JP2003247936A - Refractive index measuring sensor and its manufacturing method - Google Patents

Refractive index measuring sensor and its manufacturing method

Info

Publication number
JP2003247936A
JP2003247936A JP2002046861A JP2002046861A JP2003247936A JP 2003247936 A JP2003247936 A JP 2003247936A JP 2002046861 A JP2002046861 A JP 2002046861A JP 2002046861 A JP2002046861 A JP 2002046861A JP 2003247936 A JP2003247936 A JP 2003247936A
Authority
JP
Japan
Prior art keywords
refractive index
silica particles
metal
multilayer film
measuring sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002046861A
Other languages
Japanese (ja)
Inventor
Osamu Sato
治 佐藤
Chutaku Ko
忠沢 顧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Japan Science and Technology Agency
Original Assignee
Kanagawa Academy of Science and Technology
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, Japan Science and Technology Corp filed Critical Kanagawa Academy of Science and Technology
Priority to JP2002046861A priority Critical patent/JP2003247936A/en
Publication of JP2003247936A publication Critical patent/JP2003247936A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractive index measuring sensor capable of measuring the refractive index of a substance by using a surface plasmon resonance phenomenon without depending on an incident angle, and of measuring the refractive index of the substance by diffracted light at the same time, and to provide its manufacturing method. <P>SOLUTION: This refractive index measuring sensor is provided with a multilayer film formed by cyclically arranging a plurality of silica particles each having a surface coated with metal and having the same size on a glass substrate, and characterized by having spaces capable of entering the substance to be measured among the silica particles in the multilayer film. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、物質の状態変化等
の測定に用いられるバイオセンサ及びケミカルセンサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biosensor and a chemical sensor used for measuring changes in the state of substances.

【0002】[0002]

【従来の技術】従来から屈折率の変化を測定すること
で、その屈折率の変化に応じた物質の状態変化を測定す
ることは知られている。この測定を行うために、金や銀
等の金属薄膜表面に発生する表面プラズモン共鳴現象を
利用して物質の状態測定を行うことが提案されている。
表面プラズモンとは、金属−誘電体界面に生じる電子の
疎密波の一種であり、その波数は試料の厚さや光学特性
(誘電率、屈折率)によって変化する。この変化を直接
測定することはできないため、表面プラズモン共鳴を利
用した測定方法では、プリズムの底面に金や銀等の金属
薄膜を形成し、その金属薄膜の表面に試料を直接接触さ
せた状態で、タングステンランプ、ハロゲンランプ、発
光ダイオード(LED)、スーパールミネッセントダイ
オード(SLD)、レーザーなどの光を前記金属薄膜の
裏面、即ち、試料の反対面から当ててエバネッセント波
を発生させ、このエバネッセント波が表面プラズモンと
共鳴することに起因した減光により生じる暗線の角度の
角度変化から屈折率の変化を測定することで金属薄膜表
面に接触させた試料の状態変化を間接的に測定する装置
が提案され、既に実用化されている。
2. Description of the Related Art Conventionally, it has been known to measure a change in the refractive index to measure a change in the state of a substance according to the change in the refractive index. In order to carry out this measurement, it has been proposed to measure the state of a substance by utilizing the surface plasmon resonance phenomenon generated on the surface of a metal thin film such as gold or silver.
The surface plasmon is a type of compressional wave of electrons generated at a metal-dielectric interface, and its wave number changes depending on the thickness of the sample and optical characteristics (dielectric constant, refractive index). Since this change cannot be directly measured, in the measurement method using surface plasmon resonance, a metal thin film such as gold or silver is formed on the bottom surface of the prism, and the sample is directly contacted with the surface of the metal thin film. , E.g., a tungsten lamp, a halogen lamp, a light emitting diode (LED), a super luminescent diode (SLD), or a laser, is applied from the back surface of the metal thin film, that is, the opposite surface of the sample to generate an evanescent wave. A device that indirectly measures the state change of the sample in contact with the metal thin film surface by measuring the change in the refractive index from the change in the angle of the dark line caused by the extinction caused by the wave resonating with the surface plasmon It has been proposed and already put into practical use.

【0003】[0003]

【発明が解決しようとする課題】上記したように構成さ
れた従来の表面プラズモン共鳴センサは、ガラス基板上
に真空蒸着法で金属薄膜を形成する。このため、測定を
行うために試料毎に表面プラズモン共鳴が生じる入射角
を探す必要があるため光の入射角度が可変できるように
装置を組み立てる必要があり、装置が複雑になり、ま
た、測定も煩雑になるという問題点があった。本発明
は、上記した従来の問題点を解決し、入射角度に依存す
ることなく表面プラズモン共鳴現象を用いて物質の屈折
率を測定することができ、かつ、同時に回折光によって
も物質の屈折率を測定することができる屈折率測定用セ
ンサ及びその製造方法を提供することを目的としてい
る。
In the conventional surface plasmon resonance sensor constructed as described above, a metal thin film is formed on a glass substrate by a vacuum deposition method. For this reason, it is necessary to find the incident angle at which surface plasmon resonance occurs for each sample in order to perform the measurement, so it is necessary to assemble the device so that the incident angle of light can be changed, and the device becomes complicated, and the measurement is also difficult. There was a problem that it became complicated. INDUSTRIAL APPLICABILITY The present invention solves the above-mentioned conventional problems, and can measure the refractive index of a substance by using the surface plasmon resonance phenomenon without depending on the incident angle, and at the same time, the refractive index of the substance can also be measured by diffracted light. It is an object of the present invention to provide a refractive index measuring sensor capable of measuring the above and a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係る屈折率測定用センサは、ガラス製
基板上に、表面が金属でコーティングされた同じサイズ
の複数のシリカ粒子を周期的に配列してなる多層膜を備
え、前記多層膜内のシリカ粒子間に測定すべき物質が入
り得る隙間を有することを特徴とするものである。前記
したシリカ粒子の表面をコーティングする金属は、好ま
しくは、金又は銀であるが、これに限定されることな
く、プラズモンを有する金属であれば任意の金属でよ
い。前記シリカ粒子の大きさは光回折と密接な関係があ
り、粒子サイズが大きければ大きいほど回折波長は長波
長側に移動する。従って、シリカ粒子の大きさは、測定
すべき試料や入射光の波長に応じて任意に設定すること
が可能であり、例えば、200nm又は300nmであ
り得る。また、本発明に係る屈折率測定用センサの製造
方法は、ガラス基板上に、同じサイズの複数のシリカ粒
子が周期的に配列された多層膜を形成し、前記基板に形
成された多層膜を、金属及びポリマーを含有した溶液中
に入れ、前記溶液から多層膜を取り出して乾燥させた
後、ポリマーを焼却でき、かつ、金属の微粒子が凝集す
ることなく金属をシリカ粒子に固定することができる温
度で多層膜を焼成することで、個々のシリカ粒子の表面
に金属が固定され、かつ、個々のシリカ粒子間に微細な
隙間が形成された多層膜を形成することを特徴とするも
のである。前記焼成温度は、採用する金属に応じて、ポ
リマーを焼却でき、かつ、金属の微粒子が凝集すること
なく金属をシリカ粒子に固定することができる温度範囲
で任意に設定され得、例えば、金属として金を用いる場
合には、300°〜400°の範囲が好ましい。また、
シリカ粒子の多層膜は任意の方法で形成され得、例え
ば、垂直堆積法等の方法で形成され得る。
In order to achieve the above-mentioned object, a sensor for measuring a refractive index according to the present invention comprises a glass substrate on which a plurality of silica particles of the same size, the surfaces of which are coated with a metal, are coated. It is characterized in that it comprises a multi-layered film arranged periodically, and has a gap between silica particles in the multi-layered film in which a substance to be measured can enter. The metal coating the surface of the silica particles is preferably gold or silver, but is not limited thereto, and any metal having plasmon may be used. The size of the silica particles is closely related to light diffraction, and the larger the particle size, the more the diffraction wavelength shifts to the long wavelength side. Therefore, the size of the silica particles can be arbitrarily set according to the sample to be measured and the wavelength of incident light, and can be, for example, 200 nm or 300 nm. Further, the method for manufacturing a sensor for measuring a refractive index according to the present invention, on a glass substrate, to form a multilayer film in which a plurality of silica particles of the same size are periodically arranged, the multilayer film formed on the substrate. It is possible to incinerate the polymer after putting it in a solution containing a metal and a polymer, taking out the multilayer film from the solution and drying it, and fixing the metal to the silica particles without agglomeration of the metal fine particles. By firing the multilayer film at a temperature, a metal is fixed on the surface of each silica particle, and a multilayer film in which fine gaps are formed between the individual silica particles is formed. . The firing temperature can be arbitrarily set in a temperature range in which the polymer can be incinerated, and the metal fine particles can be fixed to the silica particles without agglomeration, depending on the metal employed, for example, as a metal. When using gold, the range of 300 ° to 400 ° is preferable. Also,
The multilayer film of silica particles can be formed by any method, for example, a vertical deposition method or the like.

【0005】[0005]

【発明の実施の形態】以下、添付図面に示した実施例を
参照して本発明に係る屈折率測定用センサの実施の形態
について説明していく。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a refractive index measuring sensor according to the present invention will be described below with reference to the embodiments shown in the accompanying drawings.

【0006】始めに図1及び図2を用いて本発明に係る
屈折率測定用センサの製造方法について説明していく。
まず、垂直堆積法で基板上にシリカ粒子の周期性多層膜
を作製する。垂直堆積法により形成された多層膜は、図
1に示すように同じサイズのシリカ粒子1が周期的に配
列されたものになっている。尚、図中2はシリカ粒子間
にあいた隙間を示している。次に図2(a)〜(e)を
用いてガラス基板に形成された多層膜の各シリカ粒子の
表面を金でコーティングする工程について説明してい
く。図2(a)は、シリカ粒子の多層膜が形成されたガ
ラス基板を示している。始めに、金ナノ粒子4及びポリ
マー3を含有した溶液の中にガラス基板を浸ける(図2
(b))。そして、溶液中に浸けられたガラス基板を2
mm/minの速度で引き上げて乾燥させる(図2
(b)及び(c))。そして、最後に、ポリマー3を焼
却でき、金ナノ粒子4が凝集することなく金をシリカ粒
子の表面に固定できる温度でガラス基板を焼成する(図
2(d))。これにより、シリカ粒子の表面に金が固定
され、かつ、シリカ粒子1間の隙間2に混入していたポ
リマー3が焼却されてなくなるので、シリカ粒子1間に
微細な隙間2(ナノ空間)があいた屈折率測定用センサ
が完成する(図2(e))。尚、図2中、符号5はシリ
カ粒子1の表面に固定された金膜を示している。
First, a method for manufacturing the refractive index measuring sensor according to the present invention will be described with reference to FIGS.
First, a periodic multilayer film of silica particles is formed on a substrate by the vertical deposition method. The multilayer film formed by the vertical deposition method is one in which silica particles 1 of the same size are periodically arranged as shown in FIG. In the figure, 2 indicates a gap between the silica particles. Next, the step of coating the surface of each silica particle of the multilayer film formed on the glass substrate with gold will be described with reference to FIGS. FIG. 2A shows a glass substrate on which a multilayer film of silica particles is formed. First, a glass substrate is immersed in a solution containing gold nanoparticles 4 and polymer 3 (see FIG. 2).
(B)). Then, the glass substrate soaked in the solution 2
It is pulled up at a speed of mm / min and dried (Fig. 2).
(B) and (c)). Then, finally, the glass substrate is fired at a temperature at which the polymer 3 can be incinerated and the gold nanoparticles 4 can be fixed on the surface of the silica particles without agglomeration (FIG. 2 (d)). As a result, gold is fixed on the surface of the silica particles, and the polymer 3 mixed in the gaps 2 between the silica particles 1 is incinerated and disappears, so that fine gaps 2 (nano spaces) are formed between the silica particles 1. The open refractive index measuring sensor is completed (FIG. 2E). In FIG. 2, reference numeral 5 indicates a gold film fixed on the surface of the silica particle 1.

【0007】上記したように構成された屈折率測定用セ
ンサを用いて、6種類の媒質(メタノール、エタノー
ル、イソプロパノール、テトラヒドロフラン、トルエ
ン、及び1,2-ジブロモブタン)の屈折率を測定した。図
3は測定実験に用いた装置の概略構成図である。測定に
用いた屈折率測定用センサは、直径300nmのシリカ
粒子の層を3層形成してなる多層膜をガラス基板に上に
形成したもので、各シリカ粒子の表面は金でコーティン
グされている。上記した屈折率測定用センサを、媒質が
入った透明容器中に浸け、基板の裏側(多層膜が形成さ
れてない側)から、白色光を入射し、センサを通過した
光を反対側で測定した。上記した条件で、屈折率が既知
の空気(屈折率1.000)、メタノール(屈折率1.329)、
エタノール(屈折率1.360)、イソプロパノール(屈折
率1.377)、テトラヒドロフラン(屈折率1.407)、トル
エン(屈折率1.496)、及び1,2-ジブロモブタン(屈折
率1.538)の各媒体を測定した結果を図4に示す。図4
中、符号aは空気、符号bはメタノール、符号cはエタ
ノール、符号dはイソプロパノール、符号eはテトラヒ
ドロフラン、符号fはトルエン、及び符号gは1,2-ジブ
ロモブタンを各々示している。図面に示すように、測定
光の吸収には表面プラズモン共鳴によるピークと回折に
よるピークが二つ現れ、その値は媒質によって異なる。
これは測定すべき媒質が多層膜内のシリカ粒子間に存在
する隙間に入り込むことにより、表面プラズモン共鳴が
生じる波長及び回折が生じる波長が変化するからであ
る。各媒体のピーク値が生じる波長と屈折率との関係を
図5に示す。図中の符号a〜gは図4と同じ媒体を指
す。図面に示すように、表面プラズモン共鳴によるピー
ク値(LSPR)及び回折によるピーク値(Stop
band)が生じる波長は、共に媒体の持つ屈折率と比
例している。この測定実験結果により、本発明に係る屈
折率測定用センサを用いれば、表面プラズモン共鳴及び
回折の両方から屈折率の測定が可能であることが確認で
き、この特性を生かして、ケミカルセンサやバイオセン
サへの応用が可能であることが分かる。発明者は、多層
膜のシリカ粒子の直径を200nmにしたセンサを用い
て同じ条件で実験を行ったが、同様の結果が得られた。
上記したように本発明に係る屈折率測定用センサは、市
販の紫外可視分光器あるいはファイバー型分光器を用い
て屈折率を測定することが可能になる。また、本発明に
係る屈折率測定用センサによれば、一つの物質の屈折率
を表面プラズモン共鳴と回折との二つの現象を通して測
定することが可能になるので、より精密な測定が可能に
なる。
Using the refractive index measuring sensor constructed as described above, the refractive indexes of six kinds of media (methanol, ethanol, isopropanol, tetrahydrofuran, toluene, and 1,2-dibromobutane) were measured. FIG. 3 is a schematic configuration diagram of the apparatus used for the measurement experiment. The refractive index measuring sensor used for the measurement is a multilayer film formed by forming three layers of silica particles having a diameter of 300 nm on a glass substrate, and the surface of each silica particle is coated with gold. . Immerse the above-mentioned refractive index measurement sensor in a transparent container containing a medium, inject white light from the back side of the substrate (the side where the multilayer film is not formed), and measure the light passing through the sensor on the opposite side. did. Under the above conditions, air with a known refractive index (refractive index 1.000), methanol (refractive index 1.329),
Figure 4 shows the results of measurements of ethanol (refractive index 1.360), isopropanol (refractive index 1.377), tetrahydrofuran (refractive index 1.407), toluene (refractive index 1.496), and 1,2-dibromobutane (refractive index 1.538). Shown in. Figure 4
In the above, the symbol a is air, the symbol b is methanol, the symbol c is ethanol, the symbol d is isopropanol, the symbol e is tetrahydrofuran, the symbol f is toluene, and the symbol g is 1,2-dibromobutane. As shown in the drawing, two peaks due to surface plasmon resonance and two peaks due to diffraction appear in the absorption of the measurement light, and the values differ depending on the medium.
This is because the medium to be measured enters the gap existing between the silica particles in the multilayer film, whereby the wavelength at which surface plasmon resonance occurs and the wavelength at which diffraction occurs change. FIG. 5 shows the relationship between the wavelength at which the peak value of each medium occurs and the refractive index. Reference numerals a to g in the figure indicate the same media as in FIG. As shown in the drawing, the peak value by surface plasmon resonance (LSPR) and the peak value by diffraction (Stop)
The wavelength that causes the band) is proportional to the refractive index of the medium. From this measurement experiment result, it can be confirmed that the refractive index can be measured from both surface plasmon resonance and diffraction by using the refractive index measuring sensor according to the present invention, and by utilizing this characteristic, a chemical sensor or a biosensor can be used. It can be seen that it can be applied to sensors. The inventor conducted an experiment under the same conditions using a sensor in which the silica particles in the multilayer film had a diameter of 200 nm, but similar results were obtained.
As described above, the refractive index measuring sensor according to the present invention can measure the refractive index using a commercially available UV-visible spectroscope or fiber type spectroscope. Further, according to the refractive index measuring sensor of the present invention, it is possible to measure the refractive index of one substance through the two phenomena of surface plasmon resonance and diffraction, which enables more precise measurement. .

【0008】[0008]

【発明の効果】以上説明したように、本発明に係る屈折
率測定用センサは、ガラス製基板上に、表面が金属でコ
ーティングされた同じサイズの複数のシリカ粒子を周期
的に配列してなる多層膜を備え、前記多層膜内のシリカ
粒子間に測定すべき物質が入り得る隙間を有するので、
表面プラズモン共鳴現象が生じる波長と回折が生じる波
長の両方を測定することが可能になり、これらの波長か
ら、測定すべき物質の屈折率を測定することが可能にな
るという効果を奏する。また、本発明に係る屈折率測定
用センサによれば、上記した屈折率測定用センサを簡単
な方法で製造することが可能になる。
As described above, the sensor for measuring the refractive index according to the present invention comprises a glass substrate, and a plurality of silica particles of the same size, the surfaces of which are coated with metal, arranged periodically. Since it is provided with a multilayer film and has a gap in which a substance to be measured can enter between silica particles in the multilayer film,
It is possible to measure both the wavelength at which the surface plasmon resonance phenomenon occurs and the wavelength at which diffraction occurs, and it is possible to measure the refractive index of the substance to be measured from these wavelengths. Further, according to the refractive index measuring sensor of the present invention, the above-described refractive index measuring sensor can be manufactured by a simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ガラス基板に形成されシリカ粒子の多層膜の
概略側面図である。
FIG. 1 is a schematic side view of a multilayer film of silica particles formed on a glass substrate.

【図2】 (a)〜(e)はガラス基板に形成された多
層膜の各シリカ粒子の表面を金でコーティングする工程
を示す概略図である。
2A to 2E are schematic views showing a process of coating the surface of each silica particle of a multilayer film formed on a glass substrate with gold.

【図3】 本発明に係る屈折率測定センサの測定実験に
用いた装置の概略構成図である。
FIG. 3 is a schematic configuration diagram of an apparatus used for a measurement experiment of the refractive index measurement sensor according to the present invention.

【図4】 本発明に係る屈折率測定センサを用いて7つ
の異なる媒体を測定した結果を示すグラフである。
FIG. 4 is a graph showing the results of measuring seven different media using the refractive index measurement sensor according to the present invention.

【図5】 図4により得られた表面プラズモン共鳴が生
じる波長及び回折が生じる波長と、屈折率との関係を示
すグラフである。
FIG. 5 is a graph showing a relationship between a wavelength at which surface plasmon resonance occurs and a wavelength at which diffraction occurs, which is obtained in FIG. 4, and a refractive index.

【符号の説明】[Explanation of symbols]

1 シリカ粒子 2 隙間(ナノ空間) 3 ポリマー 4 金ナノ粒子 5 金粒子膜 1 silica particles 2 Gap (nano space) 3 polymer 4 gold nanoparticles 5 Gold particle film

フロントページの続き (72)発明者 顧 忠沢 神奈川県川崎市高津区溝口6−14−5 第 一コーポラスみなみ201号 Fターム(参考) 2G059 AA02 BB04 EE02 GG10 KK01Continued front page    (72) Inventor, Tadazawa             6-14-5 Mizoguchi, Takatsu-ku, Kawasaki City, Kanagawa Prefecture             One Corpora Minami 201 F term (reference) 2G059 AA02 BB04 EE02 GG10 KK01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ガラス製基板上に、 表面が金属でコーティングされた同じサイズの複数のシ
リカ粒子を周期的に配列してなる多層膜を備え、 前記多層膜内のシリカ粒子間に測定すべき物質が入り得
る隙間を有することを特徴とする屈折率測定用センサ。
1. A multilayer film comprising a glass substrate and a plurality of silica particles of the same size, the surface of which is coated with a metal, arranged periodically, the measurement being performed between the silica particles in the multilayer film. A refractive index measuring sensor having a gap into which a substance can enter.
【請求項2】前記金属が金であることを特徴とする請求
項1に記載の屈折率測定用センサ。
2. The refractive index measuring sensor according to claim 1, wherein the metal is gold.
【請求項3】前記金属が銀であることを特徴とする請求
項1に記載の屈折率測定用センサ。
3. The refractive index measuring sensor according to claim 1, wherein the metal is silver.
【請求項4】ガラス基板上に、同じサイズの複数のシリ
カ粒子が周期的に配列された多層膜を形成し、 前記基板に形成された多層膜を、金属及びポリマーを含
有した溶液中に入れ、 前記溶液から多層膜を取り出して乾燥させた後、 ポリマーを焼却でき、かつ、金属の微粒子が凝集するこ
となく金属をシリカ粒子に固定することができる温度で
多層膜を焼成することで、 個々のシリカ粒子の表面に金属が固定され、かつ、個々
のシリカ粒子間に微細な隙間が形成された多層膜を形成
することを特徴とする屈折率測定用センサの製造方法。
4. A multilayer film in which a plurality of silica particles of the same size are periodically arranged is formed on a glass substrate, and the multilayer film formed on the substrate is placed in a solution containing a metal and a polymer. By taking out the multilayer film from the solution and drying it, by firing the multilayer film at a temperature at which the polymer can be incinerated and the metal can be fixed to the silica particles without agglomeration of the metal fine particles, A method for producing a sensor for measuring a refractive index, which comprises forming a multilayer film in which a metal is fixed on the surface of silica particles and fine gaps are formed between individual silica particles.
【請求項5】前記金属が金であることを特徴とする請求
項4に記載の製造方法。
5. The manufacturing method according to claim 4, wherein the metal is gold.
【請求項6】焼成の温度範囲が300°〜400°であ
ることを特徴とする請求項5に記載の製造方法。
6. The manufacturing method according to claim 5, wherein the firing temperature range is 300 ° to 400 °.
【請求項7】前記金属が銀であることを特徴とする請求
項4に記載の製造方法。
7. The manufacturing method according to claim 4, wherein the metal is silver.
JP2002046861A 2002-02-22 2002-02-22 Refractive index measuring sensor and its manufacturing method Pending JP2003247936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002046861A JP2003247936A (en) 2002-02-22 2002-02-22 Refractive index measuring sensor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002046861A JP2003247936A (en) 2002-02-22 2002-02-22 Refractive index measuring sensor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003247936A true JP2003247936A (en) 2003-09-05

Family

ID=28660121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002046861A Pending JP2003247936A (en) 2002-02-22 2002-02-22 Refractive index measuring sensor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003247936A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729112A1 (en) * 2005-06-01 2006-12-06 Canon Kabushiki Kaisha Localized plasmon resonance sensor
JP2008538414A (en) * 2005-04-22 2008-10-23 富士レビオ株式会社 Sensor chip with bonded non-metallic particles including a metal coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538414A (en) * 2005-04-22 2008-10-23 富士レビオ株式会社 Sensor chip with bonded non-metallic particles including a metal coating
US8288166B2 (en) 2005-04-22 2012-10-16 Fujirebio Inc. Sensor chip with connected non-metallic particles comprising a metallic coating
EP1729112A1 (en) * 2005-06-01 2006-12-06 Canon Kabushiki Kaisha Localized plasmon resonance sensor
US7599066B2 (en) 2005-06-01 2009-10-06 Canon Kabushiki Kaisha Localized plasmon resonance sensor

Similar Documents

Publication Publication Date Title
US6778316B2 (en) Nanoparticle-based all-optical sensors
Urrutia et al. Optical Fiber Sensors Based on Nanoparticle‐Embedded Coatings
TWI410621B (en) Trace detection device of biological and chemical analytes and diction method applying the same
Powell et al. Plasmonic gas sensing using nanocube patch antennas
US6870624B2 (en) Optical wavelength resonant device for chemical sensing
US6421128B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared special ranges
CA2578625C (en) Biosensor substrate structure for reducing the effects of optical interference
Lavers et al. Planar optical waveguides for sensing applications
Richard et al. An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices
KR100977292B1 (en) Spr gas sensing device manufacturing method using molecularly imprinted polymer
US6330387B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared spectral ranges
US7898667B2 (en) Optical element and method for preparing the same, sensor apparatus and sensing method
BRPI0620330A2 (en) Plasma microporous analyte detection layer
WO2007148833A1 (en) Sensor, sensing system and sensing method
Jiang et al. Optical response of fiber-optic Fabry-Perot refractive-index tip sensor coated with polyelectrolyte multilayer ultra-thin films
Song et al. Reflective color filter with precise control of the color coordinate achieved by stacking silicon nanowire arrays onto ultrathin optical coatings
Peng et al. Thin-film-based optical fiber Fabry–Perot interferometer used for humidity sensing
CN102539379A (en) Optical fluid detection device based on inorganic oxide thin film and preparation method thereof
Hosoki et al. Localized surface plasmon sensor based on gold island films using a hetero-core structured optical fiber
Grego et al. Wavelength interrogation of grating-based optical biosensors in the input coupler configuration
Kim et al. Fabry–Perot Cavity Control for Tunable Raman Scattering
JP2003247936A (en) Refractive index measuring sensor and its manufacturing method
Lin et al. Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates
CN102954950A (en) Biosensor based on periodic nano-medium particles and preparation method thereof
Kumari et al. Enhanced resonant absorption in dye-doped polymer thin-film cavities for water vapour sensing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070411