JP2003234228A - Rare-earth bonded magnet and its manufacturing method - Google Patents

Rare-earth bonded magnet and its manufacturing method

Info

Publication number
JP2003234228A
JP2003234228A JP2002030640A JP2002030640A JP2003234228A JP 2003234228 A JP2003234228 A JP 2003234228A JP 2002030640 A JP2002030640 A JP 2002030640A JP 2002030640 A JP2002030640 A JP 2002030640A JP 2003234228 A JP2003234228 A JP 2003234228A
Authority
JP
Japan
Prior art keywords
magnet
bonded magnet
rare earth
earth bonded
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002030640A
Other languages
Japanese (ja)
Inventor
Hideki Matsuzawa
秀樹 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002030640A priority Critical patent/JP2003234228A/en
Publication of JP2003234228A publication Critical patent/JP2003234228A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare-earth bonded magnet that is excellent in corrosion resistance, and to provide a method of manufacturing the magnet. <P>SOLUTION: This rare-earth bonded magnet manufactured by kneading the powder of a rare-earth alloy with a resin and molding the kneaded product has a coating film composed of a triazine dithiol compound on its surface and a plated oxidation-resistant layer on the coating film. The coating film formed on the surface of the magnet is formed by performing the electrolysis of a triazine-based compound solution containing a mercapto group. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐酸化性を改善し
た希土類ボンド磁石およびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth bonded magnet having improved oxidation resistance and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年の電化製品の発展に伴い、軽量、小
型化が可能な高性能磁石として希土類ボンド磁石の需要
は増大し、更なる性能の向上が求められている。高特性
を有する希土類磁石の代表としては、Nd−Fe−B系
磁石がある。しかし、この磁石合金は組織中に極めて酸
化しやすいNd−Fe合金相を含み、さらにNdFe
14B相も酸化しやすいため、Sm−Co系磁石に比較
して磁石の酸化による磁気特性の劣化やばらつきが大き
い。さらに、磁気回路等の装置に組み込んだ場合、磁石
から発生した酸化物の飛散による周辺部品への汚染を引
き起こすおそれがある。
2. Description of the Related Art With the recent development of electric appliances, light weight and small size
Demand for rare earth bonded magnets as high-performance magnets that can be modeled
Is increasing, and further improvement in performance is required. High characteristic
A typical rare earth magnet having Nd is a Nd-Fe-B system.
There is a magnet. However, this magnet alloy is extremely acidic in the tissue.
Contains an Nd-Fe alloy phase that easily forms, and further NdTwoFe
14Compared to Sm-Co magnets, B phase is also easily oxidized.
As a result, there is a great deal of deterioration and variation in magnetic characteristics due to oxidation of the magnet.
Yes. Furthermore, when incorporated in a device such as a magnetic circuit, a magnet
The pollution of surrounding parts due to the scattering of oxides generated from
There is a risk of causing it.

【0003】[0003]

【発明が解決しようとする課題】この問題を解決する方
法として、特開昭60−54406号公報や特開昭60
−63903号公報が提案されている。しかしながら、
これらの公報に提案されている耐酸化性被膜は、被膜形
成工程中で多量の水を使用するため、処理工程中で磁石
材料が酸化したり、処理後であっても微量の水分の残留
が原因となって酸化する場合が多く、耐酸化性が十分と
は言い難い。
As a method for solving this problem, JP-A-60-54406 and JP-A-60-54406 are available.
No. 63903 has been proposed. However,
The oxidation-resistant coatings proposed in these publications use a large amount of water in the coating forming step, so that the magnet material is oxidized in the treatment step and a trace amount of water remains even after the treatment. In many cases, it is oxidized as a cause, and it cannot be said that the oxidation resistance is sufficient.

【0004】また、金属の防錆表面処理の一般的方法で
ある塗装法では、塗料の基材が有機高分子であるため金
属との親和性が不十分で、磁石の部品化工程や使用時に
おいて亀裂や剥離を生じやすいこと、また特に反応硬化
型の塗料の場合は痕跡程度の未反応の官能基の経時変化
が発錆の原因となることもあり、特に、このような合金
系では、信頼性が不十分で、用途が限定されているのが
現状である。
In addition, in the coating method which is a general method of rust preventive surface treatment of metal, since the base material of the coating material is an organic polymer, the affinity with the metal is insufficient, and the magnet is used in the process of forming parts or during use. In the case of easily cracking and peeling in, and in the case of a reaction-curing type coating, aging may cause aging due to changes in unreacted functional groups of traces, in particular, in such an alloy system, At present, the reliability is insufficient and the applications are limited.

【0005】さらに、スパッター、イオン蒸着法を用い
た金属被膜形成による酸化防止法は、磁石全体への均一
コーティングが困難であること、また被覆層組織が下地
面に垂直方向に方向性を持つため、被覆層に微細な間隙
を生じ、十分な耐食性が期待できない等の問題がある。
Further, in the oxidation prevention method by forming a metal coating film using sputtering or ion vapor deposition, it is difficult to uniformly coat the entire magnet, and the coating layer structure has a directionality in the direction perpendicular to the base surface. However, there is a problem that a fine gap is generated in the coating layer and sufficient corrosion resistance cannot be expected.

【0006】そこで、本発明の技術的課題は、上記欠点
に鑑み、より耐食性に優れた希土類ボンド磁石およびそ
の製造方法を提供することにある。
Therefore, in view of the above-mentioned drawbacks, a technical object of the present invention is to provide a rare earth bonded magnet having more excellent corrosion resistance and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、希土類合金の
粉末を樹脂と混練成形してなる希土類ボンド磁石表面
に、化2で表される少なくとも1種のメルカプト基を含
むトリアジン系化合物(但し、MおよびMはH、ア
ルカリ金属またはアルカリ土類金属/2、RはNH
、NRまたはSH、RおよびRはH、ア
ルキル基またはフェニル基)からなる被膜と、該被膜の
上に耐酸化めっき層を有することを特徴とする希土類ボ
ンド磁石である。
According to the present invention, a triazine-based compound containing at least one mercapto group represented by Chemical formula 2 is provided on the surface of a rare earth bonded magnet obtained by kneading and molding a powder of a rare earth alloy with a resin. , M 1 and M 2 are H, alkali metal or alkaline earth metal / 2, R is NH
R 1 , NR 1 R 2 or SH, R 1 and R 2 are H, an alkyl group or a phenyl group), and a rare earth bonded magnet characterized by having an oxidation resistant plating layer on the coating. .

【0008】[0008]

【化2】 [Chemical 2]

【0009】また、本発明は、前記トリアジン系化合物
の溶液中で電解処理することにより前記磁石表面に被膜
を形成することを特徴とする上記の希土類ボンド磁石の
製造方法である。
The present invention is also the above-mentioned method for producing a rare earth bonded magnet, characterized in that a coating film is formed on the surface of the magnet by electrolytically treating it in a solution of the triazine compound.

【0010】[0010]

【発明の実施の形態】本発明は、希土類ボンド磁石表面
に生成する酸化物を抑制するため、この表面にメルカプ
ト基を含むトリアジン系化合物(以下、トリアジン系化
合物と称する)からなる強固かつ安定な耐酸化性被膜を
設けた後、耐酸化めっき層を積層形成するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention suppresses oxides formed on the surface of a rare earth bonded magnet, so that a strong and stable triazine compound containing a mercapto group on the surface (hereinafter referred to as a triazine compound) is used. After providing the oxidation resistant coating, the oxidation resistant plating layer is laminated.

【0011】この耐酸化性被膜の被覆方法としては、ト
リアジン系化合物の有機溶媒液を電解液として用い、磁
石を陽極にして、液温0〜80℃、電圧20V以下、電
流密度10mA/dm〜10A/dmで0.1秒〜
10分間、電解する。
As a method for coating the oxidation resistant coating, an organic solvent solution of a triazine compound is used as an electrolytic solution, a magnet is used as an anode, a liquid temperature is 0 to 80 ° C., a voltage is 20 V or less, and a current density is 10 mA / dm 2. 10 seconds at 0.1 A / dm 2
Electrolyze for 10 minutes.

【0012】上記電解液中では、トリアジン環がマイナ
スイオンに解離するので、メルカプト基を2個含むトリ
アジン系化合物を電解した場合、陽極の金属表面にトリ
アジンジチオール化合物が電着して被膜を形成する。
In the above-mentioned electrolytic solution, the triazine ring dissociates into negative ions, so when a triazine compound containing two mercapto groups is electrolyzed, the triazinedithiol compound is electrodeposited on the metal surface of the anode to form a film. .

【0013】トリアジン系化合物より磁石表面に生成さ
れた膜は、従来の化成被膜等と比べ、きわめて耐食性、
耐久性に優れ、金属表面との結合力が強い。さらに、撥
水性および潤滑性が付与されるので着水、着氷などを防
止できる。
The film formed from the triazine-based compound on the surface of the magnet has extremely high corrosion resistance as compared with conventional chemical conversion coatings.
It has excellent durability and has a strong bond with the metal surface. Furthermore, since water repellency and lubricity are imparted, it is possible to prevent water landing, ice landing and the like.

【0014】トリアジン系化合物としては、次の化3で
示される化合物である。
The triazine-based compound is a compound represented by the following chemical formula 3.

【化3】 [Chemical 3]

【0015】またバインダーとする樹脂としては、ポリ
エチレン、ポリプロピレンなどのオレフィン系樹脂、ナ
イロン6、ナイロン12などのポリアミド樹脂、ポリエ
チレンテレフタレート、ポリブチレンテレフタレート、
などのポリエステル樹脂、エチレン−酢酸ビニル共重合
体、エチレン−エチルアクリレート共重合体、ポリフェ
ニレンサルファイド、及びこれらの変性タイプの樹脂が
用いられる。
As the binder resin, olefin resins such as polyethylene and polypropylene, polyamide resins such as nylon 6 and nylon 12, polyethylene terephthalate, polybutylene terephthalate,
For example, polyester resins such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, polyphenylene sulfide, and modified types of these resins are used.

【0016】電解液は、トリアジン系化合物を有機溶剤
に溶解させることにより調製できる。有機溶剤として
は、0〜80℃の温度範囲で低粘度であれば、ほとんど
のものを使用できる。例えば、メチルアルコール、エチ
ルアルコール、イソプロピルアルコール、エチルセロソ
ルブのようなアルコール、アセトン、メチルエチルケト
ンのようなケトン、ジメチルホルムアミドのようなアミ
ド、酢酸エチルエステルのようなエーテル、テトラヒド
ロフランのようなフラン、ベンゼン、トルエンのような
芳香族炭化水素などが使用できる。濃度はトリアジンジ
チオール化合物が1×10−1〜1×10−6モル/
l、好ましくは5×10−2〜5×10−4モル/lに
なるようにする。
The electrolytic solution can be prepared by dissolving a triazine compound in an organic solvent. As the organic solvent, almost any organic solvent can be used as long as it has a low viscosity in the temperature range of 0 to 80 ° C. For example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl cellosolve, acetone, ketones such as methyl ethyl ketone, amides such as dimethylformamide, ethers such as ethyl acetate, furan such as tetrahydrofuran, benzene, toluene. Aromatic hydrocarbons such as can be used. The concentration of the triazinedithiol compound is 1 × 10 −1 to 1 × 10 −6 mol /
1, preferably 5 × 10 −2 to 5 × 10 −4 mol / l.

【0017】陰極には、陰極からの溶出物が被膜中に混
入するのを避けるため不溶性材料を使用する。このよう
な材料としては、例えば、白金、チタン、ステンレス
鋼、カーボン、グラファイトなどがある。電解は、液温
0〜80℃に調整して、電圧20V以下、電流密度10
mA/dm〜10A/dmで0.1秒〜10分間行
う。液温を0℃より低くすると、被膜を形成するために
長時間を要し、80℃より高くすると、被膜の厚さをコ
ントロールするのが困難となり、また、電圧を20Vよ
り高くすると、被膜が金属表面にむらとなって形成す
る。さらに、電流密度は10mA/dmより小さくす
ると、被膜は形成されず、10A/dmより大きくす
ると、被膜がむらとなって形成する。また、電解時間は
0.1秒未満であると、電流密度を10A/dmにし
ても、金属表面全体に被膜を形成できず、10分を越え
ると、被膜が絶縁体になり、電解が困難になる。
For the cathode, an insoluble material is used in order to prevent the eluate from the cathode from being mixed in the coating film. Examples of such a material include platinum, titanium, stainless steel, carbon and graphite. The electrolysis is adjusted to a liquid temperature of 0 to 80 ° C., a voltage of 20 V or less, and a current density of 10
It is carried out for 0.1 second to 10 minutes at mA / dm 2 to 10 A / dm 2 . When the liquid temperature is lower than 0 ° C, it takes a long time to form a coating film, and when the liquid temperature is higher than 80 ° C, it becomes difficult to control the thickness of the coating film. It forms unevenly on the metal surface. Further, when the current density is less than 10 mA / dm 2 , the coating film is not formed, and when it is more than 10 A / dm 2 , the coating film becomes uneven. If the electrolysis time is less than 0.1 second, a coating cannot be formed on the entire metal surface even if the current density is 10 A / dm 2 , and if it exceeds 10 minutes, the coating becomes an insulator and electrolysis It will be difficult.

【0018】この耐酸化性被膜の表面に積層する耐酸化
めっき層としては、Ni、Cu、Zn等の耐酸化性を有
する金属または合金のめっき、あるいはこれらの複合め
っきであればよく、めっき処理方法としては、無電解め
っきまたは電解めっき、あるいは前記めっきの併用によ
る方法でもよい。
The oxidation resistant plating layer laminated on the surface of the oxidation resistant coating may be a plating of a metal or an alloy having oxidation resistance such as Ni, Cu, Zn, or a composite plating thereof, and a plating treatment As a method, electroless plating or electrolytic plating, or a method using a combination of the above platings may be used.

【0019】また、めっき層の厚みは、25μmを越え
る厚みでは、めっき膜の強度が劣化するとともに、製品
の寸法精度を得ることが困難になり、かつ、めっき処理
時間に長時間を要し、コスト的にも好ましくないため、
めっき層厚みは25μm以下が好ましい。
When the thickness of the plating layer exceeds 25 μm, the strength of the plating film deteriorates, it becomes difficult to obtain the dimensional accuracy of the product, and it takes a long time for the plating treatment. Because it is not preferable in terms of cost,
The thickness of the plating layer is preferably 25 μm or less.

【0020】[0020]

【実施例】以下に、本発明について実施例を挙げ、説明
する。
EXAMPLES The present invention will be described below with reference to examples.

【0021】(実施例1)希土類合金粉末として、Nd
31wt%−B1.1wt%−残部Feの組成の粉末を
用意した。この粉末にナイロン12を混合し、プレス機
により圧縮成形を行い、10mm×10mm×10mm
の寸法のボンド磁石を作製した。
Example 1 Nd was used as rare earth alloy powder.
A powder having a composition of 31 wt% -B1.1 wt% -the balance of Fe was prepared. Nylon 12 is mixed with this powder, and compression molding is performed by a press machine to obtain 10 mm x 10 mm x 10 mm.
A bonded magnet having the dimensions of was prepared.

【0022】次に、2−ジブチルアミノ−4,6−ジチ
オール−S−トリアジンおよびLiClO(支持電解
質)の濃度が、それぞれ5×10−2モル/lおよび5
×10−4モル/lであるエチルアルコール電解液を調
製した。この電解液を用いて、アセトンで洗浄した上記
のNd−Fe−Bボンド磁石試料片を陽極、ステンレス
鋼板(SUS304)を陰極にして、液温25〜30℃
にて電流密度1.0〜2.0A/dmで10〜240秒
間電解し、耐酸化性被膜を形成した。
Next, the concentrations of 2-dibutylamino-4,6-dithiol-S-triazine and LiClO 4 (supporting electrolyte) were 5 × 10 −2 mol / l and 5 respectively.
An ethyl alcohol electrolyte solution having a concentration of × 10 -4 mol / l was prepared. Using this electrolytic solution, the acetone-washed Nd-Fe-B bonded magnet sample piece was used as an anode and a stainless steel plate (SUS304) was used as a cathode, and the liquid temperature was 25 to 30 ° C.
At a current density of 1.0 to 2.0 A / dm 2 for 10 to 240 seconds to form an oxidation resistant film.

【0023】その後、この試料片に対し、めっき浴にワ
ット浴(液温度50℃)を用い、電流密度2.0A/d
で480秒間処理し、厚さ10μmのNiめっき層
を形成した。
Thereafter, a Watt bath (liquid temperature 50 ° C.) was used as a plating bath for this sample piece, and the current density was 2.0 A / d.
It was treated with m 2 for 480 seconds to form a Ni plating layer having a thickness of 10 μm.

【0024】また、別の試料片に対しては、めっき浴に
青化浴(液温度室温)を用い、電流密度1.0A/dm
で600秒間処理し、厚さ6μmのCuめっき層を形
成した。
For another sample piece, a bluing bath (liquid temperature room temperature) was used as the plating bath, and the current density was 1.0 A / dm.
The treatment was performed at 2 for 600 seconds to form a Cu plating layer having a thickness of 6 μm.

【0025】(実施例2)実施例1と同様に調製した試
験片を用い、電解液として2−オレイルアミノ−4,6
−ジメルカプト−S−トリアジンモノナトリウムの濃度
が5×10−4モル/l、LiClO支持電解質の代
わりに用いたLiBFの濃度が5×10 −4モル/l
のものを用い、実施例1と同様の条件で電解し、耐酸化
性被膜を得た。
Example 2 A test prepared in the same manner as in Example 1.
Using a test piece, 2-oleylamino-4,6 as an electrolytic solution
-Concentration of dimercapto-S-triazine monosodium
Is 5 × 10-4Mol / l, LiClOFourCost of supporting electrolyte
LiBF used insteadFourConcentration of 5 × 10 -4Mol / l
Electrolyzed under the same conditions as in Example 1, using
A protective coating was obtained.

【0026】その後、この試料片に対し、めっき浴にワ
ット浴(液温度50℃)を用い、電流密度2.0A/d
で480秒間処理し、厚さ10μmのNiめっき層
を形成した。
Thereafter, a Watt bath (solution temperature 50 ° C.) was used as the plating bath for this sample piece, and the current density was 2.0 A / d.
It was treated with m 2 for 480 seconds to form a Ni plating layer having a thickness of 10 μm.

【0027】また、別の試料片に対しては、めっき浴に
青化浴(液温度30℃)を用い、電流密度3.0A/d
で480秒間処理し、厚さ12μmのZnめっき層
を形成した。
For another sample piece, a bluing bath (solution temperature 30 ° C.) was used as the plating bath, and the current density was 3.0 A / d.
It was treated with m 2 for 480 seconds to form a Zn plating layer having a thickness of 12 μm.

【0028】以上のようにして得られた試験片、および
比較のための無処理試験片の72時間5%食塩水噴霧試
験結果およびゴバン目試験の結果を表1に示す。
Table 1 shows the results of the 72-hour 5% saline spray test and the goose eye test of the test pieces thus obtained and untreated test pieces for comparison.

【0029】[0029]

【表1】 [Table 1]

【0030】表1より、実施例1、実施例2とも食塩水
噴霧試験結果およびゴバン目試験において、良好な結果
が得られていることがわかる。
It can be seen from Table 1 that good results were obtained in both the salt spray test results and the goose eye test in both Example 1 and Example 2.

【0031】[0031]

【発明の効果】以上述べたように、本発明による希土類
ボンド磁石は、表面に順次積層形成された耐酸化性被
膜、および耐酸化めっき層を有するため、耐食性、耐久
性に優れ、特性の安定化および信頼性の向上にきわめて
有効である。
As described above, since the rare earth bonded magnet according to the present invention has the oxidation resistant coating and the oxidation resistant plating layer, which are sequentially laminated on the surface, it has excellent corrosion resistance, durability and stable characteristics. It is extremely effective in improving reliability and reliability.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類合金の粉末を樹脂と混練成形して
なる希土類ボンド磁石表面に、化1で表される少なくと
も1種のメルカプト基を含むトリアジン系化合物(但
し、MおよびMはH、アルカリ金属またはアルカリ
土類金属/2、RはNHR、NRまたはSH、
およびRはH、アルキル基またはフェニル基)か
らなる被膜と、該被膜の上に耐酸化めっき層を有するこ
とを特徴とする希土類ボンド磁石。 【化1】
1. A triazine-based compound containing at least one mercapto group represented by Chemical formula 1 on the surface of a rare earth bonded magnet formed by kneading and molding a rare earth alloy powder with a resin (wherein M 1 and M 2 are H , Alkali metal or alkaline earth metal / 2, R is NHR 1 , NR 1 R 2 or SH,
R 1 and R 2 are coatings made of H, an alkyl group or a phenyl group), and an oxidation resistant plating layer on the coating, a rare earth bonded magnet. [Chemical 1]
【請求項2】 前記トリアジン系化合物の溶液中で電解
処理することにより前記磁石表面に被膜を形成すること
を特徴とする請求項1記載の希土類ボンド磁石の製造方
法。
2. The method for producing a rare earth bonded magnet according to claim 1, wherein a coating film is formed on the surface of the magnet by performing an electrolytic treatment in a solution of the triazine-based compound.
JP2002030640A 2002-02-07 2002-02-07 Rare-earth bonded magnet and its manufacturing method Pending JP2003234228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030640A JP2003234228A (en) 2002-02-07 2002-02-07 Rare-earth bonded magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030640A JP2003234228A (en) 2002-02-07 2002-02-07 Rare-earth bonded magnet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003234228A true JP2003234228A (en) 2003-08-22

Family

ID=27774318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030640A Pending JP2003234228A (en) 2002-02-07 2002-02-07 Rare-earth bonded magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003234228A (en)

Similar Documents

Publication Publication Date Title
US7785460B2 (en) Method for producing rare earth metal-based permanent magnet having copper plating film on the surface thereof
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
CA1038325A (en) Compositions and process for the electrodeposition of metals
EP1441047B1 (en) Method for forming electroplated coating on surface of article
JP2002327278A (en) Copper plating liquid and copper plating method
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JP4650275B2 (en) Rare earth permanent magnet with copper plating film on the surface
JP2003234228A (en) Rare-earth bonded magnet and its manufacturing method
JPH0756080B2 (en) Method for producing organic polymer composite metallurgical metal material with excellent paint adhesion
JP2003309031A (en) Rare-earth bonded magnet and its manufacturing method
JP2908637B2 (en) Surface treatment method for Fe-BR-based sintered magnet
JP2002115098A (en) Organic plating method and organic plated product
JP2002353057A (en) Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same
JP2002208508A (en) Rare earth permanent magnet excellent in oxidation resistance and its manufacturing method
Zhu et al. Copper coating electrodeposited directly onto AZ31 magnesium alloy
JP4131385B2 (en) Rare earth permanent magnet manufacturing method
JP2005032845A (en) Bond magnet and its producing method
JP2681797B2 (en) Organic electrolytic plating method for rare earth permanent magnet materials
JPH0311714A (en) Resin-bonded type magnet and manufacture thereof
JP2002158106A (en) Rare earth permanent magnet superior in oxidation resistance and its manufacturing method
JPH0226003A (en) Rare-earth permanent magnet having excellent corrosion-resistance and manufacture thereof
Huang et al. Pulsed deposition of ultra-thin copper foils
JPH0539596A (en) Rare earth alloy
JP2001210504A (en) R-t-b permanent magnet
JPH09320826A (en) Highly anticorrosive rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070307