JP2003249160A - Testing circuit of electric leak detecting instrument - Google Patents

Testing circuit of electric leak detecting instrument

Info

Publication number
JP2003249160A
JP2003249160A JP2002049033A JP2002049033A JP2003249160A JP 2003249160 A JP2003249160 A JP 2003249160A JP 2002049033 A JP2002049033 A JP 2002049033A JP 2002049033 A JP2002049033 A JP 2002049033A JP 2003249160 A JP2003249160 A JP 2003249160A
Authority
JP
Japan
Prior art keywords
test
winding
zero
secondary winding
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002049033A
Other languages
Japanese (ja)
Other versions
JP3960074B2 (en
Inventor
Katsumi Watanabe
克己 渡辺
Kiyoshi Hasegawa
喜吉 長谷川
Hideki Koyama
秀樹 小山
Hitoshi Kaneda
斉 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002049033A priority Critical patent/JP3960074B2/en
Publication of JP2003249160A publication Critical patent/JP2003249160A/en
Application granted granted Critical
Publication of JP3960074B2 publication Critical patent/JP3960074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground fault circuit interrupter which prevents change of leak detecting sensitivity due to a noise current in a secondary winding caused by a stray capacitance between a test winding and the secondary winding. <P>SOLUTION: The ground fault circuit interrupter 1 comprises a zero-phase current transformer 4 having the secondary winding 5 to lead out a zero-phase- sequence component of the current in main electric paths (R-U), (S-V), (T-W) and the test winding 11 to test-operate this interrupter 1, a leak detector 6 which opens an interrupting part 2 by energizing a trip coil 7 when a zero-phase current in the secondary winding 5 exceeds the predetermined one, and a rectifier circuit 10 which generates direct current for the leak detecting part 6 by rectifying the voltage of the main electric paths with one of direct current supply paths thereof, a ground line connected to a signal ground SG of the leak detecting part 6. When a test contact 9 is open and the interrupter 1 monitors leak, and potentials of the test winding 11 and the secondary winding 5 are the same because of the connection of one end of the test winding 11 to the ground line resulting in no noise current due to stray capacitance. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、1次導体となる漏
電検出対象の主電路に鎖交されると共に、該主電路内の
漏電または地絡に基づく零相電流を取出す2次巻線が巻
かれた鉄心を持ち、該鉄心にはさらにこの漏電検出装置
の機能をテストする際に前記鉄心を励磁するためのテス
ト巻線が巻かれた零相変流器を備え、前記2次巻線から
取出された零相電流が所定のしきい値を超えたことを判
別して、少なくとも、非正常なレベルの漏電が発生した
旨を示す信号を出力する漏電検出装置(漏電遮断器、漏
電保護リレー等)のテスト回路に関するもので、特に前
記2次巻線とテスト巻線との間に存在する浮遊容量によ
って漏電検出の感度が変化することを防ぐようにした漏
電検出装置のテスト回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary winding, which is linked to a main electric circuit which is a primary conductor and which is an object of electric leakage detection, and which takes out a zero-phase current due to an electric leakage or a ground fault in the main electric circuit. The secondary winding has a wound iron core, and the iron core further includes a zero-phase current transformer wound with a test winding for exciting the iron when testing the function of the earth leakage detection device. A leakage detection device (leakage breaker, leakage protection) that determines that the zero-phase current extracted from the unit exceeds a predetermined threshold value and outputs at least a signal indicating that an abnormal level of leakage has occurred. The present invention relates to a test circuit of a leak detecting device, which prevents change in the sensitivity of leak detection due to stray capacitance existing between the secondary winding and the test winding.

【0002】なお、以下各図において同一の符号は同一
もしくは相当部分を示す。
In the following drawings, the same reference numerals indicate the same or corresponding parts.

【0003】[0003]

【従来の技術】図3は従来の3相電源用の漏電遮断器の
回路構成例を示す。同図において1は漏電遮断器、R,
S,Tは漏電遮断器1の電源側端子、U,V,Wはそれ
ぞれ電源側端子R,S,Tに対応する負荷側端子であ
る。漏電遮断器1内において、2は電源と負荷を結ぶ各
主電路(R−U),(S−V),(T−W)の開閉を行
う接点からなる遮断部、3は各主電路(R−U),(S
−V),(T−W)毎の過電流を検出し、引外し装置1
3を介して遮断部2の接点を開放させる過電流検出装置
である。
2. Description of the Related Art FIG. 3 shows a circuit configuration example of a conventional earth leakage breaker for a three-phase power supply. In the figure, 1 is an earth leakage breaker, R,
S and T are power supply side terminals of the earth leakage breaker 1, and U, V and W are load side terminals corresponding to the power supply side terminals R, S and T, respectively. In the earth leakage breaker 1, a reference numeral 2 is a circuit breaker composed of contacts for opening and closing the main electric circuits (RU), (SV), (TW) connecting the power source and the load, and 3 is each main electric circuit ( RU), (S
-V), (TW) overcurrent is detected and trip device 1
It is an overcurrent detection device which opens the contact of the interruption | blocking part 2 through 3.

【0004】また、7は次に述べる漏電検出部6による
励磁によって引外し装置13を介し遮断部2の接点を開
放させる電磁石の励磁コイルとしてのトリップコイルで
ある。なお遮断部2の接点の投入は図外のハンドルを手
動操作することによって行われる。4は自身の環状鉄心
4aを貫通鎖交する1次導体としての主電路(R−
U),(S−V),(T−W)を流れる(本例では3相
分の)電流に含まれる零相分の電流(零相電流ともい
う、負荷側の漏電や地絡によって流れる)を検出するた
めの零相変流器、5は零相変流器4の鉄心4aに巻かれ
た前記零相電流を取出すための2次巻線、11は同じく
鉄心4aに巻かれた漏電遮断機能テスト用のテスト巻線
である。
Reference numeral 7 is a trip coil as an exciting coil of an electromagnet which opens the contact of the breaking unit 2 via the trip unit 13 by the excitation by the leakage detecting unit 6 described below. The contacts of the breaking unit 2 are closed by manually operating a handle (not shown). Reference numeral 4 denotes a main electric circuit (R-
U), (S-V), (T-W) (zero-phase current), which is included in the currents (three phases in this example) that flow in current (also referred to as zero-phase current) due to a leakage or ground fault on the load side. ) For detecting the zero phase current, 5 is a secondary winding wound around the iron core 4a of the zero phase current transformer 4 for taking out the zero phase current, and 11 is a leakage current wound around the iron core 4a. This is a test winding for the breaking function test.

【0005】10は、本例では1次導体(R−U),
(T−W)間の交流電圧を全波整流するダイオードブリ
ッジからなる整流回路、6は整流回路10の直流出力を
電源とする漏電検出部で、この漏電検出部6は、1次導
体の零相電流に対応する2次巻線5の電流が所定のしき
い値を超えたとき、主電路を遮断すべき漏電が発生した
として、トリップコイル7を付勢する。
In the present example, 10 is a primary conductor (RU),
A rectifier circuit composed of a diode bridge for full-wave rectifying the AC voltage between (T-W), 6 is a leakage detection unit that uses the DC output of the rectification circuit 10 as a power source, and this leakage detection unit 6 is a zero of the primary conductor. When the current of the secondary winding 5 corresponding to the phase current exceeds a predetermined threshold value, the trip coil 7 is energized on the assumption that an electric leakage that should interrupt the main electric path has occurred.

【0006】8は漏電遮断器1の外部からの押圧操作に
より、テスト接点9を閉じて漏電遮断器1が動作可能の
状態にあるか否かをテストするテスト釦で、このテスト
釦8の押圧により、1次導体(R−U),(T−W)間
の電圧によってテスト抵抗12とテスト接点9を介し、
テスト巻線11にしきい値レベル以上の零相電流に対応
する励磁電流を流し、トリップコイル7を介する遮断部
2の遮断動作が行われるか否かを確認することができ
る。
Reference numeral 8 is a test button for testing whether or not the earth leakage breaker 1 is in an operable state by closing the test contact 9 by pressing the earth leakage breaker 1 from the outside. By the voltage between the primary conductors (R-U) and (T-W), through the test resistor 12 and the test contact 9,
It is possible to confirm whether or not the breaking operation of the breaking unit 2 via the trip coil 7 is performed by passing an exciting current corresponding to the zero-phase current above the threshold level through the test winding 11.

【0007】[0007]

【発明が解決しようとする課題】ところで、図3に示し
た従来の漏電遮断器の回路構成において、2 次巻線5と
テスト巻線11の間には目に見えない浮遊容量C0が存
在する。そして、整流回路10の直流出力の負側端子
は、漏電検出部6等を構成する電子回路のグランド側と
してのシグナルグランドSGに接続され、漏電検出部6
に接続されている2次巻線5は、ほぼシグナルグランド
SGの電位にある。
By the way, in the circuit configuration of the conventional earth leakage breaker shown in FIG. 3, there is an invisible stray capacitance C0 between the secondary winding 5 and the test winding 11. . The negative terminal of the DC output of the rectifier circuit 10 is connected to the signal ground SG as the ground side of the electronic circuit that constitutes the leakage detection unit 6 and the like, and the leakage detection unit 6 is connected.
The secondary winding 5 connected to is substantially at the potential of the signal ground SG.

【0008】一方、テスト巻線11は、常時(つまり、
テスト接点9が開かれ、漏電遮断器1が漏電を監視して
いる状態)においては整流回路10への交流入力ライン
の一方、この例ではR相の電位にあり、シグナルグラン
ドSGは本例では整流回路10のダイオードブリッジの
下側アームを構成する2つのダイオードDr2,Dt2
の導通状態に応じて、それぞれR相またはT相の電位と
なる。
On the other hand, the test winding 11 is always (that is,
In a state where the test contact 9 is opened and the earth leakage breaker 1 is monitoring the earth leakage), one of the AC input lines to the rectification circuit 10, that is, the R-phase potential in this example, and the signal ground SG in this example is Two diodes Dr2 and Dt2 forming the lower arm of the diode bridge of the rectifying circuit 10.
Depending on the conduction state of, the potential becomes R phase or T phase, respectively.

【0009】このため、テスト巻線11と2次巻線5の
間には、図4に示す半波整流波形のRT相間電圧eが印
加され、この電圧eにより浮遊容量C0、漏電検出部6
の入力信号線「ロ」、漏電検出部6、漏電検出部6への
負側の直流電源線(グランドラインともいう)「イ」の
経路で図3に示すノイズ電流「i」が流れる。ところ
で、対をなす入力信号線「ロ」が接続された漏電検出部
6の対の入力端子は図外の比較増幅器の入力端子であ
り、この対の入力端子からそれぞれグランドライン
「イ」側を見たインピーダンス構成は平衡ではない。
Therefore, the RT interphase voltage e of the half-wave rectified waveform shown in FIG. 4 is applied between the test winding 11 and the secondary winding 5, and the stray capacitance C0 and the leakage detection unit 6 are applied by this voltage e.
The noise current “i” shown in FIG. 3 flows through the input signal line “B”, the leakage detection unit 6, and the negative side DC power supply line (also referred to as a ground line) “A” to the leakage detection unit 6. By the way, the pair of input terminals of the leakage detection unit 6 to which the pair of input signal lines “b” are connected are the input terminals of a comparison amplifier (not shown), and the ground line “a” side is respectively connected from the pair of input terminals. The impedance configuration seen is not balanced.

【0010】このため、ノイズ電流「i」によって漏電
検出部6の対の入力端子間には図3に示す誘導電圧e1
が発生し、漏電遮断器1の動作感度が変化してしまうと
いう問題があった。本発明はテスト巻線11と2次巻線
5の間に存在する浮遊容量C0によっても動作感度が変
化しない漏電検出装置のテスト回路を提供することを課
題とする。
Therefore, due to the noise current "i", the induced voltage e1 shown in FIG.
There is a problem in that the operation sensitivity of the earth leakage breaker 1 changes. It is an object of the present invention to provide a test circuit for an earth leakage detection device in which the operating sensitivity does not change even with the stray capacitance C0 existing between the test winding 11 and the secondary winding 5.

【0011】[0011]

【課題を解決するための手段】前記の課題を解決するた
めに請求項1の漏電検出装置のテスト回路は、1次導体
となる漏電検出対象の複数の主電路〔(R−U),(S
−V),(T−W)など〕に鎖交されると共に、該主電
路に流れる電流の零相分を取出す2次巻線(5)が巻か
れた鉄心(4a)を持ち、該鉄心にはさらにこの漏電検
出装置の機能をテストする際に前記鉄心を励磁するため
のテスト巻線(11)が巻かれた零相変流器(4)と、
前記2次巻線から取出された前記電流の零相分が所定の
しきい値を超えたことを判別してその旨を示す信号を出
力する漏電検出手段(漏電検出部6)と、前記主電路と
異なり得る複数の交流ライン〔本例では主電路(R−
U)と(T−W)、あるいは整流回路電源端子XとYに
接続された何らかの交流ライン)の電圧を整流して前記
漏電検出手段への直流電源を生成すると共に、該直流電
源の対の直流給電路のうち、前記漏電検出手段のシグナ
ルグランド(SG)側に接続された直流給電路(ライン
「イ」、以下、グランドラインという)が少なくとも前
記交流ラインのいずれかと(ダイオードDr2などを介
し)通電可能に結合されてなるような整流手段とを備え
た漏電検出装置(漏電遮断器1,漏電保護リレー1Aな
ど)において、前記テスト巻線の一端が前記グランドラ
インに接続され、前記テスト巻線の他端が少なくとも前
記テストの際に(テスト釦8の押圧などによって)閉じ
られる接点(テスト接点9)を介し、前記交流ラインの
うち前記テスト巻線への通電が可能な電位を持つ交流ラ
イン〔本例では主電路(T−W)、あるいは整流回路電
源端子Xに接続された交流ライン〕に接続されてなるよ
うにする。
In order to solve the above-mentioned problems, a test circuit of an earth leakage detection device according to claim 1 has a plurality of main electric circuits [(RU), ( S
-V), (TW), etc.] and has an iron core (4a) wound with a secondary winding (5) for taking out a zero-phase component of the current flowing in the main electric path. And a zero-phase current transformer (4) around which a test winding (11) for exciting the iron core is tested when testing the function of the earth leakage detection device.
A leakage detecting unit (leakage detecting unit 6) for determining that the zero-phase component of the current extracted from the secondary winding exceeds a predetermined threshold value and outputting a signal indicating that; A plurality of AC lines that may be different from the electric line [in this example, the main electric line (R-
U) and (TW) or rectifying the voltage of the rectifier circuit power supply terminals X and Y, or any AC line) to generate a DC power supply to the leakage detection means, Among the DC power supply paths, a DC power supply path (line “a”, hereinafter referred to as a ground line) connected to the signal ground (SG) side of the leakage detecting means is connected to at least one of the AC lines (via a diode Dr2 or the like). ) In an earth leakage detection device (leakage breaker 1, earth leakage protection relay 1A, etc.) provided with a rectifying means that is electrically connected to each other, one end of the test winding is connected to the ground line, and the test winding is connected. The other end of the wire is connected to at least the test winding of the AC line through a contact (test contact 9) that is closed at least during the test (by pressing the test button 8 or the like). [Main In this example paths (T-W), or connected to the AC line to the rectifier circuit power supply terminal X] AC line current with a possible potential to set to be connected to.

【0012】また請求項2の漏電検出装置のテスト回路
は、請求項1に記載の漏電検出装置のテスト回路におい
て、前記整流手段がブリッジ整流回路(10)からなる
ようにする。本発明の作用は、テスト回路を構成するテ
スト巻線11の非テスト接点側の一端の接続先を、整流
回路10の交流入力ライン側から整流回路10の直流出
力のグランドライン側に変えて、テスト巻線11と2次
巻線5との間の常時の電位差を無くし、ノイズ電流iが
流れないようにするものである。
According to a second aspect of the present invention, there is provided a test circuit for an electric leakage detecting device according to the first aspect, wherein the rectifying means comprises a bridge rectifying circuit (10). The operation of the present invention is to change the connection destination of one end on the non-test contact side of the test winding 11 constituting the test circuit from the AC input line side of the rectifying circuit 10 to the DC output ground line side of the rectifying circuit 10. The constant potential difference between the test winding 11 and the secondary winding 5 is eliminated so that the noise current i does not flow.

【0013】[0013]

【発明の実施の形態】(実施例1)図1は本発明の第1
の実施例としての漏電遮断器1の回路構成を示す。図1
の図3との相違点は、テスト巻線11のテスト接点9に
接続されない側の一端が整流回路10の負側の直流出力
ライン、つまり漏電検出部6のシグナルグランドSGに
接続されたグランドライン「イ」に接続されている点で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 shows the first embodiment of the present invention.
2 shows a circuit configuration of an earth leakage breaker 1 as an example. Figure 1
3 is different from FIG. 3 in that one end of the test winding 11 on the side not connected to the test contact 9 is a negative DC output line of the rectifier circuit 10, that is, a ground line connected to the signal ground SG of the leakage detection unit 6. It is the point connected to "a".

【0014】図1の接続により、常時(つまり、テスト
接点9が開かれ、漏電遮断器1が漏電を監視している状
態)において、テスト巻線11と2次巻線5との電位は
ほぼ等しくなり、図3で述べた浮遊容量C0を介するノ
イズ電流iは流れなくなる。従って、図3で述べた誘導
電圧e1 は発生しなくなり、漏電遮断器1の動作感度も
変化しない。
Due to the connection shown in FIG. 1, the potentials of the test winding 11 and the secondary winding 5 are almost constant (that is, the test contact 9 is opened and the earth leakage breaker 1 monitors the earth leakage). Therefore, the noise current i through the stray capacitance C0 described in FIG. 3 does not flow. Therefore, the induced voltage e1 described in FIG. 3 is not generated, and the operation sensitivity of the earth leakage breaker 1 does not change.

【0015】また、テスト巻線11を図1のように接続
しても、漏電検出機能の動作確認時には、テスト釦8を
介しテスト接点9を閉じることにより、主電路(T−
W)→テスト抵抗12→テスト接点9→テスト巻線11
→グランドライン「イ」→整流回路10のダイオードD
r2→主電路(R−U)の経路で図5に示す半波整流さ
れた電流としてのテスト電流itが流れて零相変流器4
を励磁するので、テスト動作を行うことができる。
Even when the test winding 11 is connected as shown in FIG. 1, the main contact (T-) is closed by closing the test contact 9 via the test button 8 when confirming the operation of the leakage detection function.
W) → test resistance 12 → test contact 9 → test winding 11
→ ground line "a" → diode D of rectifier circuit 10
The test current it as the half-wave rectified current shown in FIG. 5 flows in the path of r2 → main electric path (RU), and the zero-phase current transformer 4
, So that a test operation can be performed.

【0016】図1の実施例では、テスト巻線11および
整流回路10への入力電源を、3極品のR,T相から取
っているが、2極品や他の相から電源を取った場合でも
本発明が同様に適用できることは明らかである。また、
整流回路10がR,S,Tの3相の主電路の交流入力を
整流する3相ブリッジ整流回路であっても本発明を同様
に適用することができる。
In the embodiment of FIG. 1, the input power to the test winding 11 and the rectifier circuit 10 is taken from the R and T phases of the 3-pole product, but even when the power is taken from the 2-pole product and other phases. Obviously, the present invention has similar applicability. Also,
The present invention can be similarly applied even if the rectifier circuit 10 is a three-phase bridge rectifier circuit that rectifies the AC input of the R, S, and T three-phase main electric paths.

【0017】(実施例2)図2は本発明の第2の実施例
としての漏電保護リレー1Aの回路構成を示す。図2に
おいては、図1に対し引外し装置13と主電路上の遮断
部2および過電流検出装置3が取り除かれて外部出力接
点2Aが新設され、漏電検出部6によって付勢されるト
リップコイル7がリレーコイル7Aに置き換わってい
る。
(Embodiment 2) FIG. 2 shows a circuit configuration of an earth leakage protection relay 1A as a second embodiment of the present invention. In FIG. 2, the trip coil urged by the earth leakage detection unit 6 by removing the trip unit 13, the breaking unit 2 on the main electric line and the overcurrent detection unit 3 from FIG. 1 and newly installing an external output contact 2A. 7 is replaced by the relay coil 7A.

【0018】そして、2次巻線5を流れる主電路(R−
U),(S−V),(T−W)の零相電流が所定のしき
い値を越えると、漏電検出部6によりリレーコイル7A
が付勢されて外部出力接点2Aが切換わり、非正常なレ
ベルの漏電が発生したことを外部に伝えるように構成さ
れている。また、図2においては、整流回路10および
テスト巻線11に対する交流電源端子が図1のように主
電路に直接接続されることなく、整流回路電源端子X,
Yとして外部からの接続が可能に構成されている。
Then, the main electric circuit (R-
U), (S-V), (T-W) when the zero-phase current exceeds a predetermined threshold value, the earth leakage detection unit 6 causes the relay coil 7A.
The external output contact 2A is switched by being energized to notify the outside that an abnormal level of leakage has occurred. In addition, in FIG. 2, the AC power supply terminals for the rectifier circuit 10 and the test winding 11 are not directly connected to the main circuit as in FIG.
As Y, the connection from the outside is possible.

【0019】この整流回路電源端子X,Yに接続される
交流電源ラインは上記の主電路に限らず、任意のもので
よい。また整流回路10を3相ブリッジ型として整流回
路電源端子を3つ設け、この電源端子に3相の任意の交
流電源ラインを接続するようにしてもよい。なお、漏電
保護リレーには主電路(R−U),(S−V),(T−
W)が無く、漏電保護リレーの利用者が漏電検出対象の
任意の交流電路を、零相変流器4の環状鉄心4aに貫通
鎖交させて使用する構造のものもある。
The AC power supply line connected to the rectifier circuit power supply terminals X and Y is not limited to the above-mentioned main electric line, and may be any line. Alternatively, the rectifier circuit 10 may be of a three-phase bridge type, and three rectifier circuit power supply terminals may be provided, and an arbitrary three-phase AC power supply line may be connected to the power supply terminals. In addition, the main circuit (RU), (SV), (T-
There is also a structure in which there is no W), and the user of the earth leakage protection relay uses an arbitrary AC electric circuit to be detected by the earth leakage through the annular core 4a of the zero-phase current transformer 4.

【0020】図2の構成においても図1の場合と同様、
漏電監視時にテスト巻線11と2次巻線5とがほぼ同電
位に保たれ、漏電検出感度の変化を防止できることには
変わりがない。
In the configuration of FIG. 2 as in the case of FIG.
There is no change in that the test winding 11 and the secondary winding 5 are kept at substantially the same potential at the time of leakage monitoring, and the leakage detection sensitivity can be prevented from changing.

【0021】[0021]

【発明の効果】本発明によれば、テスト巻線11の非テ
スト接点側の一端を漏電検出部6のシグナルグランドS
G側の直流電源ライン(グランドライン)「イ」に接続
するようにしたので、漏電検出装置が漏電を監視する定
常状態において、テスト巻線11と2次巻線5とはほぼ
同電位となり、テスト巻線11と2次巻線5との間の浮
遊容量C0によるノイズ電流iは流れなくなる。従って
漏電検出装置の漏電検出動作時の感度電流を安定にする
ことができる。
According to the present invention, one end of the test winding 11 on the non-test contact side is connected to the signal ground S of the leakage detection unit 6.
Since it is connected to the DC power supply line (ground line) “A” on the G side, the test winding 11 and the secondary winding 5 have substantially the same potential in a steady state in which the leakage detection device monitors the leakage, The noise current i due to the stray capacitance C0 between the test winding 11 and the secondary winding 5 stops flowing. Therefore, the sensitivity current during the leakage detection operation of the leakage detection device can be stabilized.

【0022】特に漏電検出装置が漏電保護リレーの場
合、零相変流器には大型のものがあり、テスト巻線と2
次巻線間の結合容量は大きくなる傾向にあるため、本発
明の効果が、より期待できる。
In particular, when the earth leakage detection device is an earth leakage protection relay, there is a large-sized zero-phase current transformer, which includes a test winding and
Since the coupling capacitance between the secondary windings tends to increase, the effect of the present invention can be expected more.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例としての漏電遮断器の構
成を示す回路図
FIG. 1 is a circuit diagram showing a configuration of an earth leakage breaker as a first embodiment of the present invention.

【図2】本発明の第2の実施例としての漏電保護リレー
の構成を示す回路図
FIG. 2 is a circuit diagram showing a configuration of an earth leakage protection relay as a second embodiment of the present invention.

【図3】図1,図2に対応する従来の回路図FIG. 3 is a conventional circuit diagram corresponding to FIGS. 1 and 2.

【図4】従来の漏電遮断器のテスト巻線と2次巻線の間
に加わる電圧の波形図
FIG. 4 is a waveform diagram of the voltage applied between the test winding and the secondary winding of the conventional earth leakage breaker.

【図5】本発明の漏電遮断器および漏電保護リレーのテ
スト電流の波形図
FIG. 5 is a waveform diagram of test currents of the earth leakage breaker and the earth leakage protection relay of the present invention.

【符号の説明】[Explanation of symbols]

1 漏電遮断器 1A 漏電保護リレー 2 遮断部 2A 外部出力接点 3 過電流検出装置 4 零相変流器 4a 環状鉄心 5 2次巻線 6 漏電検出部 7 トリップコイル 7A リレーコイル 8 テスト釦 9 テスト接点 10 整流回路 11 テスト巻線 12 テスト抵抗 13 引外し装置 SG シグナルグランド イ グランドライン Dr2 整流回路10のダイオード it テスト電流 1 earth leakage circuit breaker 1A earth leakage protection relay 2 Blocking part 2A external output contact 3 Overcurrent detection device 4 Zero-phase current transformer 4a Ring core 5 Secondary winding 6 Leakage detector 7 Trip coil 7A relay coil 8 test button 9 test contacts 10 Rectifier circuit 11 test winding 12 Test resistance 13 Tripping device SG signal ground Igrand line Dr2 Diode of rectifier circuit 10 it test current

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 秀樹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 金田 斉 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5G030 FC05 XX17 YY13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideki Koyama             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. (72) Inventor Hitoshi Kaneda             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. F term (reference) 5G030 FC05 XX17 YY13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】1次導体となる漏電検出対象の複数の主電
路に鎖交されると共に、該主電路に流れる電流の零相分
を取出す2次巻線が巻かれた鉄心を持ち、該鉄心にはさ
らにこの漏電検出装置の機能をテストする際に前記鉄心
を励磁するためのテスト巻線が巻かれた零相変流器と、 前記2次巻線から取出された前記電流の零相分が所定の
しきい値を超えたことを判別してその旨を示す信号を出
力する漏電検出手段と、 前記主電路と異なり得る複数の交流ラインの電圧を整流
して前記漏電検出手段への直流電源を生成すると共に、
該直流電源の対の直流給電路のうち、前記漏電検出手段
のシグナルグランド側に接続された直流給電路(以下、
グランドラインという)が少なくとも前記交流ラインの
いずれかと通電可能に結合されてなるような整流手段と
を備えた漏電検出装置において、 前記テスト巻線の一端が前記グランドラインに接続さ
れ、前記テスト巻線の他端が少なくとも前記テストの際
に閉じられる接点を介し、前記交流ラインのうち前記テ
スト巻線への通電が可能な電位を持つ交流ラインに接続
されてなることを特徴とする漏電検出装置のテスト回
路。
1. An iron core having a secondary winding wound around a plurality of main electric paths to be leakage-detected, which are primary conductors and for taking out a zero-phase component of a current flowing in the main electric paths, The iron core further has a zero-phase current transformer wound with a test winding for exciting the iron core when testing the function of the leakage detecting device, and a zero-phase current of the current extracted from the secondary winding. To the leakage detection means for rectifying the voltage of a plurality of alternating current lines that may be different from the main electric path and a leakage detection means for determining that the minutes have exceeded a predetermined threshold value and outputting a signal to that effect. DC power is generated,
Of the pair of DC power supply paths of the DC power supply, the DC power supply path connected to the signal ground side of the leakage detecting means (hereinafter,
A ground line), and at least one of the alternating current lines and a rectifying means such that the rectifying means is energized, wherein one end of the test winding is connected to the ground line. The other end of the leakage detection device is connected to at least an AC line of the AC line having a potential capable of energizing the test winding, through a contact that is closed at the time of the test. Test circuit.
【請求項2】請求項1に記載の漏電検出装置のテスト回
路において、 前記整流手段がブリッジ整流回路からなることを特徴と
する漏電検出装置のテスト回路。
2. The test circuit for the leakage detection device according to claim 1, wherein the rectifying means comprises a bridge rectification circuit.
JP2002049033A 2002-02-26 2002-02-26 Test circuit for leakage detector Expired - Fee Related JP3960074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049033A JP3960074B2 (en) 2002-02-26 2002-02-26 Test circuit for leakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049033A JP3960074B2 (en) 2002-02-26 2002-02-26 Test circuit for leakage detector

Publications (2)

Publication Number Publication Date
JP2003249160A true JP2003249160A (en) 2003-09-05
JP3960074B2 JP3960074B2 (en) 2007-08-15

Family

ID=28661653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049033A Expired - Fee Related JP3960074B2 (en) 2002-02-26 2002-02-26 Test circuit for leakage detector

Country Status (1)

Country Link
JP (1) JP3960074B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313802A (en) * 2020-03-18 2020-06-19 华中科技大学 Fault-tolerant method for topological short-circuit fault of five-phase open winding with suspension capacitor
CN112363031A (en) * 2020-11-03 2021-02-12 国网重庆市电力公司电力科学研究院 Method for measuring stray capacitance of primary side winding of electromagnetic voltage transformer
US20220109382A1 (en) * 2020-10-01 2022-04-07 Fuji Electric Co., Ltd. Power conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313802A (en) * 2020-03-18 2020-06-19 华中科技大学 Fault-tolerant method for topological short-circuit fault of five-phase open winding with suspension capacitor
CN111313802B (en) * 2020-03-18 2021-06-11 华中科技大学 Fault-tolerant method for topological short-circuit fault of five-phase open winding with suspension capacitor
US20220109382A1 (en) * 2020-10-01 2022-04-07 Fuji Electric Co., Ltd. Power conversion device
US11949347B2 (en) * 2020-10-01 2024-04-02 Fuji Electric Co., Ltd. Power conversion device
CN112363031A (en) * 2020-11-03 2021-02-12 国网重庆市电力公司电力科学研究院 Method for measuring stray capacitance of primary side winding of electromagnetic voltage transformer
CN112363031B (en) * 2020-11-03 2023-04-11 国网重庆市电力公司电力科学研究院 Method for measuring stray capacitance of primary side winding of electromagnetic voltage transformer

Also Published As

Publication number Publication date
JP3960074B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US6014297A (en) Apparatus for detecting arcing faults and ground faults in multiwire branch electric power circuits
US8570181B2 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
KR101650615B1 (en) Apparatus and method for measuring leakage current and performing self-testing
US6671150B2 (en) Circuit breaker for detecting an excessive voltage and tripping responsive thereto
US8810979B2 (en) Method and apparatus for supervisory circuit for ground fault circuit interrupt device
US20030156367A1 (en) Arc fault circuit interrupter with upstream impedance detector
KR100972274B1 (en) Ground fault circuit interrupter
JP7096345B2 (en) Earth-leakage circuit breaker and its removable arc detector
JP4935455B2 (en) Earth leakage detector
KR101759598B1 (en) Digital relay with sensibility of secondary circuit opening
JP4369417B2 (en) Earth leakage breaker
JP2009089574A (en) Ground-fault circuit interrupter
KR200440531Y1 (en) Circuit breaker
JP3960074B2 (en) Test circuit for leakage detector
JPH10191552A (en) Overvoltage detection circuit for earth leakage breaker
JP2004015961A (en) Ground fault interrupter with three-phase phase-failure protector
JP4395009B2 (en) Earth leakage breaker
US11562872B2 (en) Circuit interrupter for detecting breaker fault conditions and interrupting an electric current
JP2001314031A (en) Earth leakage breaker
JPH0522840A (en) Earth leakage breaker
CA2300344C (en) Apparatus for detecting arcing faults and ground faults in multiwire branch electric power circuits
KR20010000555A (en) Ground relay of engine driven generator
JP3375800B2 (en) Earth leakage breaker
Valdes et al. Ground-fault detection in multiple source solidly grounded systems via the single-processor concept for circuit protection
JP2005261157A (en) Current detecting device for three-phase main circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees