent and catalyst used.

【0021】[0021]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0022】なお、供試担体としては、クリノプチロラ
イト系天然ゼオライト(イオン交換容量:166〜16
8meq/100g,BET比表面積:18m/g)
を用い、下記A〜Eの粒径範囲の5種類のものを用意し
た。 A:0.08〜0.22mmφ B:0.22〜0.50mmφ C:0.50〜 1.0mmφ D: 1.0〜 2.0mmφ E: 2.0〜 4.0mmφ
As the sample carrier, clinoptilolite natural zeolite (ion exchange capacity: 166 to 16) is used.
8 meq / 100 g, BET specific surface area: 18 m 2 / g)
The following five kinds of particles having particle diameter ranges A to E were prepared. A: 0.08 to 0.22 mmφ B: 0.22 to 0.50 mmφ C: 0.50 to 1.0 mmφ D: 1.0 to 2.0 mmφ E: 2.0 to 4.0 mmφ

【0023】触媒の調製手順は以下の通りである。 担体をそれぞれ1,000gとり、SS成分がなく
なるまで洗浄した。 NiSO・6HO 112g(25g−Ni/
1,000g−乾燥ゼオライト)を800mLの超純水
に溶解した。これを水洗したゼオライトに添加し、20
hr放置した(担体に対して2.5重量%Ni添加) 上澄み液を廃棄した。 1,000mLの超純水で3度ゼオライトを洗浄し
た。 35gのNaOHを500mLの超純水に溶解し、
400mLの10重量%NaClO溶液を添加し、この
混合溶液中に洗浄後のゼオライトを浸漬して20hr放
置した。 ゼオライトをの混合溶液から分離し、洗浄水のp
Hが10になるまで超純水で洗浄した。
The procedure for preparing the catalyst is as follows. 1,000 g of each carrier was taken and washed until the SS component was eliminated. NiSO 4 · 6H 2 O 112g ( 25g-Ni /
1,000 g-dry zeolite) was dissolved in 800 mL of ultrapure water. Add this to washed zeolite and add 20
The mixture was allowed to stand for hr (2.5 wt% Ni added to the carrier), and the supernatant was discarded. The zeolite was washed 3 times with 1,000 mL of ultrapure water. Dissolve 35 g of NaOH in 500 mL of ultrapure water,
400 mL of 10 wt% NaClO solution was added, and the washed zeolite was immersed in this mixed solution and left for 20 hours. The zeolite is separated from the mixed solution of
It was washed with ultrapure water until H became 10.

【0024】調整した触媒を別途塩酸で溶解し、ニッケ
ル担持量(g/g−触媒)を測定したところ、A:0.
13,B:0.11,C:0.14,D:0.11であ
った。
The adjusted catalyst was separately dissolved in hydrochloric acid, and the amount of nickel supported (g / g-catalyst) was measured.
13, B: 0.11, C: 0.14, D: 0.11.

【0025】実施例1,2、比較例1〜3 表1に示す粒状無機担体を用いて調製した触媒を各々内
径25mmφのカラムに50mL充填した。このカラム
に、COD源としてモノエタノールアミンを含有する原
水(pH7.9〜8.1)に、NaClOを添加した
後、通水した。温度は40℃で通水速度750mL/h
r,SV:15hr−1,LV:1.5m/hrで通水
を行った。
Examples 1 and 2 and Comparative Examples 1 to 3 50 mL of the catalyst prepared by using the granular inorganic carrier shown in Table 1 was packed in each column having an inner diameter of 25 mmφ. To this column, NaClO was added to raw water (pH 7.9 to 8.1) containing monoethanolamine as a COD source, and then water was passed. Temperature is 40 ° C and water flow rate is 750mL / h
Water was passed at r, SV: 15 hr −1 and LV: 1.5 m / hr.

【0026】この処理における、原水のCODMn、処
理水のCODMn及びその分解率と、原水のNaClO
濃度、処理水のNaClO濃度及びその分解率は表1に
示す通りであった。
[0026] in this process, raw water COD Mn, and COD Mn and its degradation rate of the treated water, NaClO raw water
The concentration, the concentration of NaClO in the treated water, and the decomposition rate thereof were as shown in Table 1.

【0027】各例におけるNaClOのCOD分解に対
する有効利用率を調べるために、反応比(ΔCOD/Δ
NaClO)として、消費されたNaClO量(原水N
aClO濃度−処理水NaClO濃度)に対する除去さ
れたCODMn量(原水CODMn−処理水CO
Mn)の割合を算出し、結果を表1に示すと共に、こ
の反応比と触媒の粒状無機担体の平均粒径との関係を図
1に示した。
In order to examine the effective utilization rate of NaClO for COD decomposition in each example, the reaction ratio (ΔCOD / Δ
As NaClO), the amount of NaClO consumed (raw water N
aCOO concentration-treated water NaClO concentration) COD Mn amount removed (raw water COD Mn -treated water CO)
The ratio of D Mn ) was calculated, the results are shown in Table 1, and the relationship between this reaction ratio and the average particle size of the granular inorganic carrier of the catalyst is shown in FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】表1及び図1より、粒状無機担体の平均粒
径が小さい程反応比ΔCOD/ΔNaClOが大きく、
単位塩素消費量当たりのCOD除去量が多いことが分か
る。この傾向は、特に、粒状無機担体の平均粒径が0.
39mm以下の場合に顕著であり、また、平均粒径が
0.39mm以下の場合には、CODMn分解率も格段
に向上しており、平均粒径0.4mm以下の粒状無機担
体を用いることにより、効率的な接触酸化分解を行うこ
とができることが明らかである。
From Table 1 and FIG. 1, the smaller the average particle size of the granular inorganic carrier, the larger the reaction ratio ΔCOD / ΔNaClO,
It can be seen that the COD removal amount per unit chlorine consumption is large. This tendency is especially caused when the average particle size of the granular inorganic carrier is 0.
When the average particle size is 39 mm or less, the COD Mn decomposition rate is remarkably improved when the average particle size is 0.39 mm or less, and a granular inorganic carrier having an average particle size of 0.4 mm or less is used. Thus, it is clear that efficient catalytic oxidative decomposition can be carried out.

【0030】[0030]

【発明の効果】以上詳述した通り、本発明の有機性排水
の処理方法によれば、触媒酸化法による有機性排水の処
理において、有機汚濁成分の分解効率を高めると共に、
次亜塩素酸ナトリウム等の塩素剤を有機汚濁成分の分解
に有効に作用させることができるため、塩素剤及び触媒
の必要量を低減することができ、有機性排水中の有機汚
濁成分を低コストで効率的に酸化分解することができ
る。
As described in detail above, according to the method for treating organic wastewater of the present invention, in the treatment of organic wastewater by the catalytic oxidation method, the decomposition efficiency of organic pollutant components is increased, and
Since chlorine agents such as sodium hypochlorite can effectively act on the decomposition of organic pollutants, the required amount of chlorine agents and catalysts can be reduced, and organic pollutants in organic wastewater can be produced at low cost. Can be efficiently oxidatively decomposed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1,2と比較例1〜3で得られた反応比
と粒状無機担体の平均粒径との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the reaction ratios obtained in Examples 1 and 2 and Comparative Examples 1 to 3 and the average particle size of a granular inorganic carrier.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D050 AA12 AB07 BB05 BB06 BC05 BC06 BD03 BD06 4G069 AA03 BA07A BA07B BC67A BC68A BC68B CA05 EA02X EA02Y EB18X EB18Y ZA06A ZA15A ZA15B ZF05A ZF05B   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4D050 AA12 AB07 BB05 BB06 BC05                       BC06 BD03 BD06                 4G069 AA03 BA07A BA07B BC67A                       BC68A BC68B CA05 EA02X                       EA02Y EB18X EB18Y ZA06A                       ZA15A ZA15B ZF05A ZF05B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機性排水中を、塩素剤の存在下に、粒
状無機担体に触媒活性成分を担持させてなる触媒と接触
させることにより、該有機性排水中の有機汚濁成分を酸
化分解する有機性排水の処理方法において、 該触媒の粒状無機担体として、平均粒径0.5mm以下
の粒状無機担体を用いることを特徴とする有機性排水の
処理方法。
1. An organic pollutant component in an organic wastewater is oxidatively decomposed by bringing the organic wastewater into contact with a catalyst obtained by supporting a catalytically active component on a granular inorganic carrier in the presence of a chlorine agent. In the method for treating organic wastewater, a granular inorganic carrier having an average particle diameter of 0.5 mm or less is used as the granular inorganic carrier for the catalyst.
【請求項2】 請求項1において、該粒状無機担体がク
リノプチロライト系天然ゼオライト及び/又はモルデナ
イト系天然ゼオライトであることを特徴とする有機性排
水の処理方法。
2. The method for treating organic wastewater according to claim 1, wherein the granular inorganic carrier is clinoptilolite-based natural zeolite and / or mordenite-based natural zeolite.
【請求項3】 請求項1又は2において、該塩素剤が次
亜塩素酸ナトリウムであることを特徴とする有機性排水
の処理方法。
3. The method for treating organic wastewater according to claim 1, wherein the chlorine agent is sodium hypochlorite.
【請求項4】 請求項1ないし3のいずれか1項におい
て、該触媒活性成分がニッケル酸化物又はコバルト酸化
物であることを特徴とする有機性排水の処理方法。
4. The method for treating organic wastewater according to claim 1, wherein the catalytically active component is nickel oxide or cobalt oxide.
JP2002051698A 2002-02-27 2002-02-27 Treatment method for organic wastewater Pending JP2003251375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051698A JP2003251375A (en) 2002-02-27 2002-02-27 Treatment method for organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002051698A JP2003251375A (en) 2002-02-27 2002-02-27 Treatment method for organic wastewater

Publications (1)

Publication Number Publication Date
JP2003251375A true JP2003251375A (en) 2003-09-09

Family

ID=28663604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051698A Pending JP2003251375A (en) 2002-02-27 2002-02-27 Treatment method for organic wastewater

Country Status (1)

Country Link
JP (1) JP2003251375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105879872A (en) * 2016-04-27 2016-08-24 河北协同环保科技股份有限公司 Method for preparing Fenton-like reaction catalyst and application thereof
CN106882867A (en) * 2017-03-29 2017-06-23 山东本源晶体科技有限公司 A kind of method of modified graphene catalytic oxidation treatment thiram waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105879872A (en) * 2016-04-27 2016-08-24 河北协同环保科技股份有限公司 Method for preparing Fenton-like reaction catalyst and application thereof
CN105879872B (en) * 2016-04-27 2019-03-15 河北协同水处理技术有限公司 The preparation method and application of class Fenton's reaction catalyst
CN106882867A (en) * 2017-03-29 2017-06-23 山东本源晶体科技有限公司 A kind of method of modified graphene catalytic oxidation treatment thiram waste water

Similar Documents

Publication Publication Date Title
US6403031B1 (en) Method for mineralization of organic pollutants in water by catalytic ozonization
TW414783B (en) Advanced oxidation of water using catalytic ozonation
JPH10174976A (en) Method for treating water containing nitrogen compound
JPH09510655A (en) Oxidation method
JP4732845B2 (en) Water treatment method and apparatus
KR102046269B1 (en) Purification processing method of toxic substance containing liquid and toxic substance containing liquid for performing this
JP2003251375A (en) Treatment method for organic wastewater
JP2001149958A (en) Water treating device
JP6440958B2 (en) Method for treating harmful substance-containing liquid, method for producing ultrafine particles of transition metal-containing oxide used in the method, and treatment apparatus
JP2001000866A (en) Water treating catalyst composition and water treatment using the catalyst
JP3988473B2 (en) Treatment method for water containing oxidizable substances
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JP2740623B2 (en) Advanced sewage treatment method
JP3494379B2 (en) Method for treating wastewater containing organic halogen compounds
JP3499251B2 (en) Water treatment catalyst and water treatment method
JP2005074368A (en) Treatment method of organic material-containing water
JPH07265870A (en) Treatment of dithionate ion-containing water
JPH10180042A (en) Treatment of hydrazine-containing steam and catalyst for same
JP2004105903A (en) Treatment method for hydrazine-containing wastewater
JP2000084575A (en) Method for efficiently oxidizing ammonia in aqueous solution
Beltrán Novillo et al. The role of catalytic ozone processes on the elimination of DBPs and their precursors in drinking water treatment
JP2000140864A (en) Treatment of ammonia-containing water
JPS59115745A (en) Catalyst for wet oxydation treatment
JP3265629B2 (en) Treatment of wastewater containing ammonia and fluorine
JP3269176B2 (en) Method of treating ammonium fluoride-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306