JP2003242977A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP2003242977A
JP2003242977A JP2002042214A JP2002042214A JP2003242977A JP 2003242977 A JP2003242977 A JP 2003242977A JP 2002042214 A JP2002042214 A JP 2002042214A JP 2002042214 A JP2002042214 A JP 2002042214A JP 2003242977 A JP2003242977 A JP 2003242977A
Authority
JP
Japan
Prior art keywords
carbon material
negative electrode
weight
aqueous electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002042214A
Other languages
Japanese (ja)
Inventor
Hiroshi Wada
和田  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002042214A priority Critical patent/JP2003242977A/en
Publication of JP2003242977A publication Critical patent/JP2003242977A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery that is used in large- current charge and discharge and has a good cycle life performance at high temperature. <P>SOLUTION: In the non-aqueous electrolyte battery which comprises a negative electrode that contains a carbon material capable of doping and dedoping lithium ions, a positive electrode capable of doping and dedoping lithium ions, and a non-aqueous electrolyte, the carbon material contains an aggregated carbon material, a fibrous carbon material, and a flaky scale-like carbon material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極と負極と非水
電解質とを備える、非水電解質電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery including a positive electrode, a negative electrode and a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】小型・軽量という特徴を備えた非水電解
質二次電池は、携帯電話等の小型携帯機器等における電
源として一般化している。この非水電解質二次電池は、
負極にリチウムイオンをドープ及び脱ドープ可能な炭素
材料が使用され、正極にリチウムイオンをドープ及び脱
ドープ可能なリチウム遷移金属複合酸化物が使用され
た、非水電解質二次電池であり、通常最大1C程度の充
放電電流の範囲で用いられている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries, which have the characteristics of small size and light weight, have been generalized as a power source for small portable devices such as mobile phones. This non-aqueous electrolyte secondary battery is
A non-aqueous electrolyte secondary battery that uses a carbon material that can be doped and dedoped with lithium ions for the negative electrode and a lithium transition metal composite oxide that can be doped and dedoped with lithium ions for the positive electrode. It is used in the range of charging / discharging current of about 1C.

【0003】[0003]

【発明が解決しようとする課題】非水電解質二次電池を
電気自動車等に利用しようとする場合、3Cや5C、場
合によっては20Cといった大電流での充放電と高温で
の長寿命が要求される。しかしながら、これまでの非水
電解質二次電池では、十分な寿命が得られていなかっ
た。
When a non-aqueous electrolyte secondary battery is used in an electric vehicle or the like, charging / discharging with a large current such as 3C or 5C, and in some cases 20C, and long life at high temperature are required. It However, the conventional non-aqueous electrolyte secondary batteries have not been able to achieve a sufficient life.

【0004】そこで、寿命性能を改善するために60℃
で充放電サイクルを繰り返し容量の低下した電池を解体
し、正極や負極等、電池を構成する各部材での性能劣化
の状態を調べたところ、負極での容量劣化と抵抗増加が
大きく、また負極が厚くなっていることがわかった。そ
して、負極での容量劣化率は、大きな電流を用いて測定
された容量で求めた場合の方がより大きな劣化率を示し
ていることが分かった。
Therefore, in order to improve the life performance, 60 ° C.
The battery was disassembled after repeated charge and discharge cycles, and the state of performance deterioration of each member that composes the battery, such as the positive electrode and the negative electrode, was investigated, and the capacity deterioration and resistance increase at the negative electrode were large. Was found to be thicker. Then, it was found that the capacity deterioration rate at the negative electrode showed a larger deterioration rate when obtained from the capacity measured using a large current.

【0005】これらのことから、負極が厚くなることに
よって負極を構成する炭素材料粒子間の導電経路が切断
されて負極の抵抗が増大することが、大電流での容量低
下をより大きくしている原因であることがわかった。
From these facts, the fact that the negative electrode becomes thick and the conductive path between the carbon material particles forming the negative electrode is cut to increase the resistance of the negative electrode makes the capacity decrease at a large current larger. It turned out to be the cause.

【0006】本発明は、以上に鑑みなされたものであっ
て、負極の膨張が生じた場合にも導電経路の切断を抑制
して負極抵抗の増大を防ぐという考え方に基づき開発さ
れた、大電流充放電での使用を前提とした、高温でのサ
イクル寿命性能の良好な非水電解質電池を提供すること
を目的としている。
The present invention has been made in view of the above, and has been developed on the basis of the idea of suppressing the disconnection of the conductive path and preventing the increase of the negative electrode resistance even when the negative electrode expands. It is an object of the present invention to provide a non-aqueous electrolyte battery which has a good cycle life performance at high temperature, which is premised on use in charge and discharge.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、リチ
ウムイオンをドープ及び脱ドープ可能な炭素材料を含む
負極と、リチウムイオンをドープ及び脱ドープ可能な正
極と、非水電解質とを備えた非水電解質電池において、
前記炭素材料が、塊状炭素材料と繊維状炭素材料と鱗片
状炭素材料とを含むことを特徴とする。
The invention of claim 1 comprises a negative electrode containing a carbon material capable of doping and dedoping lithium ions, a positive electrode capable of doping and dedoping lithium ions, and a non-aqueous electrolyte. In non-aqueous electrolyte battery,
The carbon material includes an agglomerated carbon material, a fibrous carbon material, and a scaly carbon material.

【0008】請求項1の発明によれば、負極をこのよう
な3種類の炭素材料を混合して構成することによって、
高温でのサイクルを繰り返した場合の負極抵抗の増大が
抑制され、大電流、特に3C以上の大電流で測定される
容量の低下が少ない非水電解質電池を得ることができ
る。
According to the first aspect of the present invention, the negative electrode is formed by mixing such three kinds of carbon materials.
It is possible to obtain a non-aqueous electrolyte battery in which an increase in negative electrode resistance when a cycle at high temperature is repeated is suppressed and a decrease in capacity measured with a large current, particularly a large current of 3 C or more, is small.

【0009】請求項2の発明は、上記非水電解質電池に
おいて、負極に含まれる鱗片状炭素材料の重量が、塊状
炭素材料の重量または繊維状炭素材料の重量よりも少な
いことを特徴とする。
According to a second aspect of the present invention, in the above non-aqueous electrolyte battery, the weight of the scale-like carbon material contained in the negative electrode is smaller than the weight of the massive carbon material or the weight of the fibrous carbon material.

【0010】負極に含まれる鱗片状炭素材料の量が多く
なると、負極をプレスする際に鱗片状炭素材料が配向し
て大電流での充放電容量が小さくなるが、請求項2の発
明によって、この問題を解決して、大電流での充放電容
量が大きい非水電解質電池を得ることができる。
When the amount of the scale-like carbon material contained in the negative electrode increases, the scale-like carbon material is oriented when the negative electrode is pressed, and the charge / discharge capacity at a large current decreases, but according to the invention of claim 2, By solving this problem, it is possible to obtain a non-aqueous electrolyte battery having a large charge / discharge capacity at a large current.

【0011】請求項3の発明は、上記非水電解質電池に
おいて、繊維状炭素材料の平均繊維長が塊状炭素材料の
平均粒径の2倍以下であることを特徴とする。
According to a third aspect of the present invention, in the above non-aqueous electrolyte battery, the average fiber length of the fibrous carbon material is not more than twice the average particle diameter of the massive carbon material.

【0012】繊維状炭素材料の平均繊維長が、塊状炭素
材料の平均粒径の2倍以上の長さになると、炭素材料負
極の充填密度が小さくなり、電池のエネルギー密度が小
さくなるが、請求項3の発明によれば、この問題を解決
して、エネルギー密度の大きい非水電解質電池を得るこ
とができる。
When the average fiber length of the fibrous carbon material is more than twice the average particle diameter of the lumpy carbon material, the packing density of the carbon material negative electrode becomes small and the energy density of the battery becomes small. According to the invention of Item 3, this problem can be solved and a non-aqueous electrolyte battery having a large energy density can be obtained.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0014】図1は本発明の一実施形態の非水電解質二
次電池の内部に納められた発電要素の構造を示す図であ
る。図1において、1はセパレータ、2は正極、3は負
極である。図1に示されるように、正極2と負極3と
が、微多孔性ポリエチレン製のセパレータ1を介して積
層し、渦巻き状に巻回されて発電要素が構成される。そ
して、この発電要素が円筒形状の電池缶に挿入され、電
解液が減圧注入された後、電池蓋がパッキンを介してか
しめられ、電池缶が封口されて電池が作製される。
FIG. 1 is a diagram showing the structure of a power generating element housed inside a non-aqueous electrolyte secondary battery according to an embodiment of the present invention. In FIG. 1, 1 is a separator, 2 is a positive electrode, and 3 is a negative electrode. As shown in FIG. 1, a positive electrode 2 and a negative electrode 3 are laminated via a separator 1 made of microporous polyethylene and spirally wound to form a power generation element. Then, this power generating element is inserted into a cylindrical battery can, and after the electrolyte is injected under reduced pressure, the battery lid is caulked through the packing, and the battery can is sealed to produce a battery.

【0015】正極2は、帯状の正極集電体(例えばアル
ミニウム(Al)箔)の両面に正極合剤層が塗布形成さ
れた構造となっている。正極2は、正極活物質とグラフ
ァイトやカーボンブラックなどの導電剤とポリフッ化ビ
ニリデンなどの結着剤とを共に混合して正極合剤とし、
この正極合剤をN−メチルピロリドンなどの溶媒に分散
させて正極合剤スラリーとし、これを正極集電体の両面
に塗布、乾燥させた後、ロールプレスなどにより圧縮平
滑化して作製される。
The positive electrode 2 has a structure in which a positive electrode material mixture layer is applied and formed on both surfaces of a strip-shaped positive electrode current collector (eg, aluminum (Al) foil). The positive electrode 2 is a positive electrode mixture prepared by mixing together a positive electrode active material, a conductive agent such as graphite or carbon black, and a binder such as polyvinylidene fluoride.
This positive electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to prepare a positive electrode mixture slurry, which is applied on both surfaces of a positive electrode current collector, dried, and then compression-smoothed by a roll press or the like.

【0016】正極活物質には、目的とする電池の種類に
応じて金属酸化物、金属硫化物、高分子等を用いること
ができる。
As the positive electrode active material, a metal oxide, a metal sulfide, a polymer or the like can be used depending on the type of the intended battery.

【0017】例えば、非水電解質二次電池を構成する場
合、TiS、MoS、NbSe 、V等の金
属硫化物や酸化物、リチウム複合酸化物等を使用するこ
とができる。また、リチウム複合酸化物の具体例として
は、LiCoO、LiNiO、LiNiCo
1−y(式中、0<y<1である。)、LiMn
等がある。
For example, in the case of constructing a non-aqueous electrolyte secondary battery
If TiSTwo, MoSTwo, NbSe Two, VTwoO5Etc gold
Do not use metal sulfides, oxides, lithium composite oxides, etc.
You can In addition, as a specific example of the lithium composite oxide
Is LiCoOTwo, LiNiOTwo, LiNiyCo
1-yOTwo(In the formula, 0 <y <1.), LiMnTwo
O FourEtc.

【0018】負極3は、帯状の負極集電体(例えば銅
(Cu)箔)の両面に、負極活物質としての炭素材料を
含む負極合剤層が塗布形成された構造となっている。炭
素材料は、塊状炭素材料と繊維状炭素材料と鱗片状炭素
材料との3種類からなる。これらの炭素材料を、ポリフ
ッ化ビニリデンなどの結着剤とを共に混合して負極合剤
とし、この負極合剤をN−メチルピロリドンなどの溶媒
に分散させて負極合剤スラリーとし、これを負極集電体
の両面に塗布、乾燥させた後、ロールプレスなどにより
圧縮平滑化して作製される。
The negative electrode 3 has a structure in which a negative electrode mixture layer containing a carbon material as a negative electrode active material is applied and formed on both surfaces of a strip-shaped negative electrode current collector (eg, copper (Cu) foil). The carbon material is composed of three types of a lumpy carbon material, a fibrous carbon material and a scaly carbon material. These carbon materials are mixed together with a binder such as polyvinylidene fluoride to form a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to form a negative electrode mixture slurry. It is prepared by coating and drying on both sides of a current collector, and then compression-smoothing with a roll press or the like.

【0019】塊状炭素材料、繊維状炭素材料および鱗片
状炭素材料としては、いずれもリチウムイオンをドープ
及び脱ドープ可能な炭素材料が用いられるが、リチウム
イオンをドープ及び脱ドープできるポリアセチレン、ポ
リピロール等の高分子やSnO、Si、SiO等の
酸化物や金属をさらに混合して使用することもできる。
As the lumpy carbon material, the fibrous carbon material and the scaly carbon material, carbon materials capable of doping and dedoping with lithium ions are used, and polyacetylene, polypyrrole and the like capable of doping and dedoping with lithium ions are used. A polymer, an oxide such as SnO 2 , Si, SiO 2 or a metal may be further mixed and used.

【0020】塊状炭素材料、繊維状炭素材料、鱗片状炭
素材料は、このような形状をしておれば難黒鉛化炭素系
材料やグラファイト系材料等のいずれの炭素材料であっ
ても良く、熱分解炭素類、コークス類、グラファイト
類、有機高分子化合物焼成体、活性炭等の炭素材料を使
用することができる。上記コークス類には、ピッチコー
クス、ニードルコークス、石油コークス等がある。ま
た、上記有機高分子化合物焼成体には、フェノール樹
脂、フラン樹脂等を適当な温度で焼成し炭素化したもの
がある。なお、塊状炭素材料の形状としては、球状や、
球状に近い略球状、多面体状などの形状のものを用いる
ことができる。
The agglomerated carbon material, the fibrous carbon material, and the scaly carbon material may be any carbon material such as non-graphitizable carbon material or graphite material as long as they have such a shape. Carbon materials such as decomposed carbons, cokes, graphites, organic polymer compound fired bodies, and activated carbon can be used. The cokes include pitch coke, needle coke, petroleum coke, and the like. In addition, as the above-mentioned organic polymer compound fired body, there is one in which a phenol resin, a furan resin or the like is fired at an appropriate temperature to be carbonized. The shape of the lump carbon material is spherical or
It is possible to use a substantially spherical shape, a polyhedral shape, or the like.

【0021】球状炭素材料としては、例えば、メソフェ
ーズピッチ小球体を焼成したもの、多面体状炭素材料と
しては、例えば、コークスを焼成して粉砕したものを用
いることができるが、負極の容量密度を大きくするため
には、負極に含まれる塊状炭素材料の重量(いろいろな
形状の塊状炭素材料を混合して用いる場合には、すべて
の塊状炭素材料の合計重量)が、繊維状炭素材料や鱗片
状炭素材料の重量よりも多く入っていることが好まし
い。
The spherical carbon material may be, for example, a material obtained by firing mesophase pitch small spheres, and the polyhedral carbon material may be, for example, a material obtained by firing coke and crushing it. In order to achieve this, the weight of the lump carbon material contained in the negative electrode (when the lump carbon materials of various shapes are mixed and used, the total weight of all the lump carbon materials) is calculated as the fibrous carbon material or the scaly carbon material. It preferably contains more than the weight of the material.

【0022】塊状炭素材料の粒径としては、40μm以
下のものを用いるのが好ましく、平均粒径としては、2
0〜35μmのものを用いるのがよい。これは、大電
流、特に3C以上の大電流での使用を前提とする電池で
は、負極の炭素材料層の厚さを片面で80μm以下とす
るのが好ましく、上記粒径以下のものを用いることで塗
工性を良好にでき、膜密度も大きくできるからである。
また、平均粒径25μm以下の場合、寿命が悪くなりや
すいからである。
It is preferable to use an agglomerated carbon material having a particle size of 40 μm or less, and an average particle size of 2
It is preferable to use one having a thickness of 0 to 35 μm. This is because it is preferable that the thickness of the carbon material layer of the negative electrode be 80 μm or less on one side in a battery that is intended to be used at a large current, especially a large current of 3 C or more, and that the particle size not larger than the above is used. This is because the coatability can be improved and the film density can be increased.
Further, when the average particle size is 25 μm or less, the life tends to be deteriorated.

【0023】鱗片状炭素材料としては、負極の導電性を
大きくして大電流での容量を大きくできるという理由か
ら、グラファイト系のものが良く、鱗片状天然黒鉛また
は鱗片状人造黒鉛を用いるのが好ましい。また、面方向
の大きさは、塊状炭素材料や繊維状炭素材料の粒径より
も小さい方が容量密度を大きくできるため、その平均粒
径として、塊状炭素材料の平均粒径よりも小さいものを
用いるのが好ましい。なお、平均粒径は、例えば、レー
ザー回折/散乱式粒度分布測定装置を用いて測定でき
る。これは他でも同様である。
As the scale-like carbon material, a graphite type is preferable because the conductivity of the negative electrode can be increased and the capacity at a large current can be increased. It is preferable to use scale-like natural graphite or scale-like artificial graphite. preferable. In addition, since the size in the plane direction can be increased when the particle size is smaller than the particle size of the lumpy carbon material or the fibrous carbon material, the average particle size should be smaller than the average particle size of the lumpy carbon material. It is preferably used. The average particle size can be measured using, for example, a laser diffraction / scattering type particle size distribution measuring device. This is the same in other cases.

【0024】さらに、負極に含まれる鱗片状炭素材料の
重量は、塊状炭素材料の重量または繊維状炭素材料の重
量よりも少ないことが好ましい。いろいろな形状の塊状
炭素材料を混合して用いる場合には、すべての塊状炭素
材料の合計重量よりも、鱗片状炭素材料の重量を少なく
するのが好ましい。そして、負極に含まれる鱗片状炭素
材料の重量は、リチウムイオンをドープ及び脱ドープ可
能な炭素材料総重量に対して、重量比で30%以下がよ
り好ましく、25%以下とするのがさらに好ましい。そ
の理由は、負極に含まれる鱗片状炭素材料の重量が多く
なると、負極をプレスする際に鱗片状炭素材料が配向し
て、大電流での充放電容量が小さくなるからである。
Further, the weight of the scale-like carbon material contained in the negative electrode is preferably less than the weight of the lump carbon material or the weight of the fibrous carbon material. When agglomerated carbon materials of various shapes are mixed and used, it is preferable that the weight of the flaky carbon material is less than the total weight of all the agglomerated carbon materials. The weight of the scale-like carbon material contained in the negative electrode is more preferably 30% or less, and further preferably 25% or less by weight ratio with respect to the total weight of the carbon material capable of being doped and dedoped with lithium ions. . The reason is that when the weight of the scale-like carbon material contained in the negative electrode increases, the scale-like carbon material is oriented when the negative electrode is pressed, and the charge / discharge capacity at large current decreases.

【0025】繊維状炭素材料としては、主として負極が
膨張した際の炭素材料間の導電性を良好に保つ役割と、
膨張を抑制する役割を担っていると考えられるため、電
子伝導性の良い黒鉛化繊維を用いるのが好ましい。ま
た、その繊維長は、塊状炭素材料の平均粒径の1.2倍
以上2倍以下が好ましく、最大繊維長は炭素材料層厚よ
りも短いのが良く、70μm以下であるのが良い。
The fibrous carbon material mainly has a role of maintaining good conductivity between the carbon materials when the negative electrode expands,
Since it is considered to play a role of suppressing expansion, it is preferable to use graphitized fiber having good electron conductivity. Further, the fiber length thereof is preferably 1.2 times or more and 2 times or less of the average particle diameter of the lump carbon material, and the maximum fiber length is preferably shorter than the thickness of the carbon material layer, and is preferably 70 μm or less.

【0026】これは、繊維状炭素材料の繊維長が塊状炭
素材料の平均粒径の2倍以上の長さになると、負極の充
填密度が小さくなり、電池のエネルギー密度が小さくな
るためである。同様の理由で、負極に含まれる繊維状炭
素材料の重量は、塊状炭素材料の重量よりも少なくする
のが好ましく、リチウムイオンをドープ及び脱ドープ可
能な炭素材料総重量に対して、重量比で25%以下、さ
らには20%以下とするのがより好ましい。また、繊維
状炭素材料の繊維長を塊状炭素材料の平均粒径の1.2
倍以上とするのは、1.2倍より小さくなると、サイク
ル寿命の向上効果が現れにくくなるからである。また、
最大繊維長については、長すぎると負極表面から繊維端
が突出してセパレータを破損することがあるからであ
る。
This is because when the fiber length of the fibrous carbon material is more than twice the average particle diameter of the lump carbon material, the packing density of the negative electrode becomes small and the energy density of the battery becomes small. For the same reason, it is preferable that the weight of the fibrous carbon material contained in the negative electrode be less than the weight of the lump carbon material, and the weight ratio of the fibrous carbon material to the total weight of the carbon material capable of doping and dedoping with lithium ions. It is more preferably 25% or less, and further preferably 20% or less. In addition, the fiber length of the fibrous carbon material is 1.2 times the average particle size of the lump carbon material.
The reason for making it more than twice is that if it is less than 1.2 times, the effect of improving the cycle life becomes difficult to appear. Also,
This is because if the maximum fiber length is too long, the fiber ends may project from the surface of the negative electrode and the separator may be damaged.

【0027】なお、繊維状炭素材料は、例えば、ポリア
クリロニトリル(PAN)、レーヨン、ポリアミド、リ
グニン、ポリビニルアルコール等を熱処理することによ
り製造することができる。
The fibrous carbon material can be produced, for example, by heat-treating polyacrylonitrile (PAN), rayon, polyamide, lignin, polyvinyl alcohol or the like.

【0028】非水電解液は、電解質を非水溶媒に溶解し
て調製され、電解質としては、例えば、LiPF、L
iBF、LiAsF、LiClO、LiCH
、LiCFSO、LiN(SOCF
LiC(SOCF、LiAlCl、LiSi
、LiB(C、LiCl、LiBr、等
を用いることができる。
The non-aqueous electrolyte is prepared by dissolving the electrolyte in a non-aqueous solvent, and examples of the electrolyte include LiPF 6 and L.
iBF 4 , LiAsF 6 , LiClO 4 , LiCH 3 S
O 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 ,
LiC (SO 2 CF 3) 3 , LiAlCl 4, LiSi
F 6 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, or the like can be used.

【0029】非水溶媒としては、例えば、プロピレンカ
ーボネート、エチレンカーボネート、ビニレンカーボネ
ート、1,2−ジメトキシエタン、1,2−ジエトキシ
エタン、ジエチルカーボネート、ジメチルカーボネー
ト、γ−ブチルラクトン、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、1,3−ジオキソラン、4−
メチル−1,3−ジオキソラン、ジエチルエーテル、ス
ルホラン、メチルスルホラン、アセトニトリル、プロピ
オニトリル、プロピオン酸メチル、酪酸メチル等を用い
ることができる。
As the non-aqueous solvent, for example, propylene carbonate, ethylene carbonate, vinylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl carbonate, dimethyl carbonate, γ-butyl lactone, tetrahydrofuran, 2- Methyltetrahydrofuran, 1,3-dioxolane, 4-
Methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, methyl propionate, methyl butyrate and the like can be used.

【0030】[0030]

【実施例】[実施例1]レーザー回折散乱法で得られた
平均粒径(d50、以下同様)が15μmのLiMn
粉末を90重量部、アセチレンブラックを5重量
部、ポリフッ化ビニリデン5重量部を混合して正極合剤
を調整し、N−メチルピロリドンに分散させてスラリー
(ペースト状)にした。
EXAMPLES [Example 1] LiMn 2 having an average particle size (d50, the same applies hereinafter) of 15 μm obtained by a laser diffraction scattering method
90 parts by weight of O 4 powder, 5 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride were mixed to prepare a positive electrode mixture, which was dispersed in N-methylpyrrolidone to form a slurry (paste form).

【0031】正極集電体として厚さ20μmの帯状のア
ルミニウム箔を用い、上記正極合剤スラリーをこの集電
体の両面に均一に塗布、乾燥させた後、圧縮成型して帯
状正極2を作製した。このときの正極合剤層の厚さは1
00μmであった。
A strip-shaped aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, and the positive electrode mixture slurry was uniformly applied to both surfaces of the current collector, dried, and then compression molded to produce a strip positive electrode 2. did. The thickness of the positive electrode material mixture layer at this time is 1
It was 00 μm.

【0032】メソフェーズピッチ小球体を原料とする球
状の人造黒鉛で平均粒径(d50)が26μmの粉末8
0重量部、面方向平均粒径10μmの鱗片状黒鉛粉末5
重量部、平均繊維長26μmの黒鉛化炭素繊維粉末15
重量部、ポリフッ化ビニリデン10重量部を混合して負
極合剤を調整し、N−メチルピロリデンに分散させてス
ラリー(ペースト状)にした。
Spherical artificial graphite made from mesophase pitch small spheres and having a mean particle size (d50) of 26 μm 8
0 parts by weight, flaky graphite powder 5 having an average particle diameter in the plane direction of 10 μm 5
15 parts by weight of graphitized carbon fiber powder having an average fiber length of 26 μm
By weight, 10 parts by weight of polyvinylidene fluoride were mixed to prepare a negative electrode mixture, which was dispersed in N-methylpyrrolidene to form a slurry (paste form).

【0033】負極集電体として厚さ15μmの帯状の銅
箔を用い、上記負極合剤スラリーをこの集電体の両面に
塗布、乾燥させた後、所定圧力で圧縮成型して負極合剤
層厚さ56μmの帯状負極3を作製した。
A band-shaped copper foil having a thickness of 15 μm is used as the negative electrode current collector, and the negative electrode mixture slurry is applied to both sides of the current collector, dried, and then compression molded at a predetermined pressure to form a negative electrode mixture layer. A strip negative electrode 3 having a thickness of 56 μm was produced.

【0034】次いで、以上のようにして作製された帯状
負極3、帯状正極2を、図1に示したように厚さ35μ
mの微多孔性ポリプロピレンフィルムよりなるセパレー
タ1を介して、負極3、セパレータ1、正極2、セパレ
ータ1の順に積層してから多数回巻回し、渦巻型電極体
を作製した。
Next, the strip-shaped negative electrode 3 and the strip-shaped positive electrode 2 produced as described above were formed to a thickness of 35 μm as shown in FIG.
A negative electrode 3, a separator 1, a positive electrode 2, and a separator 1 were laminated in this order through a separator 1 made of a m microporous polypropylene film and then wound many times to prepare a spirally wound electrode body.

【0035】このようにして作製した渦巻型電極体を、
ニッケルめっきを施した鉄製電池缶に収納した。渦巻式
電極上下両面には絶縁板を配設し、アルミニウム製正極
リードを正極集電体から導出して電池蓋に、ニッケル製
負極リードを負極集電体から導出して電池缶に溶接し
た。そして、この電池缶の中に、エチレンカーボネート
とジメチルカーボネートとの3:7混合溶媒にLiPF
を1mol/lの割合で溶解した電解液を注入した。
次いで、絶縁封口ガスケットを介して電池缶をかしめる
ことにより、電池蓋を固定し、電池内の気密性を保持さ
せ、直径18mm、高さ65mmの円筒型非水電解質二
次電池を作製した。
The spirally wound electrode body thus produced is
It was stored in a nickel-plated iron battery can. Insulating plates were provided on the upper and lower surfaces of the spiral electrode, and the aluminum positive electrode lead was led out from the positive electrode current collector to the battery lid, and the nickel negative electrode lead was led out from the negative electrode current collector and welded to the battery can. Then, in this battery can, LiPF3 was added to a 3: 7 mixed solvent of ethylene carbonate and dimethyl carbonate.
An electrolyte solution in which 6 was dissolved at a ratio of 1 mol / l was injected.
Next, the battery lid was fixed by caulking the battery can through the insulating sealing gasket, the airtightness inside the battery was maintained, and a cylindrical nonaqueous electrolyte secondary battery having a diameter of 18 mm and a height of 65 mm was produced.

【0036】[実施例2]メソフェーズピッチ小球体を
原料とする球状の人造黒鉛で平均粒径(d50)が26
μmの粉末80重量部、面方向平均粒径10μmの鱗片
状黒鉛粉末5重量部、平均繊維長31μmの黒鉛化炭素
繊維粉末15重量部、ポリフッ化ビニリデン10重量部
を混合した負極合剤を用いた以外は実施例1と同様の円
筒型非水電解質二次電池2を作製した。
Example 2 Spherical artificial graphite made from mesophase pitch small spheres and having an average particle size (d50) of 26.
80 parts by weight of powder, 5 parts by weight of flaky graphite powder having an average particle size in the plane direction of 10 μm, 15 parts by weight of graphitized carbon fiber powder having an average fiber length of 31 μm, and 10 parts by weight of polyvinylidene fluoride are used as a negative electrode mixture. Cylindrical non-aqueous electrolyte secondary battery 2 was produced in the same manner as in Example 1 except that it was used.

【0037】[実施例3]メソフェーズピッチ小球体を
原料とする球状の人造黒鉛で平均粒径(d50)が26
μmの粉末80重量部、面方向平均粒径10μmの鱗片
状黒鉛粉末5重量部、平均繊維長39μmの黒鉛化炭素
繊維粉末15重量部、ポリフッ化ビニリデン10重量部
を混合した負極合剤を用いた以外は実施例1と同様の円
筒型非水電解質二次電池3を作製した。
Example 3 Spherical artificial graphite made of mesophase pitch spherules as a raw material and having an average particle size (d50) of 26.
80 parts by weight powder, 5 parts by weight flake graphite powder having an average particle size in the surface direction of 10 μm, 15 parts by weight graphitized carbon fiber powder having an average fiber length of 39 μm, and 10 parts by weight polyvinylidene fluoride are used as a negative electrode mixture. A cylindrical non-aqueous electrolyte secondary battery 3 similar to that of Example 1 was produced except for the above.

【0038】[実施例4]メソフェーズピッチ小球体を
原料とする球状の人造黒鉛で平均粒径(d50)が26
μmの粉末80重量部、面方向平均粒径10μmの鱗片
状黒鉛粉末5重量部、平均繊維長53μmの黒鉛化炭素
繊維粉末15重量部、ポリフッ化ビニリデン10重量部
を混合した負極合剤を用いた以外は実施例1と同様の円
筒型非水電解質二次電池4を作製した。
Example 4 Spherical artificial graphite made from mesophase pitch small spheres and having an average particle size (d50) of 26.
80 parts by weight of powder, 5 parts by weight of flake graphite powder having an average particle size in the surface direction of 10 μm, 15 parts by weight of graphitized carbon fiber powder having an average fiber length of 53 μm, and 10 parts by weight of polyvinylidene fluoride are used as a negative electrode mixture. Cylindrical non-aqueous electrolyte secondary battery 4 was produced in the same manner as in Example 1 except that it was used.

【0039】[実施例5]メソフェーズピッチ小球体を
原料とする球状の人造黒鉛で平均粒径(d50)が26
μmの粉末80重量部、面方向平均粒径10μmの鱗片
状黒鉛粉末5重量部、繊維長60μmの黒鉛化炭素繊維
粉末15重量部、ポリフッ化ビニリデン10重量部を混
合した負極合剤を用いた以外は実施例1と同様の円筒型
非水電解質二次電池5を作製した。
[Example 5] Spherical artificial graphite made of mesophase pitch small spheres and having an average particle size (d50) of 26.
A negative electrode mixture was used in which 80 parts by weight of powder having a particle size of 10 μm, 5 parts by weight of flake graphite powder having an average particle size in the plane direction of 10 μm, 15 parts by weight of graphitized carbon fiber powder having a fiber length of 60 μm, and 10 parts by weight of polyvinylidene fluoride were used. A cylindrical non-aqueous electrolyte secondary battery 5 was produced in the same manner as in Example 1 except for the above.

【0040】[実施例6]メソフェーズピッチ小球体を
原料とする球状の人造黒鉛で平均粒径(d50)が26
μmの粉末80重量部、面方向平均粒径10μmの鱗片
状黒鉛粉末15重量部、繊維長39μmの黒鉛化炭素繊
維粉末5重量部、ポリフッ化ビニリデン10重量部を混
合した負極合剤を用いた以外は実施例1と同様の円筒型
非水電解質二次電池6を作製した。
Example 6 Spherical artificial graphite made from mesophase pitch small spheres and having an average particle size (d50) of 26.
A negative electrode mixture was used in which 80 parts by weight of powder having a particle size of 10 μm, 15 parts by weight of flake graphite powder having an average particle size in the plane direction of 10 μm, 5 parts by weight of graphitized carbon fiber powder having a fiber length of 39 μm, and 10 parts by weight of polyvinylidene fluoride were used. A cylindrical non-aqueous electrolyte secondary battery 6 was produced in the same manner as in Example 1 except for the above.

【0041】[実施例7]メソフェーズピッチ小球体を
原料とする球状の人造黒鉛で平均粒径(d50)が26
μmの粉末45重量部、面方向平均粒径10μmの鱗片
状黒鉛粉末50重量部、繊維長39μmの黒鉛化炭素繊
維粉末5重量部、ポリフッ化ビニリデン5重量部を混合
した負極合剤を用いた以外は実施例1と同様の円筒型非
水電解質二次電池7を作製した。
Example 7 Spherical artificial graphite made from mesophase pitch small spheres and having an average particle size (d50) of 26.
The negative electrode mixture was prepared by mixing 45 parts by weight of powder having a particle diameter of 10 μm in the plane direction, 50 parts by weight of flake graphite powder having an average particle diameter in the plane direction of 5 parts, 5 parts by weight of graphitized carbon fiber powder having a fiber length of 39 μm, and 5 parts by weight of polyvinylidene fluoride. A cylindrical non-aqueous electrolyte secondary battery 7 was produced in the same manner as in Example 1 except for the above.

【0042】[比較例1]メソフェーズピッチ小球体を
原料とする球状の人造黒鉛で平均粒径(d50)が26
μmの粉末80重量部、面方向平均粒径10μmの鱗片
状黒鉛粉末20重量部、ポリフッ化ビニリデン10重量
部を混合した負極合剤を用いた以外は実施例1と同様の
円筒型非水電解質二次電池8を作製した。
[Comparative Example 1] Spherical artificial graphite made of mesophase pitch small spheres and having an average particle size (d50) of 26.
Cylindrical non-aqueous electrolyte similar to that of Example 1 except that 80 parts by weight of powder, 20 parts by weight of flake graphite powder having an average particle size in the surface direction of 10 μm, and 10 parts by weight of polyvinylidene fluoride were mixed. A secondary battery 8 was produced.

【0043】実施例1〜7および比較例1の電池の負極
に使用した炭素材料の内容を表1にまとめた。
Table 1 shows the contents of the carbon materials used for the negative electrodes of the batteries of Examples 1 to 7 and Comparative Example 1.

【0044】[0044]

【表1】 [Table 1]

【0045】以上の電池について、充放電サイクル試験
を行った。充放電条件は、充電は定電流で4.1Vま
で、さらに4.1V定電圧で3時間、放電は定電流で、
終止電圧を2.75Vとした。まず、25℃、1A定電
流で充放電試験を行い、各電池の放電容量を測定し、こ
れを初期放電容量とした。ついで、60℃、1A定電流
で、200サイクルの充放電を行った。その後、電池温
度を25℃に戻して、再度1A定電流で充放電を行い、
200サイクル後の1A定電流放電容量を求めた。そし
て、200サイクル後の1A定電流放電容量の初期放電
容量に対する100分率を求め、これを1A放電容量維
持率とした。さらに、各電池について、充電は、25
℃、3A定電流で4.1Vまで、さらに4.1V定電圧
で3時間行い、放電は3A定電流で、終止電圧2.75
Vまでの、1サイクルの充放電を行い、3A定電流放電
容量を求めた。そして、200サイクル後の3A定電流
放電容量の初期放電容量に対する100分率を求め、こ
れを3A放電容量維持率とした。以上の測定結果を表2
に示す。
A charge / discharge cycle test was conducted on the above batteries. Charge and discharge conditions were constant current up to 4.1V, 4.1V constant voltage for 3 hours, and constant current discharge.
The final voltage was 2.75V. First, a charge / discharge test was performed at 25 ° C. and a constant current of 1 A, the discharge capacity of each battery was measured, and this was used as the initial discharge capacity. Then, charging / discharging was performed at 60 ° C. and a constant current of 1 A for 200 cycles. After that, the battery temperature is returned to 25 ° C., and the battery is charged and discharged again with a constant current of 1 A,
The constant current discharge capacity of 1 A after 200 cycles was determined. Then, a 100-percentage ratio of the constant current discharge capacity of 1 A after 200 cycles to the initial discharge capacity was obtained, and this was defined as the 1 A discharge capacity maintenance rate. Furthermore, for each battery, charging is 25
℃, 3A constant current up to 4.1V, 4.1V constant voltage for 3 hours, discharge at 3A constant current, final voltage 2.75.
The battery was charged and discharged for 1 cycle up to V and the 3A constant current discharge capacity was obtained. Then, the 100-percentage ratio of the 3A constant-current discharge capacity after 200 cycles to the initial discharge capacity was obtained, and this was taken as the 3A discharge capacity maintenance rate. The above measurement results are shown in Table 2.
Shown in.

【0046】[0046]

【表2】 [Table 2]

【0047】表1および表2の結果から、つぎのような
ことがわかった。炭素繊維を添加した電池1〜電池7
と、炭素繊維を添加しない電池8とを比較すると、電池
1〜電池7の方が容量維持率が大きく、いいかえると、
200サイクル後の放電容量減少が少なくなっており、
特に、3Aという大きな電流での放電容量の減少が小さ
くなっていた。
From the results shown in Tables 1 and 2, the following was found. Batteries 1 to 7 with carbon fiber added
In comparison with the battery 8 to which no carbon fiber is added, the batteries 1 to 7 have a larger capacity retention rate.
The decrease in discharge capacity after 200 cycles is small,
In particular, the decrease in discharge capacity at a large current of 3 A was small.

【0048】また、負極中の燐片状黒鉛粉末の重量が、
球状人造黒鉛の重量よりも多い電池7では、電池1〜電
池6に比べて、初期放電容量が大きく低下した。
The weight of the scaly graphite powder in the negative electrode is
The initial discharge capacity of the battery 7, which was heavier than the spherical artificial graphite, was significantly lower than that of the batteries 1 to 6.

【0049】さらに、電池1〜電池5を比較すると、炭
素繊維の繊維長が長くなるにつれて初期放電容量が小さ
くなる傾向が見られた。また、球状人造黒鉛の平均粒径
の2倍を超える繊維長の炭素繊維を添加した電池4およ
び電池5では、初期放電容量低下が著しく大きくなって
いた。いっぽう、炭素繊維の繊維長が短くなるにつれ
て、放電容量維持率が小さくなる傾向があり、1.2倍
よりも小さい電池1では、放電容量維持率が急に悪くな
った。ただし、球状人造黒鉛の平均粒径と同程度の繊維
長の炭素繊維を添加した電池1においても、放電容量維
持率は70%に近い値となった。
Further, comparing the batteries 1 to 5, it was observed that the initial discharge capacity tended to decrease as the fiber length of the carbon fiber increased. Further, in the batteries 4 and 5 to which the carbon fiber having a fiber length exceeding twice the average particle diameter of the spherical artificial graphite was added, the initial discharge capacity was significantly reduced. On the other hand, the discharge capacity retention rate tends to decrease as the fiber length of the carbon fiber decreases, and in the battery 1 smaller than 1.2 times, the discharge capacity retention rate suddenly deteriorated. However, even in the battery 1 to which carbon fiber having a fiber length approximately the same as the average particle diameter of spherical artificial graphite was added, the discharge capacity retention rate was a value close to 70%.

【0050】[0050]

【発明の効果】本発明は、リチウムイオンをドープ及び
脱ドープ可能な炭素材料を含む負極と、リチウムイオン
をドープ及び脱ドープ可能な正極と、非水電解質とを備
えた非水電解質電池において、前記炭素材料が、塊状炭
素材料と繊維状炭素材料と鱗片状炭素材料とを含むこと
を特徴としたものである。
INDUSTRIAL APPLICABILITY The present invention provides a non-aqueous electrolyte battery including a negative electrode containing a carbon material capable of doping and dedoping lithium ions, a positive electrode capable of doping and dedoping lithium ions, and a non-aqueous electrolyte, The carbon material includes a lump carbon material, a fibrous carbon material, and a scaly carbon material.

【0051】本発明により、負極をこのような3種類の
炭素材料を混合して構成することにより、高温でのサイ
クルを繰り返した場合の負極抵抗の増大が抑制され、大
電流、特に3C以上の大電流で測定される容量の低下が
少ない非水電解質電池を得ることが可能となる。
According to the present invention, by constructing the negative electrode by mixing such three kinds of carbon materials, it is possible to suppress the increase of the negative electrode resistance when the cycle is repeated at a high temperature, and to suppress a large current, especially 3 C or more. It is possible to obtain a non-aqueous electrolyte battery in which the decrease in capacity measured with a large current is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】電池の電極構成を示す図である。FIG. 1 is a diagram showing an electrode configuration of a battery.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 正極 3 負極 1 separator 2 positive electrode 3 Negative electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンをドープ及び脱ドープ可
能な炭素材料を含む負極と、リチウムイオンをドープ及
び脱ドープ可能な正極と、非水電解質とを備えた非水電
解質電池において、前記炭素材料が、塊状炭素材料と繊
維状炭素材料と鱗片状炭素材料とを含むことを特徴とす
る非水電解質電池。
1. A non-aqueous electrolyte battery comprising a negative electrode containing a carbon material that can be doped and dedoped with lithium ions, a positive electrode that can be doped and dedoped with lithium ions, and a non-aqueous electrolyte. A non-aqueous electrolyte battery comprising a lumpy carbon material, a fibrous carbon material, and a scaly carbon material.
【請求項2】 負極に含まれる鱗片状炭素材料の重量
が、塊状炭素材料の重量または繊維状炭素材料の重量よ
りも少ないことを特徴とする請求項1記載の非水電解質
電池。
2. The nonaqueous electrolyte battery according to claim 1, wherein the weight of the scale-like carbon material contained in the negative electrode is smaller than the weight of the lump carbon material or the weight of the fibrous carbon material.
【請求項3】 繊維状炭素材料の平均繊維長が塊状炭素
材料の平均粒径の2倍以下であることを特徴とする請求
項1または2記載の非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the average fiber length of the fibrous carbon material is not more than twice the average particle diameter of the lump carbon material.
JP2002042214A 2002-02-19 2002-02-19 Non-aqueous electrolyte battery Pending JP2003242977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042214A JP2003242977A (en) 2002-02-19 2002-02-19 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002042214A JP2003242977A (en) 2002-02-19 2002-02-19 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2003242977A true JP2003242977A (en) 2003-08-29

Family

ID=27782400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042214A Pending JP2003242977A (en) 2002-02-19 2002-02-19 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2003242977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577245B2 (en) 2011-06-30 2017-02-21 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell containing negative active material including scaly graphite particles and graphite particles coated with amorphous carbon particles and amorphous carbon layer and method of manufacturing the same
WO2019187129A1 (en) * 2018-03-30 2019-10-03 株式会社 東芝 Electrode, battery, and battery pack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9577245B2 (en) 2011-06-30 2017-02-21 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell containing negative active material including scaly graphite particles and graphite particles coated with amorphous carbon particles and amorphous carbon layer and method of manufacturing the same
WO2019187129A1 (en) * 2018-03-30 2019-10-03 株式会社 東芝 Electrode, battery, and battery pack
JPWO2019187129A1 (en) * 2018-03-30 2021-01-07 株式会社東芝 Electrodes, batteries and battery packs

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP4150343B2 (en) Lithium ion secondary battery
EP0924789B1 (en) Nonaqueous battery
JP4595145B2 (en) Non-aqueous electrolyte battery
JP2007035358A (en) Positive electrode active substance, its manufacturing method and lithium ion secondary battery
JP2005044775A (en) Negative electrode for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same
JP2001023687A (en) Nonaqueous electrolyte battery
US7150940B2 (en) Lithium ion secondary battery
JP2003229172A (en) Nonaqueous electrolyte battery
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP4910228B2 (en) Nonaqueous electrolyte secondary battery
JP2004031131A (en) Nonaqueous electrolyte liquid secondary battery
JPH11102729A (en) Manufacture of nonaqueous solvent type secondary battery
JP4206565B2 (en) Non-aqueous electrolyte battery
JP3654592B2 (en) Lithium ion secondary battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JP2004319186A (en) Nonaqueous electrolyte battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP2005018998A (en) Negative electrode material and battery using the same
JP4166295B2 (en) Non-aqueous electrolyte battery
JP4085481B2 (en) battery
JP3458389B2 (en) Non-aqueous electrolyte secondary battery
JPH1021960A (en) Secondary battery
JP2001085009A (en) Positive electrode active material and its manufacture