JP2003243211A - Method for manufacturing rare earth magnet powder superior in magnetic anisotropy - Google Patents

Method for manufacturing rare earth magnet powder superior in magnetic anisotropy

Info

Publication number
JP2003243211A
JP2003243211A JP2002038637A JP2002038637A JP2003243211A JP 2003243211 A JP2003243211 A JP 2003243211A JP 2002038637 A JP2002038637 A JP 2002038637A JP 2002038637 A JP2002038637 A JP 2002038637A JP 2003243211 A JP2003243211 A JP 2003243211A
Authority
JP
Japan
Prior art keywords
hydrogen
rare earth
earth magnet
raw material
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002038637A
Other languages
Japanese (ja)
Inventor
Katsuhiko Mori
克彦 森
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002038637A priority Critical patent/JP2003243211A/en
Publication of JP2003243211A publication Critical patent/JP2003243211A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a rare earth magnetic powder that has a high coercive force and a high residual magnetic flux and is superior in magnetic anisotropy. <P>SOLUTION: This rare earth magnet powder contains R, Dy, Co, and Fe as main elements, and a rare earth magnet alloy material wherein Dy is 0.1-6%, Co is 2.5-40% and Co+10Dy≥23% is subjected to hydrogen absorption at 500°C or less in a hydrogen gas atmosphere of 1.2-5 atm, and then, while the processing temperature is held at 500-1000°C, a hydrogen is absorbed in a hydrogen gas atmosphere of 1.2-5 atm, and an intermediate heat treatment is conducted in an inert gas atmosphere of 1.2-10 atm, and then the material is heated in an evacuated hydrogen in a hydrogen atmosphere of 5-100 Torr absolute pressure. Furthermore, dehydrogenation is conducted in a vacuum atmosphere of 1 Torr or less in end pressure, and the material is cooled and crushed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、優れた保磁力お
よび残留磁束密度を有する磁気異方性に優れた希土類磁
石粉末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth magnet powder having excellent coercive force and residual magnetic flux density and excellent magnetic anisotropy.

【0002】[0002]

【従来の技術】Dyを除く希土類元素(以下、Rで示
す)、Dy、Co、BおよびFeを含有し、さらに必要
に応じてM(但し、MはGa、Zr、Nb、Mo、H
f、Ta、W、Ni、Al、Ti、V、Cu、Cr、G
eおよびSiの内の1種または2種以上を示す)を主成
分として含有する希土類磁石合金原料をArガス雰囲気
中、温度:600〜1200℃に保持して均質化処理
し、または均質化処理せずに、水素雰囲気中で室温から
温度:500℃未満までの所定の温度に昇温、または昇
温し保持して水素吸収処理したのち、水素圧力:1〜3
気圧の水素雰囲気中で500〜1000℃の範囲内の所
定の温度に昇温し保持することにより前記希土類磁石合
金原料に水素を吸収させて相変態による分解を促す水素
吸収・分解処理を施し、引き続いて、水素吸収・分解処
理を施した希土類磁石合金原料を不活性ガス圧:1〜1
1気圧、温度:500〜1000℃の範囲内の所定の温
度で不活性ガス雰囲気中に保持することにより中間熱処
理を行い、さらに引き続いて、中間熱処理を施した希土
類磁石合金原料を500〜1000℃の範囲内の所定の
温度で、絶対圧:5〜100Torrの水素雰囲気中ま
たは水素分圧:5〜100Torrの水素と不活性ガス
との混合ガス雰囲気中に保持することにより希土類磁石
合金原料に水素を一部残したまま減圧水素中熱処理を行
い、その後、500〜1000℃の範囲内の所定の温度
で到達圧:1×10-1Torr以下の真空雰囲気に保持
することによりR−T−M−A系合金から強制的に水素
を放出させて相変態を促す脱水素処理を施し、ついで冷
却し、粉砕する工程からなる高保磁力を有する磁気異方
性に優れた希土類磁石粉末の製造方法は知られている
(特開2000−21614号公報参照)。
2. Description of the Related Art Containing a rare earth element other than Dy (hereinafter represented by R), Dy, Co, B and Fe, and optionally M (where M is Ga, Zr, Nb, Mo, H).
f, Ta, W, Ni, Al, Ti, V, Cu, Cr, G
The rare earth magnet alloy raw material containing, as a main component, one or two or more of e and Si) is homogenized by maintaining the temperature at 600 to 1200 ° C. in an Ar gas atmosphere. Without heating, the temperature is raised from room temperature to a temperature of less than 500 ° C. in a hydrogen atmosphere, or the temperature is held and held for hydrogen absorption treatment, and then the hydrogen pressure is 1-3.
A hydrogen absorption / decomposition treatment is performed in which the rare earth magnet alloy raw material is made to absorb hydrogen by heating and maintaining it at a predetermined temperature within a range of 500 to 1000 ° C. in a hydrogen atmosphere at atmospheric pressure to promote decomposition by phase transformation. Subsequently, the hydrogen-absorbing / decomposing rare earth magnet alloy raw material is treated with an inert gas pressure of 1 to 1
Intermediate atmosphere heat treatment is performed by maintaining in an inert gas atmosphere at a predetermined temperature within the range of 1 atm and temperature: 500 to 1000 ° C., and subsequently the intermediate heat treatment is performed on the rare earth magnet alloy raw material at 500 to 1000 ° C. At a predetermined temperature within the range of 5 to 100 Torr in absolute pressure or in a mixed gas atmosphere of hydrogen and an inert gas at 5 to 100 Torr in absolute pressure, hydrogen is used as a rare earth magnet alloy raw material. Under a reduced pressure hydrogen while leaving a part of it, and then, at a predetermined temperature within a range of 500 to 1000 ° C., the ultimate pressure: 1 × 10 −1 Torr is maintained in a vacuum atmosphere of R-T-M or less. -A rare earth element having a high coercive force and excellent magnetic anisotropy, which is formed by performing a dehydrogenation treatment for forcibly releasing hydrogen from an A-based alloy to promote a phase transformation, and then cooling and pulverizing. Method for producing a stone powder are known (see JP 2000-21614).

【0003】[0003]

【発明が解決しようとする課題】近年、電気・電子業界
では一層磁気異方性に優れた希土類磁石粉末が求められ
ており、特に保磁力および残留磁束密度が共に一層優れ
た磁気異方性を有する希土類磁石粉末が求められてい
る。しかし、前記従来の方法で製造した希土類磁石粉末
は、高保磁力を有するものの残留磁束密度については十
分な値が得られず、保磁力および残留磁束密度が共に優
れた磁気異方性を有する希土類磁石粉末は得られていな
い。
In recent years, in the electric and electronic industries, there has been a demand for rare earth magnet powders having more excellent magnetic anisotropy, and in particular, magnetic coercive force and remanent magnetic flux density are both excellent in magnetic anisotropy. There is a need for rare earth magnet powders that have. However, although the rare earth magnet powder manufactured by the conventional method has a high coercive force, a sufficient value cannot be obtained for the remanent magnetic flux density, and the coercive force and the remanent magnetic flux density have excellent magnetic anisotropy. No powder was obtained.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
保磁力および残留磁束密度が共に一層優れた磁気異方性
を有する希土類磁石粉末の製造方法を開発すべく研究を
行った結果、(a)R、Dy、Co、BおよびFeを含
有し、必要に応じてMを主成分として含有し、前記Dy
およびCoが原子%で(以下、%は原子%を示す)D
y:0.1〜6%、Co:2.5〜40%でかつCo+
10Dy≧23%となるように含有する組成を有する希
土類磁石合金原料を、圧力:1.2〜5気圧の水素ガス
雰囲気中で室温から温度:500℃未満までの所定の温
度に昇温、または昇温し保持することにより水素を吸収
させる水素吸収処理したのち、圧力:1.2〜5気圧の
水素ガス雰囲気中で500〜1000℃の範囲内の所定
の温度に昇温し保持することにより前記希土類磁石合金
原料にさらに水素を吸収させて分解する水素吸収・分解
処理を施し、引き続いて、前記水素吸収・分解処理を施
した希土類磁石合金原料を500〜1000℃の範囲内
の所定の温度で圧力:1.2〜10気圧の不活性ガス雰
囲気中に保持することにより中間熱処理を行い、引き続
いて、中間熱処理を施した希土類磁石合金原料を500
〜1000℃の範囲内の所定の温度で、絶対圧:5〜1
00Torrの水素雰囲気中または水素分圧:5〜10
0Torrの水素と不活性ガスとの混合ガス雰囲気中に
保持することにより希土類磁石合金原料に水素を一部残
したまま減圧水素中熱処理を行い、その後、500〜1
000℃の範囲内の所定の温度で到達圧:1Torr以
下の真空雰囲気に保持することにより希土類磁石合金原
料から強制的に水素を放出させて相変態を促す脱水素処
理を施し、ついで冷却し、粉砕することにより得られた
希土類磁石粉末は、保磁力および残留磁束密度が共に高
く、磁気異方性に優れた希土類磁石粉末が得られる、
(b)前記水素吸収処理および水素吸収・分解処理にお
ける圧力は、中間熱処理における圧力と同等またはそれ
以下であることが一層好ましい、という知見を得たので
ある。
Therefore, the present inventors have
As a result of research to develop a method for producing a rare earth magnet powder having more excellent magnetic anisotropy in both coercive force and residual magnetic flux density, (a) R, Dy, Co, B and Fe are contained and required. According to the above, M is contained as a main component, and Dy
And Co is atomic% (hereinafter,% means atomic%) D
y: 0.1 to 6%, Co: 2.5 to 40%, and Co +
The rare earth magnet alloy raw material having a composition containing 10 Dy ≧ 23% is heated to a predetermined temperature from room temperature to less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 1.2 to 5 atm, or After performing a hydrogen absorption treatment to absorb hydrogen by raising the temperature and holding it, by raising the temperature to a predetermined temperature within a range of 500 to 1000 ° C. in a hydrogen gas atmosphere with a pressure of 1.2 to 5 atmospheres and holding it. The rare earth magnet alloy raw material is further subjected to a hydrogen absorption / decomposition treatment for absorbing and decomposing hydrogen, and subsequently, the hydrogen absorption / decomposition-treated rare earth magnet alloy raw material is subjected to a predetermined temperature within a range of 500 to 1000 ° C. At a pressure of 1.2 to 10 atm for intermediate heat treatment, followed by intermediate heat treatment for 500 rare earth magnet alloy raw materials.
Absolute pressure: 5-1 at a given temperature within the range of ~ 1000 ° C
In hydrogen atmosphere of 00 Torr or hydrogen partial pressure: 5-10
By holding in a mixed gas atmosphere of 0 Torr of hydrogen and an inert gas, a heat treatment in reduced pressure hydrogen is carried out with some hydrogen remaining in the rare earth magnet alloy raw material, and then 500 to 1
At a predetermined temperature within the range of 000 ° C., ultimate pressure: A dehydrogenation treatment that promotes phase transformation by forcibly releasing hydrogen from the rare earth magnet alloy raw material by maintaining it in a vacuum atmosphere at 1 Torr or less, and then cooling, The rare earth magnet powder obtained by pulverizing has a high coercive force and residual magnetic flux density, and a rare earth magnet powder having excellent magnetic anisotropy can be obtained.
(B) It has been found that the pressure in the hydrogen absorption treatment and the hydrogen absorption / decomposition treatment is more preferably equal to or lower than the pressure in the intermediate heat treatment.

【0005】この発明は、かかる知見に基づいて成され
たものであって、(1)R、Dy、Co、BおよびFe
を主成分とし、前記DyおよびCoがDy:0.1〜6
%、Co:2.5〜40%でかつCo+10Dy≧23
%となるように含有する希土類磁石合金原料を、圧力:
1.2〜5気圧の水素ガス雰囲気中で室温から温度:5
00℃未満までの所定の温度に昇温、または昇温し保持
することにより水素を吸収させる水素吸収処理したの
ち、圧力:1.2〜5気圧の水素ガス雰囲気中で500
〜1000℃の範囲内の所定の温度に昇温し保持するこ
とにより前記希土類磁石合金原料にさらに水素を吸収さ
せて分解する水素吸収・分解処理を施し、引き続いて、
水素吸収・分解処理を施した希土類磁石合金原料を50
0〜1000℃の範囲内の所定の温度で圧力:1.2〜
10気圧の不活性ガス雰囲気中に保持することにより中
間熱処理を行い、引き続いて、中間熱処理を施した希土
類磁石合金原料を500〜1000℃の範囲内の所定の
温度で、絶対圧:5〜100Torrの水素雰囲気中ま
たは水素分圧:5〜100Torrの水素と不活性ガス
との混合ガス雰囲気中に保持することにより希土類磁石
合金原料に水素を一部残したまま減圧水素中熱処理を行
い、その後、500〜1000℃の範囲内の所定の温度
で到達圧:1Torr以下の真空雰囲気に保持すること
により希土類磁石合金原料から強制的に水素を放出させ
て相変態を促す脱水素処理を施し、ついで冷却し、粉砕
する磁気異方性に優れた希土類磁石粉末の製造方法、
(2)R、Dy、Co、B、FeおよびMを主成分と
し、前記DyおよびCoがDy:0.1〜6%、Co:
2.5〜40%でかつCo+10Dy≧23%となるよ
うに含有する希土類磁石合金原料を、圧力:1.2〜5
気圧の水素ガス雰囲気中で室温から温度:500℃未満
までの所定の温度に昇温、または昇温し保持することに
より水素を吸収させる水素吸収処理したのち、圧力:
1.2〜5気圧の水素ガス雰囲気中で500〜1000
℃の範囲内の所定の温度に昇温し保持することにより前
記希土類磁石合金原料にさらに水素を吸収させて分解す
る水素吸収・分解処理を施し、引き続いて、水素吸収・
分解処理を施した希土類磁石合金原料を500〜100
0℃の範囲内の所定の温度で圧力:1.2〜10気圧の
不活性ガス雰囲気中に保持することにより中間熱処理を
行い、引き続いて、中間熱処理を施した希土類磁石合金
原料を500〜1000℃の範囲内の所定の温度で、絶
対圧:5〜100Torrの水素雰囲気中または水素分
圧:5〜100Torrの水素と不活性ガスとの混合ガ
ス雰囲気中に保持することにより希土類磁石合金原料に
水素を一部残したまま減圧水素中熱処理を行い、その
後、500〜1000℃の範囲内の所定の温度で到達
圧:1Torr以下の真空雰囲気に保持することにより
希土類磁石合金原料から強制的に水素を放出させて相変
態を促す脱水素処理を施し、ついで冷却し、粉砕する磁
気異方性に優れた希土類磁石粉末の製造方法、(3)前
記水素吸収処理および水素吸収・分解処理における圧力
は、中間熱処理における圧力と同等またはそれ以下であ
る(1)または(2)記載の磁気異方性に優れた希土類
磁石粉末の製造方法、に特徴を有するものである。
The present invention has been made on the basis of such findings, and (1) R, Dy, Co, B and Fe.
As a main component, and Dy and Co are Dy: 0.1 to 6
%, Co: 2.5-40% and Co + 10Dy ≧ 23
%, The rare earth magnet alloy raw material contained so that the pressure is:
Room temperature to temperature: 5 in a hydrogen gas atmosphere of 1.2 to 5 atmospheres
After a hydrogen absorption treatment of absorbing hydrogen by raising the temperature to a predetermined temperature of less than 00 ° C. or raising the temperature and holding it, 500 in a hydrogen gas atmosphere at a pressure of 1.2 to 5 atmospheres.
To 1000 ° C. A predetermined temperature within the range of 1000 ° C. is raised and maintained to cause the rare earth magnet alloy raw material to further absorb and decompose hydrogen, thereby performing a hydrogen absorption / decomposition treatment, and subsequently,
50 rare earth magnet alloy raw materials that have undergone hydrogen absorption / decomposition treatment
Pressure at a given temperature within the range of 0 to 1000 ° C: 1.2 to
Intermediate heat treatment is performed by maintaining the atmosphere in an inert gas atmosphere of 10 atm, and the intermediate heat treated rare earth magnet alloy raw material is subsequently subjected to a predetermined temperature within the range of 500 to 1000 ° C. and an absolute pressure of 5 to 100 Torr. In a hydrogen atmosphere or hydrogen partial pressure: 5 to 100 Torr in a mixed gas atmosphere of hydrogen and an inert gas to perform heat treatment in a reduced pressure hydrogen while partially leaving hydrogen in the rare earth magnet alloy raw material. A dehydrogenation treatment for promoting phase transformation by forcibly releasing hydrogen from the raw material of the rare earth magnet alloy is performed by maintaining the ultimate pressure: 1 Torr or less in a vacuum atmosphere at a predetermined temperature within the range of 500 to 1000 ° C., and then cooling. A method for producing a rare earth magnet powder having excellent magnetic anisotropy,
(2) R, Dy, Co, B, Fe and M as main components, and the Dy and Co are Dy: 0.1 to 6%, Co:
A rare earth magnet alloy raw material containing 2.5 to 40% and Co + 10 Dy ≧ 23% is added at a pressure of 1.2 to 5
In a hydrogen gas atmosphere at atmospheric pressure, the temperature is raised from room temperature to a predetermined temperature of less than 500 ° C., or the temperature is raised and held to absorb hydrogen, and then the pressure is changed to:
500 to 1000 in a hydrogen gas atmosphere of 1.2 to 5 atmospheres
The rare earth magnet alloy raw material is further subjected to a hydrogen absorption / decomposition treatment by further absorbing and decomposing hydrogen by raising the temperature to a predetermined temperature in the range of ℃ and holding it.
Decompose the rare earth magnet alloy raw material to 500-100
Intermediate heat treatment is performed by maintaining in an inert gas atmosphere of a pressure of 1.2 to 10 atmospheres at a predetermined temperature within the range of 0 ° C., and subsequently 500 to 1000 of the rare earth magnet alloy raw material subjected to the intermediate heat treatment is used. As a raw material for rare earth magnet alloys, by maintaining at a predetermined temperature within the range of ° C in a hydrogen atmosphere having an absolute pressure of 5 to 100 Torr or a mixed gas atmosphere of hydrogen and an inert gas having a hydrogen partial pressure of 5 to 100 Torr. Heat treatment is carried out in a reduced pressure hydrogen while leaving a part of hydrogen, and thereafter, at a predetermined temperature within a range of 500 to 1000 ° C., an ultimate pressure: 1 Torr or less is maintained in a vacuum atmosphere to force hydrogen from the rare earth magnet alloy raw material. A rare earth magnet powder having excellent magnetic anisotropy, which is subjected to dehydrogenation treatment for releasing phase and accelerating phase transformation, and then cooled and pulverized, (3) the hydrogen absorption treatment and The pressure in the elementary absorption / decomposition treatment is equal to or lower than the pressure in the intermediate heat treatment, and is characterized by the method for producing a rare earth magnet powder excellent in magnetic anisotropy according to (1) or (2). .

【0006】前記(1)に記載の希土類磁石合金原料
は、R:5.5〜14.9%、Dy:0.1〜6%、C
o:2.5〜40%(但し、Co+10Dy≧23
%)、B:5.5〜8%を含有し、残部がFeおよび不
可避不純物からなる成分組成を有することことが一層好
ましい。したがって、この発明は、(4)R:5.5〜
14.9%、Dy:0.1〜6%、Co:2.5〜40
%(但し、Co+10Dy≧23%)、B:5.5〜8
%を含有し、残部がFeおよび不可避不純物からなる成
分組成を有する希土類磁石合金原料を、圧力:1.2〜
5気圧の水素ガス雰囲気中で室温から温度:500℃未
満までの所定の温度に昇温、または昇温し保持すること
により水素を吸収させる水素吸収処理したのち、圧力:
1.2〜5気圧の水素ガス雰囲気中で500〜1000
℃の範囲内の所定の温度に昇温し保持することにより前
記希土類磁石合金原料にさらに水素を吸収させて分解す
る水素吸収・分解処理を施し、引き続いて、水素吸収・
分解処理を施した希土類磁石合金原料を500〜100
0℃の範囲内の所定の温度で圧力:1.2〜10気圧の
不活性ガス雰囲気中に保持することにより中間熱処理を
行い、引き続いて、中間熱処理を施した希土類磁石合金
原料を500〜1000℃の範囲内の所定の温度で、絶
対圧:5〜100Torrの水素雰囲気中または水素分
圧:5〜100Torrの水素と不活性ガスとの混合ガ
ス雰囲気中に保持することにより希土類磁石合金原料に
水素を一部残したまま減圧水素中熱処理を行い、その
後、500〜1000℃の範囲内の所定の温度で到達
圧:1Torr以下の真空雰囲気に保持することにより
希土類磁石合金原料から強制的に水素を放出させて相変
態を促す脱水素処理を施し、ついで冷却し、粉砕する磁
気異方性に優れた希土類磁石粉末の製造方法、に特徴を
有するものである。
The rare earth magnet alloy raw material described in (1) above is R: 5.5 to 14.9%, Dy: 0.1 to 6%, C
o: 2.5-40% (however, Co + 10Dy ≧ 23
%) And B: 5.5 to 8%, with the balance being Fe and inevitable impurities. Therefore, the present invention provides (4) R: 5.5-
14.9%, Dy: 0.1-6%, Co: 2.5-40
% (However, Co + 10Dy ≧ 23%), B: 5.5-8
%, And the balance is a rare earth magnet alloy raw material having a composition of Fe and inevitable impurities, pressure: 1.2 to
In a hydrogen gas atmosphere of 5 atm, the temperature is raised from room temperature to a temperature of less than 500 ° C., or the temperature is raised and maintained to absorb hydrogen, and then the pressure is changed to:
500 to 1000 in a hydrogen gas atmosphere of 1.2 to 5 atmospheres
The rare earth magnet alloy raw material is further subjected to a hydrogen absorption / decomposition treatment by further absorbing and decomposing hydrogen by raising the temperature to a predetermined temperature in the range of ℃ and holding it.
Decompose the rare earth magnet alloy raw material to 500-100
Intermediate heat treatment is performed by maintaining in an inert gas atmosphere of a pressure of 1.2 to 10 atmospheres at a predetermined temperature within the range of 0 ° C., and subsequently 500 to 1000 of the rare earth magnet alloy raw material subjected to the intermediate heat treatment is used. As a raw material for rare earth magnet alloys, by maintaining at a predetermined temperature within the range of ° C in a hydrogen atmosphere having an absolute pressure of 5 to 100 Torr or a mixed gas atmosphere of hydrogen and an inert gas having a hydrogen partial pressure of 5 to 100 Torr. Heat treatment is carried out in a reduced pressure hydrogen while leaving a part of hydrogen, and thereafter, at a predetermined temperature within a range of 500 to 1000 ° C., an ultimate pressure: 1 Torr or less is maintained in a vacuum atmosphere to force hydrogen from the rare earth magnet alloy raw material. And a dehydrogenation treatment for accelerating the phase transformation, followed by cooling and pulverizing, to produce a rare earth magnet powder having excellent magnetic anisotropy.

【0007】前記(2)記載の希土類磁石合金原料は、
R:5.5〜14.9%、Dy:0.1〜6%、Co:
2.5〜40%(但し、Co+10Dy≧23%)、
B:5.5〜8%、M:6%以下を含有し、残部がFe
および不可避不純物からなる成分組成を有することが好
ましい。したがって、この発明は、(4)R:5.5〜
14.9%、Dy:0.1〜6%、Co:2.5〜40
%(但し、Co+10Dy≧23%)、B:5.5〜8
%、M:6%以下を含有し、残部がFeおよび不可避不
純物からなる成分組成を有する希土類磁石合金原料を、
圧力:1.2〜5気圧の水素ガス雰囲気中で室温から温
度:500℃未満までの所定の温度に昇温、または昇温
し保持することにより水素を吸収させる水素吸収処理し
たのち、圧力:1.2〜5気圧の水素ガス雰囲気中で5
00〜1000℃の範囲内の所定の温度に昇温し保持す
ることにより前記希土類磁石合金原料にさらに水素を吸
収させて分解する水素吸収・分解処理を施し、引き続い
て、水素吸収・分解処理を施した希土類磁石合金原料を
500〜1000℃の範囲内の所定の温度で圧力:1.
2〜10気圧の不活性ガス雰囲気中に保持することによ
り中間熱処理を行い、引き続いて、中間熱処理を施した
希土類磁石合金原料を500〜1000℃の範囲内の所
定の温度で、絶対圧:5〜100Torrの水素雰囲気
中または水素分圧:5〜100Torrの水素と不活性
ガスとの混合ガス雰囲気中に保持することにより希土類
磁石合金原料に水素を一部残したまま減圧水素中熱処理
を行い、その後、500〜1000℃の範囲内の所定の
温度で到達圧:1Torr以下の真空雰囲気に保持する
ことにより希土類磁石合金原料から強制的に水素を放出
させて相変態を促す脱水素処理を施し、ついで冷却し、
粉砕する磁気異方性に優れた希土類磁石粉末の製造方
法、に特徴を有するものである。
The raw material for rare earth magnet alloy described in (2) above is
R: 5.5 to 14.9%, Dy: 0.1 to 6%, Co:
2.5-40% (however, Co + 10Dy ≧ 23%),
B: 5.5 to 8%, M: 6% or less, balance Fe
And it is preferable to have a component composition consisting of unavoidable impurities. Therefore, the present invention provides (4) R: 5.5-
14.9%, Dy: 0.1-6%, Co: 2.5-40
% (However, Co + 10Dy ≧ 23%), B: 5.5-8
%, M: 6% or less, and the balance is a rare earth magnet alloy raw material having a composition of Fe and inevitable impurities.
Pressure: In a hydrogen gas atmosphere of 1.2 to 5 atm, the temperature is raised from room temperature to a temperature lower than 500 ° C., or the temperature is raised and held to absorb hydrogen. 5 in a hydrogen gas atmosphere of 1.2 to 5 atmospheres
The rare earth magnet alloy raw material is further subjected to a hydrogen absorption / decomposition treatment of further absorbing and decomposing hydrogen by raising and holding the temperature to a predetermined temperature within a range of 00 to 1000 ° C., and subsequently, a hydrogen absorption / decomposition treatment. The applied rare earth magnet alloy raw material is pressurized at a predetermined temperature within the range of 500 to 1000 ° C .: 1.
Intermediate heat treatment is performed by holding in an inert gas atmosphere of 2 to 10 atmospheres, and the intermediate heat treated rare earth magnet alloy raw material is subsequently subjected to a predetermined temperature within the range of 500 to 1000 ° C. and an absolute pressure: 5 In a hydrogen atmosphere of ~ 100 Torr or in a mixed gas atmosphere of hydrogen partial pressure: 5-100 Torr of hydrogen and an inert gas, heat treatment in reduced pressure hydrogen is carried out while partially leaving hydrogen in the rare earth magnet alloy raw material. After that, a dehydrogenation treatment is performed at a predetermined temperature within a range of 500 to 1000 ° C. to achieve a phase transformation by forcibly releasing hydrogen from the rare earth magnet alloy raw material by maintaining the ultimate pressure: 1 Torr or less in a vacuum atmosphere, Then cool down,
The method is characterized by a method for producing a rare earth magnet powder having excellent magnetic anisotropy for pulverization.

【0008】この発明の希土類磁石粉末の製造方法は、
希土類磁石合金原料に含まれるDyおよびCoの含有量
をDy:0.1〜6%(一層好ましくは、0.1〜3
%)、Co:2.5〜40%(一層好ましくは、5〜3
0%)でかつCo+10Dy≧23%と成るように調整
した組成を有する希土類磁石合金原料を用いることが大
きな特徴であり、この希土類磁石合金原料を、必要に応
じて均質化処理し、水素吸収処理し、水素吸収・分解処
理し、中間熱処理し、減圧水素中熱処理し、脱水素処理
することにより保磁力および残留磁束密度が共に優れた
磁気異方性を有する希土類磁石粉末を製造する方法であ
る。
The method for producing rare earth magnet powder of the present invention is as follows:
The content of Dy and Co contained in the rare earth magnet alloy raw material is Dy: 0.1 to 6% (more preferably 0.1 to 3).
%), Co: 2.5-40% (more preferably 5-3)
The main feature is to use a rare earth magnet alloy raw material having a composition adjusted so that Co + 10Dy ≧ 23%, and this rare earth magnet alloy raw material is subjected to a homogenization treatment as necessary and a hydrogen absorption treatment. A hydrogen-absorbing / decomposing treatment, an intermediate heat treatment, a reduced pressure hydrogen heat treatment and a dehydrogenation treatment to produce a rare earth magnet powder having excellent magnetic anisotropy in both coercive force and residual magnetic flux density. .

【0009】希土類磁石合金原料に含まれるDyおよび
Coの含有量を前述の如く限定した理由は、下記の通り
である。 R(Dyを除く希土類元素):Rは、Ndを主体とし、
その他、Y、Pr、Sm、Ce、La、Tb、Er、E
u、Gd、Tm、Yb、Lu、Hoなどを微量含むDy
を除く希土類元素であるが、その含有量が5.5%未満
では保磁力が低下し、一方、14.9%を越えて含有す
ると飽和磁化が低下していずれも希望の磁気特性が得ら
れないので好ましくない。したがって、Rの含有量は
5.5〜14.9%に定めた。 B:Bの含有量がは5.5%未満では保磁力が低下し、
一方、8%を越えて含有すると飽和磁化が低下していず
れも希望の磁気特性が得られないので好ましくない。し
たがって、Bの含有量は5.5〜8%に定めた。 Dy:希土類−Fe−B系磁石合金の耐熱性を実現する
には高保磁力化することが必要であり、その手法の一つ
として希土類元素の一部をDyで置換するようにDyを
添加する必要があるが、Dyの添加量が0.1%未満で
は高保磁力化の効果が得られないので好ましくなく、一
方、6%を越えて含有すると飽和磁化が下がるので異方
化しても高特性が得られない。したがって、この発明の
希土類磁石粉末の製造方法で使用する希土類磁石合金原
料に含まれるDyの含有量は0.1〜6%(一層好まし
くは、0.1〜3%)に定めた。
The reason why the contents of Dy and Co contained in the rare earth magnet alloy raw material are limited as described above is as follows. R (rare earth element excluding Dy): R is mainly Nd,
Others, Y, Pr, Sm, Ce, La, Tb, Er, E
Dy containing a trace amount of u, Gd, Tm, Yb, Lu, Ho, etc.
However, when the content is less than 5.5%, the coercive force decreases, while when it exceeds 14.9%, the saturation magnetization decreases and desired magnetic properties are obtained. It is not preferable because it is not available. Therefore, the content of R is set to 5.5 to 14.9%. B: When the content of B is less than 5.5%, the coercive force decreases,
On the other hand, if the content exceeds 8%, the saturation magnetization is lowered and desired magnetic characteristics cannot be obtained, which is not preferable. Therefore, the content of B is set to 5.5 to 8%. Dy: In order to realize the heat resistance of the rare earth-Fe-B magnet alloy, it is necessary to increase the coercive force, and as one of the methods, Dy is added so as to replace a part of the rare earth element with Dy. Although it is necessary to add Dy less than 0.1%, the effect of increasing coercive force cannot be obtained, which is not preferable. Can't get Therefore, the content of Dy contained in the rare earth magnet alloy raw material used in the method for producing rare earth magnet powder of the present invention is set to 0.1 to 6% (more preferably 0.1 to 3%).

【0010】Co:CoはDyを含有する希土類−Fe
−B系磁石合金の等方性化を阻止するために添加する
が、その含有量が2.5%未満含有すると等方性化を阻
止することができないので好ましくなく、一方、40%
を越えて含有すると、保磁力および飽和磁化が下がるの
で異方化しても高特性が得られない。したがって、この
発明の希土類磁石粉末の製造方法で使用する希土類磁石
合金原料に含まれるDyの含有量は2.5〜40%(一
層好ましくは、5〜30%)に定めた。
Co: Co is a rare earth-Fe containing Dy.
-B-based magnet alloy is added to prevent isotropicity, but if its content is less than 2.5%, it is not preferable because it cannot prevent isotropicity, while 40%
If it is contained in excess, the coercive force and the saturation magnetization are lowered, so that even if it is made anisotropic, high characteristics cannot be obtained. Therefore, the content of Dy contained in the rare earth magnet alloy raw material used in the method for producing rare earth magnet powder of the present invention is set to 2.5 to 40% (more preferably 5 to 30%).

【0011】Co+10Dy≧23%:DyおよびCo
の含有量がDy:0.1〜6%(一層好ましくは、0.
1〜3%)、Co:2.5〜40%(一層好ましくは、
5〜30%)であっても、希土類磁石合金原料に含まれ
るDyおよびCoの含有量がCo+10Dy≧23%の
条件を満たさないと、優れた保磁力および残留磁束密度
を共に有する磁気異方性の希土類磁石粉末は得られな
い。このCo+10Dy≧23%という式は、実験して
得られた保磁力および残留磁束密度の測定値を、希土類
磁石合金原料におけるCo含有量を縦軸に取り、Dy含
有量を横軸に取ったグラフにプロットして求めた式であ
り、実験データに基づいて得られた実験式である。
Co + 10Dy ≧ 23%: Dy and Co
Content of Dy: 0.1 to 6% (more preferably, 0.
1 to 3%), Co: 2.5 to 40% (more preferably,
5 to 30%), the magnetic anisotropy having both excellent coercive force and residual magnetic flux density unless the Dy and Co contents contained in the rare earth magnet alloy raw material satisfy the condition of Co + 10Dy ≧ 23%. No rare earth magnet powder can be obtained. This formula of Co + 10Dy ≧ 23% is a graph in which the Co content in the rare earth magnet alloy raw material is plotted on the vertical axis and the Dy content is plotted on the horizontal axis of the measured values of the coercive force and the residual magnetic flux density obtained by the experiment. It is an equation obtained by plotting the above, and is an empirical equation obtained based on experimental data.

【0012】M(Ga、Zr、Nb、Mo、Hf、T
a、W、Ni、Al、Ti、V、Cu、Cr、Geおよ
びSiの内の1種または2種以上):Mは、保磁力およ
び残留磁束密度の一層の向上のために必要に応じて添加
するが、6%を越えて添加すると、保磁力および残留磁
束密度が低下するので好ましくない。したがってMも含
有量は6%以下に定めた。
M (Ga, Zr, Nb, Mo, Hf, T
a, W, Ni, Al, Ti, V, Cu, Cr, Ge, and Si, or two or more of them): M is used as necessary for further improvement of coercive force and residual magnetic flux density. Although it is added, if it exceeds 6%, the coercive force and the residual magnetic flux density are lowered, which is not preferable. Therefore, the content of M is also set to 6% or less.

【0013】かかる成分組成を有する希土類磁石合金原
料を、圧力:1.2〜5気圧の水素ガス雰囲気中で室温
から温度:500℃未満までの所定の温度に昇温、また
は昇温し500℃未満までの所定の温度(例えば、10
0℃)に保持することにより水素を吸収せしめ、その後
再び昇温し、さらに圧力:1.2〜5気圧の水素ガス雰
囲気中で温度:500〜1000℃の範囲内の所定の温
度に保持することにより原料に水素を吸収させて相変態
を促して分解させる。この水素吸収・分解処理工程にお
ける水素ガス雰囲気中の圧力が常圧では、R:5.5〜
14.9%、Dy:0.1〜6%、Co:2.5〜40
%(但し、Co+10Dy≧23%)、B:5.5〜8
%、M:6%以下を含有し、残部がFeおよび不可避不
純物からなる成分組成を有する希土類磁石合金原料の水
素吸収・分解反応はほとんど起こらない。この反応を起
こすには1.2気圧以上の高圧水素雰囲気に保つことが
必要である。一方、高圧水素雰囲気の圧力が5気圧を越
えると、分解反応が急速に進みすぎるため、得られる希
土類磁石粉末は等方性となり、十分な磁気特性を得るこ
とができない。従って、水素吸収・分解処理における水
素圧は1.2〜5気圧の範囲に定めた。
A rare earth magnet alloy raw material having such a composition is heated to a predetermined temperature from room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 1.2 to 5 atm, or is heated to 500 ° C. Predetermined temperature up to less than (eg 10
The temperature is kept at 0 ° C. to absorb hydrogen, then the temperature is raised again, and the temperature is kept at a predetermined temperature within the range of 500 to 1000 ° C. in a hydrogen gas atmosphere of pressure of 1.2 to 5 atm. As a result, hydrogen is absorbed by the raw material to promote phase transformation and decompose. When the pressure in the hydrogen gas atmosphere in this hydrogen absorption / decomposition process is normal pressure, R: 5.5-
14.9%, Dy: 0.1-6%, Co: 2.5-40
% (However, Co + 10Dy ≧ 23%), B: 5.5-8
%, M: 6% or less, with the balance being Fe and unavoidable impurities, and a rare earth magnet alloy raw material having a component composition, the hydrogen absorption / decomposition reaction hardly occurs. In order to cause this reaction, it is necessary to maintain a high pressure hydrogen atmosphere of 1.2 atm or higher. On the other hand, when the pressure of the high-pressure hydrogen atmosphere exceeds 5 atm, the decomposition reaction proceeds too rapidly, so that the obtained rare earth magnet powder becomes isotropic and sufficient magnetic properties cannot be obtained. Therefore, the hydrogen pressure in the hydrogen absorption / decomposition process is set in the range of 1.2 to 5 atm.

【0014】かかる水素吸収・分解処理したのち中間熱
処理を施す。この中間熱処理は、不活性ガスフローによ
り雰囲気を不活性ガス雰囲気中に変えることにより適度
なスピードで異方性化を促進させる工程である。したが
って、不活性ガス雰囲気の圧力が1.2気圧未満では異
方性化が速くなりすぎて保磁力低下の原因になるので好
ましくなく、一方、10気圧を越えると異方性化がほと
んど進まなくなり、残留磁束密度低下の原因になるので
好ましくない。したがって、中間熱処理における不活性
ガス雰囲気の圧力を0.2〜10気圧に定めた。中間熱
処理における温度は500〜1000℃(好ましくは6
50〜950℃、さらに好ましくは750〜900℃)
の範囲内の所定の温度に30秒〜5時間の範囲内の所定
の時間保持することが好ましい。
After the hydrogen absorption / decomposition treatment, an intermediate heat treatment is performed. This intermediate heat treatment is a step of promoting anisotropy at an appropriate speed by changing the atmosphere into an inert gas atmosphere by an inert gas flow. Therefore, when the pressure of the inert gas atmosphere is less than 1.2 atm, the anisotropy becomes too fast and causes a decrease in coercive force, which is not preferable, while when it exceeds 10 atm, the anisotropy hardly progresses. However, it is not preferable because it causes a decrease in the residual magnetic flux density. Therefore, the pressure of the inert gas atmosphere in the intermediate heat treatment is set to 0.2 to 10 atmospheres. The temperature in the intermediate heat treatment is 500 to 1000 ° C. (preferably 6
50 to 950 ° C, more preferably 750 to 900 ° C)
It is preferable to maintain the temperature within a range of 30 seconds to 5 hours for a predetermined period of time.

【0015】中間熱処理を施したのち減圧水素中熱処理
を施す。この減圧水素中熱処理は、水素吸収・分解処理
した希土類磁石合金原料を絶対圧:5〜100Torr
(好ましくは、15〜50Torr)の水素雰囲気中ま
たは水素分圧:5〜100Torr(好ましくは、15
〜50Torr)の水素と不活性ガスとの混合ガス雰囲
気中に保持することにより希土類磁石合金原料に水素を
一部残したまま減圧水素中熱処理する工程である。この
減圧水素中熱処理を施すことにより保磁力および残留磁
束密度を一層向上させることができる。
After performing the intermediate heat treatment, a heat treatment in reduced pressure hydrogen is performed. In this heat treatment in reduced pressure hydrogen, the hydrogen absorption / decomposition-treated rare earth magnet alloy raw material is subjected to an absolute pressure of 5 to 100 Torr
(Preferably 15 to 50 Torr) in hydrogen atmosphere or hydrogen partial pressure: 5 to 100 Torr (preferably 15)
It is a step of heat-treating in reduced pressure hydrogen while keeping a part of hydrogen in the rare earth magnet alloy raw material by maintaining the mixed gas atmosphere of hydrogen and an inert gas (up to 50 Torr). By performing this heat treatment in reduced pressure hydrogen, the coercive force and the residual magnetic flux density can be further improved.

【0016】減圧水素中熱処理を施したのち行う脱水素
処理は、到達圧:1Torr以下の真空雰囲気に保持す
ることにより希土類磁石合金原料から強制的に水素を十
分放出させ、それにより一層の相変態を促す処理であ
る。この脱水素処理後に行なう冷却は不活性ガス(Ar
ガス)より室温まで冷却する。冷却した後は粉砕して希
土類磁石粉末とする。この希土類磁石粉末は粉砕により
発生した歪を除去するために、必要に応じて熱処理され
る。
The dehydrogenation treatment after the heat treatment in reduced pressure hydrogen is carried out by forcibly releasing hydrogen from the raw material of the rare earth magnet alloy by maintaining the ultimate pressure: 1 Torr or less in a vacuum atmosphere, thereby further phase transformation. Is a process that prompts Cooling performed after this dehydrogenation treatment is performed with an inert gas (Ar
Gas) to room temperature. After cooling, it is pulverized to obtain rare earth magnet powder. This rare earth magnet powder is heat-treated as necessary to remove the strain generated by pulverization.

【0017】[0017]

【発明の実施の形態】高周波真空溶解炉を用いて溶解
し、得られた溶湯を鋳造して表1に示される成分組成の
希土類磁石合金原料の鋳塊a〜qおよび鋳塊A〜Eを製
造した。鋳塊A〜Dは鋳塊に含まれるDyおよびCoの
値がこの発明の範囲から外れている鋳塊であり、鋳塊E
は従来の成分組成を有する鋳塊であって、Dy:0.1
〜6%、Co:2.5〜40%の条件は満たすが、Co
+10Dy≧23%の条件は満たしていない鋳塊であ
る。これら希土類磁石合金原料の鋳塊a〜Eを不活性ガ
ス雰囲気中で粉砕して10mm以下のブロックおよび粉
末を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Ingots a to q and ingots A to E of rare earth magnet alloy raw materials having the component compositions shown in Table 1 are melted by using a high frequency vacuum melting furnace and the resulting molten metal is cast. Manufactured. Ingots A to D are ingots in which the values of Dy and Co contained in the ingots are out of the range of the present invention, and ingot E is
Is an ingot having a conventional composition, and Dy: 0.1
~ 6%, Co: 2.5-40% is satisfied, but Co
The ingot does not satisfy the condition of +10 Dy ≧ 23%. These rare earth magnet alloy raw material ingots a to E were crushed in an inert gas atmosphere to produce blocks and powders of 10 mm or less.

【0018】[0018]

【表1】 [Table 1]

【0019】表1の鋳塊a〜qおよび鋳塊A〜Eで作製
したブロックおよび粉末に、表2〜4に示される条件の
水素吸収処理を施し、その後、表2〜4に示される条件
で水素吸収・分解処理を施し、引き続いて表2〜4に示
される条件で中間熱処理を施し、さらに減圧水素中熱処
理を行い、さらに表2〜4に示される条件で脱水素処理
を行った後、Arガスで強制的に室温まで冷却し、30
0μm以下に粉砕して希土類磁石粉末を製造することに
より本発明法1〜20、比較法1〜4および従来法を実
施した。
The blocks and powders produced from the ingots a to q and the ingots A to E in Table 1 were subjected to hydrogen absorption treatment under the conditions shown in Tables 2 to 4, and then the conditions shown in Tables 2 to 4. After performing hydrogen absorption / decomposition treatment at 1, then performing intermediate heat treatment under the conditions shown in Tables 2-4, further performing heat treatment in reduced pressure hydrogen, and further performing dehydrogenation treatment under the conditions shown in Tables 2-4 , Forcibly cooled to room temperature with Ar gas, 30
The methods 1 to 20 of the present invention, the methods 1 to 4 of the comparison, and the conventional method were carried out by pulverizing to 0 μm or less to produce rare earth magnet powder.

【0020】実施例1 本発明法1〜20、比較法1〜4および従来法により得
られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹
脂を加えて混練し、20kOeの磁場中で圧縮成形して
圧粉体を作製し、この圧粉体をオーブンで150℃、2
時間熱硬化して、密度:6.0〜6.1g/cm3のボ
ンド磁石を作製し、得られたボンド磁石の磁気特性を表
5に示した。
Example 1 3% by mass of epoxy resin was added to each of the rare earth magnet powders obtained by the methods 1 to 20 of the present invention, the comparative methods 1 to 4 and the conventional method, kneaded, and compression molded in a magnetic field of 20 kOe. To produce a green compact, and heat the green compact in an oven at 150 ° C for 2
It was heat-cured for a time to produce a bonded magnet having a density of 6.0 to 6.1 g / cm 3 , and the magnetic properties of the obtained bonded magnet are shown in Table 5.

【0021】実施例2 さらに、本発明法1〜20、比較法1〜4および従来法
により得られた希土類磁石粉末を磁場中で異方性圧粉体
を作製し、この異方性圧粉体をホットプレス装置にセッ
トし、磁場の印加方向が圧縮方向になるようにArガス
中、温度:750℃、圧力:0.6Ton/cm2 、1
分間保持の条件でホットプレスを行い、急冷して密度:
7.5〜7.7g/cm3 のホットプレス磁石を作製
し、得られたホットプレス磁石の磁気特性を表5に示し
た。
Example 2 Furthermore, an anisotropic green compact was prepared from the rare earth magnet powders obtained by the methods 1 to 20 of the present invention, the comparative methods 1 to 4 and the conventional method in a magnetic field. The body is set in a hot press machine, and the temperature is set to 750 ° C. and the pressure is set to 0.6 Ton / cm 2 in Ar gas so that the magnetic field is applied in the compression direction.
Hot press under the condition of holding for 1 minute, quench and density:
A hot press magnet of 7.5 to 7.7 g / cm 3 was produced, and the magnetic characteristics of the obtained hot press magnet are shown in Table 5.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】表1〜表5に示される結果から、本発明法
1〜20により得られた希土類磁石粉末で作製したボン
ド磁石の磁気特性は、従来法により得られた希土類磁石
粉末で作製したボンド磁石の磁気特性に比べて、保磁力
および残留磁束密度がともに向上していることが分か
る。しかし、この発明の範囲外の比較法1〜4により得
られた希土類磁石粉末のボンド磁石の保磁力および残留
磁束密度の内の少なくともいずれか一方が劣ることが分
かる。
From the results shown in Tables 1 to 5, the magnetic properties of the bond magnets made of the rare earth magnet powders obtained by the methods 1 to 20 of the present invention are the same as those of the bond made by the rare earth magnet powders obtained by the conventional method. It can be seen that both the coercive force and the residual magnetic flux density are improved as compared with the magnetic characteristics of the magnet. However, it can be seen that at least one of the coercive force and the residual magnetic flux density of the bonded magnet of the rare earth magnet powder obtained by Comparative Methods 1 to 4 outside the scope of the present invention is inferior.

【0027】さらに、本発明法1〜20により得られた
希土類磁石粉末で作製したホットプレス磁石の磁気特性
は、従来法により得られた希土類磁石粉末で作製したホ
ットプレス磁石の磁気特性に比べて、保磁力および残留
磁束密度がともに向上しており、磁気特性が向上してい
ることが分かる。しかし、この発明の範囲外の比較法1
〜4により得られた希土類磁石粉末のホットプレス磁石
の保磁力および残留磁束密度の内の少なくともいずれか
一方が劣ることが分かる。
Furthermore, the magnetic properties of the hot-pressed magnets produced by the rare earth magnet powders obtained by the methods 1 to 20 of the present invention are higher than those of the hot-pressed magnets produced by the rare earth magnet powders obtained by the conventional method. It can be seen that the coercive force and the residual magnetic flux density are both improved, and the magnetic characteristics are improved. However, Comparative Method 1 outside the scope of this invention
It can be seen that at least one of the coercive force and the residual magnetic flux density of the hot-pressed magnet of the rare earth magnet powder obtained from Nos. 4 to 4 is inferior.

【0028】[0028]

【発明の効果】上述のように、DyおよびCoがDy:
0.1〜6%、Co:2.5〜40%でかつCo+10
Dy≧23%となるように含有する成分調整された希土
類磁石合金原料を水素吸収処理→水素吸収・分解処理→
中間熱処理→減圧水素中熱処理→脱水素処理の順序で施
すこの発明の希土類磁石粉末の製造方法によると、高保
磁力および高残留磁束密度を有する磁気異方性に優れた
希土類磁石粉末を得ることができ、産業上優れた効果を
奏するものである。
As described above, Dy and Co are Dy:
0.1 to 6%, Co: 2.5 to 40% and Co + 10
Hydrogen absorption treatment of rare earth magnet alloy raw material whose composition is adjusted so that Dy ≧ 23% → Hydrogen absorption / decomposition treatment →
According to the method for producing a rare earth magnet powder of the present invention, which is performed in the order of intermediate heat treatment → heat treatment under reduced pressure hydrogen → dehydrogenation treatment, a rare earth magnet powder having a high coercive force and a high residual magnetic flux density and excellent magnetic anisotropy can be obtained. It is possible and has an excellent industrial effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 41/02 H01F 1/04 H Fターム(参考) 4K017 AA01 BA06 BB06 BB12 CA07 DA04 EA08 EK07 FB02 FB11 4K018 AA27 BA05 BA18 BB04 BC02 BC08 BC09 BC19 BD01 5E040 AA04 AA19 CA01 HB07 HB17 NN01 NN06 NN18 5E062 CC05 CD04 CF02 CG03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 41/02 H01F 1/04 HF term (reference) 4K017 AA01 BA06 BB06 BB12 CA07 DA04 EA08 EK07 FB02 FB11 4K018 AA27 BA05 BA18 BB04 BC02 BC08 BC09 BC19 BD01 5E040 AA04 AA19 CA01 HB07 HB17 NN01 NN06 NN18 5E062 CC05 CD04 CF02 CG03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 R(但し、RはDyを除く希土類元素を
示す。以下同じ)、Dy、Co、BおよびFeを主成分
とし、前記DyおよびCoが原子%で(以下、%は原子
%を示す)Dy:0.1〜6%、Co:2.5〜40%
でかつCo+10Dy≧23%となるように含有する希
土類磁石合金原料を、 圧力:1.2〜5気圧の水素ガス雰囲気中で室温から温
度:500℃未満までの所定の温度に昇温、または昇温
し保持することにより水素を吸収させる水素吸収処理し
たのち、 圧力:1.2〜5気圧の水素ガス雰囲気中で500〜1
000℃の範囲内の所定の温度に昇温し保持することに
より前記希土類磁石合金原料にさらに水素を吸収させて
分解する水素吸収・分解処理を施し、 引き続いて、水素吸収・分解処理を施した希土類磁石合
金原料を500〜1000℃の範囲内の所定の温度で圧
力:1.2〜10気圧の不活性ガス雰囲気中に保持する
ことにより中間熱処理を行い、 引き続いて、中間熱処理を施した希土類磁石合金原料を
500〜1000℃の範囲内の所定の温度で、絶対圧:
5〜100Torrの水素雰囲気中または水素分圧:5
〜100Torrの水素と不活性ガスとの混合ガス雰囲
気中に保持することにより希土類磁石合金原料に水素を
一部残したまま減圧水素中熱処理を行い、 その後、500〜1000℃の範囲内の所定の温度で到
達圧:1Torr以下の真空雰囲気に保持することによ
り希土類磁石合金原料から強制的に水素を放出させて相
変態を促す脱水素処理を施し、ついで冷却し、粉砕する
ことを特徴とする磁気異方性に優れた希土類磁石粉末の
製造方法。
1. R (provided that R represents a rare earth element other than Dy. The same applies hereinafter), Dy, Co, B and Fe as main components, and said Dy and Co are atomic% (hereinafter,% is atomic%). Indicates) Dy: 0.1 to 6%, Co: 2.5 to 40%
And containing a rare earth magnet alloy raw material containing Co + 10Dy ≧ 23% in a hydrogen gas atmosphere at a pressure of 1.2 to 5 atm from room temperature to a predetermined temperature of less than 500 ° C., or raising the temperature. After the hydrogen absorption treatment of absorbing hydrogen by heating and holding, 500 to 1 in a hydrogen gas atmosphere of pressure: 1.2 to 5 atm.
The rare earth magnet alloy raw material was subjected to a hydrogen absorption / decomposition treatment of further absorbing and decomposing hydrogen by raising the temperature to a predetermined temperature within the range of 000 ° C. and holding it, and subsequently subjected to a hydrogen absorption / decomposition treatment. Intermediate heat treatment is performed by maintaining the rare earth magnet alloy raw material in an inert gas atmosphere at a predetermined temperature within the range of 500 to 1000 ° C. and pressure: 1.2 to 10 atm, and subsequently, the rare earth magnet alloy subjected to the intermediate heat treatment. Magnet alloy raw material at a predetermined temperature in the range of 500 to 1000 ° C., absolute pressure:
5-100 Torr hydrogen atmosphere or hydrogen partial pressure: 5
By holding in a mixed gas atmosphere of hydrogen and an inert gas of up to 100 Torr, a heat treatment in reduced pressure hydrogen is carried out with some hydrogen remaining in the rare earth magnet alloy raw material, and then a predetermined temperature within a range of 500 to 1000 ° C. Attaining pressure at temperature: A dehydrogenation treatment that promotes phase transformation by forcibly releasing hydrogen from the rare earth magnet alloy raw material by holding it in a vacuum atmosphere at 1 Torr or less, then cooling and pulverizing A method for producing a rare earth magnet powder having excellent anisotropy.
【請求項2】 R、Dy、Co、B、FeおよびM(但
し、MはGa、Zr、Nb、Mo、Hf、Ta、W、N
i、Al、Ti、V、Cu、Cr、GeおよびSiの内
の1種または2種以上を示す)を主成分とし、前記Dy
およびCoがDy:0.1〜6%、Co:2.5〜40
%でかつCo+10Dy≧23%となるように含有する
希土類磁石合金原料を、 圧力:1.2〜5気圧の水素ガス雰囲気中で室温から温
度:500℃未満までの所定の温度に昇温、または昇温
し保持することにより水素を吸収させる水素吸収処理し
たのち、 圧力:1.2〜5気圧の水素ガス雰囲気中で500〜1
000℃の範囲内の所定の温度に昇温し保持することに
より前記希土類磁石合金原料にさらに水素を吸収させて
分解する水素吸収・分解処理を施し、 引き続いて、水素吸収・分解処理を施した希土類磁石合
金原料を500〜1000℃の範囲内の所定の温度で圧
力:1.2〜10気圧の不活性ガス雰囲気中に保持する
ことにより中間熱処理を行い、 引き続いて、中間熱処理を施した希土類磁石合金原料を
500〜1000℃の範囲内の所定の温度で、絶対圧:
5〜100Torrの水素雰囲気中または水素分圧:5
〜100Torrの水素と不活性ガスとの混合ガス雰囲
気中に保持することにより希土類磁石合金原料に水素を
一部残したまま減圧水素中熱処理を行い、 その後、500〜1000℃の範囲内の所定の温度で到
達圧:1Torr以下の真空雰囲気に保持することによ
り希土類磁石合金原料から強制的に水素を放出させて相
変態を促す脱水素処理を施し、ついで冷却し、粉砕する
ことを特徴とする磁気異方性に優れた希土類磁石粉末の
製造方法。
2. R, Dy, Co, B, Fe and M (where M is Ga, Zr, Nb, Mo, Hf, Ta, W, N).
i, Al, Ti, V, Cu, Cr, Ge and Si), which is one or more of the above),
And Co is Dy: 0.1 to 6%, Co: 2.5 to 40
% And Co + 10Dy ≧ 23%, the rare earth magnet alloy raw material is heated to a predetermined temperature from room temperature to less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 1.2 to 5 atm, or After the hydrogen absorption treatment of absorbing hydrogen by raising the temperature and holding it, 500-1 in a hydrogen gas atmosphere of pressure: 1.2-5 atm
The rare earth magnet alloy raw material was subjected to a hydrogen absorption / decomposition treatment of further absorbing and decomposing hydrogen by raising the temperature to a predetermined temperature within the range of 000 ° C. and holding it, and subsequently subjected to a hydrogen absorption / decomposition treatment. Intermediate heat treatment is performed by maintaining the rare earth magnet alloy raw material in an inert gas atmosphere at a predetermined temperature within the range of 500 to 1000 ° C. and pressure: 1.2 to 10 atm, and subsequently, the rare earth magnet alloy subjected to the intermediate heat treatment. Magnet alloy raw material at a predetermined temperature in the range of 500 to 1000 ° C., absolute pressure:
5-100 Torr hydrogen atmosphere or hydrogen partial pressure: 5
By holding in a mixed gas atmosphere of hydrogen and an inert gas of up to 100 Torr, a heat treatment in reduced pressure hydrogen is carried out with some hydrogen remaining in the rare earth magnet alloy raw material, and then a predetermined temperature within a range of 500 to 1000 ° C. Attaining pressure at temperature: A dehydrogenation treatment that promotes phase transformation by forcibly releasing hydrogen from the rare earth magnet alloy raw material by holding it in a vacuum atmosphere at 1 Torr or less, then cooling and pulverizing A method for producing a rare earth magnet powder having excellent anisotropy.
【請求項3】前記水素吸収処理および水素吸収・分解処
理における圧力は、中間熱処理における圧力と同等また
はそれ以下であることを特徴とする請求項1または2記
載の磁気異方性に優れた希土類磁石粉末の製造方法。
3. The rare earth element having excellent magnetic anisotropy according to claim 1, wherein the pressure in the hydrogen absorption treatment and the hydrogen absorption / decomposition treatment is equal to or lower than the pressure in the intermediate heat treatment. Method of manufacturing magnet powder.
【請求項4】請求項1記載の希土類磁石合金原料は、
R:5.5〜14.9%、Dy:0.1〜6%、Co:
2.5〜40%(但し、Co+10Dy≧23%)、
B:5.5〜8%を含有し、残部がFeおよび不可避不
純物からなる成分組成を有することを特徴とする磁気異
方性に優れた希土類磁石粉末の製造方法。
4. The rare earth magnet alloy raw material according to claim 1,
R: 5.5 to 14.9%, Dy: 0.1 to 6%, Co:
2.5-40% (however, Co + 10Dy ≧ 23%),
B: A method for producing a rare earth magnet powder having excellent magnetic anisotropy, characterized by containing 5.5 to 8% and the balance being a component composition consisting of Fe and inevitable impurities.
【請求項5】請求項2記載の希土類磁石合金原料は、
R:5.5〜14.9%、Dy:0.1〜6%、Co:
2.5〜40%(但し、Co+10Dy≧23%)、
B:5.5〜8%、M:6%以下を含有し、残部がFe
および不可避不純物からなる成分組成を有することを特
徴とする磁気異方性に優れた希土類磁石粉末の製造方
法。
5. The rare earth magnet alloy raw material according to claim 2,
R: 5.5 to 14.9%, Dy: 0.1 to 6%, Co:
2.5-40% (however, Co + 10Dy ≧ 23%),
B: 5.5 to 8%, M: 6% or less, balance Fe
And a method of producing a rare earth magnet powder having excellent magnetic anisotropy, which has a component composition of inevitable impurities.
【請求項6】前記請求項1、2、4または5記載の希土
類磁石合金原料は、真空またはArガス雰囲気中、温
度:600〜1200℃に保持の条件で均質化処理した
希土類磁石合金原料であることを特徴とする磁気異方性
に優れた希土類磁石粉末の製造方法。
6. The rare earth magnet alloy raw material according to claim 1, 2, 4 or 5 is a rare earth magnet alloy raw material homogenized in a vacuum or Ar gas atmosphere at a temperature of 600 to 1200 ° C. A method for producing a rare earth magnet powder having excellent magnetic anisotropy, which is characterized by being present.
JP2002038637A 2002-02-15 2002-02-15 Method for manufacturing rare earth magnet powder superior in magnetic anisotropy Withdrawn JP2003243211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038637A JP2003243211A (en) 2002-02-15 2002-02-15 Method for manufacturing rare earth magnet powder superior in magnetic anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038637A JP2003243211A (en) 2002-02-15 2002-02-15 Method for manufacturing rare earth magnet powder superior in magnetic anisotropy

Publications (1)

Publication Number Publication Date
JP2003243211A true JP2003243211A (en) 2003-08-29

Family

ID=27779903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038637A Withdrawn JP2003243211A (en) 2002-02-15 2002-02-15 Method for manufacturing rare earth magnet powder superior in magnetic anisotropy

Country Status (1)

Country Link
JP (1) JP2003243211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165228A (en) * 2013-02-22 2014-09-08 Hitachi Metals Ltd Method of manufacturing r-t-b based permanent magnet
WO2020017529A1 (en) * 2018-07-19 2020-01-23 愛知製鋼株式会社 Method for producing rare-earth magnet powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165228A (en) * 2013-02-22 2014-09-08 Hitachi Metals Ltd Method of manufacturing r-t-b based permanent magnet
WO2020017529A1 (en) * 2018-07-19 2020-01-23 愛知製鋼株式会社 Method for producing rare-earth magnet powder

Similar Documents

Publication Publication Date Title
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
RU2377680C2 (en) Rare-earth permanaent magnet
JPH0521218A (en) Production of rare-earth permanent magnet
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JP4314244B2 (en) Magnetic material powder manufacturing method and bonded magnet manufacturing method
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JP2007266199A (en) Manufacturing method of rare earth sintered magnet
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP4260087B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3469496B2 (en) Manufacturing method of magnet material
JP2003243211A (en) Method for manufacturing rare earth magnet powder superior in magnetic anisotropy
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPS6077959A (en) Permanent magnet material and its manufacture
JP3386552B2 (en) Magnetic material
JP4076017B2 (en) Method for producing rare earth magnet powder with excellent magnetic anisotropy
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JPS6230846A (en) Production of permanent magnet material
JP3779338B2 (en) Method for producing magnetic material powder and method for producing bonded magnet
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JPH0521219A (en) Production of rare-earth permanent magnet
JPH04346607A (en) Production of permanent magnet powder
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPS62170454A (en) Permanent magnet alloy and its manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510