JP2003236372A - Adsorbent for ammonia gas, method for manufacturing the same, and method for removing ammonia in gas by using the same - Google Patents

Adsorbent for ammonia gas, method for manufacturing the same, and method for removing ammonia in gas by using the same

Info

Publication number
JP2003236372A
JP2003236372A JP2002042798A JP2002042798A JP2003236372A JP 2003236372 A JP2003236372 A JP 2003236372A JP 2002042798 A JP2002042798 A JP 2002042798A JP 2002042798 A JP2002042798 A JP 2002042798A JP 2003236372 A JP2003236372 A JP 2003236372A
Authority
JP
Japan
Prior art keywords
ammonia
gas
adsorbent
activated carbon
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002042798A
Other languages
Japanese (ja)
Inventor
Kenzo Abe
健蔵 阿部
Masanori Kimura
正憲 木村
Osamu Shindo
修 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUSO UNITEC KK
Original Assignee
FUSO UNITEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUSO UNITEC KK filed Critical FUSO UNITEC KK
Priority to JP2002042798A priority Critical patent/JP2003236372A/en
Publication of JP2003236372A publication Critical patent/JP2003236372A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel adsorbent for an ammonia gas capable of adsorbing the high concentration ammonia gas, to provide a method for manufacturing the adsorbent or and to provide a method for removing the high concentration ammonia gas in a gas by using the adsorbent. <P>SOLUTION: The method for manufacturing the adsorbent for the ammonia gas is characterized in that a bivalent copper compound on coconut shell activated carbon. The method for removing ammonia in the gas is characterized in that the ammonia containing gas is allowed to pass through an adsorption tower in which the adsorbent for the ammonia gas is filled. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニアガス用
吸着剤、その製法およびそれを用いたガス中のアンモニ
アを除去する方法に関する。
TECHNICAL FIELD The present invention relates to an adsorbent for ammonia gas, a method for producing the same, and a method for removing ammonia in gas using the same.

【0002】[0002]

【従来の技術】下水処理場や畜産ふん尿処理場で発生す
る汚泥や畜産ふん尿をコンポスト化(堆肥化)するとき
には、多量のアンモニアガスが発生し、悪臭の原因とな
っている。このアンモニアガスを除去する手段として
は、(A)スクラバーを用いた水による一過式物理的吸
収による除去方法すなわち水洗法、(B)スクラバーを
用いた酸(例えば塩酸や硫酸)水溶液による化学的吸収
による除去方法すなわち薬液洗浄法、(C)アンモニア
ガスの直火燃焼または低温触媒を用いた酸化分解法すな
わち燃焼法などが知られている。
2. Description of the Related Art When sludge and livestock excrement produced at a sewage treatment plant or a livestock excrement treatment plant are composted (composted), a large amount of ammonia gas is generated, which causes an offensive odor. As means for removing this ammonia gas, (A) a method of removal by physical absorption with water using a scrubber, that is, a water washing method, and (B) chemical treatment with an aqueous acid (for example, hydrochloric acid or sulfuric acid) solution using a scrubber There are known a removal method by absorption, that is, a chemical cleaning method, a direct combustion of (C) ammonia gas, an oxidative decomposition method using a low temperature catalyst, that is, a combustion method, and the like.

【0003】しかし、水洗法や薬液洗浄法では多量の水
が必要であるうえ、洗浄により発生した多量の廃液処理
が問題である。また燃焼法では窒素酸化物が発生するな
ど二次汚染の問題が発生する。これらの方法に換えて、
活性炭やゼオライトなどの市販吸着剤による吸着方法を
用いてはどうかという考え方もあるが、実際にはこれら
の吸着剤で吸着できるアンモニアガスの実用的濃度はせ
いぜい数ppm程度であり、下水処理場や畜産ふん尿処
理場から発生する汚泥のコンポスト化(堆肥化)により
発生する50ppm以上、とくに80ppm以上の高濃
度アンモニアガスを処理することはできなかった。
However, the water washing method and the chemical liquid washing method require a large amount of water, and the treatment of a large amount of waste liquid generated by washing is a problem. In addition, the combustion method causes a problem of secondary pollution such as generation of nitrogen oxides. Instead of these methods,
There is also the idea of using an adsorption method with a commercial adsorbent such as activated carbon or zeolite, but in practice, the practical concentration of ammonia gas that can be adsorbed by these adsorbents is about several ppm at most, It was not possible to treat high-concentration ammonia gas of 50 ppm or more, particularly 80 ppm or more generated by composting (composting) sludge generated from a livestock manure treatment plant.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明の目的
は、高濃度のアンモニアガスを吸着できる新規なアンモ
ニアガス用吸着剤、その製法およびそれを用いたガス中
の高濃度アンモニアを除去する方法を提供する点にあ
る。
Therefore, an object of the present invention is to provide a novel ammonia gas adsorbent capable of adsorbing high-concentration ammonia gas, a method for producing the same, and a method for removing high-concentration ammonia in gas using the same. Is in the point of providing.

【0005】[0005]

【課題を解決するための手段】本発明の第1は、ヤシ殻
活性炭に2価の銅化合物を担持させたことを特徴とする
アンモニアガス用吸着剤に関する。本発明の第2は、2
価の銅化合物を2価の銅としてヤシ殻活性炭1g当り3
0〜60mg、好ましくは40〜60mg担持させた請
求項1記載のアンモニアガス用吸着剤に関する。本発明
の第3は、2価の銅化合物水溶液にヤシ殻活性炭を10
〜50W/V%投入し、30分間以上浸漬した後、水切
りし、乾燥することを特徴とする請求項1または2記載
のアンモニアガス用吸着剤の製造方法に関する。本発明
の第4は、請求項1または2記載のアンモニアガス用吸
着剤を充填した吸着塔にアンモニア含有ガスを通すこと
を特徴とするガス中のアンモニアを除去する方法に関す
る。本発明の第5は、アンモニア含有ガスが下水処理施
設や畜産ふん尿処理場などのコンポスト発酵槽から発生
するものである請求項4記載のガス中のアンモニアを除
去する方法に関する。本発明の第6は、アンモニア含有
ガスがアンモニア濃度50ppm、以上好ましくは80
ppm以上、さらに好ましくは100ppm以上(25
0ppmの場合でも有効)の高濃度のアンモニアを含有
するものである請求項4または5いずれか記載のガス中
のアンモニアを除去する方法に関する。
The first aspect of the present invention relates to an ammonia gas adsorbent characterized in that a coconut shell activated carbon is loaded with a divalent copper compound. The second aspect of the present invention is 2
3 g per gram of coconut shell activated carbon with divalent copper compound as divalent copper
The adsorbent for ammonia gas according to claim 1, which carries 0 to 60 mg, preferably 40 to 60 mg. The third aspect of the present invention is to add 10 parts of coconut shell activated carbon to an aqueous solution of a divalent copper compound.
The method for producing an adsorbent for ammonia gas according to claim 1 or 2, characterized in that the adsorbent for ammonia gas is charged at -50 W / V%, immersed for 30 minutes or more, drained and dried. A fourth aspect of the present invention relates to a method for removing ammonia in a gas, which comprises passing an ammonia-containing gas through an adsorption tower filled with the adsorbent for ammonia gas according to claim 1 or 2. A fifth aspect of the present invention relates to the method for removing ammonia in gas according to claim 4, wherein the ammonia-containing gas is generated from a compost fermentation tank such as a sewage treatment facility or a livestock manure treatment plant. A sixth aspect of the present invention is that the ammonia-containing gas has an ammonia concentration of 50 ppm, preferably 80 or more.
ppm or more, more preferably 100 ppm or more (25
A method for removing ammonia in a gas according to claim 4 or 5, which contains a high concentration of ammonia (effective even at 0 ppm).

【0006】前記2価の銅化合物をヤシ殻活性炭に担持
させると2価の銅は、下記のようにアンモニアと反応
し、テトラアンミン銅錯化合物に変化してアンモニアを
捕捉するするものと考えられる。
When the above-mentioned divalent copper compound is supported on coconut shell activated carbon, it is considered that the divalent copper reacts with ammonia as described below and changes into a tetraammine copper complex compound to trap ammonia.

【化1】 [Chemical 1]

【0007】前記2価の銅化合物としては、塩化第2
銅、硫酸第2銅、ヨウ化第2銅、亜酸化第2銅、酸化第
2銅、炭酸第2銅、硝酸第2銅などの無機銅化合物や酢
酸第2銅のような有機銅化合物を挙げることができる。
The above-mentioned divalent copper compound is a second chloride.
Inorganic copper compounds such as copper, cupric sulfate, cupric iodide, cupric oxide, cupric oxide, cupric carbonate, cupric nitrate and organic copper compounds such as cupric acetate Can be mentioned.

【0008】前記2価の銅化合物は、ヤシ殻活性炭1g
当り30〜60mg、好ましくは40〜60mg担持さ
せる。ヤシ殻活性炭1g当りに担持できる第2銅の量は
実質的に60mgが目一杯であり、20重量%の塩化第
2銅水溶液を用いた表1の実験結果などから推定すると
第2銅の担持量は50mg前後すなわち40〜60mg
程度がアンモニアガスの吸着量が多く、破過時間が長い
と考えられる。また、含浸の際のヤシ殻活性炭の添加量
は10〜50W/V%程度が含浸操作の作業性の点で好
ましい範囲である。
The divalent copper compound is 1 g of coconut shell activated carbon.
30 to 60 mg, preferably 40 to 60 mg, is supported. The amount of cupric acid that can be supported per 1 g of coconut shell activated carbon is substantially 60 mg, and it is estimated from the experimental results in Table 1 using a 20% by weight aqueous solution of cupric chloride that cupric acid can be supported. The amount is around 50mg, that is, 40-60mg
It is considered that the amount of ammonia gas adsorbed is large and the breakthrough time is long. The amount of coconut shell activated carbon added during impregnation is preferably in the range of 10 to 50 W / V% in terms of workability in the impregnation operation.

【0009】担体としては、通常ゼオライトや活性炭な
どを思い浮かべるが、ゼオライトは吸湿性があるため、
湿ったガスを相手にするときは不適当であり、また非表
面積や平均細孔径などの物性面においても活性炭より劣
っている。本発明では活性炭のなかでもヤシ殻活性炭
(ヤシ殻破砕活性炭)を使用する。ヤシ殻活性炭は活性
炭のなかでもヨウ素、MB(メチレンブルー)、ベンゼ
ンなどの化学物質に対する吸着性に優れており、かつ、
本発明におけるアンモニアに対しても優れた吸着性を示
したので、本発明では担体としてとくにヤシ殻活性炭を
選択したものである。
As the carrier, zeolite and activated carbon are usually thought of, but since zeolite has hygroscopicity,
It is not suitable when used with a wet gas, and is inferior to activated carbon in physical properties such as non-surface area and average pore size. In the present invention, coconut shell activated carbon (coconut shell crushed activated carbon) is used among the activated carbons. Among the activated carbons, coconut shell activated carbon has excellent adsorptivity for chemical substances such as iodine, MB (methylene blue) and benzene, and
In the present invention, coconut shell activated carbon is particularly selected as the carrier because it exhibits excellent adsorptivity to ammonia in the present invention.

【0010】本発明の製造方法において、2価の銅化合
物をヤシ殻活性炭に含浸後、銅をヤシ殻活性炭に添着担
持させるためには、乾燥は重要な工程である。含浸工程
により活性炭細孔に吸着された水分の除去は、通常10
0℃±10℃程度の温度に保った乾燥機を用いて行う。
乾燥時間は通常10〜12時間を要する。
In the production method of the present invention, drying is an important step for impregnating and supporting copper on the coconut shell activated carbon after impregnating the divalent copper compound into the coconut shell activated carbon. The removal of the water adsorbed on the activated carbon pores by the impregnation step is usually 10
It is carried out using a dryer kept at a temperature of 0 ° C ± 10 ° C.
The drying time usually requires 10 to 12 hours.

【0011】ヤシ殻活性炭に2価の銅を担持するのに用
いる2価の銅化合物水溶液における2価の銅化合物の濃
度にとくに制限はないが通常5重量%以上飽和濃度以下
の水溶液を用いることができるが、作業効率などを考慮
すると10〜30重量%の濃度のものを使用することが
好ましい。この水溶液濃度に対応して担体に担持される
最高の担持量が決ってくるが、本発明ではアンモニアガ
スを吸着させるのが目的であるから、その破過時間
〔t〕(hr)や破過吸着量〔q〕(%)が大きいこと
こそ重要である。本発明においては、破過時間が10時
間以上、好ましくは20時間以上、とくに好ましくは2
5時間以上であり、破過吸着量は1.5%以上、好まし
くは2%以上、とくに好ましくは2.5%以上である。
なお、破過時間や破過吸着量とは、充填層に一定濃度の
被吸着物を流したとき、一定時間が経過するまでは流出
物中の被吸着物はほぼ一定の低い値に保たれるが、吸着
剤における吸着場所がほぼ満席になったと推測される時
間が経過した後は、急激に流出物中の被吸着物の量が増
大する。この点を破過点といい、その破過点に達するま
での時間が破過時間であり、破過点に達したときの流出
物中の被吸着物濃度が破過吸着量である。
There is no particular limitation on the concentration of the divalent copper compound in the aqueous solution of the divalent copper compound used for supporting the divalent copper on the coconut shell activated carbon, but usually an aqueous solution having a concentration of 5% by weight or more and a saturated concentration or less is used. However, in consideration of work efficiency and the like, it is preferable to use one having a concentration of 10 to 30% by weight. The maximum amount supported on the carrier is determined according to the concentration of the aqueous solution, but since the purpose of the present invention is to adsorb ammonia gas, its breakthrough time [t] (hr) and breakthrough It is important that the adsorption amount [q] (%) is large. In the present invention, the breakthrough time is 10 hours or longer, preferably 20 hours or longer, particularly preferably 2 hours.
It is 5 hours or more, and the amount of breakthrough adsorption is 1.5% or more, preferably 2% or more, particularly preferably 2.5% or more.
It should be noted that the breakthrough time and the breakthrough adsorption amount are, when a constant concentration of the adsorbate is passed through the packed bed, the adsorbate in the effluent is kept at a substantially constant low value until a fixed time elapses. However, the amount of the adsorbed substance in the effluent rapidly increases after a lapse of time when it is estimated that the adsorption site in the adsorbent is almost full. This point is called a breakthrough point, the time until reaching the breakthrough point is the breakthrough time, and the concentration of the adsorbed substance in the effluent at the time when the breakthrough point is reached is the breakthrough adsorption amount.

【0012】破過時間や破過吸着量を測定することによ
り、2価の銅化合物水溶液濃度とそれに含浸して得られ
たヤシ殻活性炭の性能を調べてみた。測定方法と測定条
件は以下に示す。
By measuring the breakthrough time and the amount of breakthrough adsorption, the concentration of the divalent copper compound aqueous solution and the performance of the coconut shell activated carbon obtained by impregnating it were examined. The measurement method and measurement conditions are shown below.

【0013】測定条件 ガス流量 :540リットル/時 ガス温度 :25℃ アンモニア濃度 :100ppm ガス線速度 :0.3m/秒 充填厚さ :128mm(充填量38.4g)Measurement conditions Gas flow rate: 540 liters / hour Gas temperature: 25 ℃ Ammonia concentration: 100ppm Gas linear velocity: 0.3m / sec Filling thickness: 128 mm (filling amount 38.4 g)

【0014】測定装置は、図1に示す。The measuring device is shown in FIG.

【0015】測定方法は、図1に示す測定装置(吸着試
験装置)を用い、前記測定条件にしたがって、塩化第2
銅含浸炭(ヤシ殻活性炭)を充填した直径25mm、高
さ300mmの吸着塔、100ppm濃度のアンモニア
含有ガス(圧縮エアーを恒温水槽に吹き込んで得られた
100%湿度の空気とアンモニア標準ガスを混合して調
整する)を流量540リットル/時で流し、破過曲線を
画き、破過時間と破過吸着量を求めた。
The measuring method uses the measuring apparatus (adsorption test apparatus) shown in FIG.
An adsorption tower with a diameter of 25 mm and a height of 300 mm filled with copper-impregnated carbon (coconut shell activated carbon), an ammonia-containing gas with a concentration of 100 ppm (100% humidity air obtained by blowing compressed air into a constant temperature water tank and ammonia standard gas are mixed. Was flown at a flow rate of 540 liters / hour, a breakthrough curve was drawn, and a breakthrough time and a breakthrough adsorption amount were determined.

【0016】本発明のアンモニアガス用吸着剤を製造す
るのに用いる第2銅化合物水溶液の水溶液濃度がどの程
度が好適であるかを調べるため、5%破過時間とその吸
着量を前記測定装置により測定した。5%破過時間と
は、アンモニアの入口濃度100ppmに対して、出口
濃度が5ppmになるまでの時間である。活性炭はいず
れもヤシ殻活性炭であり、第2銅化合物水溶液として
は、10重量%塩化第2銅水溶液、20重量%塩化第2
銅水溶液、30重量%塩化第2銅水溶液をそれぞれ用
い、含浸時間は60分、水温25℃で実施した。その結
果、下記のデータが得られた。なお表中活性炭とはヤシ
殻活性炭を指す。
The 5% breakthrough time and the amount of adsorption thereof are measured by the above-mentioned measuring device in order to examine the optimum concentration of the aqueous solution of cupric compound used for producing the adsorbent for ammonia gas of the present invention. It was measured by. The 5% breakthrough time is the time until the outlet concentration reaches 5 ppm with respect to the ammonia inlet concentration of 100 ppm. The activated carbons are all coconut shell activated carbons, and as the cupric compound aqueous solution, 10 wt% cupric chloride aqueous solution and 20 wt% cupric chloride second
A copper aqueous solution and a 30 wt% cupric chloride aqueous solution were used, respectively, and the impregnation time was 60 minutes and the water temperature was 25 ° C. As a result, the following data were obtained. The activated carbon in the table means coconut shell activated carbon.

【0017】[0017]

【表1】 [Table 1]

【0018】前記表からも明らかなように、2価の銅化
合物水溶液の濃度を高くしていくと、ある濃度までは、
2価の銅化合物を吸着したヤシ殻活性炭のアンモニア吸
着処理能力が向上するが、ある濃度に達するとほぼ飽和
状態になる。この目安は、2価の銅化合物水溶液濃度が
20重量%辺りである。
As is clear from the above table, when the concentration of the divalent copper compound aqueous solution is increased, up to a certain concentration,
Ammonia adsorption treatment capacity of the coconut shell activated carbon adsorbing a divalent copper compound is improved, but when it reaches a certain concentration, it becomes almost saturated. This guideline is that the concentration of the divalent copper compound aqueous solution is around 20% by weight.

【0019】さらに塩化第2銅20重量%水溶液を用い
てヤシ殻活性炭を含浸(含浸時間60分、水溶液温度2
5℃)させて得られた本発明のアンモニアガス用吸着剤
の破過曲線と破過時間の関係を求めたのが図2における
黒丸で示すグラフである。なお白丸で示すグラフは、何
も含浸していないヤシ殻活性炭をアンモニアガス用吸着
剤として用いた場合の破過曲線と破過時間の関係を求め
たグラフである。なお、図2の縦軸のC/COにおける
COはアンモニア入口濃度(初濃度)であり、Cはアン
モニア出口濃度(流出濃度)を意味している。また、図
3はアンモニアの吸着量(g/100g吸着剤)と時間
(hr)との関係を示すグラフであり、黒丸と白丸の関
係は図2の場合と同じである。
Further, coconut shell activated carbon was impregnated with a 20% by weight cupric chloride aqueous solution (impregnation time 60 minutes, aqueous solution temperature 2
The relationship between the breakthrough curve and the breakthrough time of the adsorbent for ammonia gas of the present invention obtained at 5 ° C.) is determined by the graph shown by a black circle in FIG. The graphs indicated by open circles are graphs in which the relationship between the breakthrough curve and the breakthrough time was obtained when coconut shell activated carbon not impregnated with anything was used as an adsorbent for ammonia gas. Note that CO in C / CO on the vertical axis in FIG. 2 is the ammonia inlet concentration (initial concentration), and C means the ammonia outlet concentration (outflow concentration). FIG. 3 is a graph showing the relationship between the amount of adsorbed ammonia (g / 100 g adsorbent) and time (hr), and the relationship between black circles and white circles is the same as in FIG.

【0020】つぎに、ヤシ殻活性炭に吸着している第2
銅がアンモニアの吸着によりどのように変化しているか
を調べる目的で、アンモニア吸着前とアンモニア吸着後
の塩化第2銅20重量%水溶液で含浸処理(含浸時間6
0分、水溶液温度25℃)したヤシ殻活性炭のそれぞれ
について、銅溶出試験を行った。その結果は表2に示す
とおりである。なお、溶出試験は、試験に供する吸着剤
各3gをそれぞれ100ミリリットルの水と混合し、2
5℃で20分間超音波処理し、水中に溶出した銅の濃度
を測定することにより行った。
Next, the second adsorbed on the coconut shell activated carbon
For the purpose of investigating how copper is changed by the adsorption of ammonia, impregnation treatment with a 20% by weight aqueous solution of cupric chloride before and after adsorption of ammonia (impregnation time 6
A copper elution test was carried out for each of the coconut shell activated carbons that had been subjected to 0 minutes and an aqueous solution temperature of 25 ° C). The results are shown in Table 2. The elution test was conducted by mixing 3 g of each adsorbent used in the test with 100 ml of water and
Sonication was performed at 5 ° C. for 20 minutes, and the concentration of copper eluted in water was measured.

【0021】[0021]

【表2】 [Table 2]

【0022】前記表2に示すように、アンモニア吸着後
における銅の溶出濃度は1mg/リットルといったよう
にほんの僅かであり、99.9%以上が銅錯化合物に変
化しており、脱着はおこらなかった。
As shown in Table 2, the elution concentration of copper after the adsorption of ammonia was only 1 mg / liter, and 99.9% or more was changed to the copper complex compound, and desorption did not occur. It was

【0023】[0023]

【実施例】以下に実施例、比較例を挙げて本発明を説明
するのが、本発明はこれにより何ら限定されるものでは
ない。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited thereto.

【0024】実施例1 ヤシ殻活性炭600kgを塩化第2銅の20重量%水溶
液2m(2000リットル)に60分、水温25℃で
含浸処理する。含浸中はときどき撹拌する程度とした。
ついで水切り後、乾燥機内において100℃で12時間
乾燥し、本発明のアンモニアガス用吸着剤を得た。これ
を吸着塔に充填した。下水処理施設のコンポスト発酵槽
から発生する高濃度アンモニアガスを前記吸着塔へ、表
3の運転条件で通気し、表4に示す結果を得た。表4に
示すように、吸着塔出口のアンモニアガスは通気開始か
ら6ヶ月間、悪臭防止法に規定された限界臭気強度2.
5(1ppm)以下の濃度を保持することができた。
Example 1 600 kg of coconut shell activated carbon was impregnated with 2 m 3 (2000 liters) of a 20 wt% aqueous solution of cupric chloride for 60 minutes at a water temperature of 25 ° C. During the impregnation, stirring was occasionally performed.
Then, after draining, it was dried in a dryer at 100 ° C. for 12 hours to obtain an adsorbent for ammonia gas of the present invention. This was packed in an adsorption tower. High-concentration ammonia gas generated from the compost fermentation tank of the sewage treatment facility was ventilated into the adsorption tower under the operating conditions shown in Table 3, and the results shown in Table 4 were obtained. As shown in Table 4, the ammonia gas at the outlet of the adsorption tower had a limit odor intensity of 2.
It was possible to maintain a concentration of 5 (1 ppm) or less.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】比較例 表1における10重量%塩化第2銅水溶液を用いたケー
スに代えて、10重量%硫酸亜鉛水溶液または10重量
%硫酸第2鉄水溶液を用いたケースについて、表1の測
定方法と同様にして5%破過時間(hr)と破過吸着量
(%)を求めた。その結果は表5に示すとおりである。
Comparative Example In place of the case of using the 10 wt% cupric chloride aqueous solution in Table 1, a measuring method of Table 1 is used for the case of using the 10 wt% zinc sulfate aqueous solution or the 10 wt% ferric sulfate aqueous solution. Similarly, the 5% breakthrough time (hr) and the breakthrough adsorption amount (%) were determined. The results are shown in Table 5.

【0028】[0028]

【表5】 以上の結果から、2価の銅化合物の選択的効果は明白で
ある。
[Table 5] From the above results, the selective effect of the divalent copper compound is clear.

【0029】[0029]

【発明の効果】(1)本発明により、新規なアンモニア
ガス用吸着剤を提供できた。この新規なアンモニアガス
用吸着剤は50ppm、とくに100ppm前後の高濃
度アンモニア含有ガスに対しても6ヶ月程度吸着剤の交
換を必要としないで使用できるという極めて優れた性能
を示す。 (2)また、本発明の吸着剤は銅を含有するため吸着剤
に付着する微生物、たとえばカビの増殖を抑制できる。 (3)本発明の吸着剤を用いれば、吸着操作に必要な装
置は、吸着塔があればよく、運転管理も容易である。
(1) According to the present invention, a novel adsorbent for ammonia gas can be provided. This novel adsorbent for ammonia gas shows extremely excellent performance that it can be used for high-concentration ammonia-containing gas of 50 ppm, especially around 100 ppm, without needing to replace the adsorbent for about 6 months. (2) Further, since the adsorbent of the present invention contains copper, it is possible to suppress the growth of microorganisms such as mold that adhere to the adsorbent. (3) If the adsorbent of the present invention is used, the apparatus required for the adsorption operation only needs to have an adsorption tower, and operation management is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における5%破過時間および5%破過吸
着量を求めるための試験装置を示す。
FIG. 1 shows a test apparatus for determining a 5% breakthrough time and a 5% breakthrough adsorption amount according to the present invention.

【図2】塩化第2銅の20重量%水溶液を含浸したヤシ
殻活性炭による破過曲線を示すグラフであり、破過曲線
は50時間(C/C=0.8)で一定となり、吸着保
持量は4.4%であった。
FIG. 2 is a graph showing a breakthrough curve obtained by coconut shell activated carbon impregnated with a 20 wt% aqueous solution of cupric chloride, wherein the breakthrough curve becomes constant after 50 hours (C / C 0 = 0.8). The retained amount was 4.4%.

【図3】図2に対応したアンモニア吸着量と時間の関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of adsorbed ammonia and time corresponding to FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 進藤 修 東京都豊島区東池袋1丁目7番12号 日産 ビル 扶桑ユニテック株式会社内 Fターム(参考) 4D002 AA13 AC10 BA04 CA07 DA11 DA14 DA16 DA17 DA23 DA41 DA61 DA70 GA01 GB02 4G066 AA05B AA05C AA37B BA36 CA29 DA02 FA12 FA21 FA37   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Osamu Shindo             1-7-12 Higashiikebukuro, Toshima-ku, Tokyo Nissan             Building Fuso Unitech Co., Ltd. F term (reference) 4D002 AA13 AC10 BA04 CA07 DA11                       DA14 DA16 DA17 DA23 DA41                       DA61 DA70 GA01 GB02                 4G066 AA05B AA05C AA37B BA36                       CA29 DA02 FA12 FA21 FA37

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ヤシ殻活性炭に2価の銅化合物を担持さ
せたことを特徴とするアンモニアガス用吸着剤。
1. An adsorbent for ammonia gas, characterized in that coconut shell activated carbon is loaded with a divalent copper compound.
【請求項2】 2価の銅化合物を2価の銅としてヤシ殻
活性炭1g当り30〜60mg担持させた請求項1記載
のアンモニアガス用吸着剤。
2. The adsorbent for ammonia gas according to claim 1, wherein the divalent copper compound is supported as divalent copper in an amount of 30 to 60 mg per 1 g of coconut shell activated carbon.
【請求項3】 2価の銅化合物水溶液にヤシ殻活性炭を
10〜50W/V%投入し、30分間以上浸漬した後、
水切りし、乾燥することを特徴とする請求項1または2
記載のアンモニアガス用吸着剤の製造方法。
3. Coconut shell activated carbon is added to a divalent copper compound aqueous solution in an amount of 10 to 50 W / V%, and after dipping for 30 minutes or more,
3. Draining and drying.
A method for producing the adsorbent for ammonia gas as described above.
【請求項4】 請求項1または2記載のアンモニアガス
用吸着剤を充填した吸着塔にアンモニア含有ガスを通す
ことを特徴とするガス中のアンモニアを除去する方法。
4. A method for removing ammonia from a gas, which comprises passing an ammonia-containing gas through an adsorption tower filled with the adsorbent for ammonia gas according to claim 1.
【請求項5】 アンモニア含有ガスがコンポスト発酵槽
から発生するものである請求項4記載のガス中のアンモ
ニアを除去する方法。
5. The method for removing ammonia in a gas according to claim 4, wherein the ammonia-containing gas is generated from a compost fermentation tank.
【請求項6】 アンモニア含有ガスがアンモニア濃度5
0ppm以上の高濃度のアンモニアを含有するものであ
る請求項4または5いずれか記載のガス中のアンモニア
を除去する方法。
6. The ammonia-containing gas has an ammonia concentration of 5
The method for removing ammonia in a gas according to claim 4, wherein the ammonia contains a high concentration of 0 ppm or more.
JP2002042798A 2002-02-20 2002-02-20 Adsorbent for ammonia gas, method for manufacturing the same, and method for removing ammonia in gas by using the same Pending JP2003236372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042798A JP2003236372A (en) 2002-02-20 2002-02-20 Adsorbent for ammonia gas, method for manufacturing the same, and method for removing ammonia in gas by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002042798A JP2003236372A (en) 2002-02-20 2002-02-20 Adsorbent for ammonia gas, method for manufacturing the same, and method for removing ammonia in gas by using the same

Publications (1)

Publication Number Publication Date
JP2003236372A true JP2003236372A (en) 2003-08-26

Family

ID=27782791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042798A Pending JP2003236372A (en) 2002-02-20 2002-02-20 Adsorbent for ammonia gas, method for manufacturing the same, and method for removing ammonia in gas by using the same

Country Status (1)

Country Link
JP (1) JP2003236372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244122A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Pretreatment method for activated carbon analysis
CN101780399A (en) * 2010-04-07 2010-07-21 胡志杰 Method for preparing gas phase absorption activated carbon from pine nut shells
CN104390960A (en) * 2014-11-06 2015-03-04 华南农业大学 Dynamic box-type device and method for determining ammonia gas in aerobic composting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244122A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Pretreatment method for activated carbon analysis
CN101780399A (en) * 2010-04-07 2010-07-21 胡志杰 Method for preparing gas phase absorption activated carbon from pine nut shells
CN104390960A (en) * 2014-11-06 2015-03-04 华南农业大学 Dynamic box-type device and method for determining ammonia gas in aerobic composting

Similar Documents

Publication Publication Date Title
Liang et al. Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride
CN106861642B (en) A kind of preparation and application of the biomass-based hydrogel with high absorption capacity
JP2006272078A (en) Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
JP3766771B2 (en) Adsorbent
CN100496702C (en) Absorbent for purifying sulfur-containing foul waste gas and preparation method thereof
JP2010162477A (en) Adsorbent for lower aldehydes and method of manufacturing the same
JP2003236372A (en) Adsorbent for ammonia gas, method for manufacturing the same, and method for removing ammonia in gas by using the same
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
JP2010188281A (en) Adsorbent for lower aldehydes and method of producing the same
JP2007038106A (en) Deodorization method
JP2002095927A (en) Deodorizing method
JP4278495B2 (en) Compound odor deodorant
JP2010137113A (en) Adsorbent for lower aldehyde, and method of producing the same
JP2003070893A (en) Adsorbent
JP2003164510A (en) Deodorant and method of preparing the same
JP2000211910A (en) Production of carbonized product having deodorizing, ion exchange and catalytic ability from vegetable material
JP3318607B2 (en) New selective NH3 deodorization method
JP2009247978A (en) Adsorbent for lower aldehydes
JP2016154640A (en) Deodorant filter
JP2965347B2 (en) Activated carbon for deodorization
JP2000107555A (en) Method for deodorization
JP4861618B2 (en) Dioxin adsorption remover
JP4606013B2 (en) Compound odor deodorant
TWI314473B (en) High activity chemical filter, its preparation and use in removing hazard gas by adsorption
JP4778695B2 (en) Deodorizing adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508