JP2003240762A - Probe for eddy current flaw detection and eddy current flaw detecting apparatus using the same - Google Patents

Probe for eddy current flaw detection and eddy current flaw detecting apparatus using the same

Info

Publication number
JP2003240762A
JP2003240762A JP2002040906A JP2002040906A JP2003240762A JP 2003240762 A JP2003240762 A JP 2003240762A JP 2002040906 A JP2002040906 A JP 2002040906A JP 2002040906 A JP2002040906 A JP 2002040906A JP 2003240762 A JP2003240762 A JP 2003240762A
Authority
JP
Japan
Prior art keywords
flaw
probe
detection
eddy current
detection coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002040906A
Other languages
Japanese (ja)
Other versions
JP3979606B2 (en
Inventor
Hiroshi Hoshikawa
洋 星川
Kiyoshi Koyama
潔 小山
Tatsuo Hiroshima
廣島龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Marktec Corp
Original Assignee
Nihon University
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Marktec Corp filed Critical Nihon University
Priority to JP2002040906A priority Critical patent/JP3979606B2/en
Publication of JP2003240762A publication Critical patent/JP2003240762A/en
Application granted granted Critical
Publication of JP3979606B2 publication Critical patent/JP3979606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To generate a flaw signal of the largest amplitude when detecting coils are located immediately above a flaw in a probe for eddy current flaw detection, to reduce a lift-off noise, and to generate flaw signals to omnidirectional flaws. <P>SOLUTION: A pair of the rectangular, vertical detecting coils 121 and 122 are arranged at a predetermined interval inside a pancake-shaped exciting coil 11. The windings of the detecting coils 121 and 122 are opposite in direction and connected to that flaw signals of both detecting coils are superposed on each other. The pair of detecting coils 121 and 122 generate flaw signals of the largest amplitude when located immediately above the flaw in a body to be detected T. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、渦電流探傷用プ
ローブとそのプローブを用いた渦電流探傷装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detection probe and an eddy current flaw detection device using the probe.

【0002】[0002]

【従来の技術】図7と図8を参照して従来の渦電流探傷
装置に使用されているプローブを説明する。なお両図に
共通の部分は、同じ符号を使用している。図7におい
て、図7(a)は、パンケーキ型プローブの、図7
(b)は、クロスポイント型プローブの、図7(c)
は、Θ型プローブの斜視図である。図7(a)のパンケ
ーキ型プローブは、パンケーキ状のコイル5を用いた自
己誘導型プローブで、コイル5は、励磁コイルと検出コ
イルを兼ねており、金属板等の検査体T上に上置して、
コイル5に励磁電流を流すと、検査体Tに渦電流が発生
し、その渦電流によりコイル5に起電力を発生する。コ
イル5の直下の検査体Tにキズがあるときは、渦電流
は、そのキズの部分で変化するため、コイル5の起電力
にも変化が生じる。渦電流探傷装置は、その起電力の変
化を検知してキズを評価している。
2. Description of the Related Art A probe used in a conventional eddy current flaw detector will be described with reference to FIGS. The same reference numerals are used for the common parts in both figures. In FIG. 7, FIG. 7A shows a pancake-type probe of FIG.
FIG. 7B is a cross-point probe of FIG. 7C.
FIG. 3 is a perspective view of a Θ type probe. The pancake type probe of FIG. 7 (a) is a self-induction type probe using a pancake-shaped coil 5, and the coil 5 serves both as an exciting coil and a detecting coil, and is placed on an inspection body T such as a metal plate. Put it up,
When an exciting current is passed through the coil 5, an eddy current is generated in the inspection body T, and the eddy current generates an electromotive force in the coil 5. When the inspection body T immediately below the coil 5 has a flaw, the eddy current changes in the flaw portion, so that the electromotive force of the coil 5 also changes. The eddy current flaw detector detects changes in the electromotive force and evaluates flaws.

【0003】コイル5には、検査体Tにキズがないとき
にも定常的に発生する渦電流による起電力とキズによる
渦電流の変化に起因する起電力、いわゆるキズ信号とが
同時に発生する。一方コイル5と検査体Tとの相対距離
(以下リフトオフと呼ぶ)が変化すると、定常的に発生
する渦電流が変化して、いわゆるリフトオフ雑音を発生
するため、キズの評価精度が低下する。キズの探傷に
は、プローブを検査体Tに沿って移動しなければならな
いため、リフトオフの変化は避けがたく、特に長いキズ
の場合には、リフトオフの変化をなくすことは困難であ
る。
In the coil 5, an electromotive force due to an eddy current that is constantly generated and an electromotive force due to a change in the eddy current due to a scratch, that is, a so-called scratch signal is generated at the same time even when the inspection object T is not damaged. On the other hand, when the relative distance between the coil 5 and the inspection object T (hereinafter referred to as lift-off) changes, the eddy current that is constantly generated changes and so-called lift-off noise is generated, so the accuracy of scratch evaluation deteriorates. Since a probe must be moved along the inspection body T for flaw detection, it is unavoidable to change the lift-off, and it is difficult to eliminate the change in the lift-off especially in the case of a long scratch.

【0004】図7(b)のクロスポイント型プローブ
は、励磁コイル61と検出コイル62とを直交させてあ
る。ここで図8(a)を参照してクロスポイント型プロ
ーブについて説明する。図8(a)は、キズが検出コイ
ルと交差する角度を示し、検出コイルと平行するキズF
を0度とし、45度、90度、135度のキズFを示し
てある。クロスポイント型プローブは、リフトオフ雑音
は小さいが、検査体Tのキズ(例えばスリット状キズ
F)の方向により、キズ信号を発生しない場合がある。
即ちキズFが検出コイル62と45度又は135度の方
向にある場合には、キズ信号を発生しない。したがって
クロスポイント型プローブを用いた渦電流探傷装置は、
キズFが検出コイル62に対して45度又は135度の
方向にある場合には、キズを検知できない。即ちクロス
ポイント型プローブには、検知できない方向のキズがあ
る。
In the cross-point type probe of FIG. 7B, the exciting coil 61 and the detecting coil 62 are orthogonal to each other. Here, the cross-point type probe will be described with reference to FIG. FIG. 8A shows an angle at which a flaw crosses the detection coil, and a flaw F parallel to the detection coil.
Is 0 degree, and scratches F of 45 degrees, 90 degrees, and 135 degrees are shown. The cross-point probe has a small lift-off noise, but may not generate a flaw signal depending on the direction of the flaw (for example, slit flaw F) of the inspection object T.
That is, when the flaw F is in the direction of 45 degrees or 135 degrees with the detection coil 62, the flaw signal is not generated. Therefore, the eddy current flaw detector using the crosspoint probe is
When the flaw F is in the direction of 45 degrees or 135 degrees with respect to the detection coil 62, the flaw cannot be detected. That is, the cross point type probe has flaws in a direction that cannot be detected.

【0005】図7(c)のΘ型プローブは、パンケーキ
状の励磁コイル71の内側に、縦置き型の矩形状の検出
コイル72を配置してある。ここで図8(b),(c)
を参照してΘ型プローブを説明する。図8(b)は、キ
ズFが検出コイル72と直交する方向にある場合を、図
8(c)は、キズFが検出コイル72と平行する方向に
ある場合を示す。Θ型プローブは、リフトオフ雑音が小
さく、全ての方向のキズを検知できるが、検出コイル7
2がキズの真上にあるときキズ信号を発生しない。例え
ば、図8(b)の場合、検出コイル72がキズFの両側
P1,P2にあるときはキズ信号を発生するが、キズF
の真上(キズFの長手方向の中点)P0にあるときは、
キズ信号を発生しない。また図8(c)の場合、検出コ
イル72がキズFの両側P1,P2にあるときはキズ信
号を発生するが、キズFの真上P0にあるときは、キズ
信号を発生しない。即ちΘ型プローブは、キズの真上か
ら外れた位置で検出信号を発生する。そのためプローブ
を走査してキズの位置を検知する場合、感覚的にキズの
位置を錯覚し易い。
In the θ type probe of FIG. 7C, a vertically-arranged rectangular detection coil 72 is arranged inside a pancake-shaped exciting coil 71. Here, FIG. 8 (b), (c)
The Θ probe will be described with reference to FIG. 8B shows the case where the flaw F is in the direction orthogonal to the detection coil 72, and FIG. 8C shows the case where the flaw F is in the direction parallel to the detection coil 72. The Θ-type probe has low lift-off noise and can detect flaws in all directions.
When 2 is directly above the scratch, no scratch signal is generated. For example, in the case of FIG. 8B, when the detection coil 72 is on both sides P1 and P2 of the flaw F, a flaw signal is generated, but the flaw F
When it is directly above (the midpoint in the longitudinal direction of the scratch F) P0,
Does not generate a scratch signal. Further, in the case of FIG. 8C, when the detection coil 72 is on both sides P1 and P2 of the flaw F, a flaw signal is generated, but when it is immediately above the flaw F, P0 does not generate a flaw signal. That is, the Θ probe generates a detection signal at a position deviating from just above the flaw. Therefore, when the position of the flaw is detected by scanning the probe, it is easy to sensually illusion the position of the flaw.

【0006】[0006]

【発明が解決しようとする課題】本願発明は、これらの
問題点に鑑み、リフトオフ雑音が小さく、全方向のキズ
を検出でき、かつキズの真上でキズ信号の振幅が最大に
なるプローブと、そのプローブを用いた渦電流探傷装置
の提供を目的とする。
SUMMARY OF THE INVENTION In view of these problems, the present invention provides a probe having a small lift-off noise, capable of detecting flaws in all directions, and having a maximum flaw signal amplitude just above the flaw, The object is to provide an eddy current flaw detector using the probe.

【0007】[0007]

【課題を解決するための手段】本願発明の渦電流探傷用
プローブは、励磁コイルの内側に、巻線の方向が逆の一
対の縦置き型検出コイルを配置し、両検出コイルは、両
検出コイルの出力を重畳するように接続してあることを
特徴とする。本願発明の渦電流探傷用プローブは、励磁
コイルの内側に、巻線の方向が同じ一対の縦置き型検出
コイルを配置し、両検出コイルは、一方の検出コイルの
出力の極性を反転して、両検出コイルの出力を重畳する
ように接続してあることを特徴とする。本願発明の渦電
流探傷用プローブは、前記各発明の渦電流探傷用プロー
ブにおいて、検出コイルは、三角形であることを特徴と
する。本願発明の渦電流探傷装置は、励磁コイルの内側
に、巻線の方向が逆の一対の縦置き型検出コイルを配置
し、両検出コイルは、両検出コイルの出力を重畳するよ
うに接続してあるプローブ、そのプローブのキズ信号を
検出するキズ信号検出器、そのキズ信号検出器のキズ信
号を表示するキズ信号評価器とを備えていることを特徴
とする。本願発明の渦電流探傷装置は、励磁コイルの内
側に、巻線の方向が同じ一対の縦置き型検出コイルを配
置し、両検出コイルは、一方の検出コイルの出力の極性
を反転して、両検出コイルの出力を重畳するように接続
してあるプローブ、そのプローブのキズ信号を検出する
キズ信号検出器、そのキズ信号検出器のキズ信号を表示
するキズ信号評価器とを備えていることを特徴とする。
In the eddy current flaw detection probe of the present invention, a pair of vertical detection coils having opposite winding directions are arranged inside the excitation coil, and both detection coils detect both. It is characterized in that the outputs of the coils are connected so as to overlap each other. In the eddy current flaw detection probe of the present invention, a pair of vertical type detection coils having the same winding direction are arranged inside the excitation coil, and both detection coils have the polarity of the output of one detection coil inverted. , And the outputs of both detection coils are connected so as to overlap each other. The eddy current flaw detection probe of the present invention is characterized in that, in the eddy current flaw detection probe of each of the above inventions, the detection coil has a triangular shape. In the eddy current flaw detector of the present invention, a pair of vertical detection coils with opposite winding directions are arranged inside the excitation coil, and both detection coils are connected so as to superimpose the outputs of both detection coils. The present invention is characterized by comprising a probe, a flaw signal detector for detecting a flaw signal of the probe, and a flaw signal evaluator for displaying a flaw signal of the flaw signal detector. The eddy current flaw detector of the present invention has a pair of vertical detection coils having the same winding direction disposed inside the excitation coil, and both detection coils reverse the polarity of the output of one detection coil, A probe connected so as to superimpose the outputs of both detection coils, a flaw signal detector that detects the flaw signal of the probe, and a flaw signal evaluator that displays the flaw signal of the flaw signal detector Is characterized by.

【0008】[0008]

【発明の実施の形態】図1〜図6を参照して、本願発明
の実施の形態を説明する。なお各図に共通の部分は、同
じ符号を使用している。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described with reference to FIGS. The same reference numerals are used for the common parts in each drawing.

【0009】図1は、本願発明の実施の形態に係るプロ
ーブの構成を示す。図1(a)は、プローブの平面図、
図1(b)は、図1(a)のY1−Y1部分の断面図、
図1(c)は、図1(a)のY2−Y2部分の断面図で
ある。図1において、Tは、金属板等の検査体、11
は、パンケーキ状の励磁コイル、121,122は、矩
形状の縦置き型検出コイルである。検出コイル121,
122は、励磁コイル11の内側に、励磁コイル11の
軸方向と平行する方向に対向させて配置してある。検出
コイル121,122は、コイルの巻線方向が逆で、両
コイルの出力が重畳されるように接続してある。即ち検
出コイル121の巻き終わりと検出コイル122の巻き
始めとを接続するか、或いは検出コイル121の巻き始
めと検出コイル122の巻き終わりとを接続して、一対
の検出コイルの出力を取り出すように接続する。
FIG. 1 shows the structure of a probe according to an embodiment of the present invention. FIG. 1A is a plan view of the probe,
1B is a cross-sectional view taken along line Y1-Y1 of FIG.
FIG. 1C is a cross-sectional view of the Y2-Y2 portion of FIG. In FIG. 1, T is an inspection object such as a metal plate, 11
Is a pancake-shaped exciting coil, and 121 and 122 are rectangular vertical detection coils. Detection coil 121,
122 is arranged inside the exciting coil 11 so as to face each other in a direction parallel to the axial direction of the exciting coil 11. The detection coils 121 and 122 are connected such that the winding directions of the coils are opposite and the outputs of both coils are superimposed. That is, the winding end of the detection coil 121 and the winding start of the detection coil 122 are connected, or the winding start of the detection coil 121 and the winding end of the detection coil 122 are connected to extract the outputs of the pair of detection coils. Connecting.

【0010】図2は、図1のプローブが発生する渦電流
を説明する図で、図2(a)は、検査体Tにキズがない
場合、図2(b)は、キズが検出コイルと平行している
場合、図2(c)は、キズが検出コイルと直交している
場合の渦電流の分布を示す。図2において、Fは、検査
体Tのキズ、Iは、励磁コイル11の励磁電流により定
常的に発生する渦電流、i1,i2は、キズFに起因し
て発生する渦電流である。
2A and 2B are views for explaining the eddy current generated by the probe of FIG. 1. FIG. 2A shows a case where the inspection object T has no flaw, and FIG. 2B shows a case where the flaw is a detection coil. When parallel, FIG.2 (c) shows distribution of the eddy current when a flaw is orthogonal to the detection coil. In FIG. 2, F is a flaw of the inspection object T, I is an eddy current that is constantly generated by the exciting current of the exciting coil 11, and i1 and i2 are eddy currents that are caused by the flaw F.

【0011】図2(a)のように検査体Tにキズがない
場合、検査体Tには渦電流Iのみが発生する。検出コイ
ル121,122は、渦電流Iの内側に位置するから、
検出コイル121,122には、渦電流Iによる起電力
は発生しない。
When the inspection body T is not damaged as shown in FIG. 2A, only the eddy current I is generated in the inspection body T. Since the detection coils 121 and 122 are located inside the eddy current I,
No electromotive force due to the eddy current I is generated in the detection coils 121 and 122.

【0012】図2(b)の場合、検査体Tには、キズF
の両側(上下)に、キズFに起因する逆方向の渦電流
(細い矢印の電流)が発生する。検出コイル121,1
22は、キズFと平行しているから、検出コイル12
1,122には、キズFに沿って流れる渦電流i1,i
2により起電力が発生し、いわゆるキズ信号が発生す
る。渦電流i1,i2は、逆方向に流れるが、検出コイ
ル121,122の巻線の方向も逆であるから、検出コ
イル121,122には、同極性のキズ信号が発生し、
その両キズ信号は重畳される。したがってキズFが検出
コイル121,122と平行している場合には、一対の
検出コイル121,122が、図2(b)の位置にある
とき、即ちキズFが検出コイル121,122の間に位
置するとき、最大振幅のキズ信号を発生する。この場
合、一対の検出コイル121,122は、キズFの真上
に位置するから、図1のプローブが最大振幅のキズ信号
を発生する位置とキズFの位置とは一致する。
In the case of FIG. 2B, the inspection body T has a flaw F.
An eddy current (current indicated by a thin arrow) in the opposite direction due to the flaw F is generated on both sides (up and down) of the. Detection coil 121,1
Since 22 is parallel to the flaw F, the detection coil 12
1, 122 include eddy currents i1, i flowing along the flaw F.
An electromotive force is generated by 2 and a so-called scratch signal is generated. The eddy currents i1 and i2 flow in opposite directions, but the winding directions of the detection coils 121 and 122 are also opposite, so that flaw signals of the same polarity are generated in the detection coils 121 and 122,
Both flaw signals are superposed. Therefore, when the flaw F is parallel to the detection coils 121 and 122, when the pair of detection coils 121 and 122 are in the position of FIG. 2B, that is, the flaw F is located between the detection coils 121 and 122. When located, it produces a flaw signal of maximum amplitude. In this case, since the pair of detection coils 121 and 122 are located right above the flaw F, the position where the probe of FIG. 1 generates the flaw signal with the maximum amplitude and the position of the flaw F coincide.

【0013】図2(c)の場合、検出コイル121,1
22は、キズFの長手方向の中点の両側に位置するか
ら、検出コイル121,122には、キズFに起因して
発生する渦電流i1,i2により起電力が発生し、キズ
信号が発生する。渦電流i1,i2の方向は逆である
が、図2(b)の場合と同様に、検出コイル121,1
22には、同極性のキズ信号が発生して重畳される。し
たがってキズFが検出コイル121,122と直交して
いる場合には、一対の検出コイル121,122が、図
2(c)の位置にあるとき、即ちキズFの中点が検出コ
イル121,122の間に位置するとき、最大振幅のキ
ズ信号を発生する。この場合、一対の検出コイル12
1,122は、キズFの中点の真上に位置するから、図
1のプローブが最大振幅のキズ信号を発生する位置とキ
ズFの中点の位置とは一致する。
In the case of FIG. 2C, the detection coils 121, 1
Since 22 is located on both sides of the longitudinal center of the flaw F, electromotive force is generated in the detection coils 121 and 122 by the eddy currents i1 and i2 generated due to the flaw F, and a flaw signal is generated. To do. The directions of the eddy currents i1 and i2 are opposite, but as in the case of FIG.
A scratch signal of the same polarity is generated and superposed on 22. Therefore, when the flaw F is orthogonal to the detection coils 121 and 122, when the pair of detection coils 121 and 122 are in the position of FIG. 2C, that is, the midpoint of the flaw F is the detection coils 121 and 122. When located in between, it produces a flaw signal of maximum amplitude. In this case, the pair of detection coils 12
Since 1,122 are located right above the midpoint of the flaw F, the position where the probe of FIG. 1 generates the flaw signal with the maximum amplitude and the midpoint of the flaw F coincide.

【0014】図3は、キズが検出コイルと平行している
場合に、プローブをキズと直交する方向に走査したとき
のキズ信号の振幅波形を示す。図3は、図1のプローブ
の振幅波形と比較するため、従来のΘ型プローブ、クロ
スポイント型プローブについても示してある。図3にお
いて、横軸は、検出コイルの走査距離を表し、0の位置
は、検出コイルがキズの真上にある位置に相当する。縦
軸は、キズ信号の正規化した振幅を表している。またイ
は、図1のプローブの振幅波形、ロは、Θ型プローブの
振幅波形、ハは、クロスポイント型プローブの振幅波形
である。
FIG. 3 shows an amplitude waveform of a flaw signal when the probe is scanned in a direction orthogonal to the flaw when the flaw is parallel to the detection coil. FIG. 3 also shows a conventional Θ type probe and a cross point type probe for comparison with the amplitude waveform of the probe of FIG. 1. In FIG. 3, the horizontal axis represents the scanning distance of the detection coil, and the position of 0 corresponds to the position where the detection coil is directly above the flaw. The vertical axis represents the normalized amplitude of the scratch signal. Further, a is an amplitude waveform of the probe of FIG. 1, b is an amplitude waveform of the Θ type probe, and c is an amplitude waveform of the cross point type probe.

【0015】まずイの振幅波形は、検出コイルが0の位
置にあるとき、即ち検出コイルがキズの真上にあるとき
振幅が最大になるのに対して、ロの振幅波形は、検出コ
イルが0の位置にあるとき0になる。またハの振幅波形
は、検出コイルが0の位置にあるとき振幅が最大にな
る。
First, the amplitude waveform of (a) has the maximum amplitude when the detection coil is at the position of 0, that is, when the detection coil is directly above the flaw, whereas the amplitude waveform of (b) shows that the detection coil has When it is at the 0 position, it becomes 0. Further, the amplitude waveform of C has the maximum amplitude when the detection coil is at the position of 0.

【0016】図4は、プローブのキズ信号とリフトオフ
雑音を示す。図4(a)は、図1のプローブに関し、図
4(b)は、従来のパンケーキ型プローブに関する。図
4において、横軸は、励磁電流と同相の成分を、縦軸
は、励磁電流と90度進相成分を表している。またD
は、キズの深さ(金属板の厚みに対する%)を、Lは、
リフトオフを示す。図4(a)と図4(b)とを比較す
ると、図4(a)のリフトオフ雑音は小さいが、図4
(b)のリフトオフ雑音は大きい。即ち図4(a)のS
/Nは、2.8であるのに対して、図4(b)のS/N
は、0.4である。したがって図1のプローブのリフト
オフ雑音は、従来のパンケーキ型プローブに比べて非常
に小さいことが分かる。
FIG. 4 shows the flaw signal and lift-off noise of the probe. FIG. 4 (a) relates to the probe of FIG. 1, and FIG. 4 (b) relates to a conventional pancake type probe. In FIG. 4, the horizontal axis represents the component in phase with the exciting current, and the vertical axis represents the exciting current and the 90-degree phase advance component. Also D
Is the depth of the scratch (% of the thickness of the metal plate), and L is
Indicates lift-off. Comparing FIG. 4A and FIG. 4B, the lift-off noise of FIG.
The lift-off noise in (b) is large. That is, S in FIG.
/ N is 2.8, while S / N in FIG.
Is 0.4. Therefore, it can be seen that the lift-off noise of the probe of FIG. 1 is much smaller than that of the conventional pancake type probe.

【0017】図5は、プローブをキズと0度、45度、
90度の方向に走査したときのキズ信号パターンを示
し、図5(a)は、図1のプローブに関し、図5(b)
は、従来のクロスポイント型プローブに関する。図5に
おいて、横軸は、励磁電流と同相の成分を、縦軸は、励
磁電流と90度進相成分を表している。またイは、プロ
ーブの走査方向が0度、ロは、45度、ハは、90度の
場合のキズ信号パターンである。
In FIG. 5, the probe is scratched at 0 °, 45 °,
FIG. 5A shows a scratch signal pattern when scanning is performed in a direction of 90 degrees, and FIG. 5A shows the probe of FIG.
Relates to a conventional crosspoint probe. In FIG. 5, the horizontal axis represents the component in phase with the exciting current, and the vertical axis represents the exciting current and the 90-degree phase advance component. Further, a is a flaw signal pattern in the case where the scanning direction of the probe is 0 degree, b is 45 degrees and c is 90 degrees.

【0018】図5(a)の場合には、イ、ロ、ハのいず
れのときも、キズ信号が発生している。即ち図1のプロ
ーブは、全方向のキズに対してキズ信号を発生する。一
方図5(b)の場合には、ロのときキズ信号が発生しな
い。即ち従来のクロスポイント型プローブは、キズがプ
ローブの検出コイルと45度の方向にあるときには、キ
ズ信号を発生しない。
In the case of FIG. 5A, a flaw signal is generated in any of a, b, and c. That is, the probe of FIG. 1 generates a flaw signal for flaws in all directions. On the other hand, in the case of FIG. 5B, no scratch signal is generated in the case of B. That is, the conventional cross point probe does not generate a flaw signal when the flaw is in the direction of 45 degrees with the detection coil of the probe.

【0019】ここで、本実施の形態は、励磁コイル11
に外径7mm、巻線断面1×1mm 2のものを、検出コ
イル121,122に縦5mm,横2mm、巻線断面1
×1mm2のものを用い、両コイルを1mm離して対向
させたものを用い、また検査体Tは、160×160×
1.5mm3の黄銅平板を用い、その黄銅平板に長さ1
5mm、幅0.5mmのキズFを形成して、キズFの評
価を行った。なお励磁信号の周波数は、20kHzに設
定した。
In this embodiment, the exciting coil 11 is used.
Outer diameter 7 mm, winding cross section 1 x 1 mm 2Detected
5 mm long, 2 mm wide, cross section of winding 1
× 1 mm2The two coils are opposite to each other with a distance of 1 mm.
The inspection object T is 160 × 160 ×
1.5 mm3Use a brass flat plate of which length is 1
Form a scratch F with a width of 5 mm and a width of 0.5 mm and evaluate the scratch F.
Valuable. The frequency of the excitation signal is set to 20 kHz.
Decided

【0020】図6は、本発明の実施の形態に係る渦電流
探傷装置のブロック図である。渦電流探傷装置は、金属
板等の検査体Tに上置するプローブ22、そのプローブ
22に励磁電流を供給する励磁電流供給器21、プロー
ブ22に発生するキズ信号を検出するキズ信号検出器2
3、及びキズ信号検出器23のキズ信号に基づいてキズ
の位置等を評価するキズ評価器24から成る。
FIG. 6 is a block diagram of an eddy current flaw detector according to an embodiment of the present invention. The eddy current flaw detector includes a probe 22 placed on a test object T such as a metal plate, an exciting current supplier 21 for supplying an exciting current to the probe 22, and a flaw signal detector 2 for detecting a flaw signal generated in the probe 22.
3 and a flaw evaluator 24 that evaluates the position of the flaw based on the flaw signal from the flaw signal detector 23.

【0021】プローブ22は、図1のプローブから成
り、検出コイル121,122には、検査体Tのキズに
起因して発生する渦電流により、夫々キズ信号が発生す
る。キズ信号検出器23は、一対の検出コイル121,
122の重畳されたキズ信号を検出してキズ評価器24
に供給し、キズ評価器24は、キズ信号を表示する。キ
ズ評価器24に表示されるキズ信号の最大振幅から、キ
ズの真上の位置を検知できる。
The probe 22 comprises the probe shown in FIG. 1, and flaw signals are generated in the detection coils 121 and 122 by eddy currents caused by flaws in the inspection object T. The flaw signal detector 23 includes a pair of detection coils 121,
The flaw evaluator 24 detects the flaw signal superimposed by 122.
And the flaw evaluator 24 displays the flaw signal. The position directly above the flaw can be detected from the maximum amplitude of the flaw signal displayed on the flaw evaluator 24.

【0022】前記実施の形態は、励磁コイルとしてパン
ケーキ状コイルについて説明したが、矩形状コイルであ
ってもよい。また検出コイルは、矩形状コイルに限らず
三角形のコイルであってもよい。検出コイルが三角形の
場合には、検出コイルが励磁コイルに対して傾斜して
も、励磁電流により定常的に発生する渦電流により誘起
する励磁磁界の影響を受け難いため、プローブの組立て
が容易になる。前記実施の形態は、一対の検出コイルと
して、巻線の方向が逆のものについて説明したが、巻線
方向が同じものを用い、一方の検出コイルのキズ信号の
極性を反転して両検出コイルのキズ信号を重畳してもよ
い。キズ信号の極性の反転は、一対の検出コイルの一方
の検出コイルの巻き終わりと他方の検出コイルの巻き終
わりとを接続して行うか、或いは一方の検出コイルの出
力に極性反転回路を接続して行う。
In the above embodiment, the pancake-shaped coil is explained as the exciting coil, but it may be a rectangular coil. Further, the detection coil is not limited to the rectangular coil but may be a triangular coil. If the detection coil has a triangular shape, even if the detection coil is tilted with respect to the excitation coil, it is difficult to be affected by the excitation magnetic field induced by the eddy current that is constantly generated by the excitation current, so the probe can be easily assembled. Become. In the above embodiment, the pair of detection coils having the winding directions opposite to each other have been described. However, the detection coils having the same winding direction are used, and the polarity of the flaw signal of one of the detection coils is inverted. The scratch signal of may be superimposed. The polarity of the scratch signal is inverted by connecting the winding end of one detection coil of the pair of detection coils and the winding end of the other detection coil, or by connecting a polarity reversing circuit to the output of one detection coil. Do it.

【0023】[0023]

【発明の効果】本願発明のプローブは、1個の励磁コイ
ル内に、一対の検出コイルを所定の間隔をおいて配置
し、両検出コイルの巻線方向を逆にして、両検出コイル
のキズ信号を重畳するか、又は両検出コイルの巻線方向
を同じにし、一方の検出コイルのキズ信号の極性を反転
して、両検出コイルのキズ信号を重畳することにより、
キズの真上で最大振幅のキズ信号を発生することができ
る。したがって本願発明のプローブは、キズの真上とキ
ズ信号の最大振幅を発生する位置とが一致するから、感
覚的にキズの位置を錯覚して誤認することがない。本願
発明のプローブは、リフトオフ雑音が小さく、かつ全て
の方向のキズを検出できる。
According to the probe of the present invention, a pair of detection coils are arranged at a predetermined interval in one exciting coil, and the winding directions of both detection coils are reversed so that both detection coils are scratched. By superimposing signals, or by making the winding directions of both detection coils the same and inverting the polarity of the flaw signal of one of the detection coils, and superimposing the flaw signals of both detection coils,
A flaw signal with the maximum amplitude can be generated directly above the flaw. Therefore, in the probe of the present invention, since the position immediately above the flaw and the position where the maximum amplitude of the flaw signal is generated coincide with each other, the position of the flaw is not sensuously erroneously recognized. The probe of the present invention has low lift-off noise and can detect flaws in all directions.

【0024】このように本願発明のプローブは、従来の
パンケーキ型プローブ、クロスポイント型プローブ、Θ
型プローブの欠点を全て解決することができる。本願発
明の渦電流探傷装置は、本願発明のプローブを用いるこ
とにより、1種類のプローブを装着するのみで全方向の
キズを高精度で、確実に検知することができるから、渦
電流探傷装置が簡単になり、かつ探傷作業が容易にな
る。
As described above, the probe of the present invention is the conventional pancake type probe, cross point type probe, Θ
All the drawbacks of the mold probe can be solved. The eddy current flaw detector of the present invention can detect flaws in all directions with high accuracy and reliability by using only one type of probe by using the probe of the present invention. It becomes easy and the flaw detection work becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の実施の形態に係るプローブの平面図
と断面図である。
FIG. 1 is a plan view and a sectional view of a probe according to an embodiment of the present invention.

【図2】図1のプローブの渦電流を示す図である。FIG. 2 is a diagram showing an eddy current of the probe of FIG.

【図3】図1のプローブと従来のプローブのキズ信号の
振幅波形を示す図である。
FIG. 3 is a diagram showing amplitude waveforms of flaw signals of the probe of FIG. 1 and a conventional probe.

【図4】図1のプローブと従来のプローブのキズ信号と
リフトオフ雑音を示す図である。
FIG. 4 is a diagram showing a scratch signal and lift-off noise of the probe of FIG. 1 and a conventional probe.

【図5】図1のプローブと従来のプローブのキズの方向
に対する信号パターンを示す図である。
FIG. 5 is a diagram showing a signal pattern with respect to a flaw direction of the probe of FIG. 1 and a conventional probe.

【図6】本願発明の実施の形態に係る渦電流探傷装置の
ブロック図である。
FIG. 6 is a block diagram of an eddy current flaw detector according to an embodiment of the present invention.

【図7】従来のプローブの斜視図である。FIG. 7 is a perspective view of a conventional probe.

【図8】従来のプローブの特性を説明するためのキズの
傾斜角、キズと検出コイルとの位置関係を示す図であ
る。
FIG. 8 is a diagram showing an inclination angle of a flaw and a positional relationship between the flaw and a detection coil for explaining characteristics of a conventional probe.

【符号の説明】 11 励磁コイル 121,122 検出コイル 21 励磁電流供給器 22 プローブ 23 キズ信号検出器 24 キズ評価器 D キズの深さ L リフトオフ F キズ I,i1,i2 渦電流 T 検査体[Explanation of symbols] 11 Excitation coil 121,122 detection coil 21 Excitation current supply 22 probes 23 Scratch signal detector 24 Scratch evaluator D scratch depth L lift off F scratches I, i1, i2 Eddy current T inspection body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 潔 東京都千代田区九段南4丁目8番24号 学 校法人日本大学内 (72)発明者 廣島龍夫 千葉県香取郡大栄町吉岡字久茂富681−4 マークテック株式会社成田工場内 Fターム(参考) 2G053 AA11 AB21 BB11 BC02 BC14 CA03 CB10 CB25 DA01 DA09 DA10 DB02 DB19    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kiyoshi Koyama             4-8-24, Kudan-minami, Chiyoda-ku, Tokyo             Nihon University (72) Inventor Tatsuo Hiroshima             681-4 Kumotomi, Yoshioka, Daiei-cho, Katori-gun, Chiba Prefecture               Mark Tech Co., Ltd. Narita Factory F term (reference) 2G053 AA11 AB21 BB11 BC02 BC14                       CA03 CB10 CB25 DA01 DA09                       DA10 DB02 DB19

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 励磁コイルの内側に、巻線の方向が逆の
一対の縦置き型検出コイルを配置し、両検出コイルは、
両検出コイルの出力を重畳するように接続してあること
を特徴とする渦電流探傷用プローブ。
1. A pair of vertical detection coils having opposite winding directions are arranged inside the exciting coil, and both detection coils are
An eddy current flaw detection probe characterized in that the outputs of both detection coils are connected so as to overlap each other.
【請求項2】 励磁コイルの内側に、巻線の方向が同じ
一対の縦置き型検出コイルを配置し、両検出コイルは、
一方の検出コイルの出力の極性を反転して、両検出コイ
ルの出力を重畳するように接続してあることを特徴とす
る渦電流探傷用プローブ。
2. A pair of vertical detection coils having the same winding direction are arranged inside the exciting coil, and both detection coils are
An eddy current flaw detection probe, characterized in that the polarities of the outputs of one of the detection coils are reversed and the outputs of both detection coils are connected so as to be superposed.
【請求項3】 請求項1又は請求項2に記載の渦電流探
傷用プローブにおいて、検出コイルは、三角形であるこ
とを特徴とする渦電流探傷用プローブ。
3. The eddy current flaw detection probe according to claim 1 or 2, wherein the detection coil has a triangular shape.
【請求項4】 励磁コイルの内側に、巻線の方向が逆の
一対の縦置き型検出コイルを配置し、両検出コイルは、
両検出コイルの出力を重畳するように接続してあるプロ
ーブ、そのプローブのキズ信号を検出するキズ信号検出
器、そのキズ信号検出器のキズ信号を表示するキズ信号
評価器とを備えていることを特徴とする渦電流探傷装
置。
4. A pair of vertical detection coils having opposite winding directions are arranged inside the exciting coil, and both detection coils are
A probe connected so as to superimpose the outputs of both detection coils, a flaw signal detector that detects the flaw signal of the probe, and a flaw signal evaluator that displays the flaw signal of the flaw signal detector Eddy current flaw detector characterized by.
【請求項5】 励磁コイルの内側に、巻線の方向が同じ
一対の縦置き型検出コイルを配置し、両検出コイルは、
一方の検出コイルの出力の極性を反転して、両検出コイ
ルの出力を重畳するように接続してあるプローブ、その
プローブのキズ信号を検出するキズ信号検出器、そのキ
ズ信号検出器のキズ信号を表示するキズ信号評価器とを
備えていることを特徴とする渦電流探傷装置。
5. A pair of vertical detection coils having the same winding direction are arranged inside the exciting coil, and both detection coils are
A probe connected so that the output of one of the detection coils is inverted to superimpose the output of both detection coils, a flaw signal detector that detects the flaw signal of the probe, and a flaw signal of the flaw signal detector And a flaw signal evaluator for displaying.
JP2002040906A 2002-02-19 2002-02-19 Eddy current flaw detection probe and eddy current flaw detection device using the probe Expired - Fee Related JP3979606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040906A JP3979606B2 (en) 2002-02-19 2002-02-19 Eddy current flaw detection probe and eddy current flaw detection device using the probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040906A JP3979606B2 (en) 2002-02-19 2002-02-19 Eddy current flaw detection probe and eddy current flaw detection device using the probe

Publications (2)

Publication Number Publication Date
JP2003240762A true JP2003240762A (en) 2003-08-27
JP3979606B2 JP3979606B2 (en) 2007-09-19

Family

ID=27781453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040906A Expired - Fee Related JP3979606B2 (en) 2002-02-19 2002-02-19 Eddy current flaw detection probe and eddy current flaw detection device using the probe

Country Status (1)

Country Link
JP (1) JP3979606B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1515137A1 (en) * 2003-09-12 2005-03-16 General Electric Company Omni-directional eddy current probe
JP2007147411A (en) * 2005-11-26 2007-06-14 Marktec Corp Eddy current flaw detection probe
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Sensor and method for eddy current flaw detection
JP2009264984A (en) * 2008-04-25 2009-11-12 Marktec Corp Eddy current flaw detection probe
JP2015225068A (en) * 2014-05-30 2015-12-14 株式会社東芝 Eddy current flaw detection device and method
WO2018216802A1 (en) * 2017-05-26 2018-11-29 株式会社Ihi Apparatus for producing three-dimensional multilayer model, method for producing three-dimensional multilayer model, and flaw detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1515137A1 (en) * 2003-09-12 2005-03-16 General Electric Company Omni-directional eddy current probe
JP2007147411A (en) * 2005-11-26 2007-06-14 Marktec Corp Eddy current flaw detection probe
JP2007263946A (en) * 2006-03-03 2007-10-11 Hitachi Ltd Sensor and method for eddy current flaw detection
JP2009264984A (en) * 2008-04-25 2009-11-12 Marktec Corp Eddy current flaw detection probe
JP2015225068A (en) * 2014-05-30 2015-12-14 株式会社東芝 Eddy current flaw detection device and method
WO2018216802A1 (en) * 2017-05-26 2018-11-29 株式会社Ihi Apparatus for producing three-dimensional multilayer model, method for producing three-dimensional multilayer model, and flaw detector
JPWO2018216802A1 (en) * 2017-05-26 2019-11-21 株式会社Ihi Three-dimensional layered object manufacturing apparatus, three-dimensional layered object manufacturing method, and flaw detector
US11766824B2 (en) 2017-05-26 2023-09-26 Ihi Corporation Apparatus for producing three-dimensional multilayer model, method for producing three-dimensional multilayer model, and flaw detector
US11833748B2 (en) 2017-05-26 2023-12-05 Ihi Corporation Apparatus for producing three-dimensional multilayer model, method for producing three-dimensional multilayer model, and flaw detector

Also Published As

Publication number Publication date
JP3979606B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US6791319B2 (en) Eddy current probe with transverse polygonal detecting coil
JP5851783B2 (en) Eddy current testing probe
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JP2003240762A (en) Probe for eddy current flaw detection and eddy current flaw detecting apparatus using the same
JP3938886B2 (en) Eddy current testing probe and eddy current testing equipment
JP4524195B2 (en) Magnetic detection element
JP6334267B2 (en) Eddy current flaw detection apparatus and method
JP3942165B2 (en) Eddy current testing probe
JP2006322860A (en) Eddy current flaw detection probe
JP2004205212A (en) Eddy current flaw detecting probe for magnetic material and eddy current flaw detector
JP2009257794A (en) Rotary eddy current flaw detection probe
JP3981964B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JP2002214202A (en) Eddy current flaw detection probe
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP5169983B2 (en) Defect inspection method for magnetic tube.
JP3981965B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JP4484723B2 (en) Eddy current testing probe
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2009300316A (en) Electromagnetic ultrasonic sensor
JP4774690B2 (en) Magnetic sensor
JP2010266277A (en) Eddy-current flaw detection system
JPWO2002097425A1 (en) Mutual lead interpolation probe
JP6597081B2 (en) Flaw detection probe and flaw detection method
JPH1114600A (en) Eddy current flaw-detecting device
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees