JP2003251153A - Method and device for determining treatment water supply method of membrane filtration apparatus - Google Patents

Method and device for determining treatment water supply method of membrane filtration apparatus

Info

Publication number
JP2003251153A
JP2003251153A JP2002051083A JP2002051083A JP2003251153A JP 2003251153 A JP2003251153 A JP 2003251153A JP 2002051083 A JP2002051083 A JP 2002051083A JP 2002051083 A JP2002051083 A JP 2002051083A JP 2003251153 A JP2003251153 A JP 2003251153A
Authority
JP
Japan
Prior art keywords
filtration
pressure
membrane
treated water
energy efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002051083A
Other languages
Japanese (ja)
Other versions
JP3565818B2 (en
Inventor
Eiji Iritani
英司 入谷
Yasuto Mukai
康人 向井
On Tan
オン タン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Japan Science and Technology Agency
Original Assignee
Nagoya University NUC
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Japan Science and Technology Corp filed Critical Nagoya University NUC
Priority to JP2002051083A priority Critical patent/JP3565818B2/en
Publication of JP2003251153A publication Critical patent/JP2003251153A/en
Application granted granted Critical
Publication of JP3565818B2 publication Critical patent/JP3565818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently determine the operation method for a membrane filtration apparatus with a high energy efficiency. <P>SOLUTION: In the apparatus, the compression properties of a filter cake and the properties of a filter membrane are inputted from an input device 40. A pressure increase coefficient selection means 56, when a supply pressure change with the passage of time during filtration is changed exponentially, selects a pressure increase coefficient stipulating the increase rate of an approximate supply pressure within a prescribed value range. An energy efficiency calculation means 58 calculates energy efficiency per unit treatment quantity when the supply pressure is changed according to the selected pressure increase coefficient by using the compression properties of the filter cake inputted from the input device 40 and the initial properties of the filter membrane. The selection means 56 and the calculation means 58 are implemented repeatedly by a repeating implementation means 52, and the pressure increase coefficient of the highest energy efficiency is specified from the prescribed value range. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、化学プロセス産
業,用・廃水の処理等に用いられる膜濾過装置に関し、
詳しくは膜濾過装置のエネルギ効率を向上させる技術に
関する。
TECHNICAL FIELD The present invention relates to a membrane filtration device used in the chemical process industry, treatment of waste water, etc.
More specifically, it relates to a technique for improving the energy efficiency of a membrane filtration device.

【0002】[0002]

【従来の技術】 膜濾過装置では、不純物を含んだ処理
水を濾過膜の一方の面から他方の面へ透過させること
で、処理水中の不純物を膜表面に付着させて除去する。
したがって、時間の経過に伴って膜表面に不純物が付着
・堆積して濾過能力が低下する。このため、濾過能力が
設定した能力以下となると、濾過膜表面を洗浄すること
で膜表面に付着した付着物を剥離させ、膜の濾過能力を
回復する処理が行われる。すなわち、膜濾過装置では、
処理水中の不純物を濾過する濾過工程と、濾過工程によ
り膜表面に付着した付着物を洗浄する洗浄工程〔具体的
には、逆洗(処理水を逆方向に流すこと)や膜表面に空
気を散気する等の処理〕とが繰り返し実行される(濾過
工程と洗浄工程とを1サイクルとして、このサイクルが
繰り返し実行される)。
2. Description of the Related Art In a membrane filtration device, treated water containing impurities is allowed to permeate from one surface of a filtration membrane to the other surface thereof, whereby impurities in the treated water are adhered to and removed from the membrane surface.
Therefore, with the passage of time, impurities adhere to and accumulate on the surface of the membrane, and the filtration ability decreases. For this reason, when the filtration capacity becomes equal to or lower than the set capacity, a treatment is carried out to wash the surface of the filtration membrane to remove the adhered matter adhering to the membrane surface and restore the filtration capacity of the membrane. That is, in the membrane filtration device,
A filtration step for filtering impurities in the treated water and a washing step for washing the deposits adhering to the membrane surface by the filtration step [specifically, backwashing (flowing the treated water in the opposite direction) or air on the membrane surface. Processing such as aeration is performed (the filtration step and the washing step are defined as one cycle, and this cycle is repeatedly executed).

【0003】[0003]

【発明が解決しようとする課題】 ところで、上述の濾
過工程において膜濾過装置に処理水を供給する方式とし
ては、一般的に、濾過開始時から濾過終了時まで濾過速
度(膜を透過する処理水の単位時間,単位膜面積当たり
の流量)を一定に保つ定速濾過方式と、濾過開始時から
濾過終了時まで濾過圧力(処理水の供給圧力)を一定に
保つ定圧濾過方式が用いられている。定速濾過方式の場
合、濾過速度が一定となるよう処理水の供給圧力が制御
されるため、膜表面への不純物の付着量(すなわち、濾
過時間)に応じて処理水の供給圧力が急激に増加する。
このため、比較的短時間で膜の洗浄を行う必要が生じる
が、この膜の洗浄には多くのエネルギが必要であるため
膜濾過装置のエネルギ効率が悪化することとなる。一
方、定圧濾過方式の場合、処理水の供給圧力が変わらな
いため、膜表面への不純物の付着量に応じて処理水の処
理量(濾過速度)が急激に減少する。このため、ある程
度の濾過速度を得ようとすると比較的短い周期で膜の洗
浄を行う必要が生じ、上述した定速濾過方式の場合と同
様の問題が生じる。このような問題を解決するために
は、濾過速度と濾過圧力を経時的に変化させながら濾過
処理を行うことで膜面の洗浄回数を少なくすることが考
えられる。しかしながら、濾過速度と濾過圧力をどのよ
うに変化させるか(すなわち、処理水供給方法)を決定
するための確立された手法はなく、実際の濾過処理に用
いられることは困難であった。
By the way, as a method of supplying the treated water to the membrane filtration device in the above-mentioned filtration step, generally, the filtration rate (the treated water that permeates the membrane from the start of filtration to the end of filtration) is used. The constant-rate filtration method that keeps the unit time and the flow rate per unit membrane area constant and the constant-pressure filtration method that keeps the filtration pressure (supply pressure of treated water) constant from the start of filtration to the end of filtration are used. . In the case of the constant-rate filtration method, the supply pressure of the treated water is controlled so that the filtration rate is constant, so that the supply pressure of the treated water rapidly increases according to the amount of impurities adhering to the membrane surface (that is, the filtration time). To increase.
Therefore, it is necessary to wash the membrane in a relatively short time, but since much energy is required to wash the membrane, the energy efficiency of the membrane filtration device deteriorates. On the other hand, in the case of the constant pressure filtration system, the supply pressure of the treated water does not change, so that the treated amount (filtering speed) of the treated water sharply decreases according to the amount of impurities attached to the membrane surface. For this reason, in order to obtain a certain filtration rate, it is necessary to wash the membrane in a relatively short cycle, and the same problem as in the case of the constant rate filtration method described above occurs. In order to solve such a problem, it is considered that the number of times of cleaning of the membrane surface is reduced by performing the filtration treatment while changing the filtration rate and the filtration pressure with time. However, there is no established method for determining how to change the filtration rate and the filtration pressure (that is, the treated water supply method), and it has been difficult to be used in the actual filtration treatment.

【0004】本発明はこのような事情に鑑みなされたも
ので、濾過圧力の経時変化をべき指数関数又は指数関数
で近似することでエネルギ効率の計算を可能とし、これ
によってエネルギ効率の高い膜濾過装置の処理水供給方
法を決定することができる技術を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and makes it possible to calculate energy efficiency by approximating the time-dependent change of filtration pressure by a power exponential function or an exponential function, which allows membrane filtration with high energy efficiency. It is an object of the present invention to provide a technique capable of determining a method for supplying treated water of an apparatus.

【0005】[0005]

【課題を解決するための手段、作用及び効果】 上記課
題を解決するため本発明の一つの技術は、処理水中の不
純物を除去する膜濾過装置の処理水供給方法を決定する
方法であり、特性取得工程と、係数選択工程と、エネル
ギ効率算出工程とを有する。特性取得工程では、定速濾
過処理時に測定された処理水の供給圧力の経時変化若し
くは変速変圧濾過処理時に測定された処理水の供給圧力
及び供給流量の経時変化から、濾過ケークの圧縮特性と
濾過膜の特性を取得する。係数選択工程では、濾過処理
時における供給圧力の経時変化がべき指数関数又は指数
関数的に変化すると近似したときの供給圧力の上昇率を
規定する圧力上昇係数を、所定の数値範囲内から選択す
る。そして、エネルギ効率算出工程では、選択された圧
力上昇係数にしたがって供給圧力が変化するときの単位
処理量当りのエネルギ効率を、取得工程で取得された濾
過ケークの圧縮特性と濾過膜の特性を用いて算出する。
そして、上記の選択工程とエネルギ効率算出工程を繰返
し実行して、所定の数値範囲内から最もエネルギ効率が
高くなる圧力上昇係数を特定し、その特定した圧力上昇
係数から処理水供給方法を決定する。
Means, Actions and Effects for Solving the Problems One technique of the present invention for solving the above problems is a method of determining a treated water supply method of a membrane filtration device for removing impurities in treated water. It has an acquisition process, a coefficient selection process, and an energy efficiency calculation process. In the characteristic acquisition process, the compression characteristics and filtration characteristics of the filtration cake are determined from the changes over time in the supply pressure of the treated water measured during constant-speed filtration or the changes over time in the supply pressure and flow rate of the treated water measured during variable speed variable filtration. Get the properties of the membrane. In the coefficient selecting step, a pressure increase coefficient that defines the increase rate of the supply pressure when the temporal change of the supply pressure during the filtration process is approximated as an exponential function or exponentially changed is selected from a predetermined numerical range. . Then, in the energy efficiency calculation step, the energy efficiency per unit throughput when the supply pressure changes according to the selected pressure increase coefficient is used by using the compression characteristics of the filter cake and the characteristics of the filtration membrane acquired in the acquisition step. To calculate.
Then, the selection step and the energy efficiency calculation step described above are repeatedly executed to specify the pressure increase coefficient having the highest energy efficiency within a predetermined numerical range, and the treated water supply method is determined from the specified pressure increase coefficient. .

【0006】上記の方法では、処理水を実際に濾過処理
することで濾過ケークの圧縮特性と濾過膜の特性を求め
る。次に、処理水の供給圧力(濾過圧力)がべき指数関
数又は指数関数的に変化すると近似し、そのべき指数関
数又は指数関数の係数(圧力上昇率を規定する圧力上昇
係数)を所定の数値範囲内から選択する。これによっ
て、濾過圧力の経時変化特性と濾過ケークの圧縮特性と
濾過膜の特性が決まるため濾過速度(濾過量)の経時変
化も決まり、エネルギ効率を算出することができる。こ
のようなエネルギ効率の計算を適宜選択した複数の圧力
上昇係数について行うことで、所定の数値範囲内で最も
エネルギ効率が高くなる圧力上昇係数を特定する。圧力
上昇係数が特定されれば、その圧力上昇係数から濾過圧
力の経時変化が決定され、これによって膜濾過装置への
処理水の供給方法を決定することができる。このような
方法によれば、実験等により濾過ケークの圧縮特性と濾
過膜の特性を取得できれば、あとは計算によりエネルギ
効率の高い濾過圧力の経時変化(処理水供給方法)を決
定することができる。ここで、「所定の数値範囲」は、
濾過処理する処理水の特性に応じて適宜決定することが
できる。また、「所定の数値範囲」から圧力上昇係数を
選択する方法としては、「所定の数値範囲」内からラン
ダムに選択する方法の他、種々の方法を採ることができ
る。例えば、「所定の数値範囲」内に複数個の値を均等
間隔で設定し、その設定された各値を圧力上昇係数とし
て順に選択することができる。
In the above method, the compression characteristics of the filter cake and the characteristics of the filtration membrane are obtained by actually filtering the treated water. Next, it is approximated that the supply pressure (filtering pressure) of the treated water is an exponential function or changes exponentially, and the exponential function or coefficient of the exponential function (pressure increase coefficient that defines the pressure increase rate) is set to a predetermined value. Select from within the range. As a result, the change characteristics of the filtration pressure with time, the compression characteristics of the filter cake, and the characteristics of the filtration membrane are determined, so that the change of the filtration rate (filtration amount) with time is also determined, and the energy efficiency can be calculated. By performing such calculation of energy efficiency for a plurality of appropriately selected pressure increase coefficients, the pressure increase coefficient having the highest energy efficiency within a predetermined numerical range is specified. When the pressure increase coefficient is specified, the change over time of the filtration pressure is determined from the pressure increase coefficient, and thus the method of supplying the treated water to the membrane filtration device can be determined. According to such a method, if the compression characteristics of the filter cake and the characteristics of the filtration membrane can be acquired through experiments, etc., the time-dependent change in the filtration pressure (processed water supply method) with high energy efficiency can be subsequently determined by calculation. . Here, the "predetermined numerical range" is
It can be appropriately determined according to the characteristics of the treated water to be filtered. Further, as a method of selecting the pressure increase coefficient from the "predetermined numerical range", various methods can be adopted in addition to the method of randomly selecting from the "predetermined numerical range". For example, a plurality of values can be set at equal intervals within the “predetermined numerical range”, and the respective set values can be sequentially selected as the pressure increase coefficient.

【0007】前記の所定の数値範囲に、定速濾過処理時
の圧力上昇係数が含まれていることが好ましい。ここ
で、上記「定速濾過処理時の圧力上昇係数」とは、膜濾
過装置の濾過能力(例えば、公称能力)から決まる濾過
速度で定速濾過処理を行ったときの圧力上昇係数をい
う。このような構成によると、計算対象となる「所定の
数値範囲」を絞り込むことができ、最適な処理水供給方
法を求める際の計算量を少なくすることができる。ま
た、このように計算領域を限定しても、最適な処理水供
給方法を決定することができる。すなわち、一般的に定
速濾過処理時の圧力上昇変化と近似した圧力上昇変化で
処理を行ったときにエネルギ効率が最高となる処理水供
給方法が存在する場合が多い。例えば、発明者らが実際
に処理した下水処理水の場合(ただし、季節や都市毎に
特性は異なる)は、エネルギ効率が最高となる圧力上昇
係数は、定速濾過処理における圧力上昇係数より若干小
さく(すなわち、定圧濾過処理に少しだけ近い処理)な
ったことが確認されている。したがって、定速濾過処理
時の圧力上昇係数を含んだ数値範囲内を計算対象とする
ことで効率的に計算範囲を絞り込むことができる。な
お、具体的な絞込み方法としては、例えば、次の方法を
採ることができる。まず、定速濾過処理時の圧力上昇係
数を中心に所定の範囲内を選択して計算を行う。次に、
計算したエネルギ効率をy軸に圧力上昇係数をx軸とし
て計算結果をグラフ上にプロットする。プロットしたグ
ラフに極大値(すなわち、エネルギ効率が最大となる
値)がある場合は、その極大値となる圧力上昇係数をエ
ネルギ効率が最大となる値として、計算を終了する。極
大値がない場合(すなわち、エネルギ効率をプロットし
たグラフが単調減少又は単調増加となる場合)は、さら
に計算範囲を広げて計算を行う。このような方法により
効率的に計算を行うことができる。
[0007] It is preferable that the predetermined numerical value range includes a pressure increase coefficient at the time of constant speed filtration. Here, the above-mentioned "pressure increase coefficient at the time of constant-speed filtration" means the pressure increase coefficient at the time of performing constant-speed filtration at the filtration rate determined by the filtration capacity (for example, nominal capacity) of the membrane filtration device. With such a configuration, the “predetermined numerical range” to be calculated can be narrowed down, and the amount of calculation when obtaining the optimum treated water supply method can be reduced. Further, even if the calculation area is limited in this way, the optimum treated water supply method can be determined. That is, in general, there are many cases of a treated water supply method that maximizes energy efficiency when the treatment is performed with a pressure increase change that is similar to a pressure increase change during constant-speed filtration. For example, in the case of treated sewage treated by the inventors (however, the characteristics differ depending on the season and city), the pressure rise coefficient at which the energy efficiency is the highest is slightly higher than the pressure rise coefficient in the constant-rate filtration treatment. It has been confirmed that it became smaller (that is, a process slightly closer to the constant pressure filtration process). Therefore, the calculation range can be efficiently narrowed down by making the calculation target within the numerical range including the pressure increase coefficient at the time of the constant velocity filtration process. In addition, as a specific narrowing-down method, for example, the following method can be adopted. First, the calculation is performed by selecting a predetermined range centered on the pressure increase coefficient at the time of constant velocity filtration processing. next,
The calculated energy efficiency is plotted on the y-axis and the pressure rise coefficient is plotted on the x-axis, and the calculation results are plotted on a graph. If the plotted graph has a maximum value (that is, a value that maximizes energy efficiency), the pressure increase coefficient that maximizes that value is set as a value that maximizes energy efficiency, and the calculation ends. When there is no maximum value (that is, when the graph in which the energy efficiency is plotted shows a monotonous decrease or monotonic increase), the calculation range is further expanded to perform the calculation. With such a method, calculation can be performed efficiently.

【0008】前記取得工程ではさらに、濾過処理と膜洗
浄処理を1サイクルとする複数回の濾過サイクルについ
て測定された定速濾過処理における処理水の供給圧力の
経時変化若しくは変速変圧濾過処理における処理水の供
給圧力及び供給流量の経時変化から濾過膜の膜閉塞特性
が取得され、前記算出工程では、複数回の濾過サイクル
を行ったときのエネルギ効率が、取得された膜閉塞特性
を考慮して算出されることが好ましい。このような構成
によると、膜閉塞特性が考慮されて複数回の濾過サイク
ルにわたるエネルギ効率が算出されるため、より正確に
エネルギ効率が最大となる処理水供給方法を決定するこ
とができる。
In the acquisition step, the supply pressure of the treated water in the constant-rate filtration treatment measured with respect to a plurality of filtration cycles, each of which includes the filtration treatment and the membrane washing treatment, changes with time or the treated water in the variable speed variable filtration treatment. The membrane clogging characteristic of the filtration membrane is acquired from the change over time of the supply pressure and the supply flow rate of the membrane, and in the calculation step, the energy efficiency when performing a plurality of filtration cycles is calculated in consideration of the obtained membrane clogging characteristic. Preferably. According to such a configuration, the energy efficiency over a plurality of filtration cycles is calculated in consideration of the membrane blockage characteristic, so that the treated water supply method that maximizes the energy efficiency can be more accurately determined.

【0009】上記課題を解決するため本発明の他の技術
は、処理水中の不純物を除去する膜濾過装置の処理水供
給方法を決定する装置であり、入力手段と、選択手段
と、エネルギ効率算出手段と、特定手段と、指示手段と
を備える。入力手段は、濾過ケークの圧縮特性と濾過膜
の特性を入力する。選択手段は、濾過処理時における供
給圧力の経時変化がべき指数関数又は指数関数的に変化
すると近似したときの供給圧力の圧力上昇率を規定する
圧力上昇係数を所定の数値範囲内から選択する。エネル
ギ効率算出手段は、選択された圧力上昇係数にしたがっ
て供給圧力が変化するときの単位処理量当りのエネルギ
効率を、入力手段から入力された濾過ケークの圧縮特性
と濾過膜の特性を用いて算出する。特定手段は、前記選
択手段と前記算出手段を繰返し実行して、所定の数値範
囲内から最もエネルギ効率が高くなる圧力上昇係数を特
定する。指示手段は、特定された圧力上昇係数から決ま
る処理水の供給方法を指示する。
In order to solve the above-mentioned problems, another technique of the present invention is an apparatus for deciding a method for supplying treated water of a membrane filtration apparatus for removing impurities in treated water, which comprises an input means, a selection means, and an energy efficiency calculation. Means, identifying means, and instructing means are provided. The input means inputs the compression characteristics of the filter cake and the characteristics of the filtration membrane. The selecting means selects a pressure increase coefficient that defines a pressure increase rate of the supply pressure when a temporal change of the supply pressure during the filtering process is approximated to an exponential function or an exponential change from a predetermined numerical range. The energy efficiency calculation means calculates the energy efficiency per unit throughput when the supply pressure changes according to the selected pressure increase coefficient, using the compression characteristics of the filter cake and the characteristics of the filtration membrane input from the input means. To do. The specifying unit repeatedly executes the selecting unit and the calculating unit, and specifies the pressure increase coefficient having the highest energy efficiency within a predetermined numerical range. The instructing means gives an instruction on a method of supplying the treated water determined from the specified pressure increase coefficient.

【0010】上記の装置では、入力手段から濾過ケーク
の圧縮特性と濾過膜の特性が入力されると圧力上昇係数
が所定の数値範囲内から選択されてエネルギ効率が計算
される。そして、この圧力上昇係数の選択とエネルギ効
率の計算が繰り返されることでエネルギ効率が最も高く
なる圧力上昇係数が特定され、その特定された圧力上昇
係数から決まる処理水の供給方法が指示される。したが
って、膜濾過装置の運転管理者は濾過ケークの圧縮特性
と濾過膜の特性を入力するだけで、エネルギ効率が最大
となる処理水供給方法(膜濾過装置の運転方法)を知る
ことができる。圧力上昇係数が選択される所定の数値範
囲内は、既に述べたように定速濾過処理時の圧力上昇係
数が含まれるように適当な数値範囲内を上記装置のオペ
レータが入力するようにしても良い。なお、「処理水の
供給方法を指示する」とは、処理水の供給方法を膜濾過
装置の運転管理者に指示する場合(例えば、表示装置に
表示する等)に限られず、膜濾過装置への処理水供給を
制御する制御装置に直接指示する場合をも含む意であ
る。特に、膜濾過装置の制御装置に、上述した選択手段
と、エネルギ効率算出手段と、特定手段と、指示手段と
を設けることで、制御装置と処理水の供給方法を決定す
る装置を兼用しても良い。
In the above apparatus, when the compression characteristics of the filter cake and the characteristics of the filtration membrane are input from the input means, the pressure increase coefficient is selected from a predetermined numerical range and the energy efficiency is calculated. Then, by repeating the selection of the pressure increase coefficient and the calculation of the energy efficiency, the pressure increase coefficient having the highest energy efficiency is specified, and the method of supplying the treated water determined from the specified pressure increase coefficient is instructed. Therefore, the operation manager of the membrane filtration device can know the treated water supply method (operating method of the membrane filtration device) that maximizes energy efficiency, only by inputting the compression characteristics of the filtration cake and the characteristics of the filtration membrane. Even if the operator of the above apparatus inputs an appropriate numerical range within the predetermined numerical range in which the pressure increase coefficient is selected, as described above, the pressure increase coefficient during the constant velocity filtration process is included. good. Note that "instructing the method of supplying treated water" is not limited to instructing the operator of the membrane filtering device how to supply treated water (for example, displaying on the display device), but not to the membrane filtering device. It also includes the case of directly instructing the control device that controls the supply of the treated water. In particular, by providing the control device of the membrane filtration device with the selection means, the energy efficiency calculation means, the identification means, and the instruction means, the control device and the device for determining the supply method of the treated water are combined. Is also good.

【0011】[0011]

【発明の実施の形態】 まず、本発明の実施例の特徴を
下記に示す。 (形態1) 濾過ケークの圧縮特性は、圧縮性指数nと
透過特性(濾過比抵抗α ,圧力近似式で用いられる係
数K)である。 (形態2) 濾過膜の特性は、濾過処理開始時における
濾過圧力pm0である。 (形態3) 濾過処理時の処理水供給圧力pは下記の式
で近似される。 p=pm+Kta (pm;各サイクルにおける濾過開始時の供給圧力,
a;圧力上昇係数,t;各サイクルにおける濾過開始時
からの濾過時間,K;形態1に記載の係数) (形態4) 各サイクルにおける濾過開始時の供給圧力
は次の式で近似される。 p=pm0exp(ηN) (pm0;初回サイクルの濾過開始時の供給圧力,η;
係数,N;サイクル数)
First, the features of the embodiment of the present invention will be described.
Shown below. (Mode 1) The compression characteristics of the filter cake are as follows:
Permeation characteristics (Filtration resistivity α 0, The coefficient used in the pressure approximation formula
Number K). (Mode 2) The characteristics of the filtration membrane are as follows:
Filtration pressure pm0Is. (Mode 3) Treated water supply pressure p at the time of filtration treatment is expressed by the following formula.
Is approximated by. p = pm+ Kta (PmSupply pressure at the start of filtration in each cycle,
a: Pressure rise coefficient, t: At the start of filtration in each cycle
Filtration time from K, K; coefficient described in form 1) (Mode 4) Supply pressure at the start of filtration in each cycle
pmIs approximated by the following equation. pm= Pm0exp (ηN) (Pm0Supply pressure at the start of filtration in the first cycle, η;
Coefficient, N; number of cycles)

【0012】[0012]

【実施例】 本発明の一実施例に係る処理水供給方法決
定装置について図面を参照して説明する。まず、本実施
例に係る処理水供給方法決定装置の対象となる濾過シス
テムの全体構成を説明する。図5は濾過システムの全体
構成を示す図である。図5に示すように、本実施の形態
に係る膜濾過システムは膜濾過装置24を中心に構成さ
れ、膜濾過装置24に供給される処理水に前処理を施す
前処理設備(処理水槽10、水位調整槽12、恒温槽1
4、凝集混和槽16)と、前処理が施された処理水を膜
濾過装置24に供給するギヤポンプ18と、膜濾過装置
24で処理された処理水(透過水)を貯留する透過水槽
26と、システム全体を制御する制御装置30等から構
成される。前処理設備は、処理水槽10と、処理水槽1
0に接続された水位調整槽12と、水位調整槽12に接
続された恒温槽14と、恒温槽14に接続された凝集混
和槽16から構成される。処理水槽10は、処理水(原
水)を貯留する貯留槽であり、処理水槽10内に貯留さ
れている処理水は水位調整槽12に供給される。水位調
整槽12は、処理水槽10から送られてきた処理水のP
Hを調整し、PHが調整された処理水を恒温槽14に供
給する。この水位調整槽12は、その水位が調整される
ことで、恒温槽14に安定して処理水を供給する。すな
わち、水位調整槽12は、水位調整槽12内の処理水の
水位が一定となるように、処理水槽10から送られてき
た余剰の処理水(処理水槽10から供給された処理水と
恒温槽14に送り出した処理水との差)を処理水槽10
に戻す機能を備えている。恒温槽14は、処理水の温度
を一定に保つための槽であり、温度が一定とされた処理
水は凝集混和槽16に供給される。凝集混和槽16は、
処理水に凝集剤(例えば、ポリ塩化アルミニウム等)を
混入する槽である。この凝集混和槽16には、攪拌装置
が設けられており、この攪拌装置により投入された凝集
剤と処理水が均一に混合される。凝集混和槽16に投入
された凝集剤は、処理水中の不純物(有機物等)と結合
し、膜濾過装置24の膜により処理水中の不純物と共に
処理水から除去される。
Embodiment A treated water supply method determination device according to an embodiment of the present invention will be described with reference to the drawings. First, the overall configuration of the filtration system that is the target of the treated water supply method determination device according to the present embodiment will be described. FIG. 5 is a diagram showing the overall configuration of the filtration system. As shown in FIG. 5, the membrane filtration system according to the present embodiment is mainly composed of a membrane filtration device 24, and pretreatment equipment (pretreatment water tank 10, for pretreatment of the treated water supplied to the membrane filtration device 24, Water level adjusting tank 12, constant temperature tank 1
4. Coagulation / mixing tank 16), gear pump 18 for supplying pretreated treated water to the membrane filtration device 24, and permeated water tank 26 for storing treated water (permeated water) treated by the membrane filtration device 24. , A control device 30 for controlling the entire system, and the like. The pretreatment equipment is a treated water tank 10 and a treated water tank 1.
It is composed of a water level adjusting tank 12 connected to 0, a constant temperature tank 14 connected to the water level adjusting tank 12, and an aggregating and mixing tank 16 connected to the constant temperature tank 14. The treated water tank 10 is a storage tank that stores treated water (raw water), and the treated water stored in the treated water tank 10 is supplied to the water level adjusting tank 12. The water level adjusting tank 12 is a P of the treated water sent from the treated water tank 10.
The H is adjusted, and the treated water having the adjusted PH is supplied to the constant temperature bath 14. The water level adjusting tank 12 stably supplies the treated water to the constant temperature tank 14 by adjusting the water level. That is, the water level adjusting tank 12 is configured so that the surplus treated water sent from the treated water tank 10 (the treated water supplied from the treated water tank 10 and the constant temperature tank is controlled so that the water level of the treated water in the water level adjusting tank 12 becomes constant. (Difference from the treated water sent to 14) treated water tank 10
It has a function to return to. The constant temperature tank 14 is a tank for keeping the temperature of the treated water constant, and the treated water having a constant temperature is supplied to the coagulation and mixing tank 16. The aggregating and mixing tank 16 is
This is a tank for mixing a coagulant (for example, polyaluminum chloride) into treated water. The aggregating and mixing tank 16 is provided with a stirrer, and the aggregating agent and the treated water introduced by the stirrer are uniformly mixed. The coagulant introduced into the coagulation / mixing tank 16 combines with impurities (organic substances, etc.) in the treated water and is removed from the treated water together with impurities in the treated water by the membrane of the membrane filtration device 24.

【0013】上述のように前処理が施された処理水は、
ギヤポンプ18によって膜濾過装置24に供給される。
ギヤポンプ18の回転数は、後述する制御装置30によ
って制御され、回転数に応じた流量の処理水が膜濾過装
置24に供給される。ギヤポンプ18と膜濾過装置24
とを接続する処理水の供給管には、流量計20と、圧力
計22が配設されている。流量計20は、膜濾過装置2
4に供給される処理水の流量(濾過速度に相当)を測定
し、その測定した値を制御装置30に出力する。また、
圧力計22は、膜濾過装置24に供給される処理水の圧
力(濾過圧力に相当)を測定し、その測定した値を制御
装置30に出力する。
The treated water that has been pretreated as described above is
It is supplied to the membrane filtration device 24 by the gear pump 18.
The rotation speed of the gear pump 18 is controlled by the control device 30 described later, and the treated water having a flow rate according to the rotation speed is supplied to the membrane filtration device 24. Gear pump 18 and membrane filtration device 24
A flowmeter 20 and a pressure gauge 22 are provided in the treated water supply pipe connecting the and. The flow meter 20 is the membrane filtration device 2
The flow rate (corresponding to the filtration rate) of the treated water supplied to No. 4 is measured, and the measured value is output to the control device 30. Also,
The pressure gauge 22 measures the pressure (corresponding to the filtration pressure) of the treated water supplied to the membrane filtration device 24, and outputs the measured value to the control device 30.

【0014】膜濾過装置24は、円筒形状のモノリス状
のセラミック膜(精密濾過膜)を備え、このセラミック
膜は上端及び下端を金属板等で閉じられている。セラミ
ック膜の下端を閉じる金属板には処理水の供給口が設け
られ、この供給口から供給された処理水はセラミック膜
の円筒内に流れるようになっている。したがって、セラ
ミック膜の円筒内に供給された処理水は、セラミック膜
の内周側から外周側に透過することとなる。このため、
処理水中の不純物(凝集剤により凝集した不純物)は、
セラミック膜の内周面に付着し処理水から除去される。
セラミック膜を透過して外側に流れ出た処理水(透過
水)は、透過水槽26に流れ出ることとなる。
The membrane filtration device 24 is provided with a cylindrical monolithic ceramic membrane (microfiltration membrane), and the ceramic membrane is closed at its upper and lower ends with metal plates or the like. The metal plate closing the lower end of the ceramic membrane is provided with a treatment water supply port, and the treatment water supplied from this supply port is allowed to flow into the cylinder of the ceramic membrane. Therefore, the treated water supplied into the cylinder of the ceramic membrane permeates from the inner peripheral side to the outer peripheral side of the ceramic membrane. For this reason,
Impurities in treated water (impurities aggregated by a flocculant)
It adheres to the inner surface of the ceramic membrane and is removed from the treated water.
The treated water (permeated water) that has permeated the ceramic membrane and flows to the outside flows out to the permeated water tank 26.

【0015】透過水槽26は、膜濾過装置24により濾
過処理された処理水(透過水)を所定量だけ貯留する貯
留槽(密閉容器)であり、余剰の透過水は処理済水とし
て排出される。この透過水槽26にはコンプレッサ28
が接続され、また、膜濾過装置24と透過水槽26とを
接続する配水管及び透過水槽26内の余剰の透過水を排
出する配水管には、それぞれバルブ32、34が配設さ
れている。これらコンプレッサ28並びにバルブ32、
34は制御装置30により制御され、濾過工程において
はコンプレッサ28がOFFでバルブ32、34が開状
態とされ、洗浄工程においてはコンプレッサ28がON
でバルブ32、34が閉状態とされる。したがって、濾
過工程では膜濾過装置24により濾過された透過水が透
過水槽26を経て排出され、洗浄工程ではコンプレッサ
28によって加圧された空気が透過水槽26内に供給さ
れることで、透過水槽26内に貯留した透過水を膜濾過
装置24に供給することとなる。このため、洗浄工程に
おいては、膜濾過装置24に濾過工程とは逆方向(セラ
ミック膜の外側から内側)に透過水が流れ、膜濾過装置
24のセラミック膜の表面(内周面)に付着した付着物
を除去する。
The permeated water tank 26 is a storage tank (sealed container) for storing a predetermined amount of treated water (permeated water) filtered by the membrane filtration device 24, and excess permeated water is discharged as treated water. . The permeated water tank 26 has a compressor 28
The valves 32 and 34 are respectively provided in the water distribution pipe that connects the membrane filtration device 24 and the permeated water tank 26 and the water distribution pipe that discharges the excess permeated water in the permeated water tank 26. These compressor 28 and valve 32,
34 is controlled by the controller 30, the compressor 28 is turned off and the valves 32 and 34 are opened in the filtration process, and the compressor 28 is turned on in the cleaning process.
Thus, the valves 32 and 34 are closed. Therefore, in the filtration step, the permeated water filtered by the membrane filtration device 24 is discharged through the permeated water tank 26, and in the cleaning step, the air pressurized by the compressor 28 is supplied into the permeated water tank 26, so that the permeated water tank 26 The permeated water stored inside is supplied to the membrane filtration device 24. Therefore, in the washing process, permeated water flows through the membrane filtration device 24 in the direction opposite to the filtration process (from the outer side to the inner side of the ceramic membrane) and adheres to the surface (inner peripheral surface) of the ceramic membrane of the membrane filtration device 24. Remove deposits.

【0016】制御装置30は、上述したように構成され
る膜濾過システムを制御する制御装置であり、流量計2
0又は圧力計22で測定された測定値に基づいてギヤポ
ンプ18及びコンプレッサ28の作動を制御する。具体
的には、濾過ケークの圧縮特性〔圧縮性指数nと透過特
性(濾過比抵抗α,圧力近似式で用いられる係数
K))とセラミック膜の特性(初期濾過圧力pm0,膜
閉塞特性η)を求める際には、流量計20で測定される
流量値が所定の流量値(=膜の濾過能力(公称能力)か
ら決まる定速濾過処理を行うときの流量値)となるよう
にギヤポンプ18を制御し、そのときの濾過圧力を圧力
計22で計測して記憶する。また、濾過処理時において
は、圧力計22で測定される圧力値が、後述する処理水
供給方法決定装置で決定された処理水供給方法で決まる
圧力値となるようギヤポンプ18を制御する。また、濾
過工程において圧力計22で測定される圧力が所定の閾
値となると、ギヤポンプ18の駆動を停止し、上述した
コンプレッサ28とバルブ32,34を駆動することで
膜の洗浄処理を行う。
The control device 30 is a control device for controlling the membrane filtration system configured as described above, and is a flow meter 2
The operation of the gear pump 18 and the compressor 28 is controlled based on 0 or the measurement value measured by the pressure gauge 22. Specifically, the compression characteristics of the filter cake [compressibility index n and permeation characteristics (filtration specific resistance α 0 , coefficient K used in the pressure approximation formula)] and ceramic membrane characteristics (initial filtration pressure p m0 , membrane clogging characteristics) When obtaining η), the gear pump is set so that the flow rate value measured by the flow meter 20 becomes a predetermined flow rate value (= flow rate value when performing a constant-speed filtration process determined by the filtration capacity (nominal capacity) of the membrane). 18 is controlled, and the filtration pressure at that time is measured by the pressure gauge 22 and stored. Further, during the filtration process, the gear pump 18 is controlled so that the pressure value measured by the pressure gauge 22 becomes a pressure value determined by the treated water supply method determined by the treated water supply method determination device described later. When the pressure measured by the pressure gauge 22 reaches a predetermined threshold value in the filtration step, the gear pump 18 is stopped, and the compressor 28 and the valves 32 and 34 are driven to wash the membrane.

【0017】次に、上述した膜濾過システムの運転方法
を決定する処理水供給方法決定装置について図1を参照
して説明する。図1は処理水供給方法決定装置の機能ブ
ロック図である。処理水供給方法決定装置は、汎用のパ
ーソナルコンピュータ等により構成され、図1に示すよ
うにキーボードやマウス等のポインティングデバイスか
らなる入力装置40と、入力装置40から入力された入
力値に基づいて運転方法(処理水供給方法)を決定する
演算装置50と、演算装置50で決定された運転方法を
表示するディスプレイ等の表示装置44により構成され
る。
Next, a treated water supply method determination device for determining the operation method of the above-mentioned membrane filtration system will be described with reference to FIG. FIG. 1 is a functional block diagram of a treated water supply method determination device. The treated water supply method determination device is configured by a general-purpose personal computer or the like, and operates based on an input device 40 including a pointing device such as a keyboard and a mouse as shown in FIG. 1 and an input value input from the input device 40. The calculation device 50 determines a method (processed water supply method) and a display device 44 such as a display for displaying the operation method determined by the calculation device 50.

【0018】演算装置50は、所定のプログラムを実行
することで、次に説明する4つの手段(圧力上昇係数選
択手段56、濾過開始圧力算出手段60、エネルギ効率
算出手段58、繰り返し実行手段52)として機能す
る。圧力上昇係数選択手段56は、濾過処理時の濾過圧
力(処理水供給圧力)pを次に示す式 p=pm+Kt (1) 〔pm;濾過開始圧力,a;圧力上昇係数,K;係数,
t;時間〕 で近似したときの係数a(圧力上昇係数)を所定の数値
範囲内から選択する。すなわち、定速濾過処理を行った
場合は、図2に示すように濾過圧力Pは時間の経過に伴
ってべき指数関数的に増加する。したがって、上述の式
(1)の圧力上昇係数aを適当な値とすることで、濾過
圧力の経時変化を式(1)で表すことができる。具体的
には、定速濾過処理時の濾過圧力pの経時変化を測定
し、測定した濾過圧力pの経時変化をカーブフィット等
の処理を用いて定速濾過処理時の圧力上昇係数aを算
出すれば良い。ここで、最もエネルギ効率の高い運転方
法は、定速濾過処理における圧力上昇率を中心に所定の
範囲内にあると考えられる。したがって、最もエネルギ
効率が高い運転時の圧力上昇係数はa−a〜a
の範囲(aはオペレータにより適宜設定される)
にある。そこで、本実施例では、この数値範囲内(a
−a〜a+a)においてエネルギ効率を計算する
圧力上昇係数aの値を均等間隔で設け、これらの各値に
ついて後述するエネルギ効率を計算する。したがって、
圧力上昇係数選択手段56は、(a−a〜a+a
)の範囲内で、エネルギ効率を計算する圧力上昇係数
aの値を一つ選択する。例えば、定速濾過時の圧力上昇
係数aが0.10でaとして0.10が与えられた
場合、圧力上昇係数選択手段56は、0.00〜0.2
0の範囲内の数値0.01,0.02,・・0.10,
0.11・・0.19の19個の数値の中から一つの値
を圧力上昇係数の値として選択する。なお、後述するよ
うにして計算された結果からエネルギ効率が極大となる
点が見つからない場合には、設定されたaが正しくな
いと考えられる。このため、計算範囲を変更して再度計
算をやり直すことが好ましい。この際、計算されたエネ
ルギ効率と圧力上昇係数の傾向(単調増加又は単調減
少)から、計算範囲を指定するようにしても良い。例え
ば、(a−a〜a+a)においてエネルギ効率
が単調に増加している場合には、エネルギ効率が最大と
なる値はa+a より大きい値と考えられる。このた
め、a+aより大きい数値範囲(例えばa+a
〜a+(a+a);aは適宜決定)を指定す
る。
The arithmetic unit 50 executes a predetermined program
By doing so, four means (pressure rise coefficient selection
Selection means 56, filtration start pressure calculation means 60, energy efficiency
It functions as a calculation means 58 and a repeat execution means 52).
It The pressure increase coefficient selecting means 56 is used for filtering pressure during the filtering process.
Formula that shows force (treated water supply pressure) p p = pm+ Kta              (1) [PmFiltration start pressure, a; pressure rise coefficient, K; coefficient,
t; time] The coefficient a (pressure rise coefficient) when approximated by
Select from within the range. That is, a constant speed filtration process was performed.
In the case, as shown in FIG.
It increases exponentially. Therefore, the above formula
By setting the pressure rise coefficient a of (1) to an appropriate value, filtration
The change in pressure with time can be expressed by equation (1). concrete
Is the change over time of the filtration pressure p during constant speed filtration.
Then, change the measured filtration pressure p over time with a curve fit, etc.
Pressure rise coefficient a during constant-rate filtration treatmenttCalculate
You can put it out. Here is the most energy efficient driving method
The method is based on the prescribed rate of pressure increase in constant-speed filtration.
Considered to be within range. Therefore, the most energy
The pressure rise coefficient during highly efficient operation is at-A0~ At+
a0Range (a0Is set appropriately by the operator)
It is in. Therefore, in the present embodiment, within this numerical range (at
-A0~ At+ A0) To calculate energy efficiency
The values of the pressure rise coefficient a are set at even intervals, and
The energy efficiency described later will be calculated. Therefore,
The pressure increase coefficient selection means 56t-A0~ At+ A
0), The pressure rise coefficient for calculating energy efficiency
Select a value of a. For example, pressure rise during constant-speed filtration
Coefficient atIs 0.10 and a00.10 was given as
In this case, the pressure increase coefficient selecting means 56 is 0.00 to 0.2.
Numerical values within the range of 0, 0.01, 0.02, ... 0.10,
One of the 19 numerical values of 0.11 ... 0.19
Is selected as the value of the pressure rise coefficient. I'll explain later
Energy efficiency is maximized from the results calculated in this way
If no point is found, set a0Is correct
Thought to be. Therefore, change the calculation range and repeat the calculation.
It is preferable to repeat the calculation. At this time, the calculated energy
Rugi efficiency and pressure rise coefficient trends (monotonic increase or monotonic decrease)
Small), the calculation range may be designated. example
For example, (at-A0~ At+ A0) In energy efficiency
Is monotonically increasing, the maximum energy efficiency is
Is at+ A 0Considered a larger value. others
At+ A0Larger numerical range (eg at+ A0
~ At+ (A0+ A1); A1Is determined as appropriate)
It

【0019】濾過開始圧力算出手段60は、各濾過サイ
クルにおける濾過開始圧力pmを算出する。すなわち、
各濾過サイクルにおける濾過開始圧力pmは、濾過膜が
閉塞するため濾過サイクル数Nが増加するにしたがって
増大する。このため、各サイクルにおける濾過開始圧力
mを、膜の閉塞指数η(入力装置40から入力され
る)から算出する。この濾過開始圧力pmと濾過サイク
ル数Nの関係を図3に示す。図3では縦軸に濾過開始圧
力Pmを、横軸に濾過サイクル数Nを対数で示してい
る。膜閉塞が小さい場合には、図3(a)に示すように
濾過開始圧力pmは濾過サイクル数Nにかかわらず常に
一定とみなして計算することができる。一方、膜閉塞が
大きくなると、図3(b)に示すように、濾過開始圧力
mは濾過サイクル数Nが増加するに従って増加する。
したがって、濾過開始圧力pと濾過サイクル数Nの関
係は次に示す式で表すことができる。 p=pm0exp(ηN) (2) 〔Pm0;初回サイクルの濾過開始圧力,η;膜閉塞指
数,N;経過サイクル〕そこで、濾過開始圧力算出手段
60は、各濾過サイクルにおける濾過開始圧力pmを上
記式(2)から算出する。なお、式(2)中の膜閉塞指
数ηは、複数サイクルに渡る濾過処理実験を行うことに
よって求められ、ηの値は入力装置40から入力され
る。なお、膜濾過開始圧力pmを、さらに正確に表現す
るために図3(c)に示すような関係が成立するとして
求めても良い。すなわち、サイクル数が0〜Nまでは
傾きをηとし、サイクル数がNを超えると傾きをη
として、濾過開始圧力pを計算する。
The filtration start pressure calculating means 60 calculates the filtration start pressure p m in each filtration cycle. That is,
The filtration start pressure p m in each filtration cycle increases as the number N of filtration cycles increases because the filtration membrane is blocked. Therefore, the filtration start pressure p m in each cycle is calculated from the membrane blockage index η (input from the input device 40). The relationship between the filtration start pressure p m and the number N of filtration cycles is shown in FIG. In FIG. 3, the vertical axis represents the filtration start pressure P m , and the horizontal axis represents the number N of filtration cycles in logarithm. When the membrane blockage is small, the filtration start pressure p m can always be regarded as constant regardless of the number N of filtration cycles and can be calculated as shown in FIG. On the other hand, when the membrane blockage increases, the filtration start pressure p m increases as the number N of filtration cycles increases, as shown in FIG.
Therefore, the relationship between the filtration start pressure p m and the number of filtration cycles N can be expressed by the following equation. p m = p m0 exp (ηN) (2) [P m0 ; Filtration start pressure in first cycle, η; Membrane blockage index, N; Elapsed cycle] Then, the filtration start pressure calculation means 60 starts filtration in each filtration cycle. The pressure p m is calculated from the above equation (2). The membrane clogging index η in the equation (2) is obtained by performing a filtration treatment experiment over a plurality of cycles, and the value of η is input from the input device 40. It should be noted that the membrane filtration start pressure p m may be obtained assuming that the relationship shown in FIG. That is, the inclination and eta 1 the number of cycles up to 0 to N t, the slope when the number of cycles greater than N t eta
As 2 , the filtration start pressure p m is calculated.

【0020】エネルギ効率算出手段58は、圧力上昇係
数選択手段56で選択された圧力上昇係数aで濾過圧力
が上昇するようにギヤポンプ18が駆動されたときの、
単位処理流量当りのエネルギ(エネルギ効率)を算出す
る。具体的な算出手順は、以下のようになる。まず、各
濾過サイクルにおける濾過開始圧力pは、濾過開始圧
力算出手段60によって上述の式(2)から算出され
る。したがって、濾過開始圧力pが算出されると、濾
過処理中の濾過圧力pは選択された圧力上昇係数aを用
いて式(1)で表すことができる。ここで、濾過処理中
の濾過圧力pが式(1)から決まり、さらに濾過ケーク
の圧縮特性(圧縮性指数nと透過特性(濾過比抵抗
α))が分かると、濾過圧力pのときの濾過速度を求
めることができる。すなわち、濾過圧力Pのときの濾過
比抵抗αは次に示す式(3)で表せる。 α=α(p−p (3) このように、処理水の圧縮性指数nから濾過圧力pにお
ける濾過比抵抗αが分かると、例えば、ルースの濾過速
度式から濾過圧力pのときの濾過速度を求めることがで
きる。各圧力における濾過速度がわかると、濾過速度を
任意の時間まで積分することで、その時間までの濾過流
量vを求めることができる。したがって、圧力pと濾過
流量vの関係がわかるため、濾過処理に必要とされるエ
ネルギは、次に示す式(4)により算出することができ
る。 E=∫pdv (4) また、各濾過サイクルにおいては濾過処理で使用される
エネルギとは別に、逆洗処理で使用されるエネルギがあ
る。この逆洗処理の消費エネルギは、逆洗処理時の処理
水の圧力p(コンプレッサ28の圧力)、逆洗処理に
より膜濾過装置24に流される処理流量vとするとp
×vとなる。この圧力pと処理流量vは、膜濾
過システムのハード構成から一定の値に設定される。し
たがって、式(4)で算出された濾過処理に必要とされ
るエネルギと、逆洗処理に必要とされるエネルギp×
を各サイクル毎に算出して累積加算し、その全エネ
ルギの和を全処理流量(すなわち、膜濾過装置24に供
給した全処理水量Vから逆洗処理で膜濾過装置24に供
給した全逆洗水量Vを減算したもの(V−V)で除
算してエネルギ効率を求める。
The energy efficiency calculation means 58 is provided when the gear pump 18 is driven so that the filtration pressure is increased by the pressure increase coefficient a selected by the pressure increase coefficient selection means 56.
Energy (energy efficiency) per unit processing flow rate is calculated. The specific calculation procedure is as follows. First, the start of filtration pressure p m of each filtration cycle, is calculated from equation (2) above by filtration starting pressure calculation means 60. Therefore, when the filtration start pressure p m is calculated, the filtration pressure p during the filtration process can be expressed by the equation (1) using the selected pressure increase coefficient a. Here, when the filtration pressure p during the filtration treatment is determined from the equation (1) and the compression characteristics (compressibility index n and permeation characteristics (filtration specific resistance α 0 )) of the filter cake are known, The filtration rate can be determined. That is, the filtration specific resistance α at the filtration pressure P can be expressed by the following equation (3). α = α 0 (p-p m ) n (3) Thus, when the filtration resistivity p at the filtration pressure p is known from the compressibility index n of the treated water, for example, the filtration pressure p The filtration rate at this time can be obtained. When the filtration rate at each pressure is known, the filtration flow rate v up to that time can be obtained by integrating the filtration rate up to an arbitrary time. Therefore, since the relationship between the pressure p and the filtration flow rate v is known, the energy required for the filtration process can be calculated by the following equation (4). E = ∫pdv (4) In addition to the energy used in the filtration process, there is energy used in the backwash process in each filtration cycle. Energy consumption of the backwash process, the pressure p b of the treated water during backwash process (pressure of the compressor 28), when the process flow rate v b that the backwash process flows in the membrane filtration apparatus 24 p
b × v b . The pressure p b and the processing flow rate v b are set to constant values due to the hardware configuration of the membrane filtration system. Therefore, the energy required for the filtration process calculated by equation (4) and the energy required for the backwash process p b ×
v b is calculated for each cycle and cumulatively added, and the sum of all the energies thereof is added to the total treatment flow rate (that is, from the total amount V of the treated water supplied to the membrane filtration device 24 to the total filtration water supplied to the membrane filtration device 24 by backwashing). The energy efficiency is obtained by dividing the backwash water amount Vb by a value (V- Vb ).

【0021】繰り返し実行手段52は、上述した圧力上
昇係数選択手段56、エネルギ効率算出手段58、濾過
開始圧力算出手段60の各手段を繰返し実行させる機能
を有する。これによって、圧力上昇係数選択手段56が
繰返し実行されることで圧力上昇係数の値が変更され、
各圧力上昇係数の値について濾過開始圧力算出手段60
と、エネルギ効率算出手段58が実行されることで各圧
力上昇係数のときのエネルギ効率が算出される。
The repetitive execution means 52 has a function of repetitively executing the respective means of the pressure increase coefficient selection means 56, the energy efficiency calculation means 58, and the filtration start pressure calculation means 60 described above. As a result, the value of the pressure increase coefficient is changed by repeatedly executing the pressure increase coefficient selecting means 56,
Filtration start pressure calculation means 60 for each pressure rise coefficient value
Then, the energy efficiency calculation means 58 is executed to calculate the energy efficiency at each pressure increase coefficient.

【0022】次に、上述したように構成される装置を用
いて処理水供給方法を決定する際の手順を説明する。上
述した装置により運転方法を決定するためには、まず、
濾過ケークの圧縮特性(圧縮性指数nと係数αと係数
K)、膜の特性〔濾過開始時における濾過圧力pm0
膜閉塞指数η〕及び定速濾過時の圧力上昇係数αを実
験により求める。具体的には、図5に示す濾過システム
を定速濾過処理により複数サイクルに渡り処理を行い、
その際の濾過圧力の経時変化を測定する。そして、測定
された濾過圧力の経時変化から上述の各係数を求める。
Next, a procedure for determining a treated water supply method using the apparatus configured as described above will be described. In order to determine the driving method by the above-mentioned device, first,
Compressive characteristics of the filter cake (compressibility index n and coefficient α 0 and coefficient K), characteristics of membrane [filtration pressure p m0 at the start of filtration,
Membrane blockage index η] and pressure rise coefficient α t at the time of constant velocity filtration are determined by experiments. Specifically, the filtration system shown in FIG. 5 is subjected to a constant rate filtration process for a plurality of cycles,
The change with time of the filtration pressure at that time is measured. Then, the above-mentioned respective coefficients are obtained from the change with time of the measured filtration pressure.

【0023】上述のようにして入力すべき各特性値が求
められると、次に、それらの値を用いて処理水供給方法
を決定する。この際の演算装置50内で行われる処理を
図4のフローチャートを参照して説明する。図4に示す
ように、まず、入力装置40から定速濾過処理実験によ
り求められた濾過ケークの圧縮特性(圧縮性指数nと係
数αと係数K),定速濾過時の圧力上昇係数a,膜
特性〔濾過開始時の濾過圧力pm0,膜閉塞指数η〕を
入力する(S01〜S03)。これらの特性値が入力さ
れると、次に、エネルギ効率を計算するサイクル数Nを
入力する(S04)。すなわち、エネルギ効率を算出す
る濾過サイクル数を何回にするかを入力装置40から入
力する。例えば、濾過サイクルを100回まで繰返した
ときのエネルギ効率を算出する場合には、入力装置40
より100と入力する。計算するサイクル数が入力され
ると、計算対象となる複数の圧力上昇係数の値から一の
値を選択する(S05)。例えば、ステップS02で入
力された圧力上昇係数が0.10で計算範囲係数a
0.10である場合には、0〜0.20の数値範囲を2
0等分した各数値0.01,0.02・・,0.10,
0.11・・0.19の19個の数値から一つの数値を
選択する。圧力上昇係数aが選択されると、まず、濾過
サイクルをカウントするサイクルカウンタがリセットさ
れ(S06)、そのサイクルカウンタのカウントが開始
される(S07)。このサイクルカウンタは、ステップ
S04で設定された濾過サイクルまで各サイクルのエネ
ルギと処理流量を計算するためのカウンタであり、各サ
イクルを計算する毎に+1加算されていく。カウンタの
カウントが開始されると、濾過開始圧力算出手段60に
より濾過開始圧力pが算出される(S08)。具体的
には、ステップS03で入力された特性値を式(2)に
代入して算出される。濾過開始圧力が算出されると、そ
の濾過開始圧力pとステップS05で選択された圧力
上昇係数aから濾過圧力pを求め、この濾過圧力pとス
テップS01,ステップS03で入力された特性値から
その濾過サイクルにおける処理流量を求め、同時にその
濾過サイクルにおけるエネルギを算出する(S09)。
この算出されるエネルギは、濾過処理に使用されるエネ
ルギと逆洗処理に使用されるエネルギが足し合わされた
ものである。ステップS09でエネルギと処理流量が算
出されると、ステップS07でカウントを開始したサイ
クルカウンタの値がステップS04で入力されたサイク
ル数Nに一致したか否かを判定する(S10)。サイク
ルカウンタの数値とステップS04で入力された濾過サ
イクル数Nが一致する場合〔ステップS10でYESの
場合〕にはステップS11に進み、カウンタの数と入力
された濾過サイクル数Nが一致しない場合〔ステップS
10でNOの場合〕にはステップS07に戻って、ステ
ップS07からの処理を繰返す。このため、サイクルカ
ウンタの値が濾過サイクル数Nとなるまで、各サイクル
における消費エネルギと処理流量が算出される。ステッ
プS11に進むと、上述のステップS09の処理により
算出された各サイクルにおける消費エネルギと処理流量
からエネルギ効率を算出する(S11)。すなわち、全
消費エネルギを全処理流量で除算することで、エネルギ
効率を算出する。エネルギ効率が算出されると、次に、
全ての圧力上昇係数aについてエネルギ効率が算出され
たか否かが判定される(S12)。全ての圧力上昇係数
aについてエネルギ効率が算出されていない場合〔ステ
ップS12でNOの場合〕には、ステップS05に戻っ
てステップS05からの計算を繰返す。これによって、
全ての圧力上昇係数(上述の例の場合、0.01・・
0.09,0.10・・0.19の19個)についてエ
ネルギ効率が算出される。一方、全ての圧力上昇係数a
についてエネルギ効率が算出されている場合〔ステップ
S12でYESの場合〕には、最もエネルギ効率が小さ
くなる圧力上昇係数aが表示装置44に表示される(S
13)。表示装置44への圧力上昇係数aの表示方法
は、圧力上昇係数aの数値を表示するだけでも良いし、
例えば、図2で示すようにグラフ化〔圧力(x軸)−処
理時間(y軸)〕して表示しても良い。なお、ステップ
S13で表示された圧力上昇係数aは、図5に示す濾過
システムの制御装置30に出力され、制御装置30はこ
の圧力上昇係数aにより濾過圧力の経時変化を求め、求
めた濾過圧力となるようにギヤポンプ18を駆動するよ
うにしても良い。これによって、濾過システムが定速濾
過方式でも定圧濾過方式でもなく、濾過圧力と濾過速度
の両者を経時的に変化させながら効率的に濾過処理を行
うことができる。
When the characteristic values to be input are obtained as described above, the treated water supply method is then determined using these values. The processing performed in the arithmetic unit 50 at this time will be described with reference to the flowchart of FIG. As shown in FIG. 4, first, the compression characteristics (compressibility index n, coefficient α 0 and coefficient K) of the filter cake obtained by the constant-speed filtration treatment experiment from the input device 40, the pressure increase coefficient a during constant-speed filtration. t , and the membrane characteristics [filtration pressure p m0 at the start of filtration, membrane blocking index η] are input (S01 to S03). When these characteristic values are input, next, the number N of cycles for calculating energy efficiency is input (S04). That is, the number of filtration cycles for calculating energy efficiency is input from the input device 40. For example, when calculating the energy efficiency when the filtration cycle is repeated up to 100 times, the input device 40 is used.
Enter 100 more. When the number of cycles to be calculated is input, one value is selected from a plurality of pressure increase coefficient values to be calculated (S05). For example, when the pressure increase coefficient input in step S02 is 0.10 and the calculation range coefficient a 0 is 0. 10, the numerical range of 0 to 0.20 is set to 2
Each value divided into 0 equals 0.01, 0.02, ..., 0.10,
Select one numerical value from 19 numerical values of 0.11 ... 0.19. When the pressure increase coefficient a is selected, first, the cycle counter that counts the filtration cycle is reset (S06), and the count of the cycle counter is started (S07). This cycle counter is a counter for calculating the energy and processing flow rate of each cycle up to the filtration cycle set in step S04, and +1 is added every time each cycle is calculated. When the counter count is started, the start of filtration pressure p m is calculated by the start of filtration pressure calculation means 60 (S08). Specifically, it is calculated by substituting the characteristic value input in step S03 into equation (2). When the filtration start pressure is calculated, the filtration pressure p is obtained from the filtration start pressure p m and the pressure increase coefficient a selected in step S05, and from this filtration pressure p and the characteristic values input in steps S01 and S03. The processing flow rate in the filtration cycle is obtained, and at the same time, the energy in the filtration cycle is calculated (S09).
This calculated energy is the sum of the energy used for the filtration process and the energy used for the backwash process. When the energy and the processing flow rate are calculated in step S09, it is determined whether or not the value of the cycle counter that started counting in step S07 matches the cycle number N input in step S04 (S10). When the numerical value of the cycle counter and the number N of filtration cycles input in step S04 match [YES in step S10], the process proceeds to step S11, and when the number of counters and the number N of filtration cycles input does not match [ Step S
If NO in 10], the process returns to step S07 and the processes from step S07 are repeated. Therefore, the consumed energy and the processing flow rate in each cycle are calculated until the value of the cycle counter reaches the number N of filtration cycles. When the process proceeds to step S11, energy efficiency is calculated from the energy consumption and the processing flow rate in each cycle calculated by the process of step S09 described above (S11). That is, the energy efficiency is calculated by dividing the total consumed energy by the total processing flow rate. Once the energy efficiency is calculated, then
It is determined whether the energy efficiency has been calculated for all the pressure increase coefficients a (S12). If the energy efficiency has not been calculated for all the pressure increase coefficients a [NO in step S12], the process returns to step S05 and the calculation from step S05 is repeated. by this,
All pressure increase factors (0.01 ..
Energy efficiency is calculated for 0.09, 0.10 ... 0.19). On the other hand, all pressure rise coefficients a
When the energy efficiency has been calculated for [NO in step S12], the pressure increase coefficient a having the smallest energy efficiency is displayed on the display device 44 (S).
13). The method of displaying the pressure increase coefficient a on the display device 44 may be only to display the numerical value of the pressure increase coefficient a,
For example, as shown in FIG. 2, a graph [pressure (x-axis) -processing time (y-axis)] may be displayed. The pressure increase coefficient a displayed in step S13 is output to the control device 30 of the filtration system shown in FIG. 5, and the control device 30 obtains the temporal change of the filtration pressure by the pressure increase coefficient a, and the obtained filtration pressure The gear pump 18 may be driven so that As a result, the filtration system is neither the constant-rate filtration method nor the constant-pressure filtration method, and it is possible to efficiently perform the filtration treatment while changing both the filtration pressure and the filtration rate with time.

【0024】上述の説明から明らかなように、本実施例
に係る処理水供給方法決定装置は、処理水の特性や膜特
性等の所定の特性値を入力することで、最も効率的な運
転方法を求めることができる。特に、濾過ケークの圧縮
特性のみならず、膜濾過装置24の膜の閉塞性が考慮さ
れるため、より現実の濾過処理に即した最適な運転方法
を決定することができる。
As is clear from the above description, the treated water supply method determining apparatus according to this embodiment inputs the predetermined characteristic values such as the characteristic of treated water and the characteristic of the membrane, and thus the most efficient operation method. Can be asked. In particular, not only the compression characteristics of the filter cake but also the occlusive property of the membrane of the membrane filtration device 24 is taken into consideration, so that an optimal operation method can be determined in accordance with a more actual filtration process.

【0025】以上、本発明の具体例を詳細に説明した
が、これらは例示にすぎず、特許請求の範囲を限定する
ものではない。特許請求の範囲に記載の技術には、以上
に例示した具体例を様々に変形、変更したものが含まれ
る。例えば、上述の実施例では、処理水供給圧力pの経
時変化を式(1)に示すべき指数関数で近似したが、こ
のような近似方法のみならず、指数関数によって近似し
ても良い。例えば、次に示す式で近似することができ
る。 p=pmexp(at) (pm;各サイクルの濾過開始時の供給圧力,t;各サ
イクルにおける濾過開始時からの濾過時間,a;圧力上
昇係数) 上記の式では、圧力上昇係数aを0とすることで定圧濾
過処理を表現することができ、かつ、計算を簡便に行う
ことができる。なお、計算する際の具体的な手順は、上
述した方法と同一である。また、本明細書または図面に
説明した技術要素は、単独であるいは各種の組み合わせ
によって技術的有用性を発揮するものであり、出願時請
求項記載の組み合わせに限定されるものではない。ま
た、本明細書または図面に例示した技術は複数の目的を
同時に達成するものであり、そのうちの一つの目的を達
成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described above in detail, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. For example, in the above-described embodiment, the change over time of the treated water supply pressure p is approximated by the exponential function shown in equation (1), but not only such an approximation method but also an exponential function may be used. For example, it can be approximated by the following formula. p = p m exp (at) (p m; supply pressure at the start filtration of each cycle, t; filtration time from the start of filtration in each cycle, a; pressure rise coefficient) in the above formula, the pressure rise coefficient a By setting 0 to 0, the constant pressure filtration process can be expressed, and the calculation can be easily performed. The specific procedure for calculation is the same as the method described above. Further, the technical elements described in the present specification or the drawings exert technical utility alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Further, the technique illustrated in the present specification or the drawings achieves a plurality of purposes at the same time, and achieving the one purpose among them has technical utility.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る処理水供給方法決定
装置の機能ブロック図。
FIG. 1 is a functional block diagram of a treated water supply method determination device according to an embodiment of the present invention.

【図2】 濾過圧力と処理時間の関係を示す図。FIG. 2 is a diagram showing the relationship between filtration pressure and processing time.

【図3】 濾過開始圧力と濾過サイクル数の関係を示す
図。
FIG. 3 is a diagram showing a relationship between a filtration start pressure and the number of filtration cycles.

【図4】 運転方法決定処理のフローチャート。FIG. 4 is a flowchart of a driving method determination process.

【図5】 本発明の対象となる濾過システムの全体構成
を示す図。
FIG. 5 is a diagram showing an overall configuration of a filtration system which is a target of the present invention.

【符号の説明】[Explanation of symbols]

10・・処理水槽 18・・ポンプ 20・・流量計 22・・圧力計 24・・膜濾過装置 26・・透過水槽 28・・コンプレッサ 30・・制御装置 40・・入力装置 44・・表示装置 50・・演算装置 10 ... Treated water tank 18 ... Pump 20 ... Flowmeter 22 ... Pressure gauge 24..Membrane filtration device 26 ... Permeate tank 28 ... Compressor 30..Control device 40..Input device ..Display device 50 ... Computing device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 向井 康人 愛知県名古屋市天白区元植田1丁目2101 (72)発明者 タン オン 愛知県名古屋市昭和区田面町1丁目34 Fターム(参考) 4D006 GA07 HA22 KA01 KA12 KA61 KB13 KC03 KC13 KE01P KE07P KE15Q KE21Q KE23Q KE24Q KE28P MA02 MC03X PA01 PB15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuhito Mukai             1-2101 Motoueda, Tenpaku-ku, Nagoya-shi, Aichi (72) Inventor Tan On             1-34, Tamen-cho, Showa-ku, Nagoya-shi, Aichi F-term (reference) 4D006 GA07 HA22 KA01 KA12 KA61                       KB13 KC03 KC13 KE01P                       KE07P KE15Q KE21Q KE23Q                       KE24Q KE28P MA02 MC03X                       PA01 PB15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 処理水中の不純物を除去する膜濾過装置
の処理水供給方法を決定する方法であって、 定速濾過処理時に測定された処理水の供給圧力の経時変
化若しくは変速変圧濾過処理時に測定された処理水の供
給圧力及び供給流量の経時変化から、濾過ケークの圧縮
特性と濾過膜の特性を取得する工程と、 濾過処理時における供給圧力の経時変化がべき指数関数
又は指数関数的に変化すると近似したときの供給圧力の
上昇率を規定する圧力上昇係数を所定の数値範囲内から
選択する工程と、 選択された圧力上昇係数にしたがって供給圧力が変化す
るときの単位処理量当りのエネルギ効率を、前記取得工
程で取得された濾過ケークの圧縮特性と濾過膜の特性を
用いて算出する工程とを有し、 前記選択工程と前記算出工程を繰返し実行して、所定の
数値範囲内から最もエネルギ効率が高くなる圧力上昇係
数を特定し、その特定した圧力上昇係数から処理水供給
方法を決定することを特徴とする膜濾過装置の処理水供
給方法を決定する方法。
1. A method for determining a treated water supply method of a membrane filtration device for removing impurities in treated water, which comprises a change in the supply pressure of the treated water measured during constant-rate filtration treatment or during variable speed variable filtration treatment. The process of obtaining the compression characteristics of the filter cake and the characteristics of the filtration membrane from the measured changes in the supply pressure and supply flow rate of the treated water, and the change in supply pressure during the filtration process that should be exponential or exponential. The process of selecting a pressure increase coefficient that defines the increase rate of the supply pressure when it approximates to change from a predetermined numerical range, and the energy per unit throughput when the supply pressure changes according to the selected pressure increase coefficient. Efficiency has a step of calculating using the compression characteristics of the filter cake and the characteristics of the filtration membrane acquired in the acquisition step, by repeatedly performing the selection step and the calculation step, A method for determining a treated water supply method of a membrane filtration device, characterized in that a pressure rise coefficient having the highest energy efficiency is specified within a constant numerical range, and the treated water supply method is determined from the specified pressure rise coefficient. .
【請求項2】 前記の所定の数値範囲内に、定速濾過処
理時の圧力上昇係数が含まれていることを特徴とする請
求項1に記載の膜濾過装置の処理水供給方法を決定する
方法。
2. The method for supplying treated water to a membrane filtration apparatus according to claim 1, wherein a pressure increase coefficient at the time of constant-rate filtration treatment is included within the predetermined numerical range. Method.
【請求項3】 前記取得工程ではさらに、濾過処理と膜
洗浄処理を1サイクルとする複数回の濾過サイクルにつ
いて測定された定速濾過処理における処理水の供給圧力
の経時変化若しくは変速変圧濾過処理における処理水の
供給圧力及び供給流量の経時変化から濾過膜の膜閉塞特
性が取得され、前記算出工程では、複数回の濾過サイク
ルを行ったときのエネルギ効率が、取得された膜閉塞特
性を考慮して算出されることを特徴とする請求項1又は
2に記載の膜濾過装置の処理水供給方法を決定する方
法。
3. The obtaining step further comprises the change in the supply pressure of the treated water with time in the constant-rate filtration process or the variable speed variable filtration process in the constant-rate filtration process, which is measured for a plurality of filtration cycles including the filtration process and the membrane washing process as one cycle. The membrane clogging characteristic of the filtration membrane is acquired from the change over time of the supply pressure and the supply flow rate of the treated water, and in the calculation step, the energy efficiency when performing a plurality of filtration cycles is determined in consideration of the obtained membrane clogging characteristic. The method for determining the method for supplying the treated water of the membrane filtration device according to claim 1, wherein the method is determined by calculating.
【請求項4】 処理水中の不純物を除去する膜濾過装置
の処理水供給方法を決定する装置であって、 濾過ケークの圧縮特性と濾過膜の特性を入力する手段
と、 濾過処理時における供給圧力の経時変化がべき指数関数
又は指数関数的に変化すると近似したときの供給圧力の
圧力上昇率を規定する圧力上昇係数を所定の数値範囲内
から選択する手段と、 選択された圧力上昇係数に従って供給圧力が変化すると
きの単位処理量当りのエネルギ効率を、入力手段から入
力された濾過ケークの圧縮特性と濾過膜の特性を用いて
算出する手段と、 前記選択手段と前記算出手段を繰返し実行して、所定の
数値範囲内から最もエネルギ効率が高くなる圧力上昇係
数を特定する特定手段と、 特定された圧力上昇係数から決まる処理水の供給方法を
指示する手段と、 を有することを特徴とする膜濾過装置の処理水供給方法
を決定する装置。
4. A device for determining a method for supplying treated water of a membrane filtration device for removing impurities in treated water, comprising means for inputting compression characteristics of a filtration cake and characteristics of a filtration membrane, and supply pressure at the time of filtration treatment. Means for selecting the pressure increase coefficient that defines the pressure increase rate of the supply pressure when it approximates to a power exponential function or an exponential change, and supply according to the selected pressure increase coefficient. A means for calculating the energy efficiency per unit throughput when the pressure changes using the compression characteristics of the filter cake and the characteristics of the filtration membrane input from the input means, and the selecting means and the calculating means are repeatedly executed. And means for specifying a pressure increase coefficient having the highest energy efficiency within a predetermined numerical range, and means for instructing a treated water supply method determined from the specified pressure increase coefficient. Apparatus for determining the treated water supply method of a membrane filtration apparatus characterized in that it comprises a.
JP2002051083A 2002-02-27 2002-02-27 Method and apparatus for determining treatment water supply method for membrane filtration device Expired - Fee Related JP3565818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051083A JP3565818B2 (en) 2002-02-27 2002-02-27 Method and apparatus for determining treatment water supply method for membrane filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002051083A JP3565818B2 (en) 2002-02-27 2002-02-27 Method and apparatus for determining treatment water supply method for membrane filtration device

Publications (2)

Publication Number Publication Date
JP2003251153A true JP2003251153A (en) 2003-09-09
JP3565818B2 JP3565818B2 (en) 2004-09-15

Family

ID=28663146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051083A Expired - Fee Related JP3565818B2 (en) 2002-02-27 2002-02-27 Method and apparatus for determining treatment water supply method for membrane filtration device

Country Status (1)

Country Link
JP (1) JP3565818B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014948A (en) * 2005-06-09 2007-01-25 Toray Ind Inc Membrane filteration estimation method, estimation device, membrane filteration estimation ptogram
JP2007038212A (en) * 2005-06-28 2007-02-15 Toray Ind Inc Determining method of operation condition of membrane filtering apparatus and operation method of membrane filtering apparatus using it, membrane filtering apparatus
JP2007105644A (en) * 2005-10-14 2007-04-26 Hitachi Ltd Operation controller and operation support device of membrane filtration apparatus
JP2007185648A (en) * 2005-09-01 2007-07-26 Toray Ind Inc Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus
JP2009195818A (en) * 2008-02-21 2009-09-03 Hitachi Ltd Operation method of water purification membrane filtration system
WO2014092383A1 (en) * 2012-12-12 2014-06-19 두산중공업 주식회사 Filtration membrane fouling index measuring method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014948A (en) * 2005-06-09 2007-01-25 Toray Ind Inc Membrane filteration estimation method, estimation device, membrane filteration estimation ptogram
JP2007038212A (en) * 2005-06-28 2007-02-15 Toray Ind Inc Determining method of operation condition of membrane filtering apparatus and operation method of membrane filtering apparatus using it, membrane filtering apparatus
JP2007185648A (en) * 2005-09-01 2007-07-26 Toray Ind Inc Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus
JP2007105644A (en) * 2005-10-14 2007-04-26 Hitachi Ltd Operation controller and operation support device of membrane filtration apparatus
JP2009195818A (en) * 2008-02-21 2009-09-03 Hitachi Ltd Operation method of water purification membrane filtration system
WO2014092383A1 (en) * 2012-12-12 2014-06-19 두산중공업 주식회사 Filtration membrane fouling index measuring method
US10139331B2 (en) 2012-12-12 2018-11-27 Doosan Heavy Industries & Construction Co., Ltd. Filtration membrane fouling index measuring method

Also Published As

Publication number Publication date
JP3565818B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US8918217B2 (en) Method and system for optimizing membrane cleaning process
KR20100017638A (en) Method for controlling fouling of a membrane filter
JP6003300B2 (en) Vacuum filtration apparatus and operation method thereof
CN109562965B (en) Computer-readable recording medium storing program for determining clogging position of separation membrane module, water generation system, and water generation method
JP6659404B2 (en) Wastewater treatment control device and wastewater treatment system
KR100889915B1 (en) Auto controlling apparatus of clean in place and its method by using membrane fouling rate
CN105152317B (en) The method that early warning is carried out to the film properties of membrane bioreactor
JP2003251153A (en) Method and device for determining treatment water supply method of membrane filtration apparatus
JP2008126137A (en) Membrane filter control system of water treatment equipment
CN111727174B (en) Aeration amount control system and aeration amount control method
US11790325B2 (en) Operation support device and operation support method
WO2022138189A1 (en) Transmembrane pressure difference inference device and diffused air amount control device
JP4780946B2 (en) Water treatment process operation support device, program and recording medium
Janus et al. A behavioural membrane fouling model for integrated simulation of membrane bioreactors for wastewater treatment
JP3749719B2 (en) Filtration rate determination method and filtration rate candidate evaluation apparatus
RU2484880C2 (en) Method and system of reducing quantity of particles
WO2017006988A1 (en) Wastewater treatment control unit and wastewater treatment system
JP3565790B2 (en) Membrane filtration method and membrane filtration system
KR101156592B1 (en) Apparatus for water treatment filtration facility operation and method thereof
JP2016097342A (en) Timing management device, timing management method, timing calculation device, and program
JP7495045B2 (en) Washing control device and washing control method
JP2022017857A (en) System, method and program for monitoring control
JP2020199475A (en) Cleansing air quantity control system and cleansing air quantity control device
CN115475665B (en) Control method for water softener and water softener
WO2020030956A1 (en) Methods and apparatus for determining a fouling index

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Effective date: 20040116

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20040116

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD03 Notification of appointment of power of attorney

Effective date: 20031210

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Effective date: 20040116

Free format text: JAPANESE INTERMEDIATE CODE: A821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040520

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100618

LAPS Cancellation because of no payment of annual fees