JP2003249259A - Battery pack - Google Patents

Battery pack

Info

Publication number
JP2003249259A
JP2003249259A JP2002050103A JP2002050103A JP2003249259A JP 2003249259 A JP2003249259 A JP 2003249259A JP 2002050103 A JP2002050103 A JP 2002050103A JP 2002050103 A JP2002050103 A JP 2002050103A JP 2003249259 A JP2003249259 A JP 2003249259A
Authority
JP
Japan
Prior art keywords
active material
plate
negative electrode
electrode plate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002050103A
Other languages
Japanese (ja)
Other versions
JP3819785B2 (en
Inventor
Mikiaki Tadokoro
幹朗 田所
Masao Takee
正夫 武江
Takeshi Yoshida
武史 吉田
Tadashi Ise
忠司 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002050103A priority Critical patent/JP3819785B2/en
Publication of JP2003249259A publication Critical patent/JP2003249259A/en
Application granted granted Critical
Publication of JP3819785B2 publication Critical patent/JP3819785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack in which an internal short circuit within a single cell is hard to occur and volume energy density and mass energy density are excellent. <P>SOLUTION: This battery pack is constituted with two or more bipolar electrode plates 10a in which a positive active material 12 is formed on a surface in the direction of a collector 11 and the negative active material 13 is formed on the other surface, an end part negative plate 10b in which the negative active material 13 is formed only on the one side surface of the collector 11a and is arranged at the endmost part of the other side, and an end part positive plate 10c in which positive active material 12 is formed only on the one side surface of the collector 11b, and is arranged at the one endmost part of the one side. And two or more of the bipolar electrode plates 10a, the end part negative plate 10b, and the end part positive plate 10c are arranged so that the positive active material 12 and the negative active material 13 may counter through a separator component 14 containing an electrolyte, and a peripheral edge part of the bipolar electrode plates 10a, the end part positive plate 10c, and the end part negative plate 10b are sealed by an insulator 15. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は集電体を介して正極
活物質と負極活物質が導電接続された構造の集合電池に
関する。 【0002】 【従来の技術】近年、携帯電話やノートパソコンなどの
携帯機器用電源としての電池の需要が急速に拡大し、電
動工具、アシスト自転車、電気自動車などの大電流用途
にも需要が拡大した。このため、ニッケル−水素蓄電池
やリチウム二次電池などの高電圧化、高容量化、ハイパ
ワー化、高出力化への需要、要望が高まるとともに、容
積エネルギー密度および質量エネルギー密度に優れた電
池のさらなる改良が求められるようになった。 【0003】このような背景にあって、この種の電池に
おいて、種々の高電圧化、高容量化、ハイパワー化、高
出力化が達成できる種々の改良が提案され、例えば、特
表平9−503618号公報に示されるような集合電池
が提案されるようになった。この特表平9−50361
8号公報に示された集合電池おいては、図5に示すよう
に、平板状の正極集電体51aの片面に正極活物質51
bを塗布して正極板51を形成する。 【0004】一方、平板状の負極集電体52aの片面に
負極活物質52bを塗布して負極板52を形成する。こ
れらの正極板51と負極板52とをセパレータ53を介
して対向させた後、これらの外周部の端縁を絶縁体54
で封止して単セル50aを形成する。ついで、これらの
単セル50aの間に接続用集電体55を介在させて、複
数個(例えば5個)の単セル50aを積層してスタック
セル50を形成し、このスタックセル50を電池容器内
に収容して集合電池となされている。 【0005】 【発明が解決しようとする課題】ところで、上述のよう
に構成される特表平9−503618号公報にて提案さ
れた集合電池においては、単に、各集電体51a,52
aの片面に各活物質51b,52bを塗布して各電極5
1,52を形成し、これらの電極51,52をセパレー
タ53を介して対向させて単セル50aを形成し、複数
個の単セル50aを接続用集電体55を介在させて積層
しているだけである。 【0006】このため、各集電体51a,52aの容積
および質量が大きくなるとともに、接続用集電体55の
容積および質量も大きくなり、容積エネルギー密度およ
び質量エネルギー密度が向上しないという問題を生じ
た。また、特表平9−503618号公報にて提案され
た集合電池においては、単セル50a内で正極51と負
極52を隔離するセパレータ53が固定されていないた
め、正極51と負極52が短絡しやすいという問題も生
じた。 【0007】そこで、本発明は上記問題点を解決するた
めになされたものであって、単セル内で内部短絡が生じ
にくくて、容積エネルギー密度および質量エネルギー密
度に優れた集合電池を提供することを目的とする。 【0008】 【課題を解決するための手段】上記目的を達成するた
め、本発明は集電体を介して正極活物質と負極活物質が
導電接続された構造の集合電池であって、集電体の一方
面に正極活物質が形成され、他方面に負極活物質が形成
された複数の双極電極板と、集電体の一方面のみに正極
活物質が形成されて一方の最端部に配置される端部正極
板と、集電体の一方面のみに負極活物質が形成されて他
方の最端部に配置される端部負極板とを備え、複数の双
極電極板と端部正極板と端部負極板は電解質を含有する
隔離部材を介して正極活物質と負極活物質とが対向する
ように配設されており、双極電極板と端部正極板と端部
負極板の端縁外周部は絶縁体で封止されていることを特
徴とする。 【0009】このように、集電体の一方面に正極活物質
が形成され、他方面に負極活物質が形成された双極電極
を備えると、この集電体を介して正極と負極が直接直列
に接続されるようになる。このため、単セルを接続する
ための接続用の集電体の使用を省略できるようになると
ともに、活物質を保持するための集電体も削減できるよ
うになって、容積エネルギー密度および質量エネルギー
密度に優れた集合電池を提供することが可能となる。 【0010】この場合、単セル内での短絡を防止するた
めには、正極と負極を隔離する隔離部材(例えばセパレ
ータ)を双極電極板の外周部まで延出させ、この端部を
電極の一部で固定するのが望ましい。例えば、双極電極
板の集電体の端部に接着性の樹脂を配置するようにし、
この樹脂と隔離部材とを固着するようにしたり、隔離部
材の端部を厚肉に形成してこの厚肉を双極電極板の集電
体の端部に固着するようにすればよい。また、隔離部材
を双極電極板の外周部まで延出させない場合には、双極
電極の集電体の端部間にセラミックなどの絶縁体を配置
し、この絶縁体と双極電極の集電体の端部とを固着する
ようにすればよい。 【0011】そして、このように形成された端部正極板
と双極電極板と端部負極板からなるスタックセルは正極
端子と負極端子が形成された外装ケース(電池容器)に
収容し、端部正極板の集電体と正極端子とを接続し、端
部負極板と負極端子とを接続して用いるのが望ましい。
この場合、外装ケース(電池容器)に安全弁を設けるよ
うにするのが好ましい。また、双極電極板と端部正極板
と端部負極板の端縁外周部は絶縁体で封止された構造で
あるため、漏液を防止するためには、電解液をゲル化し
て用いるのが望ましい。この場合、固体高分子電解質を
用いると、この電解質は隔離部材の作用をするため、隔
離部材としてのセパレータを用いる必要がなくなるので
好ましい。 【0012】 【発明の実施の形態】以下に、本発明の集合電池の実施
の形態を図1〜図4に基づいて以下に説明するが、本発
明をニッケル−水素蓄電池に適用した場合を第1実施形
態とし、本発明をリチウム二次電池に適用した場合を第
2実施形態として説明する。なお、図1は第1実施形態
および第2実施形態の実施例1の集合電池を示す断面図
である。また、図2は第1実施形態および第2実施形態
の実施例2の集合電池を示す断面図であり、図3は第1
実施形態および第2実施形態の実施例3の集合電池を示
す断面図である。さらに、図4は第1実施形態および第
2実施形態の比較例の集合電池を示す断面図である。 【0013】1.第1実施形態(ニッケル−水素蓄電池
への適用例) (1)実施例1 まず、共沈成分として亜鉛2.5質量%とコバルト1質
量%を含有する水酸化ニッケル粉末90質量部と、水酸
化コバルト粉末10質量部と、酸化亜鉛粉末3質量部と
の混合粉末に、ヒドロキシプロピルセルロースの0.2
質量%水溶液50質量部を添加混練して正極活物質12
を作製した。一方、水素吸蔵合金(例えば、平均粒子径
が約150μmのMm1.0Ni3.4Co1.0Al0.2Mn
0.6)粉末にポリエチレンオキサイド等の結着剤と、適
量の水を加えて混合して負極活物質13を作製した。 【0014】ついで、金属板(例えば鉄板)の表面にニ
ッケルメッキを施した平板状の集電体11の片面に正極
活物質12を塗布するとともに、この集電体11の他面
に負極活物質13を塗布し、乾燥後、所定の厚みに圧延
して双極電極板10aを作製した。また、金属板(例え
ば鉄板)の表面にニッケルメッキを施した平板状の端部
集電体11aの片面のみに負極活物質13を塗布し、乾
燥後、所定の厚みに圧延して端部負極板10bを作製し
た。また、金属板(例えば鉄板)の表面にニッケルメッ
キを施した平板状の端部集電体11bの片面のみに正極
活物質12を塗布し、乾燥後、所定の厚みに圧延して端
部正極板10cを作製した。 【0015】なお、各集電体11,11a,11bに活
物質12あるいは13を塗布するに際しては、これらの
集電体11,11a,11bの塗布面の外周部には活物
質12あるいは13が塗布されない未塗布部が形成され
るように塗布している。そして、各集電体11,11
a,11bと大きさ(面積)がほぼ等しくなるように切
断されたポリプロピレン製のセパレータ14を用意し
た。 【0016】ついで、双極電極板10aを4枚と、端部
負極板10bと端部正極板10cとを1枚ずつ用いて、
図1(a)に示すように、双極電極板10a同士の間
と、端部負極板10bと双極電極板10aの間およびに
双極電極板10aと端部正極板10cの間にセパレータ
14を配置した後、これらを積層して積層体とした。こ
のとき、端部負極板10bの集電体11a、双極電極板
10aの集電体11および端部正極板10cの集電体1
1bに活物質が塗布された側の3方向の端部(未塗布
部)に、接着性樹脂15を塗布するようにしている。な
お、接着性樹脂15としては、ポリオレフィン系樹脂、
例えばポリエチレン、ポリプロピレン、ポリブチレンな
どを用いるのが望ましい。 【0017】この後、端部負極板10bと端部正極板1
0cの間に、所定の圧力を附加しながら所定の温度に加
熱して、接着性樹脂15および接着性樹脂15に接触す
るセパレータ14の端部の一部を溶融させた。これによ
り、積層体の外周部の3方向の端部は液密に封止され、
セパレータ14の端部が固着されることとなる。つい
で、積層体の外周部の端部の封止されていない側の開口
部から、水酸化カリウム(KOH)、水酸化ナトリウム
(NaOH)、水酸化リチウム(LiOH)からなる3
成分系アルカリ電解液を注液した。ついで、この電解液
を注液した開口部を接着性樹脂で密封して、図1(b)
に示すような、5つの単セルからなる容量が500mA
hのスタックセル10を作製した。 【0018】ついで、図示しない正極端子および負極端
子を有するとともに安全弁を備えた外装ケース(電池容
器)を用意し、この外装ケースに上述のようにして作製
したスタックセル10を挿入した。ついで、スタックセ
ル10の一方の端部に配置された端部正極板10bに正
極リードを接続し、他方の端部に配置された端部負極板
10cに負極リードを接続した。この後、正極リードを
外装ケースに設けられた正極端子に接続するとともに、
負極リードを外装ケースに設けられた負極端子に接続
し、実施例1の集合電池Aを作製した。 【0019】(2)実施例2 まず、金属板(例えば鉄板)の表面にニッケルメッキを
施した平板状の集電体21の片面に実施例1と同様に作
製した正極活物質22を塗布するとともに、この集電体
21の他面に実施例1と同様に作製した負極活物質23
を塗布し、乾燥後、所定の厚みに圧延して双極電極板2
0aを作製した。また、金属板(例えば鉄板)の表面に
ニッケルメッキを施した平板状の端部集電体21aの片
面のみに負極活物質23を塗布し、乾燥後、所定の厚み
に圧延して端部負極板20bを作製した。また、金属板
(例えば鉄板)の表面にニッケルメッキを施した平板状
の端部集電体21bの片面のみに正極活物質22を塗布
し、乾燥後、所定の厚みに圧延して端部正極板20cを
作製した。 【0020】なお、各集電体21,21a,21bに活
物質22あるいは23を塗布するに際しては、これらの
集電体21,21a,21bの塗布面の外周部には活物
質22あるいは23が塗布されない未塗布部が形成され
るように塗布している。そして、外周縁部24aが折り
重ねられていて、目付および厚みが高くなるようになさ
れ、かつ各集電体21,21a,21bと大きさ(面
積)がほぼ等しくなるように切断されたポリプロピレン
製のセパレータ24を用意した。 【0021】ついで、双極電極板20aを4枚と、端部
正極板20bと端部負極板20cとを1枚ずつ用いて、
図2(a)に示すように、双極電極板20a同士の間
と、端部負極板20bと双極電極板20aの間およびに
双極電極板20aと端部正極板20cの間にセパレータ
24を配置し、これらを積層して積層体とした。この
後、この積層体の端部正極板10bと端部負極板10c
の間に、所定の圧力を附加しながら所定の温度に加熱し
て、セパレータ24の外周縁部24aの一部を溶融させ
た。 【0022】これにより、積層体の外周部の3方向の端
部は液密に封止され、セパレータ24の端部が固着され
るることとなる。ついで、積層体の外周部の端部の封止
されていない側の開口部から、水酸化カリウム(KO
H)、水酸化ナトリウム(NaOH)、水酸化リチウム
(LiOH)からなる3成分系アルカリ電解液を注液し
た。ついで、この電解液を注液した開口部を接着性樹脂
で密封して、図2(b)に示すような、5つの単セルか
らなる容量が500mAhのスタックセル20を作製し
た。 【0023】ついで、図示しない正極端子および負極端
子を有するとともに安全弁を備えた外装ケース(電池容
器)を用意し、この外装ケースに上述のようにして作製
したスタックセル20を挿入した。ついで、スタックセ
ル20の一方の端部に配置された端部正極板20bに正
極リードを接続し、他方の端部に配置された端部負極板
20cに負極リードを接続した。この後、正極リードを
外装ケースに設けられた正極端子に接続するとともに、
負極リードを外装ケースに設けられた負極端子に接続
し、実施例2の集合電池Bを作製した。 【0024】(3)実施例3 まず、金属板(例えば鉄板)の表面にニッケルメッキを
施した平板状の集電体31の片面に実施例1と同様に作
製した正極活物質32を塗布するとともに、この集電体
31の他面に実施例1と同様に作製した負極活物質33
を塗布し、乾燥後、所定の厚みに圧延して双極電極板3
0aを作製した。また、金属板(例えば鉄板)の表面に
ニッケルメッキを施した平板状の端部集電体31aの片
面のみに負極活物質33を塗布し、乾燥後、所定の厚み
に圧延して端部負極板30bを作製した。さらに、金属
板(例えば鉄板)の表面にニッケルメッキを施した平板
状の集電体31bの片面のみに正極活物質32を塗布
し、乾燥後、所定の厚みに圧延して端部正極板30cを
作製した。 【0025】なお、各集電体31,31a,31bに正
極活物質スラリー活物質32あるいは負極活物質スラリ
ー33を塗布するに際しては、これらの集電体31,3
1a,31bの塗布面の外周部には活物質32あるいは
33が塗布されない未塗布部が形成されるように塗布し
ている。そして、各集電体31,31a,31bに塗布
された活物質層の大きさ(面積)とほぼ等しくなるよう
に切断されたポリプロピレン製のセパレータ34を用意
した。 【0026】ついで、双極電極板30aを4枚と、端部
正極板30bと端部負極板30cとを1枚ずつ用いて、
図3(a)に示すように、双極電極板30a同士の間
と、端部負極板30bと双極電極板30aの間および双
極電極板30aと端部正極板30cの間にセパレータ3
4を配置し、これらを積層して積層体とした。ついで、
端部負極板30bの集電体31a、双極電極板30aの
集電体31および端部正極板30cの集電体31bの活
物質が塗布された側の3方向の端部間に、略コ字状のア
ルミナ板35を配置した。なお、アルミナ板35の両面
にはポリオレフィン系樹脂からなる接着剤36が塗布さ
れている。 【0027】この後、この積層体の端部負極板30bと
端部正極板30cの間に、所定の圧力を附加しながら所
定の温度に加熱して、ポリオレフィン系樹脂からなる接
着剤36を溶融させた。これにより、端部負極板30
b、双極電極板30aおよび端部負極板30cの活物質
が塗布された側の各集電体31,31a,31bの3方
向の端部とアルミナ板35とが溶着され、積層体の外周
部の3方向の端部は液密に封止され、セパレータ34の
端部が固着されることとなる。この場合、好ましくはア
ルミナ板35の間に、セパレータ34の端部を挟み込む
等すればよい。ついで、積層体の外周部の端部の封止さ
れていない側の開口部から、水酸化カリウム(KO
H)、水酸化ナトリウム(NaOH)、水酸化リチウム
(LiOH)からなる3成分系アルカリ電解液を注液し
た。ついで、この電解液を注液した開口部を接着性樹脂
で密封して、図3(b)に示すような、5つの単セルか
らなる容量が500mAhのスタックセル30を作製し
た。 【0028】ついで、図示しない正極端子および負極端
子を有するとともに安全弁を備えた外装ケース(電池容
器)を用意し、この外装ケースに上述のようにして作製
したスタックセル30を挿入した。ついで、スタックセ
ル30の一方の端部に配置された端部正極板30bに正
極リードを接続し、他方の端部に配置された端部負極板
30cに負極リードを接続した。この後、正極リードを
外装ケースに設けられた正極端子に接続するとともに、
負極リードを外装ケースに設けられた負極端子に接続
し、実施例3の集合電池Cを作製した。 【0029】(4)比較例 まず、表面にニッケルメッキを施した集電体(例えば、
鉄などからなる金属板)41の片面に実施例1と同様に
作製した正極活物質42を塗布するとともに、この集電
体41の他面に実施例1と同様に作製した負極活物質4
3を塗布し、乾燥後、所定の厚みに圧延して双極電極板
40aを作製した。また、集電体41の片面のみに正極
活物質42を塗布し、乾燥後、所定の厚みに圧延して端
部正極板40bを作製した。さらに、集電体41の片面
のみに負極活物質43を塗布し、乾燥後、所定の厚みに
圧延して端部負極板40cを作製した。 【0030】なお、各集電体41,41a,41bに活
物質42あるいは43を塗布するに際しては、これらの
集電体41,41a,41bの塗布面の外周部には活物
質42あるいは43が塗布されない未塗布部が形成され
るように塗布している。そして、各集電体41,41
a,41bに塗布された活物質層の大きさ(面積)とほ
ぼ等しくなるように切断されたポリプロピレン製のセパ
レータ44を用意した。 【0031】ついで、双極電極板40aを4枚と、端部
正極板40bと端部負極板40cとを1枚ずつ用いて、
図4(a)に示すように、双極電極板40a同士の間
と、端部正極板40bと双極電極板40aの間および双
極電極板40aと端部負極板40cの間にポリプロピレ
ン製のセパレータ44を配置し、これらを積層して積層
体とした。このとき、端部正極板40b、双極電極板4
0aおよび端部負極板40cの集電体41に活物質が塗
布された側の3方向の端部に、接着性樹脂45を塗布す
るようにしている。 【0032】この後、この積層体の端部正極板40bと
端部負極板40cの間に、所定の圧力を附加しながら所
定の温度に加熱して接着性樹脂45を溶融させた。これ
により、積層体の外周部の3方向の端部は液密に封止さ
れることとなる。ついで、積層体の外周部の端部の封止
されていない側の開口部から、水酸化カリウム(KO
H)、水酸化ナトリウム(NaOH)、水酸化リチウム
(LiOH)からなる3成分系アルカリ電解液を注液し
た。ついで、この電解液を注液した開口部を接着性樹脂
で密封して、図4(b)に示すような、5つの単セルか
らなる容量が500mAhのスタックセル40を作製し
た。 【0033】ついで、正極端子および負極端子を有する
とともに安全弁を備えた外装ケース(電池容器)を用意
し、この外装ケースに上述のようにして作製したスタッ
クセル40を挿入した。ついで、スタックセル40の一
方の端部に配置された端部正極板40bに正極リードを
接続し、他方の端部に配置された端部負極板40cに負
極リードを接続した。この後、正極リードを外装ケース
に設けられた正極端子に接続するとともに、負極リード
を外装ケースに設けられた負極端子に接続し、比較例の
集合電池Xを作製した。 【0034】(5)短絡試験 ついで、上述のようにして作製した集合電池A,B,
C,Xをそれぞれ100個ずつ用意し、これらの各10
0個の集合電池A,B,C,Xの電圧を測定し、電圧が
0.5V以下の電池を短絡電池と判定して、短絡電池数
を求めると、下記の表1に示すような結果となった。 【0035】 【表1】 【0036】上記表1の結果から明らかなように、電池
Xにおいては短絡発生数が40個で、製造した電池の4
0%に短絡が発生したのに対して、電池A,B,Cにお
いては、短絡発生数が0個で短絡の発生が防止できてい
ることが分かる。これは、電池Xにおいては、積層組立
時にセパレータ44にズレが生じて正極と負極が直接接
触したり、あるいは封止に用いた接着性樹脂45にピン
ホールが生じて、このピンホールを通じて正極42と負
極43が短絡したためと考えられる。 【0037】一方、電池Aにおいては、セパレータ14
の一部が接着性樹脂15と融着しているため、積層組立
時にセパレータ14のズレの発生を抑制することが可能
となり、正極12と負極13の直接接触が防止できて、
ショート品質が向上したためと考えられる。また、電池
Bにおいては、セパレータ24が封止樹脂を兼ねている
ため、正極22と負極23の直接接触が防止できたため
と考えられる。さらに、電池Cにおいては、集電体31
間にアルミナ板35が配置されているため、接着性樹脂
36にピンホールが生じても正極32と負極33が短絡
するのが防止できたためと考えられる。 【0038】なお、上述した実施形態1においては、液
状のアルカリ電解液を用いる例について説明したが、液
状のアルカリ電解液に代えてアルカリ電解液をゲル化さ
せたゲル電解液を用いると漏液性が向上するので好まし
い。この場合、電解液にポリアクリル酸カリウムからな
るゲル化剤を添加するようにすればよい。また、絶縁体
で封止する端縁外周部にガス通路を設けるようにするの
が好ましい。この場合、電解液が漏出せず、ピンホール
となって短絡を生じさせないような孔を設けて、この孔
をガス通路とするのが好ましい。具体的には、封止部に
一部空間(単セル内部から外部に通ずる孔)を形成する
か、もしくはポレオレフィン樹脂を完全に硬化させない
で多孔質な状態を維持させてガス排出経路を確保する
か、あるいは絶縁性多孔質材(多孔質セラミックス)を
使用するか、または、一部完全には封止しない等の方法
が挙げられる。 【0039】2.第2実施形態(リチウムイオン電池へ
の適用例) (1)実施例1 コバルト酸リチウム(LiCoO2)と、炭素系導電剤
と、結着剤としてのポリビニリデンフルオライド(PV
dF)を有機溶剤等に溶解したものを混合して正極活物
質スラリー12を作製した。また、天然黒鉛と結着剤と
してのSBR,CMCとを添加混合して、負極活物質ス
ラリー13を作製した。一方、銅板11aとアルミニウ
ム板11bとを重ね合わせて、これらをアニール処理し
て板状の集電体11を作製した。 【0040】ついで、この集電体11のアルミニウム板
11b側に正極活物質スラリー12をドクターブレード
を用いて塗布するとともに、この集電体11の銅板11
a側に負極活物質スラリー13をドクターブレードを用
いて塗布し、乾燥後、所定の厚みに圧延して双極電極板
10aを作製した。また、アルミニウム板11bの片面
のみに正極活物質スラリー12をドクターブレードを用
いて塗布し、乾燥後、所定の厚みに圧延して端部正極板
10cを作製した。さらに、銅板11aの片面のみに負
極活物質スラリー13をドクターブレードを用いて塗布
し、乾燥後、所定の厚みに圧延して端部負極板10bを
作製した。 【0041】なお、各集電体11,11a,11bに正
極活物質スラリー12あるいは負極活物質スラリー13
を塗布するに際しては、これらの集電体11,11a,
11bの塗布面の外周部には活物質12あるいは13が
塗布されない未塗布部が形成されるように塗布してい
る。そして、各集電体11,11a,11bと大きさ
(面積)がほぼ等しくなるように切断されたポリプロピ
レン製のセパレータ14を用意した。 【0042】ついで、双極電極板10aを4枚と、端部
正極板10bと端部負極板10cとを1枚ずつ用いて、
図1(a)に示すように、双極電極板10a同士の間
と、端部負極板10bと双極電極板10aの間およびに
双極電極板10aと端部正極板10cの間にポリプロピ
レン製のセパレータ14を配置し、これらを積層して積
層体とした。このとき、端部負極板10bの集電体11
a、双極電極板10aの集電体11および端部正極板1
0cの集電体11bに活物質が塗布された側の3方向の
端部に、接着性樹脂15を塗布するようにしている。な
お、接着性樹脂としては、ポリオレフィン系樹脂、例え
ばポリエチレン、ポリプロピレン、ポリブチレンなどを
用いるのが望ましい。 【0043】この後、この積層体の端部正極板10bと
端部負極板10cの間に、所定の圧力を附加しながら所
定の温度に加熱して、接着性樹脂15および接着性樹脂
15に接触するセパレータ14の端部の一部を溶融させ
た。これにより、積層体の外周部の3方向の端部は液密
に封止されてセパレータ14の端部が固着されるること
となる。ついで、エチレンカーボネート(EC)とジエ
チルカーボネート(DEC)からなる混合溶媒(EC:
DEC=30:70:体積比)にLiPF6を1モル/
リットル溶解して調製した電解液を用意した後、この電
解液を積層体の外周部の端部の封止されていない側の開
口部から注液した。ついで、この電解液を注液した開口
部を接着性樹脂で密封して、図1(b)に示すような、
5つの単セルからなる容量が500mAhのスタックセ
ル10を作製した。 【0044】ついで、図示しない正極端子および負極端
子を有するとともに安全弁を備えた外装ケース(電池容
器)を用意し、この外装ケースに上述のようにして作製
したスタックセル10を挿入した。ついで、スタックセ
ル10の一方の端部に配置された端部正極板10bに正
極リードを接続し、他方の端部に配置された端部負極板
10cに負極リードを接続した。この後、正極リードを
外装ケースに設けられた正極端子に接続するとともに、
負極リードを外装ケースに設けられた負極端子に接続
し、実施例1の集合電池Dを作製した。 【0045】(2)実施例2 まず、銅板21aとアルミニウム板21bとを重ね合わ
せて、これらをアニール処理して板状の集電体21を作
製した。この集電体21のアルミニウム板21b側に実
施例1と同様に作製した正極活物質スラリー22をドク
ターブレードを用いて塗布するとともに、この集電体2
1の銅板21a側に実施例1と同様に作製した負極活物
質スラリー23をドクターブレードを用いて塗布し、乾
燥後、所定の厚みに圧延して双極電極板20aを作製し
た。また、アルミニウム板21bの片面のみに正極活物
質スラリー22をドクターブレードを用いて塗布し、乾
燥後、所定の厚みに圧延して端部正極板20cを作製し
た。さらに、銅板21aの片面のみに負極活物質スラリ
ー23をドクターブレードを用いて塗布し、乾燥後、所
定の厚みに圧延して端部負極板20bを作製した。 【0046】なお、各集電体21,21a,21bに正
極活物質スラリー22あるいは負極活物質スラリー23
を塗布するに際しては、これらの集電体21,21a,
21bの塗布面の外周部には活物質22あるいは23が
塗布されない未塗布部が形成されるように塗布してい
る。そして、外周縁部24aが折り重ねられていて、目
付および厚みが高くなるようになされ、かつ各集電体2
1,21a,21bと大きさ(面積)がほぼ等しくなる
ように切断されたポリプロピレン製のセパレータ24を
用意した。 【0047】ついで、双極電極板20aを4枚と、端部
負極板20bと端部正極板20cとを1枚ずつ用いて、
図2(a)に示すように、双極電極板20a同士の間
と、端部負極板20bと双極電極板20aの間およびに
双極電極板20aと端部正極板20cの間にセパレータ
24を配置し、これらを積層して積層体とした。 【0048】この後、この積層体の端部負極板20bと
端部正極板20cの間に、所定の圧力を附加しながら所
定の温度に加熱して、セパレータ24の外周縁部24a
の一部を溶融させた。これにより、積層体の外周部の3
方向の端部は液密に封止されてセパレータ24の端部が
固着されることとなる。ついで、エチレンカーボネート
(EC)とジエチルカーボネート(DEC)からなる混
合溶媒(EC:DEC=30:70:体積比)にLiP
6を1モル/リットル溶解して調製した電解液を用意
した後、この電解液を積層体の外周部の端部の封止され
ていない側の開口部から注液した。ついで、この電解液
を注液した開口部を接着性樹脂で密封して、図2(b)
に示すような、5つの単セルからなる容量が500mA
hのスタックセル20を作製した。 【0049】ついで、図示しない正極端子および負極端
子を有するとともに安全弁を備えた外装ケース(電池容
器)を用意し、この外装ケースに上述のようにして作製
したスタックセル20を挿入した。ついで、スタックセ
ル20の一方の端部に配置された端部正極板20bに正
極リードを接続し、他方の端部に配置された端部負極板
20cに負極リードを接続した。この後、正極リードを
外装ケースに設けられた正極端子に接続するとともに、
負極リードを外装ケースに設けられた負極端子に接続
し、実施例2の集合電池Eを作製した。 【0050】(3)実施例3 まず、銅板31aとアルミニウム板31bとを重ね合わ
せて、これらをアニール処理して板状の集電体31を作
製した。この集電体31のアルミニウム板31b側に実
施例1と同様に作製した正極活物質スラリー32をドク
ターブレードを用いて塗布するとともに、この集電体3
1の銅板31a側に実施例1と同様に作製した負極活物
質スラリー33をドクターブレードを用いて塗布し、乾
燥後、所定の厚みに圧延して双極電極板30aを作製し
た。 【0051】なお、各集電体31,31a,31bに正
極活物質スラリー32あるいは負極活物質スラリー33
を塗布するに際しては、これらの集電体31,31a,
31bの塗布面の外周部には活物質32あるいは33が
塗布されない未塗布部が形成されるように塗布してい
る。そして、各集電体31,31a,31bに塗布され
た活物質層の大きさ(面積)とほぼ等しくなるように切
断されたポリプロピレン製のセパレータ34を用意し
た。 【0052】ついで、双極電極板30aを4枚と、端部
負極板30bと端部正極板30cとを1枚ずつ用いて、
図3(a)に示すように、双極電極板30a同士の間
と、端部負極板30bと双極電極板30aの間および双
極電極板30aと端部正極板30cの間にセパレータ3
4を配置し、これらを積層して積層体とした。ついで、
端部正極板30b、双極電極板30aおよび端部負極板
30cの各集電体31,31a,31bの活物質が塗布
された側の3方向の端部間に、略コ字状のアルミナ板3
5を配置した。なお、アルミナ板35の両面にはポリオ
レフィン系樹脂からなる接着剤36が塗布されている。 【0053】この後、この積層体の端部正極板30bと
端部負極板30cの間に、所定の圧力を附加しながら所
定の温度に加熱して、ポリオレフィン系樹脂からなる接
着剤36を溶融させた。これにより、端部正極板30
b、双極電極板30aおよび端部負極板30cの活物質
が塗布された側の各集電体31,31a,31bの3方
向の端部とアルミナ板35とが溶着され、積層体の外周
部の3方向の端部は液密に封止され、セパレータ34の
端部が固着されることとなる。この場合、好ましくはア
ルミナ板35の間に、セパレータ34の端部を挟み込む
等すればよい。ついで、エチレンカーボネート(EC)
とジエチルカーボネート(DEC)からなる混合溶媒
(EC:DEC=30:70:体積比)にLiPF6
1モル/リットル溶解して調製した非水電解液を用意し
た後、この電解液を積層体の外周部の端部の封止されて
いない側の開口部から注液した。ついで、この電解液を
注液した開口部を接着性樹脂で密封して、図3(b)に
示すような、5つの単セルからなる容量が500mAh
のスタックセル30を作製した。 【0054】ついで、図示しない正極端子および負極端
子を有するとともに安全弁を備えた外装ケース(電池容
器)を用意し、この外装ケースに上述のようにして作製
したスタックセル30を挿入した。ついで、スタックセ
ル30の一方の端部に配置された端部正極板30bに正
極リードを接続し、他方の端部に配置された端部負極板
30cに負極リードを接続した。この後、正極リードを
外装ケースに設けられた正極端子に接続するとともに、
負極リードを外装ケースに設けられた負極端子に接続
し、実施例3の集合電池Fを作製した。 【0055】(4)比較例 まず、銅板41aとアルミニウム板41bとを重ね合わ
せて、これらをアニール処理して板状の集電体41を作
製した。この集電体41のアルミニウム板41b側に実
施例1と同様に作製した正極活物質スラリー42をドク
ターブレードを用いて塗布するとともに、この集電体4
1の銅板41a側に実施例1と同様に作製した負極活物
質スラリー43をドクターブレードを用いて塗布し、乾
燥後、所定の厚みに圧延して双極電極板40aを作製し
た。また、銅板41aの片面のみに負極活物質43を塗
布し、乾燥後、所定の厚みに圧延して端部負極板40b
を作製した。また、アルミニウム板41bの片面のみに
正極活物質42を塗布し、乾燥後、所定の厚みに圧延し
て端部正極板40cを作製した。 【0056】なお、各集電体41,41a,41bに正
極活物質スラリー42あるいは負極活物質スラリー43
を塗布するに際しては、これらの集電体41,41a,
41bの塗布面の外周部には活物質42あるいは43が
塗布されない未塗布部が形成されるように塗布してい
る。そして、各集電体41,41a,41bに塗布され
た活物質層の大きさ(面積)とほぼ等しくなるように切
断されたポリプロピレン製のセパレータ44を用意し
た。 【0057】ついで、双極電極板40aを4枚と、端部
正極板40bと端部負極板40cとを1枚ずつ用いて、
図4(a)に示すように、双極電極板40a同士の間
と、端部負極板40bと双極電極板40aの間および双
極電極板40aと端部正極板40cの間にセパレータ4
4を配置し、これらを積層して積層体とした。このと
き、端部負極板40b、双極電極板40aおよび端部正
極板40cの集電体41,41a,41bに活物質が塗
布された側の3方向の端部に、接着性樹脂45を塗布す
るようにしている。 【0058】この後、この積層体の端部正極板40bと
端部負極板40cの間に、所定の圧力を附加しながら所
定の温度に加熱して、接着性樹脂45を溶融させた。こ
れにより、積層体の外周部の3方向の端部は液密に封止
されることとなる。ついで、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)からなる混合溶
媒(EC:DEC=30:70:体積比)にLiPF6
を1モル/リットル溶解して調製した電解液を用意した
後、この電解液を積層体の外周部の端部の封止されてい
ない側の開口部から注液した。ついで、この電解液を注
液した開口部を接着性樹脂で密封して、図4(b)に示
すような、5つの単セルからなる容量が500mAhの
スタックセル40を作製した。 【0059】ついで、正極端子および負極端子を有する
とともに安全弁を備えた外装ケース(電池容器)を用意
し、この外装ケースに上述のようにして作製したスタッ
クセル40を挿入した。ついで、スタックセル40の一
方の端部に配置された端部正極板40bに正極リードを
接続し、他方の端部に配置された端部負極板40cに負
極リードを接続した。この後、正極リードを外装ケース
に設けられた正極端子に接続するとともに、負極リード
を外装ケースに設けられた負極端子に接続し、比較例の
集合電池Yを作製した。 【0060】(5)短絡試験 ついで、上述のようにして作製した集合電池D,E,
F,Yをそれぞれ100個ずつ用意し、これらの各10
0個の集合電池D,E,F,Yの電圧を測定し、電圧が
0.5V以下の電池を短絡電池と判定して、短絡電池数
を求めると、下記の表2に示すような結果となった。 【0061】 【表2】 【0062】上記表2の結果から明らかなように、電池
Yにおいては短絡発生数が40個で、製造した電池の4
0%に短絡が発生したのに対して、電池D,E,Fにお
いては、短絡発生数が0個で短絡の発生が防止できてい
ることが分かる。これは、電池Yにおいては、積層組立
時にセパレータ44にズレが生じて正極と負極が直接接
触したり、あるいは封止に用いた接着性樹脂45にピン
ホールが生じて、このピンホールを通じて正極42と負
極43が短絡したためと考えられる。 【0063】一方、電池Dにおいては、セパレータ14
の一部が接着性樹脂15と融着しているため、積層組立
時にセパレータ14のズレの発生を抑制することが可能
となり、正極12と負極13の直接接触が防止できて、
ショート品質が向上したためと考えられる。また、電池
Eにおいては、セパレータ24が封止樹脂を兼ねている
ため、正極22と負極23の直接接触が防止できたため
と考えられる。さらに、電池Fにおいては、集電体31
間にアルミナ板35が配置されているため、接着性樹脂
36にピンホールが生じても正極32と負極33が短絡
するのが防止できたためと考えられる。 【0064】なお、上述した実施形態2においては、液
状の非水電解液を用いる例について説明したが、液状の
非水電解液に代えて、非水電解液にPEOからなるゲル
化剤を添加してゲル化させたゲル電解液を用いたり、あ
るいは高分子固体電解質を用いるようにすると耐漏液性
が向上するので好ましい。また、絶縁体で封止する端縁
外周部にガス通路を設けるようにするのが好ましい。こ
の場合、電解液が漏出せず、ピンホールとなって短絡を
生じさせないような孔を設けて、この孔をガス通路とす
るのが好ましい。具体的には、封止部に一部空間(単セ
ル内部から外部に通ずる孔)を形成するか、もしくはポ
レオレフィン樹脂を完全に硬化させないで多孔質な状態
を維持させてガス排出経路を確保するか、あるいは絶縁
性多孔質材(多孔質セラミックス)を使用するか、また
は、一部完全には封止しない等の方法が挙げられる。 【0065】また、上述した実施形態2においては、ア
ルミニウム板と銅板からなる積層板をアニール処理した
集電体を用いる例について説明したが、このような集電
体に代えて、ニッケル板の片面にアルミニウムメッキを
施し、他面に銅メッキを施した集電体や、アルミニウム
板の片面に銅メッキを施した集電体を用いるようにして
もよい。さらに、ニッケル板の片面にアルミニウム蒸着
を施し、他面に銅蒸着を施した集電体や、アルミニウム
板の片面に銅蒸着を施した集電体や、銅板の片面にアル
ミニウム蒸着を施した集電体を用いるようにしてもよ
い。 【0066】なお、上述した実施の形態においては、本
発明をニッケル−水素蓄電池およびリチウムイオン電池
に適用する例について説明したが、本発明はこれに限ら
ず、鉛蓄電池、ニッケル−カドミウム蓄電池などのどの
ような電池にも適用することが可能である。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to a positive electrode through a current collector
In an assembled battery with a structure in which the active material and the negative electrode active material are conductively connected
Related. [0002] 2. Description of the Related Art In recent years, portable telephones, notebook computers and the like have been developed.
Demand for batteries as a power source for portable devices has rapidly expanded,
High current applications such as power tools, assisted bicycles, and electric vehicles
Demand also expanded. For this reason, nickel-hydrogen storage batteries
High voltage, high capacity, high power
As demand and demand for higher power and higher output increase,
Excellent energy density and mass energy density
Further improvement of the pond was required. [0003] Against this background, this type of battery
Various high voltage, high capacity, high power, high
Various improvements that can achieve output have been proposed.
An assembled battery as disclosed in Japanese Patent Application Laid-Open No. 9-503618.
Came to be proposed. This special table 9-50361
No. 8 discloses an assembled battery as shown in FIG.
A positive electrode active material 51 is provided on one side of a plate-shaped positive electrode current collector 51a.
The positive electrode plate 51 is formed by applying b. On the other hand, one side of a flat negative electrode current collector 52a is
The negative electrode active material 52b is applied to form the negative electrode plate 52. This
The positive electrode plate 51 and the negative electrode plate 52 are interposed with a separator 53 interposed therebetween.
Then, the edges of these outer peripheral portions are attached to the insulator 54.
To form a single cell 50a. Then these
With the connecting current collector 55 interposed between the single cells 50a,
Stacking several (eg, 5) unit cells 50a
A cell 50 is formed, and the stack cell 50 is placed in a battery container.
The battery is housed in a battery pack. [0005] By the way, as described above,
Proposed in Japanese Unexamined Patent Publication No. Hei 9-503618.
In the assembled battery, each of the current collectors 51a, 52
a is coated with each active material 51b, 52b on one side of
1 and 52, and these electrodes 51 and 52 are separated.
A single cell 50a is formed to face each other with the
Single cells 50a stacked with connection current collector 55 interposed
I just do. For this reason, the volume of each current collector 51a, 52a
And the mass increases, and the connection current collector 55
The volume and mass also increase, and the volume energy density and
And the mass energy density does not improve.
Was. Also proposed in Japanese Patent Publication No. 9-503618.
In the assembled battery, the positive electrode 51 and the negative electrode 51 are
The separator 53 that separates the pole 52 is not fixed.
As a result, there is also a problem that the positive electrode 51 and the negative electrode 52 are likely to be short-circuited.
I did Accordingly, the present invention has been made to solve the above problems.
Internal short circuit in a single cell
Difficult, volume energy density and mass energy density
It is an object to provide an excellently assembled battery. [0008] Means for Solving the Problems To achieve the above object,
Therefore, in the present invention, the positive electrode active material and the negative electrode active material are interposed via the current collector.
An assembled battery having a conductively connected structure, wherein one of the current collectors
Positive electrode active material is formed on one side and negative electrode active material is formed on the other side
Multiple bipolar electrode plates and a positive electrode on only one side of the current collector
An end positive electrode on which the active material is formed and arranged at one end
The negative electrode active material is formed only on one side of the plate and the current collector.
And an end negative electrode plate disposed at the outermost end of
Electrode plate, end positive plate and end negative plate contain electrolyte
The positive electrode active material and the negative electrode active material face each other via the separating member
The bipolar electrode plate, the end positive plate and the end
Note that the outer periphery of the edge of the negative electrode plate is sealed with an insulator.
Sign. Thus, the positive electrode active material is provided on one side of the current collector.
Is formed and a negative electrode active material is formed on the other surface.
The positive and negative electrodes are directly connected in series through this current collector.
Will be connected to. For this reason, connect single cells
The use of current collectors for connection
In both cases, the current collector for holding the active material can be reduced.
Bulging, volumetric energy density and mass energy
It is possible to provide an assembled battery having excellent density. In this case, a short circuit in a single cell can be prevented.
To separate the positive and negative electrodes, separate members (for example, separators)
Extend to the outer periphery of the bipolar electrode plate, and
It is desirable to fix at a part of the electrode. For example, a bipolar electrode
Place the adhesive resin on the end of the current collector of the board,
The resin and the isolation member can be fixed to each other,
The end of the material is formed thick, and this thick current is collected by the bipolar electrode plate.
It may be fixed to the end of the body. Also, an isolation member
Is not extended to the outer periphery of the bipolar electrode plate,
An insulator such as ceramic is placed between the ends of the current collector of the electrode
Then, the insulator is fixed to the end of the collector of the bipolar electrode.
What should I do? Then, the end positive electrode plate thus formed
A stack cell consisting of a bipolar electrode plate and an end negative electrode plate is a positive electrode
In the outer case (battery container) where the terminal and the negative electrode terminal are formed
The current collector of the end positive plate is connected to the positive terminal,
It is desirable to connect the negative electrode plate and the negative electrode terminal for use.
In this case, install a safety valve on the outer case (battery container).
It is preferred to do so. Also, a bipolar electrode plate and an end positive plate
The outer periphery of the edge of the negative electrode plate is sealed with an insulator.
Therefore, to prevent liquid leakage, gel the electrolyte
It is desirable to use it. In this case, the solid polymer electrolyte is
When used, this electrolyte acts as an isolator and
Since there is no need to use a separator as a release member,
preferable. [0012] BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a battery pack according to the present invention is described
The embodiment will be described below with reference to FIGS.
The first embodiment is applied to the case where Ming is applied to a nickel-metal hydride storage battery.
And a case where the present invention is applied to a lithium secondary battery.
A description will be given as two embodiments. FIG. 1 shows the first embodiment.
Sectional view showing the assembled battery of Example 1 of the second embodiment.
It is. FIG. 2 shows the first embodiment and the second embodiment.
FIG. 3 is a cross-sectional view illustrating the assembled battery of Example 2 of FIG.
5 shows the assembled battery of Example 3 of the embodiment and the second embodiment.
FIG. FIG. 4 shows the first embodiment and the second embodiment.
It is sectional drawing which shows the assembled battery of the comparative example of 2nd Embodiment. 1. First Embodiment (Nickel-hydrogen storage battery
Example of application to (1) Example 1 First, 2.5% by mass of zinc and cobalt 1
90 parts by weight of nickel hydroxide powder containing
10 parts by mass of cobalt oxide powder and 3 parts by mass of zinc oxide powder
Mixed powder of hydroxypropylcellulose 0.2
A 50% by mass aqueous solution was added and kneaded to form a positive electrode active material 12
Was prepared. On the other hand, hydrogen storage alloys (for example, average particle size
Is about 150 μm Mm1.0Ni3.4Co1.0Al0.2Mn
0.6) Add a binder such as polyethylene oxide to the powder
An amount of water was added and mixed to prepare a negative electrode active material 13. Next, the surface of a metal plate (for example, an iron plate) is
A positive electrode is provided on one side of a flat plate-shaped current collector 11 having a nickel plating.
The active material 12 is applied and the other surface of the current collector 11
The negative electrode active material 13 is applied to the substrate, dried, and then rolled to a predetermined thickness.
Thus, a bipolar electrode plate 10a was manufactured. Also, a metal plate (for example,
Flat plate end with nickel plating on the surface of
The negative electrode active material 13 is applied to only one side of the current collector 11a and dried.
After drying, it is rolled to a predetermined thickness to produce an end negative electrode plate 10b.
Was. In addition, nickel plating is applied to the surface of a metal plate (for example, an iron plate).
The positive electrode is applied to only one surface of the flat plate-shaped end current collector 11b.
The active material 12 is applied, dried, and then rolled to a predetermined thickness.
The positive electrode plate 10c was manufactured. The current collectors 11, 11a, 11b are active.
When applying substance 12 or 13
An active material is provided on the outer peripheral portion of the coating surface of the current collectors 11, 11a, and 11b.
An uncoated portion where the material 12 or 13 is not applied is formed.
It is applied so that And each current collector 11, 11
Cut so that the size (area) is almost equal to a, 11b.
Prepare the cut polypropylene separator 14
Was. Next, four bipolar electrode plates 10a are provided,
Using one negative electrode plate 10b and one end positive electrode plate 10c,
As shown in FIG. 1A, between the bipolar electrode plates 10a
Between and between the end negative electrode plate 10b and the bipolar electrode plate 10a.
Separator between bipolar electrode plate 10a and end positive electrode plate 10c
After arranging 14, these were laminated to form a laminate. This
In this case, the current collector 11a of the end negative electrode plate 10b and the bipolar electrode plate
Current collector 11 of 10a and current collector 1 of end positive electrode plate 10c
Ends in three directions on the side where the active material was applied to 1b (not applied)
) Is coated with the adhesive resin 15. What
In addition, as the adhesive resin 15, a polyolefin resin,
For example, polyethylene, polypropylene, polybutylene
It is desirable to use which. Thereafter, the end negative electrode plate 10b and the end positive electrode plate 1
0c while applying a predetermined pressure to a predetermined temperature.
Heat and contact the adhesive resin 15 and the adhesive resin 15
A portion of the end of the separator 14 was melted. This
In addition, the ends in three directions of the outer peripheral portion of the laminate are sealed in a liquid-tight manner,
The end of the separator 14 is fixed. About
The opening on the unsealed side of the end of the outer periphery of the laminate
From part, potassium hydroxide (KOH), sodium hydroxide
(NaOH), lithium hydroxide (LiOH) 3
A component-based alkaline electrolyte was injected. Then, this electrolyte
Is sealed with an adhesive resin, and FIG. 1 (b)
As shown in the figure, the capacity consisting of five single cells is 500 mA
h of stack cells 10 were produced. Next, a positive electrode terminal and a negative electrode terminal (not shown)
Case with battery and safety valve (battery case
Container) and prepared in this outer case as described above.
The stacked cell 10 was inserted. Next, the stack cell
Positive electrode plate 10b disposed at one end of the
End negative electrode plate connected to the electrode lead and placed at the other end
A negative electrode lead was connected to 10c. After this, the positive electrode lead is
Connect to the positive terminal provided on the outer case,
Connect the negative lead to the negative terminal provided on the outer case
Then, the assembled battery A of Example 1 was produced. (2) Embodiment 2 First, nickel plating is applied to the surface of a metal plate (for example, iron plate).
In the same manner as in the first embodiment, one side of the flat current collector 21
And the current collector.
Negative electrode active material 23 produced in the same manner as in Example 1
Is applied, dried and then rolled to a predetermined thickness to form the bipolar electrode plate 2.
0a was produced. Also, on the surface of a metal plate (for example, iron plate)
Piece of nickel-plated flat end current collector 21a
The negative electrode active material 23 is applied only on the surface, and after drying, a predetermined thickness is applied.
To produce an end negative electrode plate 20b. Also metal plate
Flat plate with nickel plating on the surface (eg, iron plate)
Of the positive electrode active material 22 on only one side of the end current collector 21b
Then, after drying, the end positive electrode plate 20c is rolled to a predetermined thickness,
Produced. The current collectors 21, 21a and 21b are active.
When applying substance 22 or 23,
An active material is provided on the outer peripheral portion of the application surface of the current collectors 21, 21a, and 21b.
An uncoated portion where the material 22 or 23 is not applied is formed.
It is applied so that Then, the outer peripheral edge portion 24a is folded.
Stacked to increase the basis weight and thickness
And the current collectors 21, 21a, 21b and the size (surface
Product), which are cut to be approximately equal
Was prepared. Next, four bipolar electrode plates 20a are set at four ends.
Using one positive electrode plate 20b and one end negative electrode plate 20c,
As shown in FIG. 2A, between the bipolar electrode plates 20a
Between and between the end negative electrode plate 20b and the bipolar electrode plate 20a.
Separator between bipolar electrode plate 20a and end positive electrode plate 20c
24 were arranged, and these were laminated to form a laminate. this
Thereafter, the end positive electrode plate 10b and the end negative electrode plate 10c of this laminate are
During the heating, apply the specified pressure and heat to the specified temperature.
To melt a part of the outer peripheral portion 24a of the separator 24.
Was. Thus, the end in the three directions of the outer peripheral portion of the laminate is obtained.
Is sealed in a liquid-tight manner, and the end of the separator 24 is fixed.
It will be. Next, sealing of the end of the outer peripheral portion of the laminate is performed.
The potassium hydroxide (KO)
H), sodium hydroxide (NaOH), lithium hydroxide
Inject a three-component alkaline electrolyte composed of (LiOH)
Was. Then, the opening into which the electrolyte was injected was
And seal with 5 single cells as shown in FIG. 2 (b).
To produce a stack cell 20 having a capacity of 500 mAh.
Was. Next, a positive electrode terminal and a negative electrode terminal (not shown)
Case with battery and safety valve (battery case
Container) and prepared in this outer case as described above.
The stacked cell 20 was inserted. Next, the stack cell
Positive electrode plate 20b disposed at one end of the
End negative electrode plate connected to the electrode lead and placed at the other end
A negative electrode lead was connected to 20c. After this, the positive electrode lead is
Connect to the positive terminal provided on the outer case,
Connect the negative lead to the negative terminal provided on the outer case
Then, an assembled battery B of Example 2 was produced. (3) Embodiment 3 First, nickel plating is applied to the surface of a metal plate (for example, iron plate).
In the same manner as in the first embodiment, one side of the flat current collector 31
The positive electrode active material 32 produced is applied and the current collector
A negative electrode active material 33 produced in the same manner as in Example 1
Is applied, dried, and then rolled to a predetermined thickness to form the bipolar electrode plate 3.
0a was produced. Also, on the surface of a metal plate (for example, iron plate)
Piece of nickel-plated flat end collector 31a
The negative electrode active material 33 is applied only to the surface, and after drying, a predetermined thickness
To produce an end negative electrode plate 30b. In addition, metal
Flat plate with nickel plating on the surface of a plate (eg, iron plate)
Positive electrode active material 32 is applied to only one side of the current collector 31b
After drying, the end positive electrode plate 30c is rolled to a predetermined thickness to form an end positive electrode plate 30c.
Produced. It should be noted that each of the current collectors 31, 31a and 31b has a positive
Pole active material slurry active material 32 or negative electrode active material slurry
When applying the -33, these current collectors 31, 3
The active material 32 or
33 so that an uncoated portion where no coating is formed is formed.
ing. And applied to each current collector 31, 31a, 31b
Size (area) of the active material layer
Prepared polypropylene separator 34 cut into pieces
did. Next, four bipolar electrode plates 30a are provided,
Using one positive electrode plate 30b and one end negative electrode plate 30c,
As shown in FIG. 3A, between the bipolar electrode plates 30a.
Between the end negative electrode plate 30b and the bipolar electrode plate 30a,
The separator 3 is provided between the electrode plate 30a and the end positive electrode plate 30c.
4 were arranged, and these were laminated to form a laminate. Then
The current collector 31a of the end negative electrode plate 30b and the current collector 31a of the bipolar electrode plate 30a
Activities of the current collector 31 and the current collector 31b of the end positive electrode plate 30c
A substantially U-shaped arc is inserted between the three ends of the material-applied side.
The lumina plate 35 was arranged. In addition, both sides of the alumina plate 35
Is coated with an adhesive 36 made of a polyolefin resin.
Have been. Thereafter, the negative electrode plate 30b at the end of the laminate is
While applying a predetermined pressure between the end positive plates 30c,
Heat to a certain temperature to connect the polyolefin resin
The adhesive 36 was melted. Thereby, the end negative electrode plate 30
b, Active material of bipolar electrode plate 30a and end negative electrode plate 30c
Three sides of each current collector 31, 31a, 31b on the side where is coated
Of the laminate and the alumina plate 35 are welded to each other to form an outer periphery of the laminate.
The ends of the portion in three directions are sealed in a liquid-tight manner,
The ends will be fixed. In this case, preferably
Insert the end of the separator 34 between the lumina plates 35
It should be equal. Then, the sealing at the end of the outer peripheral portion of the laminate is performed.
The potassium hydroxide (KO)
H), sodium hydroxide (NaOH), lithium hydroxide
Inject a three-component alkaline electrolyte composed of (LiOH)
Was. Then, the opening into which the electrolyte was injected was
And seal it with five single cells as shown in FIG.
To produce a stack cell 30 having a capacity of 500 mAh.
Was. Next, a positive electrode terminal and a negative electrode terminal (not shown)
Case with battery and safety valve (battery case
Container) and prepared in this outer case as described above.
The stacked cell 30 was inserted. Next, the stack cell
The positive electrode plate 30b disposed at one end of the
End negative electrode plate connected to the electrode lead and placed at the other end
A negative electrode lead was connected to 30c. After this, the positive electrode lead is
Connect to the positive terminal provided on the outer case,
Connect the negative lead to the negative terminal provided on the outer case
Then, an assembled battery C of Example 3 was produced. (4) Comparative example First, a current collector with nickel plating on the surface (for example,
Metal plate made of iron or the like) 41 on one side in the same manner as in the first embodiment.
The produced positive electrode active material 42 is applied and the current
Negative electrode active material 4 produced in the same manner as in Example 1 on the other surface of body 41
3 is applied, dried, and rolled to a predetermined thickness to form a bipolar electrode plate.
40a was produced. Further, only one side of the current collector 41 has a positive electrode.
The active material 42 is applied, dried, and then rolled to a predetermined thickness.
The positive electrode plate 40b was manufactured. Furthermore, one side of the current collector 41
Only the negative electrode active material 43 is applied, dried and then adjusted to a predetermined thickness.
It rolled and produced the edge part negative electrode plate 40c. The current collectors 41, 41a, 41b are active.
When applying the substance 42 or 43, these
An active material is provided on the outer peripheral portion of the application surface of the current collectors 41, 41a, 41b.
An uncoated portion where the material 42 or 43 is not applied is formed.
It is applied so that And each current collector 41, 41
a and the size (area) of the active material layer applied to 41b
Polypropylene separator cut to equal size
A lator 44 was prepared. Next, four bipolar electrode plates 40a are provided,
Using one positive electrode plate 40b and one end negative electrode plate 40c,
As shown in FIG. 4A, between the bipolar electrode plates 40a.
Between the end positive electrode plate 40b and the bipolar electrode plate 40a,
Between the electrode plate 40a and the end negative electrode plate 40c.
And a separator 44 made of
Body. At this time, the end positive electrode plate 40b and the bipolar electrode plate 4
0a and the current collector 41 of the end negative electrode plate 40c are coated with an active material.
The adhesive resin 45 is applied to the end portions in three directions on the side where the cloth is provided.
I am trying to. Thereafter, the end positive electrode plate 40b of the laminate is
While applying a predetermined pressure between the end negative electrode plates 40c,
The adhesive resin 45 was melted by heating to a constant temperature. this
As a result, the ends in three directions of the outer peripheral portion of the laminate are sealed in a liquid-tight manner.
It will be. Next, sealing of the end of the outer peripheral portion of the laminate is performed.
The potassium hydroxide (KO)
H), sodium hydroxide (NaOH), lithium hydroxide
Inject a three-component alkaline electrolyte composed of (LiOH)
Was. Then, the opening into which the electrolyte was injected was
And seal with five single cells as shown in FIG. 4 (b).
To produce a stack cell 40 having a capacity of 500 mAh.
Was. Next, a positive terminal and a negative terminal are provided.
And an outer case (battery container) equipped with a safety valve
Then, the stack made as described above is
Cell 40 was inserted. Then, one of the stack cells 40
The positive electrode lead is connected to the end positive electrode plate 40b disposed at the other end.
Connected to the end negative electrode plate 40c disposed at the other end.
The pole lead was connected. After this, connect the positive electrode lead to the outer case
Connected to the positive terminal provided on the
To the negative electrode terminal provided on the outer case, and
An assembled battery X was produced. (5) Short circuit test Next, the assembled batteries A, B,
Prepare 100 pieces of C and X, respectively.
The voltages of the zero assembled batteries A, B, C, and X are measured, and the voltages are
A battery of 0.5 V or less is determined as a short-circuited battery, and the number of short-circuited batteries is determined.
Was obtained, the results shown in Table 1 below were obtained. [0035] [Table 1] As is clear from the results in Table 1 above, the batteries
In the case of X, the number of short-circuit occurrences was 40 and 4
While a short circuit occurred at 0%, batteries A, B, and C
In other words, the number of short-circuit occurrences is 0 and the occurrence of short-circuits can be prevented.
You can see that This is the case of battery X
Occasionally, the separator 44 shifts, and the positive electrode and the negative electrode come into direct contact.
Touching or pinning the adhesive resin 45 used for sealing
A hole is generated, and the positive electrode 42 and the negative
It is considered that the pole 43 was short-circuited. On the other hand, in the battery A, the separator 14
Is partly fused with the adhesive resin 15, so that
The occurrence of displacement of the separator 14 can be suppressed at times.
And direct contact between the positive electrode 12 and the negative electrode 13 can be prevented,
It is considered that the short quality was improved. Also, batteries
In B, the separator 24 also serves as a sealing resin.
Therefore, direct contact between the positive electrode 22 and the negative electrode 23 could be prevented.
it is conceivable that. Further, in the battery C, the current collector 31
Since the alumina plate 35 is disposed between the two, the adhesive resin
Positive electrode 32 and negative electrode 33 are short-circuited even if a pinhole occurs in 36
This is probably because it was possible to prevent In the first embodiment, the liquid
Although the example using the alkaline electrolyte in the form of a liquid has been described,
Gel instead of alkaline electrolyte
It is preferable to use a gel electrolyte that has been
No. In this case, the electrolyte is made of potassium polyacrylate.
A gelling agent may be added. Also insulator
In order to provide a gas passage around the outer edge of the edge to be sealed
Is preferred. In this case, the electrolyte does not leak and the pinhole
Holes that will not cause a short circuit
Is preferably a gas passage. Specifically, the sealing part
Form a partial space (a hole from the inside of the unit cell to the outside)
Or does not completely cure the polyolefin resin
To maintain a porous state and secure a gas discharge path
Or an insulating porous material (porous ceramic)
Method of using or not completely sealing partly
Is mentioned. 2. Second Embodiment (to lithium ion battery
Example of application) (1) Example 1 Lithium cobaltate (LiCoOTwo) And carbon-based conductive agent
And polyvinylidene fluoride (PV
dF) dissolved in an organic solvent or the like is mixed to form a positive electrode active material.
A slurry 12 was prepared. In addition, natural graphite and binder
SBR and CMC are added and mixed to form a negative electrode active material switch.
Rally 13 was produced. On the other hand, copper plate 11a and aluminum
And annealed them.
Thus, a plate-shaped current collector 11 was produced. Next, the aluminum plate of the current collector 11
A positive electrode active material slurry 12 is doctor bladed on the side 11b.
And the copper plate 11 of the current collector 11.
A negative electrode active material slurry 13 was applied to the a side using a doctor blade.
After coating, drying and rolling to a predetermined thickness, the bipolar electrode plate
10a was produced. Also, one side of the aluminum plate 11b
Only using the positive electrode active material slurry 12 with a doctor blade
After coating, drying and rolling to a predetermined thickness, the end positive electrode plate
10c was produced. Further, only one side of the copper plate 11a is negative.
Extremely active material slurry 13 is applied using a doctor blade
Then, after drying, rolling to a predetermined thickness, the end negative electrode plate 10b
Produced. Note that each of the current collectors 11, 11a and 11b has a positive
Pole active material slurry 12 or negative electrode active material slurry 13
When applying, these current collectors 11, 11a,
Active material 12 or 13 is applied to the outer peripheral portion of the coating surface of 11b.
It is applied so that the unapplied part that is not applied is formed.
You. And each current collector 11, 11a, 11b and size
Polypropylene cut so that (area) is almost equal
A ren separator 14 was prepared. Next, four bipolar electrode plates 10a were provided,
Using one positive electrode plate 10b and one end negative electrode plate 10c,
As shown in FIG. 1A, between the bipolar electrode plates 10a
Between and between the end negative electrode plate 10b and the bipolar electrode plate 10a.
Polypropylene is placed between the bipolar electrode plate 10a and the end positive electrode plate 10c.
A separator 14 made of ren is disposed, and these are stacked and stacked.
It was a layered body. At this time, the current collector 11 of the end negative electrode plate 10b
a, current collector 11 of bipolar electrode plate 10a and end positive electrode plate 1
0c in the three directions on the side where the active material is applied to the current collector 11b.
The adhesive resin 15 is applied to the end. What
In addition, as the adhesive resin, polyolefin resin, such as
Polyethylene, polypropylene, polybutylene, etc.
It is desirable to use. Thereafter, the end positive electrode plate 10b of this laminate is
While applying a predetermined pressure between the end negative electrode plates 10c,
Heat the adhesive resin 15 and the adhesive resin
15 and a part of the end of the separator 14 in contact with
Was. As a result, the ends of the outer periphery of the laminate in three directions are liquid-tight.
And the end of the separator 14 is fixed.
It becomes. Then, ethylene carbonate (EC) and die
Mixed solvent consisting of chill carbonate (DEC) (EC:
DEC = 30: 70: volume ratio)61 mol /
After preparing an electrolyte solution prepared by dissolving
Open the lysate on the unsealed side of the outer peripheral edge of the laminate.
The solution was injected from the mouth. Then, the opening where this electrolyte was injected
The part is sealed with an adhesive resin, and as shown in FIG.
Stack cell with a capacity of 500 mAh consisting of five single cells
A sample 10 was prepared. Next, a positive electrode terminal and a negative electrode terminal (not shown)
Case with battery and safety valve (battery case
Container) and prepared in this outer case as described above.
The stacked cell 10 was inserted. Next, the stack cell
Positive electrode plate 10b disposed at one end of the
End negative electrode plate connected to the electrode lead and placed at the other end
A negative electrode lead was connected to 10c. After this, the positive electrode lead is
Connect to the positive terminal provided on the outer case,
Connect the negative lead to the negative terminal provided on the outer case
Then, an assembled battery D of Example 1 was produced. (2) Embodiment 2 First, the copper plate 21a and the aluminum plate 21b are overlapped.
Then, these are annealed to form a plate-shaped current collector 21.
Made. Actually, the current collector 21 is placed on the aluminum plate 21b side.
The positive electrode active material slurry 22 produced in the same manner as in Example 1 was
And a current collector 2
Negative electrode active material prepared in the same manner as in Example 1 on the copper plate 21a side of No. 1
Slurry 23 is applied using a doctor blade and dried.
After drying, roll to a predetermined thickness to produce a bipolar electrode plate 20a.
Was. Also, only one side of the aluminum plate 21b has a positive electrode active material.
Slurry 22 is applied using a doctor blade and dried.
After drying, rolling to a predetermined thickness produces an end positive electrode plate 20c.
Was. Further, only one side of the copper plate 21a has a negative electrode active material slurry.
-23 is applied using a doctor blade, dried, and
The end negative electrode plate 20b was rolled to a constant thickness. The current collectors 21, 21a and 21b have positive
Pole active material slurry 22 or negative electrode active material slurry 23
When applying, these current collectors 21, 21a,
An active material 22 or 23 is provided on the outer peripheral portion of the application surface 21b.
It is applied so that the unapplied part that is not applied is formed.
You. The outer peripheral edge 24a is folded and
And the thickness of each current collector 2 is increased.
Size (area) is almost equal to 1,21a, 21b
The polypropylene separator 24 cut as follows
Prepared. Next, four bipolar electrode plates 20a are provided,
Using one negative electrode plate 20b and one end positive electrode plate 20c,
As shown in FIG. 2A, between the bipolar electrode plates 20a
Between and between the end negative electrode plate 20b and the bipolar electrode plate 20a.
Separator between bipolar electrode plate 20a and end positive electrode plate 20c
24 were arranged, and these were laminated to form a laminate. Thereafter, the negative electrode plate 20b at the end of the laminate is
While applying a predetermined pressure between the end positive plates 20c,
By heating to a certain temperature, the outer peripheral edge 24a of the separator 24
Was partially melted. Thereby, 3 of the outer peripheral portion of the laminate is
Direction end is sealed in a liquid-tight manner and the end of the separator 24 is
It will be fixed. Then, ethylene carbonate
(EC) and diethyl carbonate (DEC)
LiP in the mixed solvent (EC: DEC = 30: 70: volume ratio)
F6Prepare an electrolyte prepared by dissolving 1 mol / l
After that, this electrolytic solution is sealed at the end of the outer peripheral portion of the laminate.
The liquid was injected from the opening on the side that did not. Then, this electrolyte
2 is sealed with an adhesive resin, and FIG.
As shown in the figure, the capacity consisting of five single cells is 500 mA
h of stack cells 20 were produced. Next, a positive electrode terminal and a negative electrode terminal (not shown)
Case with battery and safety valve (battery case
Container) and prepared in this outer case as described above.
The stacked cell 20 was inserted. Next, the stack cell
Positive electrode plate 20b disposed at one end of the
End negative electrode plate connected to the electrode lead and placed at the other end
A negative electrode lead was connected to 20c. After this, the positive electrode lead is
Connect to the positive terminal provided on the outer case,
Connect the negative lead to the negative terminal provided on the outer case
Then, an assembled battery E of Example 2 was produced. (3) Embodiment 3 First, the copper plate 31a and the aluminum plate 31b are overlapped.
Then, these are annealed to form a plate-shaped current collector 31.
Made. The current collector 31 is provided on the aluminum plate 31b side.
The positive electrode active material slurry 32 produced in the same manner as in Example 1 was
The coating is performed using a current collector 3
Negative electrode active material prepared in the same manner as in Example 1 on the side of copper plate 31a
Slurry 33 is applied using a doctor blade and dried.
After drying, the electrode is rolled to a predetermined thickness to produce a bipolar electrode plate 30a.
Was. Note that each of the current collectors 31, 31a and 31b has a positive
Pole active material slurry 32 or negative electrode active material slurry 33
When applying, these current collectors 31, 31a,
Active material 32 or 33 is applied to the outer peripheral portion of the application surface of 31b.
It is applied so that the unapplied part that is not applied is formed.
You. And it is applied to each current collector 31, 31a, 31b.
Cut so that the size (area) of the active material layer
Prepare the cut polypropylene separator 34
Was. Next, four bipolar electrode plates 30a are provided,
Using one negative electrode plate 30b and one end positive electrode plate 30c,
As shown in FIG. 3A, between the bipolar electrode plates 30a.
Between the end negative electrode plate 30b and the bipolar electrode plate 30a,
The separator 3 is provided between the electrode plate 30a and the end positive electrode plate 30c.
4 were arranged, and these were laminated to form a laminate. Then
End positive electrode plate 30b, bipolar electrode plate 30a and end negative electrode plate
The active material of each current collector 31, 31a, 31b of 30c is applied.
A substantially U-shaped alumina plate 3
5 was arranged. It should be noted that polio is applied to both sides of the alumina plate 35.
An adhesive 36 made of a refin-based resin is applied. Thereafter, the end positive electrode plate 30b of the laminate is
While applying a predetermined pressure between the end negative electrode plates 30c,
Heat to a certain temperature to connect the polyolefin resin
The adhesive 36 was melted. Thereby, the end positive electrode plate 30
b, Active material of bipolar electrode plate 30a and end negative electrode plate 30c
Three sides of each current collector 31, 31a, 31b on the side where is coated
Of the laminate and the alumina plate 35 are welded to each other to form an outer periphery of the laminate.
The ends of the portion in three directions are sealed in a liquid-tight manner,
The ends will be fixed. In this case, preferably
Insert the end of the separator 34 between the lumina plates 35
It should be equal. Next, ethylene carbonate (EC)
Mixed solvent consisting of and diethyl carbonate (DEC)
(EC: DEC = 30: 70: volume ratio) LiPF6To
Prepare a non-aqueous electrolyte prepared by dissolving 1 mol / liter
After that, this electrolytic solution is sealed at the end of the outer peripheral portion of the laminate.
The liquid was injected from the opening on the other side. Then, this electrolyte solution
The opening where the liquid was injected was sealed with an adhesive resin, and FIG.
As shown, the capacity consisting of five single cells is 500 mAh
Was manufactured. Next, a positive electrode terminal and a negative electrode terminal (not shown)
Case with battery and safety valve (battery case
Container) and prepared in this outer case as described above.
The stacked cell 30 was inserted. Next, the stack cell
The positive electrode plate 30b disposed at one end of the
End negative electrode plate connected to the electrode lead and placed at the other end
A negative electrode lead was connected to 30c. After this, the positive electrode lead is
Connect to the positive terminal provided on the outer case,
Connect the negative lead to the negative terminal provided on the outer case
Then, an assembled battery F of Example 3 was produced. (4) Comparative example First, the copper plate 41a and the aluminum plate 41b are overlapped.
Then, these are annealed to form a plate-shaped current collector 41.
Made. The current collector 41 is provided on the aluminum plate 41b side.
The positive electrode active material slurry 42 produced in the same manner as in Example 1 was
And a current collector 4
Negative electrode active material produced in the same manner as in Example 1 on the side of the copper plate 41a
Slurry 43 is applied using a doctor blade and dried.
After drying, the electrode is rolled to a predetermined thickness to produce a bipolar electrode plate 40a.
Was. Further, the negative electrode active material 43 is coated on only one surface of the copper plate 41a.
Cloth, dried, and rolled to a predetermined thickness to form an end negative electrode plate 40b.
Was prepared. Also, only on one side of the aluminum plate 41b
The positive electrode active material 42 is applied, dried, and then rolled to a predetermined thickness.
Thus, an end positive electrode plate 40c was manufactured. The current collectors 41, 41a and 41b have positive
Pole active material slurry 42 or negative electrode active material slurry 43
When applying, these current collectors 41, 41a,
An active material 42 or 43 is provided on the outer peripheral portion of the application surface 41b.
It is applied so that the unapplied part that is not applied is formed.
You. Then, it is applied to each current collector 41, 41a, 41b.
Cut so that the size (area) of the active material layer
Prepare the cut off polypropylene separator 44
Was. Next, four bipolar electrode plates 40a were set at four end portions.
Using one positive electrode plate 40b and one end negative electrode plate 40c,
As shown in FIG. 4A, between the bipolar electrode plates 40a.
Between the end negative electrode plate 40b and the bipolar electrode plate 40a,
The separator 4 is disposed between the electrode plate 40a and the end positive electrode plate 40c.
4 were arranged, and these were laminated to form a laminate. This and
End negative electrode plate 40b, bipolar electrode plate 40a and
An active material is applied to the current collectors 41, 41a, 41b of the electrode plate 40c.
The adhesive resin 45 is applied to the end portions in three directions on the side where the cloth is provided.
I am trying to. Thereafter, the positive electrode plate 40b at the end of the laminate is
While applying a predetermined pressure between the end negative electrode plates 40c,
By heating to a certain temperature, the adhesive resin 45 was melted. This
As a result, the ends in three directions of the outer periphery of the laminate are sealed in a liquid-tight manner.
Will be done. Then, ethylene carbonate (E
Mixed solution consisting of C) and diethyl carbonate (DEC)
LiPF in the medium (EC: DEC = 30: 70: volume ratio)6
Was prepared by dissolving 1 mol / liter of
Thereafter, the electrolytic solution was sealed at the end of the outer peripheral portion of the laminate.
The liquid was injected from the opening on the side that did not. Then pour this electrolyte
The liquid opening is sealed with an adhesive resin, and as shown in FIG.
Such a single cell has a capacity of 500 mAh
A stack cell 40 was manufactured. Next, a positive terminal and a negative terminal are provided.
And an outer case (battery container) equipped with a safety valve
Then, the stack made as described above is
Cell 40 was inserted. Then, one of the stack cells 40
The positive electrode lead is connected to the end positive electrode plate 40b disposed at the other end.
Connected to the end negative electrode plate 40c disposed at the other end.
The pole lead was connected. After this, connect the positive electrode lead to the outer case
Connected to the positive terminal provided on the
To the negative electrode terminal provided on the outer case, and
An assembled battery Y was produced. (5) Short circuit test Next, the assembled batteries D, E,
100 pieces of F and Y are prepared, and 10
Measure the voltage of zero battery packs D, E, F and Y,
A battery of 0.5 V or less is determined as a short-circuited battery, and the number of short-circuited batteries is determined.
Was obtained, the results shown in Table 2 below were obtained. [0061] [Table 2] As is clear from the results in Table 2 above, the batteries
In the case of Y, the number of short-circuits was 40, and 4
In contrast to the 0% short circuit, batteries D, E, and F
In other words, the number of short-circuit occurrences is 0 and the occurrence of short-circuits can be prevented.
You can see that This is because the battery Y
Occasionally, the separator 44 shifts, and the positive electrode and the negative electrode come into direct contact.
Touching or pinning the adhesive resin 45 used for sealing
A hole is generated, and the positive electrode 42 and the negative
It is considered that the pole 43 was short-circuited. On the other hand, in the battery D, the separator 14
Is partly fused with the adhesive resin 15, so that
The occurrence of displacement of the separator 14 can be suppressed at times.
And direct contact between the positive electrode 12 and the negative electrode 13 can be prevented,
It is considered that the short quality was improved. Also, batteries
In E, the separator 24 also functions as a sealing resin.
Therefore, direct contact between the positive electrode 22 and the negative electrode 23 could be prevented.
it is conceivable that. Further, in the battery F, the current collector 31
Since the alumina plate 35 is disposed between the two, the adhesive resin
Positive electrode 32 and negative electrode 33 are short-circuited even if a pinhole occurs in 36
This is probably because it was possible to prevent In the second embodiment, the liquid
An example using a non-aqueous electrolyte in the form of a liquid has been described.
Gel composed of PEO in non-aqueous electrolyte instead of non-aqueous electrolyte
Use a gel electrolyte solution that has been gelled by adding a
Or use solid polymer electrolyte to prevent liquid leakage
Is preferred because the In addition, the edge sealed with an insulator
It is preferable to provide a gas passage in the outer peripheral portion. This
In the case of, the electrolyte does not leak and it becomes a pinhole and short circuit occurs.
Provide a hole that does not create a hole, and use this hole as a gas passage.
Preferably. Specifically, a partial space (single cell)
Hole from the inside to the outside)
Porous state without completely curing the olefin resin
To maintain the gas exhaust path or to insulate
Use porous ceramics (porous ceramics)
Is not completely sealed. In the second embodiment described above,
Annealed laminated board consisting of Luminium plate and Copper plate
An example using a current collector has been described.
Aluminum plating on one side of nickel plate instead of body
Current collector with copper plating on the other side, aluminum
Use a current collector with copper plating on one side of the board
Is also good. In addition, aluminum is deposited on one side of the nickel plate
Current collector with copper evaporation on the other side, aluminum
Current collector with copper evaporation on one side of the plate, or
It is also possible to use a current collector with minium deposition
No. Note that, in the above-described embodiment,
Invention of nickel-hydrogen storage battery and lithium ion battery
Although the example applied to was explained, the present invention is not limited to this.
And lead storage batteries, nickel-cadmium storage batteries, etc.
Such a battery can be applied.

【図面の簡単な説明】 【図1】 第1実施形態および第2実施形態の実施例1
の集合電池を示す断面図である。 【図2】 第1実施形態および第2実施形態の実施例2
の集合電池を示す断面図である。 【図3】 第1実施形態および第2実施形態の実施例3
の集合電池を示す断面図である。 【図4】 第1実施形態および第2実施形態の比較例の
集合電池を示す断面図である。 【図5】 従来例の集合電池を示す断面図である。 【符号の説明】 10…スタックセル、10a…双極電極板、10b…端
部正極板、10c…端部負極板、11…集電体、12…
正極活物質(正極活物質スラリー)、13…負極活物質
(負極活物質スラリー)、14…セパレータ、15…接
着性樹脂、20…スタックセル、20a…双極電極板、
20b…端部正極板、20c…端部負極板、21…集電
体、22…正極活物質、23…負極活物質、24…セパ
レータ、24a…外周縁部、30…スタックセル、30
a…双極電極板、30b…端部正極板、30c…端部負
極板、31…集電体、32…正極活物質、33…負極活
物質、34…セパレータ、35…アルミナ板、36…接
着剤
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a first embodiment of the first and second embodiments.
FIG. 2 is a cross-sectional view showing the assembled battery of FIG. FIG. 2 is a second embodiment of the first and second embodiments.
FIG. 2 is a cross-sectional view showing the assembled battery of FIG. FIG. 3 is a third embodiment of the first and second embodiments.
FIG. 2 is a cross-sectional view showing the assembled battery of FIG. FIG. 4 is a cross-sectional view showing an assembled battery of a comparative example of the first embodiment and the second embodiment. FIG. 5 is a cross-sectional view showing a conventional assembled battery. [Description of Signs] 10: Stack cell, 10a: Bipolar electrode plate, 10b: End positive electrode plate, 10c: End negative electrode plate, 11: Current collector, 12 ...
Positive electrode active material (positive electrode active material slurry), 13 negative electrode active material (negative electrode active material slurry), 14 separator, 15 adhesive resin, 20 stack cell, 20a bipolar electrode plate,
20b: end positive electrode plate, 20c: end negative electrode plate, 21: current collector, 22: positive electrode active material, 23: negative electrode active material, 24: separator, 24a: outer peripheral edge, 30: stack cell, 30
a ... bipolar electrode plate, 30b ... end positive electrode plate, 30c ... end negative electrode plate, 31 ... current collector, 32 ... positive electrode active material, 33 ... negative electrode active material, 34 ... separator, 35 ... alumina plate, 36 ... adhesion Agent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 武史 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 伊勢 忠司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H028 AA07 AA08 AA10 BB01 CC01 CC07 CC08 CC19 EE04 EE06 5H029 AJ03 AJ12 AK03 AL07 AM03 AM07 BJ06 BJ17 CJ05 CJ06 DJ03 EJ08 EJ12 HJ12 5H050 AA08 AA09 BA14 BA17 CA04 CA08 CB08 CB16 DA02 DA03 FA03 GA08 HA12    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takeshi Yoshida             2-5-5 Keihanhondori, Moriguchi-shi, Osaka 3             Yo Electric Co., Ltd. (72) Inventor Tadashi Ise             2-5-5 Keihanhondori, Moriguchi-shi, Osaka 3             Yo Electric Co., Ltd. F term (reference) 5H028 AA07 AA08 AA10 BB01 CC01                       CC07 CC08 CC19 EE04 EE06                 5H029 AJ03 AJ12 AK03 AL07 AM03                       AM07 BJ06 BJ17 CJ05 CJ06                       DJ03 EJ08 EJ12 HJ12                 5H050 AA08 AA09 BA14 BA17 CA04                       CA08 CB08 CB16 DA02 DA03                       FA03 GA08 HA12

Claims (1)

【特許請求の範囲】 【請求項1】 集電体を介して正極活物質と負極活物質
が導電接続された構造の集合電池であって、 前記集電体の一方面に正極活物質が形成され、他方面に
負極活物質が形成された複数の双極電極板と、 前記集電体の一方面のみに正極活物質が形成されて一方
の最端部に配置される端部正極板と、 前記集電体の一方面のみに負極活物質が形成されて他方
の最端部に配置される端部負極板とを備え、 前記複数の双極電極板と前記端部正極板と前記端部負極
板は電解質を含有する隔離部材を介して正極活物質と負
極活物質とが対向するように配設されており、 前記双極電極と前記端部正極板と前記端部負極板の端縁
外周部は絶縁体で封止されていることを特徴とする集合
電池。
Claims: 1. An assembled battery having a structure in which a positive electrode active material and a negative electrode active material are conductively connected via a current collector, wherein the positive electrode active material is formed on one surface of the current collector. A plurality of bipolar electrode plates having a negative electrode active material formed on the other surface, and an end positive electrode plate having a positive electrode active material formed only on one surface of the current collector and disposed at one endmost end, An end negative electrode plate having a negative electrode active material formed only on one surface of the current collector and disposed at the other end thereof; the plurality of bipolar electrode plates, the end positive electrode plate, and the end negative electrode; The plate is disposed so that the positive electrode active material and the negative electrode active material face each other via a separating member containing an electrolyte, and the outer peripheral portion of the bipolar electrode, the end positive electrode plate, and the edge of the end negative electrode plate. Is an assembled battery sealed with an insulator.
JP2002050103A 2002-02-26 2002-02-26 Battery Expired - Fee Related JP3819785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002050103A JP3819785B2 (en) 2002-02-26 2002-02-26 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002050103A JP3819785B2 (en) 2002-02-26 2002-02-26 Battery

Publications (2)

Publication Number Publication Date
JP2003249259A true JP2003249259A (en) 2003-09-05
JP3819785B2 JP3819785B2 (en) 2006-09-13

Family

ID=28662444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002050103A Expired - Fee Related JP3819785B2 (en) 2002-02-26 2002-02-26 Battery

Country Status (1)

Country Link
JP (1) JP3819785B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134116A (en) * 2002-10-08 2004-04-30 Nissan Motor Co Ltd Bipolar battery
JP2005190713A (en) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd Bipolar battery and its manufacturing method
JP2005310667A (en) * 2004-04-23 2005-11-04 Nissan Motor Co Ltd Bipolar battery, manufacturing method of bipolar battery, battery pack, and vehicle loading these
JP2006086049A (en) * 2004-09-17 2006-03-30 Nissan Motor Co Ltd Bipolar battery equipped with gas discharge means, its manufacturing method, and battery pack using bipolar battery
JP2007511882A (en) * 2003-11-14 2007-05-10 ナイラー インターナショナル アーベー Gasket, bipolar battery, and method of manufacturing bipolar battery having the gasket
JP2007122881A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle mounting those batteries
JP2007207438A (en) * 2006-01-30 2007-08-16 Nissan Motor Co Ltd Method for manufacturing secondary battery
JP2008130454A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle mounted with them
JP2008147009A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Bipolar battery and its manufacturing method
JP2010231969A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Solid secondary battery and method for manufacturing the same
JP2011009039A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Bipolar secondary battery
JP2012018932A (en) * 2011-09-12 2012-01-26 Nissan Motor Co Ltd Solid electrolyte cell
KR101147208B1 (en) 2009-10-16 2012-05-29 삼성에스디아이 주식회사 Rechargeable battery, bipolar electrode, and fabricating method rechargeable battery
JP2012234823A (en) * 2005-09-05 2012-11-29 Nissan Motor Co Ltd Method for manufacturing bipolar battery
WO2013062623A1 (en) * 2011-10-24 2013-05-02 Advanced Battery Concepts, LLC Bipolar battery assembly
JP2014082070A (en) * 2012-10-15 2014-05-08 Lithium Energy Japan:Kk Electricity storage device
JP2014082071A (en) * 2012-10-15 2014-05-08 Lithium Energy Japan:Kk Electricity storage device
US9685677B2 (en) 2011-10-24 2017-06-20 Advanced Battery Concepts, LLC Bipolar battery assembly
WO2018025868A1 (en) * 2016-08-03 2018-02-08 株式会社豊田自動織機 Power storage device
JP2018055871A (en) * 2016-09-27 2018-04-05 株式会社日立製作所 Secondary battery
JP2018073815A (en) * 2016-10-13 2018-05-10 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Electrical insulator and its related battery
WO2018150879A1 (en) * 2017-02-15 2018-08-23 株式会社豊田自動織機 Bipolar electrode and alkaline storage battery
US10141598B2 (en) 2011-10-24 2018-11-27 Advanced Battery Concepts, LLC Reinforced bipolar battery assembly
CN109494377A (en) * 2018-11-13 2019-03-19 中南大学 A kind of integration bipolar electrode and preparation method thereof, application
CN109755668A (en) * 2019-03-14 2019-05-14 肇庆中特能科技投资有限公司 A kind of M type battery based on bipolar plates
JP2019079613A (en) * 2017-10-20 2019-05-23 株式会社豊田自動織機 Power storage module
JP2019102159A (en) * 2017-11-29 2019-06-24 株式会社豊田自動織機 Lamination device
US10446822B2 (en) 2011-10-24 2019-10-15 Advanced Battery Concepts, LLC Bipolar battery assembly
JP2019186179A (en) * 2018-03-30 2019-10-24 株式会社豊田自動織機 Resin frame manufacturing method, storage module manufacturing method, resin frame, and storage module
WO2020039987A1 (en) * 2018-08-22 2020-02-27 株式会社豊田自動織機 Power storage module
JP2020053151A (en) * 2018-09-25 2020-04-02 株式会社豊田自動織機 Method for manufacturing power storage module
US10615393B2 (en) 2011-10-24 2020-04-07 Advanced Battery Concepts, LLC Bipolar battery assembly
WO2021085205A1 (en) * 2019-10-31 2021-05-06 株式会社村田製作所 Secondary battery and battery pack
CN113178543A (en) * 2021-05-25 2021-07-27 珠海冠宇电池股份有限公司 Negative plate and lithium ion battery
JP2021128898A (en) * 2020-02-17 2021-09-02 トヨタ自動車株式会社 Power storage module
WO2023216038A1 (en) * 2022-05-07 2023-11-16 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and electric apparatus
US11888106B2 (en) 2019-05-24 2024-01-30 Advanced Battery Concepts, LLC Battery assembly with integrated edge seal and methods of forming the seal

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134116A (en) * 2002-10-08 2004-04-30 Nissan Motor Co Ltd Bipolar battery
US7220516B2 (en) 2002-10-08 2007-05-22 Nissan Motor Co., Ltd. Bipolar battery with flexible insulation film
JP2007511882A (en) * 2003-11-14 2007-05-10 ナイラー インターナショナル アーベー Gasket, bipolar battery, and method of manufacturing bipolar battery having the gasket
JP2005190713A (en) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd Bipolar battery and its manufacturing method
JP4622294B2 (en) * 2004-04-23 2011-02-02 日産自動車株式会社 Bipolar battery, bipolar battery manufacturing method, assembled battery, and vehicle equipped with the same
JP2005310667A (en) * 2004-04-23 2005-11-04 Nissan Motor Co Ltd Bipolar battery, manufacturing method of bipolar battery, battery pack, and vehicle loading these
JP2006086049A (en) * 2004-09-17 2006-03-30 Nissan Motor Co Ltd Bipolar battery equipped with gas discharge means, its manufacturing method, and battery pack using bipolar battery
JP2012234823A (en) * 2005-09-05 2012-11-29 Nissan Motor Co Ltd Method for manufacturing bipolar battery
JP2007122881A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle mounting those batteries
JP2007207438A (en) * 2006-01-30 2007-08-16 Nissan Motor Co Ltd Method for manufacturing secondary battery
JP2008130454A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle mounted with them
JP2008147009A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Bipolar battery and its manufacturing method
JP2010231969A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Solid secondary battery and method for manufacturing the same
JP2011009039A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Bipolar secondary battery
US8741477B2 (en) 2009-06-25 2014-06-03 Nissan Motor Co., Ltd. Bipolar secondary battery with seal members
KR101147208B1 (en) 2009-10-16 2012-05-29 삼성에스디아이 주식회사 Rechargeable battery, bipolar electrode, and fabricating method rechargeable battery
JP2012018932A (en) * 2011-09-12 2012-01-26 Nissan Motor Co Ltd Solid electrolyte cell
US9859543B2 (en) 2011-10-24 2018-01-02 Advanced Battery Concepts, LLC Bipolar battery assembly
WO2013062623A1 (en) * 2011-10-24 2013-05-02 Advanced Battery Concepts, LLC Bipolar battery assembly
US10446822B2 (en) 2011-10-24 2019-10-15 Advanced Battery Concepts, LLC Bipolar battery assembly
JP2014534582A (en) * 2011-10-24 2014-12-18 アドバンスト バッテリー コンセプツ エルエルシー Bipolar battery assembly
JP2015159116A (en) * 2011-10-24 2015-09-03 アドバンスト バッテリー コンセプツ エルエルシー bipolar battery assembly
US9531031B2 (en) 2011-10-24 2016-12-27 Advanced Battery Concepts, LLC Bipolar battery assembly
US9553329B2 (en) 2011-10-24 2017-01-24 Advanced Battery Concepts, LLC Bipolar battery assembly
US9685677B2 (en) 2011-10-24 2017-06-20 Advanced Battery Concepts, LLC Bipolar battery assembly
US9825336B2 (en) 2011-10-24 2017-11-21 Advanced Battery Concepts, LLC Bipolar battery assembly
US10615393B2 (en) 2011-10-24 2020-04-07 Advanced Battery Concepts, LLC Bipolar battery assembly
US10141598B2 (en) 2011-10-24 2018-11-27 Advanced Battery Concepts, LLC Reinforced bipolar battery assembly
JP2014082071A (en) * 2012-10-15 2014-05-08 Lithium Energy Japan:Kk Electricity storage device
JP2014082070A (en) * 2012-10-15 2014-05-08 Lithium Energy Japan:Kk Electricity storage device
WO2018025868A1 (en) * 2016-08-03 2018-02-08 株式会社豊田自動織機 Power storage device
JP2018055871A (en) * 2016-09-27 2018-04-05 株式会社日立製作所 Secondary battery
JP2018073815A (en) * 2016-10-13 2018-05-10 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Electrical insulator and its related battery
WO2018150879A1 (en) * 2017-02-15 2018-08-23 株式会社豊田自動織機 Bipolar electrode and alkaline storage battery
JP2019079613A (en) * 2017-10-20 2019-05-23 株式会社豊田自動織機 Power storage module
JP2019102159A (en) * 2017-11-29 2019-06-24 株式会社豊田自動織機 Lamination device
JP7035811B2 (en) 2018-03-30 2022-03-15 株式会社豊田自動織機 Resin frame manufacturing method, power storage module manufacturing method, resin frame, and power storage module
JP2019186179A (en) * 2018-03-30 2019-10-24 株式会社豊田自動織機 Resin frame manufacturing method, storage module manufacturing method, resin frame, and storage module
WO2020039987A1 (en) * 2018-08-22 2020-02-27 株式会社豊田自動織機 Power storage module
JPWO2020039987A1 (en) * 2018-08-22 2021-04-30 株式会社豊田自動織機 Power storage module
JP2020053151A (en) * 2018-09-25 2020-04-02 株式会社豊田自動織機 Method for manufacturing power storage module
JP7161356B2 (en) 2018-09-25 2022-10-26 株式会社豊田自動織機 Method for manufacturing power storage module
CN109494377A (en) * 2018-11-13 2019-03-19 中南大学 A kind of integration bipolar electrode and preparation method thereof, application
CN109755668A (en) * 2019-03-14 2019-05-14 肇庆中特能科技投资有限公司 A kind of M type battery based on bipolar plates
US11888106B2 (en) 2019-05-24 2024-01-30 Advanced Battery Concepts, LLC Battery assembly with integrated edge seal and methods of forming the seal
JPWO2021085205A1 (en) * 2019-10-31 2021-05-06
CN114450842A (en) * 2019-10-31 2022-05-06 株式会社村田制作所 Secondary battery and battery pack
WO2021085205A1 (en) * 2019-10-31 2021-05-06 株式会社村田製作所 Secondary battery and battery pack
JP7429855B2 (en) 2019-10-31 2024-02-09 株式会社村田製作所 Secondary batteries and battery packs
JP2021128898A (en) * 2020-02-17 2021-09-02 トヨタ自動車株式会社 Power storage module
JP7359023B2 (en) 2020-02-17 2023-10-11 トヨタ自動車株式会社 Energy storage module
CN113178543A (en) * 2021-05-25 2021-07-27 珠海冠宇电池股份有限公司 Negative plate and lithium ion battery
WO2023216038A1 (en) * 2022-05-07 2023-11-16 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and electric apparatus

Also Published As

Publication number Publication date
JP3819785B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP3819785B2 (en) Battery
US7378185B2 (en) Prismatic lithium secondary battery having a porous heat resistant layer
JP3822445B2 (en) Electrochemical devices
WO2005013408A1 (en) Lithium ion secondary cell
JP2006318892A (en) Square lithium secondary battery
JP6359454B2 (en) Nonaqueous electrolyte secondary battery
CN102856577A (en) Nonaqueous electrolyte secondary battery
KR20070109080A (en) Pouch type lithium rechargeable battery
US20190348644A1 (en) High power battery and battery case
WO2022000314A1 (en) Separator for electrochemical device, electrochemical device and electronic device
JP2006054119A (en) Bipolar battery and battery pack
JP4224739B2 (en) Battery with frame
JP3596420B2 (en) Non-aqueous electrolyte secondary battery
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
JP2001273930A (en) Manufacturing method of polymer battery
JP3544889B2 (en) Sealed battery
JP2004349156A (en) Secondary battery and stacked secondary battery
JPH11339856A (en) Manufacture of sheet-type lithium-ion secondary battery
JPH11283612A (en) Lithium secondary battery
JPH10512707A (en) Bipolar lithium-ion rechargeable battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2000277159A (en) Nonaqueous electrolyte secondary battery
JP2000149993A (en) Film-like lithium secondary battery
JP3520989B2 (en) Method for producing electrode plate of non-aqueous secondary battery
JP2000306607A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

LAPS Cancellation because of no payment of annual fees