JP2003232218A - Exhaust emission control device for engine - Google Patents

Exhaust emission control device for engine

Info

Publication number
JP2003232218A
JP2003232218A JP2002032385A JP2002032385A JP2003232218A JP 2003232218 A JP2003232218 A JP 2003232218A JP 2002032385 A JP2002032385 A JP 2002032385A JP 2002032385 A JP2002032385 A JP 2002032385A JP 2003232218 A JP2003232218 A JP 2003232218A
Authority
JP
Japan
Prior art keywords
exhaust gas
liquid
selective reduction
mixer
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002032385A
Other languages
Japanese (ja)
Inventor
Mitsuru Hosoya
満 細谷
Hironobu Mogi
浩伸 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2002032385A priority Critical patent/JP2003232218A/en
Publication of JP2003232218A publication Critical patent/JP2003232218A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To uniformize a urea-based liquid reaching a selective reduction type catalyst. <P>SOLUTION: This exhaust emission control device is provided with the selective reduction type catalyst 24 disposed in the exhaust pipe 16 of an engine 11, and a liquid injection nozzle 29 disposed in the exhaust pipe 16 on the upstream side of the selective reduction type catalyst 24 and capable of injecting the urea-based liquid 32 toward the selective reduction type catalyst 24. A mixer 51 for mixing exhaust gas with the liquid 32 injected from the liquid injection nozzle 29 is arranged in the exhaust pipe 16 between the liquid injection nozzle 29 and the selective reduction type catalyst 24. The mixer 51 is provided with a mixer body 52 having a cylindrical part 52a capable of passing exhaust gas in an axis direction, and a plurality of partitioning plates 53 arranged at required intervals in the mixer body 52 to interrupt the passing of exhaust gas in the inside of the cylindrical part 52a and having a plurality of gas holes 53a. The plurality of gas holes 53a are so formed as not to overlap with the plurality of gas holes 53a formed in the adjacent partitioning plates 53 and the axis direction of the cylindrical part 52a. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ンの排ガスに含まれる窒素酸化物(以下、NOxとい
う)を低減する排ガス浄化装置に関するものである。
TECHNICAL FIELD The present invention relates to an exhaust gas purifying apparatus for reducing nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas of a diesel engine.

【0002】[0002]

【従来の技術】従来、この種の排ガス浄化装置として、
ディーゼルエンジンの排気通路の途中に選択還元型触媒
を設け、その選択還元型触媒より排ガス上流側の排気管
に、その選択還元型触媒に向けて尿素系液体を噴射可能
な液体噴射ノズルを設けたディーゼルエンジンの排ガス
浄化装置が知られている(特開2000−8833
号)。このように構成されたディーゼルエンジンの排ガ
ス浄化装置では、液体噴射ノズルから噴射された尿素系
液体が排ガスの熱により加熱されて加水分解し、アンモ
ニアが生じる。そしてこのアンモニアは排気ガス中のN
Oxを選択還元型触媒によって浄化する還元剤として機
能し、大気に排出されるNOxの量を低減できるように
なっている。
2. Description of the Related Art Conventionally, as an exhaust gas purifying device of this type,
A selective reduction catalyst was provided in the middle of the exhaust passage of the diesel engine, and a liquid injection nozzle capable of injecting a urea-based liquid toward the selective reduction catalyst was provided in the exhaust pipe on the exhaust gas upstream side of the selective reduction catalyst. An exhaust gas purification device for a diesel engine is known (Japanese Patent Laid-Open No. 2000-8833).
issue). In the exhaust gas purifying apparatus for a diesel engine configured in this way, the urea-based liquid injected from the liquid injection nozzle is heated by the heat of the exhaust gas and hydrolyzed to generate ammonia. And this ammonia is N in the exhaust gas
It functions as a reducing agent that purifies Ox by a selective reduction catalyst, and can reduce the amount of NOx discharged to the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の排
ガス浄化装置では、液体噴射ノズルから噴射された尿素
系液体は排ガスの流れに沿って選択還元型触媒に向かう
ため、尿素系液体が選択還元触媒に局部的に集中して到
達する不具合があった。尿素系液体が局部的に集中する
と、その集中した尿素系液体が加水分解して生じるアン
モニアがその部分において過剰になり、NOxを還元さ
せる還元反応に用いられなかったアンモニアが直接大気
中に排出される不具合がる。一方、選択還元型触媒にお
いて尿素系液体が希薄な部分では、加水分解して生じる
アンモニアの量が不足してその部分においてNOxを十
分に還元することが困難になり、NOx排出量を十分に
低減できない不具合が生じる。本発明の目的は、選択還
元型触媒に到達する尿素系液体を均一にしてNOx排出
量を低減するとともにアンモニアが大気中に排出される
のを有効に防止し得るエンジンの排ガス浄化装置を提供
することにある。
However, in the above-mentioned conventional exhaust gas purifying apparatus, the urea liquid injected from the liquid injection nozzle goes to the selective reduction catalyst along the flow of the exhaust gas, so that the urea liquid is selectively reduced. There was a problem that the catalyst was locally concentrated and reached. When the urea-based liquid is locally concentrated, ammonia produced by hydrolysis of the concentrated urea-based liquid becomes excessive in that portion, and ammonia not used in the reduction reaction for reducing NOx is directly discharged into the atmosphere. There is a problem. On the other hand, in the portion where the urea-based liquid is diluted in the selective reduction catalyst, the amount of ammonia produced by hydrolysis is insufficient, and it becomes difficult to sufficiently reduce NOx in that portion, and the NOx emission amount is sufficiently reduced. There is a problem that cannot be done. An object of the present invention is to provide an exhaust gas purifying apparatus for an engine, which can make the urea-based liquid reaching the selective reduction catalyst uniform to reduce the NOx emission amount and effectively prevent ammonia from being emitted into the atmosphere. Especially.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、エンジン11の排気管16に設けら
れた選択還元型触媒24と、選択還元型触媒24より排
ガス上流側の排気管16に設けられ選択還元型触媒24
に向けて尿素系液体32を噴射可能な液体噴射ノズル2
9とを備えたエンジンの排ガス浄化装置の改良である。
その特徴ある構成は、液体噴射ノズル29から噴射され
た液体32を排ガスに混合可能に構成されたミキサ51
が液体噴射ノズル29と選択還元型触媒24の間の排気
管16に設けられたところにある。この請求項1に記載
されたエンジンの排ガス浄化装置では、液体噴射ノズル
29から噴射された尿素系液体32は、選択還元型触媒
24に向かって排ガスの流れに沿って流れてミキサ51
に流入する。このミキサ51で排ガス中に噴射された尿
素系液体32はその排ガスに混合され、ミキサ51を通
過した段階で排ガスに十分に混合された尿素系液体32
は選択還元型触媒24に均一に到達する。
The invention according to claim 1 is
As shown in FIG. 1, the selective reduction catalyst 24 provided in the exhaust pipe 16 of the engine 11 and the selective reduction catalyst 24 provided in the exhaust pipe 16 on the exhaust gas upstream side of the selective reduction catalyst 24.
Liquid injection nozzle 2 capable of injecting urea-based liquid 32 toward
9 is an improvement of an exhaust gas purifying apparatus for an engine equipped with.
The characteristic configuration of the mixer 51 is such that the liquid 32 jetted from the liquid jet nozzle 29 can be mixed with the exhaust gas.
Is provided in the exhaust pipe 16 between the liquid injection nozzle 29 and the selective reduction catalyst 24. In the exhaust gas purifying apparatus for an engine according to claim 1, the urea-based liquid 32 injected from the liquid injection nozzle 29 flows along the flow of the exhaust gas toward the selective reduction catalyst 24 and the mixer 51.
Flow into. The urea liquid 32 injected into the exhaust gas by the mixer 51 is mixed with the exhaust gas, and the urea liquid 32 sufficiently mixed with the exhaust gas when passing through the mixer 51.
Reaches the selective reduction catalyst 24 uniformly.

【0005】請求項2に係る発明は、請求項1に係る発
明であって、更に図2に示すように、ミキサ51が、軸
線方向に排ガスを通過可能な筒部52aを有するミキサ
本体52と、筒部52aの内部の排ガスの通過を遮るよ
うにミキサ本体52に所定の間隔をあけて設けられ複数
のガス孔53a,54a,55aがそれぞれ形成された
複数枚の仕切板53,54,55とを備え、複数のガス
孔53a,54a,55aは隣接する仕切板53,5
4,55に形成された複数のガス孔53a,54a,5
5aと筒部52aの軸線方向に重ならないように複数の
仕切板53,54,55にそれぞれ形成されたエンジン
の排ガス浄化装置である。この請求項2に係るエンジン
の排ガス浄化装置では、ミキサ51でに流入した排ガス
は複数の仕切板53,54,55にそれぞれ形成された
複数のガス孔53a,54a,55aを通過するが、こ
の複数のガス孔53a,54a,55aは隣接する仕切
板53,54,55に形成された複数のガス孔53a,
54a,55aと筒部52aの軸線方向に重ならないよ
うにそれぞれ形成されているため、図2の破線矢印で示
すように蛇行して通過する。排ガスが蛇行して進むこと
により、その排ガス中に噴射された尿素系液体32はそ
の排ガスに混合される。
The invention according to claim 2 is the invention according to claim 1, further, as shown in FIG. 2, the mixer 51 includes a mixer main body 52 having a tubular portion 52a through which exhaust gas can pass in the axial direction. , A plurality of partition plates 53, 54, 55 provided in the mixer main body 52 at predetermined intervals so as to block passage of exhaust gas inside the tubular portion 52a and each having a plurality of gas holes 53a, 54a, 55a formed therein. And the plurality of gas holes 53a, 54a, 55a are adjacent to the partition plates 53, 5
A plurality of gas holes 53a, 54a, 5 formed in 4, 55
The exhaust gas purifying apparatus for an engine is formed on each of a plurality of partition plates 53, 54, 55 so as not to overlap the shaft portion 5a and the tubular portion 52a in the axial direction. In the exhaust gas purifying apparatus for an engine according to this aspect, the exhaust gas flowing into the mixer 51 passes through the plurality of gas holes 53a, 54a, 55a formed in the plurality of partition plates 53, 54, 55, respectively. The plurality of gas holes 53a, 54a, 55a are formed in the adjacent partition plates 53, 54, 55.
54a and 55a and the cylindrical portion 52a are formed so as not to overlap each other in the axial direction, so that they meander and pass as indicated by the broken line arrow in FIG. As the exhaust gas meanders and advances, the urea liquid 32 injected into the exhaust gas is mixed with the exhaust gas.

【0006】[0006]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、ディーゼルエン
ジン11の吸気ポートには吸気マニホルド12を介して
吸気管13が接続され、排気ポートには排気マニホルド
14を介して排気管16が接続される。吸気管13に
は、ターボ過給機17のコンプレッサ17aと、ターボ
過給機17により圧縮された吸気を冷却するインタクー
ラ18とがそれぞれ設けられ、排気管16にはターボ過
給機17のタービン17bが設けられる。図示しないが
コンプレッサ17aの回転翼とタービン17bの回転翼
とはシャフトにより連結される。エンジン11から排出
される排ガスのエネルギによりタービン17b及びシャ
フトを介してコンプレッサ17aが回転し、このコンプ
レッサ17aの回転により吸気管13内の吸入空気が圧
縮されるように構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, an intake pipe 13 is connected to an intake port of a diesel engine 11 via an intake manifold 12, and an exhaust pipe 16 is connected to an exhaust port via an exhaust manifold 14. The intake pipe 13 is provided with a compressor 17a of the turbocharger 17 and an intercooler 18 for cooling the intake air compressed by the turbocharger 17, and the exhaust pipe 16 is provided with a turbine 17b of the turbocharger 17. Is provided. Although not shown, the rotary blades of the compressor 17a and the turbine 17b are connected by a shaft. The compressor 17a is rotated by the energy of the exhaust gas discharged from the engine 11 via the turbine 17b and the shaft, and the intake air in the intake pipe 13 is compressed by the rotation of the compressor 17a.

【0007】排気管16の途中には選択還元型触媒24
が設けられる。触媒24は排気管16の直径を拡大した
筒状のコンバータ27に収容される。この実施の形態に
おける触媒24は、排気管16に流入する排ガス中のN
Oxを比較的低温の200〜300℃で還元する銅ゼオ
ライト系の触媒が用いられる場合を示すが、酸化チタン
又は酸化バナジウム又は酸化タングステン等から成る触
媒であっても良い。
A selective reduction type catalyst 24 is provided in the middle of the exhaust pipe 16.
Is provided. The catalyst 24 is housed in a cylindrical converter 27 in which the diameter of the exhaust pipe 16 is enlarged. The catalyst 24 in this embodiment is the N in the exhaust gas flowing into the exhaust pipe 16.
The case where a copper zeolite-based catalyst that reduces Ox at a relatively low temperature of 200 to 300 ° C. is used is shown, but a catalyst made of titanium oxide, vanadium oxide, tungsten oxide, or the like may be used.

【0008】触媒24の排ガス上流側の排気管16、即
ち触媒24の入口には、後述するミキサ51を介して液
体噴射ノズル29が触媒24に向けて設けられる。この
液体噴射ノズル29には液体供給管31の一端が接続さ
れ、この液体供給管31の他端は尿素系液体32が貯留
された液体タンク33に接続される。また液体供給管3
1には液体噴射ノズル29への液体32の供給量を調整
する液体調整弁34が設けられ、液体調整弁34と液体
タンク33との間の液体供給管31には液体タンク33
内の液体32を液体噴射ノズル29に供給可能なポンプ
36が設けられる。液体調整弁34の第1ポート34a
はポンプ36の吐出口に接続され、第2ポート34bは
液体噴射ノズル29に接続される。そして、液体調整弁
34がオンすると第1及び第2ポート34a,34bが
所定の開度で連通し、オフすると第1及び第2ポート3
4a,34bの連通が遮断されるように構成される。
At the exhaust pipe 16 on the exhaust gas upstream side of the catalyst 24, that is, at the inlet of the catalyst 24, a liquid injection nozzle 29 is provided toward the catalyst 24 via a mixer 51 described later. One end of a liquid supply pipe 31 is connected to the liquid injection nozzle 29, and the other end of the liquid supply pipe 31 is connected to a liquid tank 33 in which a urea liquid 32 is stored. Liquid supply pipe 3
1 is provided with a liquid adjusting valve 34 for adjusting the supply amount of the liquid 32 to the liquid jet nozzle 29, and a liquid tank 33 is provided in a liquid supply pipe 31 between the liquid adjusting valve 34 and the liquid tank 33.
A pump 36 capable of supplying the liquid 32 therein to the liquid jet nozzle 29 is provided. First port 34a of liquid regulating valve 34
Is connected to the discharge port of the pump 36, and the second port 34b is connected to the liquid jet nozzle 29. When the liquid adjusting valve 34 is turned on, the first and second ports 34a and 34b communicate with each other at a predetermined opening, and when turned off, the first and second ports 3 are opened.
It is configured so that the communication between 4a and 34b is blocked.

【0009】液体調整弁34及びポンプ36には、マイ
クロコンピュータからなるコントローラ44の制御出力
がそれぞれ接続される。このコントローラ44の制御入
力には、選択還元型触媒24上流側の排気管16に設け
られ排ガスの温度を検出する温度センサ43と、エンジ
ン11の回転速度を検出する回転センサ46と、エンジ
ン11の負荷を検出する負荷センサ47の各検出出力が
接続される。上記負荷センサ47はこの実施の形態では
燃料噴射ポンプ(図示せず)のロードレバーの変位量を
検出する。コントローラ44はメモリ44aを備える。
メモリ44aには、排ガス温度、エンジン回転、エンジ
ン負荷等に応じた液体調整弁34のオン又はオフ並びに
オン時における開度、更にポンプ36の作動の有無が予
め記憶される。そして、コントローラ44は温度センサ
43、回転センサ46及び負荷センサ47の検出出力に
基づいてエンジン11の運転状況を把握し、その運転状
況からメモリ44aに記憶された条件に従って液体調整
弁34及びポンプ36を制御し、その運転状況に応じた
最適な量の尿素系液体32を噴射ノズル29から噴射す
るように構成される。
A control output of a controller 44 composed of a microcomputer is connected to the liquid regulating valve 34 and the pump 36, respectively. The control input of the controller 44 includes a temperature sensor 43 provided in the exhaust pipe 16 on the upstream side of the selective reduction catalyst 24 for detecting the temperature of exhaust gas, a rotation sensor 46 for detecting the rotation speed of the engine 11, and a rotation sensor 46 for the engine 11. Each detection output of the load sensor 47 which detects a load is connected. The load sensor 47 detects the displacement amount of the load lever of the fuel injection pump (not shown) in this embodiment. The controller 44 includes a memory 44a.
The memory 44a stores in advance the on / off state of the liquid adjusting valve 34 according to the exhaust gas temperature, the engine rotation, the engine load, and the like, the opening degree at the time of the on state, and the presence / absence of the operation of the pump 36. Then, the controller 44 grasps the operating condition of the engine 11 based on the detection outputs of the temperature sensor 43, the rotation sensor 46 and the load sensor 47, and according to the condition stored in the memory 44a from the operating condition, the liquid regulating valve 34 and the pump 36. Is controlled and the optimum amount of the urea-based liquid 32 according to the operating condition is injected from the injection nozzle 29.

【0010】本発明の特徴ある構成は、液体噴射ノズル
29から噴射された尿素系液体32を排ガスに混合可能
に構成されたミキサ51が、液体噴射ノズル29と選択
還元型触媒24の間の排気管16に設けられたところに
ある。そして、この実施の形態におけるミキサ51は、
軸線方向に排ガスを通過可能な筒部52aを有するミキ
サ本体52と、このミキサ本体52に設けられた複数枚
の仕切板53,54,55とを備える。
A characteristic feature of the present invention is that the mixer 51 configured to mix the urea liquid 32 injected from the liquid injection nozzle 29 with the exhaust gas is exhausted between the liquid injection nozzle 29 and the selective reduction catalyst 24. It is located in the pipe 16. Then, the mixer 51 in this embodiment is
The mixer main body 52 has a tubular portion 52a that allows exhaust gas to pass through in the axial direction, and a plurality of partition plates 53, 54, 55 provided on the mixer main body 52.

【0011】図2に詳しく示すように、ミキサ本体52
は、ステンレス鋼板を円筒状にすることにより形成され
た筒部52aの両端に、ステンレス鋼板を漏斗状にする
ことにより形成された蓋体52b,52cを溶接するこ
とにより作られる。即ち、蓋体52b,52cの筒部5
2aに臨む一端部はその筒部52aの外径に等しく形成
されて溶接される。一方、蓋体52b,52cの他端部
は排気管16の直径に相応して形成され、その他端部に
おける外周囲には排気管16に接続するための環状のフ
ランジ部材52d,52eがそれぞれ溶接される。この
フランジ部材52d,52eには複数の取付孔52f,
52gがそれぞれ形成され、排気管16の端縁に設けら
れた被取付部材16a,16b(図1)にねじ止め可能
に構成される。
As shown in detail in FIG. 2, the mixer main body 52
Is manufactured by welding lids 52b and 52c formed by forming a stainless steel plate into a funnel shape to both ends of a cylindrical portion 52a formed by forming a stainless steel plate into a cylindrical shape. That is, the tubular portion 5 of the lids 52b and 52c
One end facing 2a is formed to have the same outer diameter as the cylindrical portion 52a and is welded. On the other hand, the other ends of the lids 52b and 52c are formed to correspond to the diameter of the exhaust pipe 16, and annular flange members 52d and 52e for connecting to the exhaust pipe 16 are welded to the outer circumferences of the other ends, respectively. To be done. The flange members 52d and 52e have a plurality of mounting holes 52f,
52 g are formed respectively and can be screwed to the attached members 16 a and 16 b (FIG. 1) provided on the end edge of the exhaust pipe 16.

【0012】一方、複数枚の仕切板53,54,55
は、筒部52aの内部の排ガスの通過を遮るように所定
の間隔をあけてミキサ本体52に設けられる。この実施
の形態では厚さが1.2mmのステンレス鋼板から作ら
れた3枚の仕切板53,54,55が設けられる場合を
示し、3枚の仕切板53,54,55には複数のガス孔
53a,54a,55aがそれぞれ形成される。この実
施の形態では8個のガス孔53a,54a,55aがそ
れぞれの仕切板53,54,55に形成される例を示
し、8個のガス孔53a,54a,55aの面積の和が
排気管16の排ガス流通断面積より大きくなるように調
整される。また、仕切板53,54,55の外周には筒
部52aの内面に外面が接触するフランジ53b,54
b,55bがそれぞれ形成される。そして、このフラン
ジ53b,54b,55bを筒部52aに抵抗溶接する
ことにより、3枚の仕切板53,54,55は所定の間
隔をあけてミキサ本体52にそれぞれ設けられる。ここ
で、所定の間隔は1cm〜10cmが好ましく、2cm
〜3cmであることが更に好ましい。また、フランジ5
3b,54b,55bを筒部52aに溶接する際に、そ
れぞれの仕切板53,54,55における複数のガス孔
53a,54a,55aが、隣接する仕切板53,5
4,55に形成された複数のガス孔53a,54a,5
5aと筒部52aの軸線方向に重ならないように調整さ
れる。
On the other hand, a plurality of partition plates 53, 54, 55
Are provided in the mixer main body 52 at predetermined intervals so as to block passage of exhaust gas inside the tubular portion 52a. In this embodiment, a case where three partition plates 53, 54, 55 made of a stainless steel plate having a thickness of 1.2 mm are provided is shown, and the three partition plates 53, 54, 55 have a plurality of gasses. Holes 53a, 54a, 55a are formed, respectively. In this embodiment, an example is shown in which eight gas holes 53a, 54a, 55a are formed in each partition plate 53, 54, 55, and the sum of the areas of the eight gas holes 53a, 54a, 55a is the exhaust pipe. It is adjusted to be larger than the exhaust gas circulation cross-sectional area of 16. Further, on the outer periphery of the partition plates 53, 54, 55, flanges 53b, 54 whose outer surface contacts the inner surface of the tubular portion 52a
b and 55b are formed respectively. By resistance welding the flanges 53b, 54b, 55b to the tubular portion 52a, the three partition plates 53, 54, 55 are provided in the mixer main body 52 at predetermined intervals. Here, the predetermined interval is preferably 1 cm to 10 cm, and 2 cm
More preferably, it is 3 cm. Also, the flange 5
When welding 3b, 54b, 55b to the cylindrical portion 52a, the plurality of gas holes 53a, 54a, 55a in the respective partition plates 53, 54, 55 are arranged so that the adjacent partition plates 53, 5
A plurality of gas holes 53a, 54a, 5 formed in 4, 55
5a and the tubular portion 52a are adjusted so as not to overlap in the axial direction.

【0013】このように構成されたミキサ51は、図1
に示すように分断された排気管16の中間に設けられ
る。即ち、排気管16は選択還元型触媒24の上流側近
傍において分断され、その分断された部分における排気
管16のそれぞれの端縁に被取付部材16a,16bが
それぞれ設けられる。そして、分断された部分にミキサ
51を挿入して、ミキサ51の両端に設けられたそれぞ
れのフランジ部材52d,52eを被取付部材16a,
16bにそれぞれねじ止めすることによりミキサ51は
液体噴射ノズル29と選択還元型触媒24の間の排気管
16に設けられる。
The mixer 51 constructed in this manner is shown in FIG.
It is provided in the middle of the exhaust pipe 16 divided as shown in FIG. That is, the exhaust pipe 16 is divided in the vicinity of the upstream side of the selective reduction catalyst 24, and the attached members 16a and 16b are provided on the respective edges of the exhaust pipe 16 in the divided portions. Then, the mixer 51 is inserted into the divided portion, and the flange members 52d and 52e provided at both ends of the mixer 51 are attached to the attached members 16a,
The mixer 51 is provided in the exhaust pipe 16 between the liquid injection nozzle 29 and the selective reduction catalyst 24 by being screwed to 16 b.

【0014】このように構成されたエンジンの排ガス浄
化装置の動作を説明する。エンジン11を始動し、尿素
が加水分解できない温度であること、具体的にこの実施
の形態では220℃未満の排ガス温度を温度センサ43
が検出したとき、コントローラ44はこの検出出力に基
づいて、液体調整弁34をオフする。これにより液体調
整弁34における第1及び第2ポート34a,34bの
連通は遮断されて、尿素が加水分解できない温度におけ
る尿素系液体32の噴射が回避される。
The operation of the engine exhaust gas purifying apparatus thus configured will be described. When the engine 11 is started and the temperature is such that urea cannot be hydrolyzed, specifically, in this embodiment, the temperature sensor 43 detects an exhaust gas temperature of less than 220 ° C.
Is detected, the controller 44 turns off the liquid adjusting valve 34 based on this detection output. As a result, the communication between the first and second ports 34a and 34b of the liquid adjustment valve 34 is blocked, and the injection of the urea liquid 32 at a temperature at which urea cannot be hydrolyzed is avoided.

【0015】尿素が加水分解する温度であること、具体
的にこの実施の形態では温度センサ43が220℃以上
の排ガス温度を検出した状態で、コントローラ44はポ
ンプ36を駆動するとともに液体調整弁34をオンして
液体調整弁34における第1及び第2ポート34a,3
4bを連通させ、液体噴射ノズル29から尿素系液体3
2を噴射する。これは、排気ガス中のNOxを選択還元
型触媒24によって浄化するのに還元剤が必要だからで
あり、尿素系液体32は予め所定の濃度に調整されたも
のが液体タンク33に貯留される。そしてコントローラ
44は回転センサ46及び負荷センサ47の各検出出力
に基づいて求められるディーゼルエンジン11の運転状
態から排気ガス中のNOx濃度を推定し、このNOxを
浄化するのに必要な還元剤としての尿素量を求めて液体
噴射ノズル29から必要な量の尿素系液体32を噴射す
る。
At a temperature at which urea is hydrolyzed, specifically, in this embodiment, the controller 44 drives the pump 36 and the liquid adjusting valve 34 while the temperature sensor 43 detects the exhaust gas temperature of 220 ° C. or higher. And the first and second ports 34a, 3 of the liquid regulating valve 34 are turned on.
4b are communicated with each other, and the urea-based liquid 3 is discharged from the liquid injection nozzle 29.
Inject 2. This is because a reducing agent is required to purify NOx in the exhaust gas by the selective reduction catalyst 24, and the urea liquid 32, which has been adjusted to a predetermined concentration in advance, is stored in the liquid tank 33. Then, the controller 44 estimates the NOx concentration in the exhaust gas from the operating state of the diesel engine 11 obtained based on the detection outputs of the rotation sensor 46 and the load sensor 47, and serves as a reducing agent necessary for purifying this NOx. The amount of urea is calculated, and the necessary amount of urea liquid 32 is ejected from the liquid ejection nozzle 29.

【0016】液体噴射ノズル29から噴射された尿素系
液体32は、選択還元型触媒24に向かって排ガスの流
れに沿って流れ、液体噴射ノズル29と選択還元型触媒
24の間に設けられたミキサ51に流入する。ミキサ5
1に流入した排ガスは3枚の仕切板53,54,55に
それぞれ形成された複数のガス孔53a,54a,55
aを通過するが、この複数のガス孔53a,54a,5
5aは隣接する仕切板53,54,55に形成された複
数のガス孔53a,54a,55aと筒部52aの軸線
方向に重ならないようにそれぞれ形成されているため、
図2の破線矢印で示すように蛇行して通過する。排ガス
が蛇行して進むことにより、その排ガス中に噴射された
尿素系液体32はその排ガスに混合され、ミキサ51を
通過した段階で排ガスに十分に混合された尿素系液体3
2は選択還元型触媒24に均一に到達する。
The urea-based liquid 32 injected from the liquid injection nozzle 29 flows along the flow of the exhaust gas toward the selective reduction catalyst 24, and the mixer provided between the liquid injection nozzle 29 and the selective reduction catalyst 24. Flows into 51. Mixer 5
The exhaust gas that has flowed into 1 is a plurality of gas holes 53a, 54a, 55 formed in the three partition plates 53, 54, 55, respectively.
a, but the gas holes 53a, 54a, 5
5a is formed so as not to overlap the plurality of gas holes 53a, 54a, 55a formed in the adjacent partition plates 53, 54, 55 with the tubular portion 52a in the axial direction, respectively.
As shown by the broken line arrow in FIG. 2, it meanders and passes. As the exhaust gas meanders and advances, the urea liquid 32 injected into the exhaust gas is mixed with the exhaust gas, and when passing through the mixer 51, the urea liquid 3 sufficiently mixed with the exhaust gas.
2 reaches the selective reduction catalyst 24 uniformly.

【0017】選択還元型触媒24に均一に到達した尿素
系液体32は、排気ガスによって加熱されて次のような
化学反応により加水分解しアンモニアを生じる。 (NH2)2・CO + H2O → CO2 + 2NH3 このアンモニアは、次のような化学反応によりNO、N
2を還元してNOxの排出量を低減するとともに、尿
素系液体32が均一に選択還元型触媒24に到達するこ
とによりアンモニアの大部分が還元剤として機能し、還
元剤として使用されないアンモニアが大気中に排出され
るのを有効に防止する。 4NO + 4NH3 + O2 → 4N2 + 6H2O 6NO2 + 8NH3 → 7N2 + 12H2O なお、この実施の形態では、エンジンとしてターボ過給
機付ディーゼルエンジンを挙げたが、自然吸気型ディー
ゼルエンジンに本発明の排ガス浄化装置を用いてもよ
い。
The urea liquid 32 that has reached the selective reduction catalyst 24 uniformly is heated by the exhaust gas and hydrolyzed by the following chemical reaction to produce ammonia. (NH 2 ) 2 · CO + H 2 O → CO 2 + 2NH 3 This ammonia is NO, N due to the following chemical reaction.
O 2 is reduced to reduce NOx emissions, and most of the ammonia functions as a reducing agent because the urea-based liquid 32 reaches the selective reduction catalyst 24 uniformly, and ammonia not used as a reducing agent is removed. Effectively prevent its release into the atmosphere. 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O 6NO 2 + 8NH 3 → 7N 2 + 12H 2 O In this embodiment, a diesel engine with a turbocharger is used as the engine, but naturally aspirated. The exhaust gas purifying apparatus of the present invention may be used for a diesel engine of the type.

【0018】また、上述した実施の形態では、厚さが
1.2mmのステンレス鋼板から作られた3枚の仕切板
53,54,55がミキサ本体52に設けられる場合を
示したが、仕切板の厚さは0.8mm又は1.5mmで
あっても良く、ステンレス鋼板でなくいわゆるSS鋼材
であっても良い。また、仕切板の枚数は、複数枚であれ
ば3枚でなく、2枚、4枚、5枚、又は6枚であっても
良い。また、上述した実施の形態では、8個のガス孔5
3a,54a,55aがそれぞれの仕切板53,54,
55に形成される例を示したが、ガス孔53a,54
a,55aの数は、その面積の和が排気管16の排ガス
流通断面積より大きければ良く、4個、6個、12個、
18個又は24個のガス孔53a,54a,55aをそ
れぞれの仕切板53,54,55に形成しても良い。
Further, in the above-described embodiment, the case where the three partition plates 53, 54, 55 made of a stainless steel plate having a thickness of 1.2 mm are provided in the mixer main body 52 has been described. May have a thickness of 0.8 mm or 1.5 mm, and may be a so-called SS steel material instead of a stainless steel plate. Further, the number of partition plates is not limited to three as long as it is plural, and may be two, four, five, or six. In addition, in the above-described embodiment, eight gas holes 5 are provided.
3a, 54a, 55a are the respective partition plates 53, 54,
Although an example in which the gas holes 53a and 54 are formed is shown in FIG.
The number of a and 55a may be 4, 6 or 12 as long as the sum of their areas is larger than the exhaust gas flow cross-sectional area of the exhaust pipe 16.
Eighteen or 24 gas holes 53a, 54a, 55a may be formed in each partition plate 53, 54, 55.

【0019】更に、上述した実施の形態では、選択還元
型触媒24上流側の排気管16に排ガスの温度を検出す
る温度センサ43を設け、220℃未満の排ガス温度を
温度センサ43が検出したときにコントローラ44が液
体調整弁34をオフするような例を示したが、図4に示
すように、排ガスの温度を検出する温度センサ63を選
択還元型触媒24下流側の排気管16に設けても良い。
この場合には、170℃未満の排ガス温度を温度センサ
63が検出したときにコントローラ44が液体調整弁3
4をオフし、温度センサ63が170℃以上の排ガス温
度を検出した状態でコントローラ44がポンプ36を駆
動するとともに液体調整弁34をオンして液体調整弁3
4における第1及び第2ポート34a,34bを連通さ
せるように構成することが好ましい。
Further, in the above-described embodiment, the temperature sensor 43 for detecting the temperature of the exhaust gas is provided in the exhaust pipe 16 upstream of the selective reduction catalyst 24, and when the temperature sensor 43 detects the exhaust gas temperature of less than 220 ° C. Although the example in which the controller 44 turns off the liquid regulating valve 34 is shown in FIG. 4, a temperature sensor 63 for detecting the temperature of the exhaust gas is provided in the exhaust pipe 16 downstream of the selective reduction catalyst 24 as shown in FIG. Is also good.
In this case, when the temperature sensor 63 detects an exhaust gas temperature of less than 170 ° C., the controller 44 causes the liquid adjustment valve 3
4, the controller 44 drives the pump 36 while the temperature sensor 63 detects the exhaust gas temperature of 170 ° C. or higher, and the liquid adjusting valve 34 is turned on to turn on the liquid adjusting valve 3
It is preferable that the first and second ports 34a and 34b of No. 4 are connected.

【0020】[0020]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>図1に示すように、8000ccのターボ
過給機付ディーゼルエンジン11の排気管16に選択還
元型触媒24を設けた。また触媒24の排ガス上流側の
排気管16には尿素系液体32を噴射可能な液体噴射ノ
ズル29を設けた。そして液体噴射ノズル29と選択還
元型触媒24の間の排気管16に、図2に示すような構
成のミキサ51を設けた。なお、上記触媒24は、銅ゼ
オライトから成るものを使用した。 <比較例1>図示しないが8000ccのターボ過給機
付ディーゼルエンジンの排気管に、実施例1と同一の選
択還元型触媒24及び液体噴射ノズル29を設けたが、
ミキサは設けなかった。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. <Embodiment 1> As shown in FIG. 1, a selective reduction catalyst 24 was provided in the exhaust pipe 16 of a 8000 cc turbocharged diesel engine 11. Further, the exhaust pipe 16 on the exhaust gas upstream side of the catalyst 24 is provided with a liquid injection nozzle 29 capable of injecting the urea liquid 32. Then, the mixer 51 having the structure shown in FIG. 2 is provided in the exhaust pipe 16 between the liquid injection nozzle 29 and the selective reduction catalyst 24. The catalyst 24 was made of copper zeolite. <Comparative Example 1> Although not shown, the same selective reduction catalyst 24 and liquid injection nozzle 29 as in Example 1 were provided in the exhaust pipe of a 8000 cc diesel engine with a turbocharger.
No mixer was provided.

【0021】<比較試験1及び評価>実施例1及び比較
例1の排ガス浄化装置によるNOx低減率を、触媒入口
温度を200〜500℃に変化させてそれぞれ測定し
た。その結果を図3に示す。図3から明らかなように、
液体噴射ノズル29と選択還元型触媒24の間の排気管
16にミキサ51を設けた実施例1における排ガス浄化
装置では、ミキサを設けない比較例1の排ガス浄化装置
に比較してNOx低減率を向上できることが判る。これ
は、ミキサ51を設けることにより排ガス中に噴射され
た尿素系液体32が排ガスに混合されて選択還元型触媒
24に均一に到達したことに起因するものと考えられ
る。
<Comparative Test 1 and Evaluation> The NOx reduction rates by the exhaust gas purifying apparatuses of Example 1 and Comparative Example 1 were measured while changing the catalyst inlet temperature to 200 to 500 ° C. The result is shown in FIG. As is clear from FIG.
The exhaust gas purifying apparatus according to the first embodiment in which the mixer 51 is provided in the exhaust pipe 16 between the liquid injection nozzle 29 and the selective reduction catalyst 24 has a NOx reduction rate higher than that of the exhaust gas purifying apparatus in Comparative Example 1 in which the mixer is not provided. It turns out that it can be improved. It is considered that this is because the provision of the mixer 51 causes the urea-based liquid 32 injected into the exhaust gas to be mixed with the exhaust gas and uniformly reach the selective reduction catalyst 24.

【0022】[0022]

【発明の効果】以上述べたように、本発明によれば、液
体噴射ノズルから噴射された液体を排ガスに混合可能に
構成されたミキサを液体噴射ノズルと選択還元型触媒の
間の排気管に設けたので、ミキサを通過した段階で排ガ
スに十分に混合された尿素系液体は選択還元型触媒に均
一に到達する。この結果、尿素系液体が加水分解して生
じるアンモニアも均一になり、アンモニアの全てがNO
xを還元させる還元反応に用いられ、NOx排出量を従
来よりも低減するとともにアンモニアが大気中に排出さ
れるのを有効に防止することができる。この場合、ミキ
サが、軸線方向に排ガスを通過可能な筒部を有するミキ
サ本体と、筒部の内部の排ガスの通過を遮るようにミキ
サ本体に所定の間隔をあけて設けられ複数のガス孔がそ
れぞれ形成された複数枚の仕切板とを備え、複数のガス
孔は隣接する仕切板に形成された複数のガス孔と筒部の
軸線方向に重ならないように複数の仕切板にそれぞれ形
成されたものであれば、ミキサでに流入した排ガスは複
数の仕切板にそれぞれ形成された複数のガス孔を蛇行し
て通過し、排ガスが蛇行して進むことにより、その排ガ
ス中に噴射された尿素系液体を十分に排ガスと混合する
ことが可能になる。
As described above, according to the present invention, the mixer configured to mix the liquid injected from the liquid injection nozzle with the exhaust gas is provided in the exhaust pipe between the liquid injection nozzle and the selective reduction catalyst. Since it is provided, the urea-based liquid sufficiently mixed with the exhaust gas reaches the selective reduction catalyst evenly after passing through the mixer. As a result, the ammonia produced by hydrolysis of the urea-based liquid becomes uniform, and all of the ammonia is NO.
It is used in a reduction reaction for reducing x, and can reduce the NOx emission amount as compared with the conventional one and can effectively prevent ammonia from being emitted into the atmosphere. In this case, the mixer has a plurality of gas holes provided at a predetermined interval in the mixer body so as to block passage of the exhaust gas inside the cylinder body, and a mixer body having a cylinder portion capable of passing exhaust gas in the axial direction. A plurality of partition plates formed respectively are provided, and the plurality of gas holes are respectively formed in the plurality of partition plates so as not to overlap with the plurality of gas holes formed in the adjacent partition plates in the axial direction of the tubular portion. If the exhaust gas flows into the mixer, the exhaust gas meanders through a plurality of gas holes formed in each of the partition plates, and the exhaust gas meanders and progresses, so that the urea system injected into the exhaust gas It is possible to mix the liquid well with the exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施形態のエンジンの排ガス浄化装置を
示す構成図。
FIG. 1 is a configuration diagram showing an exhaust gas purifying apparatus for an engine according to an embodiment of the present invention.

【図2】そのミキサの構成図。FIG. 2 is a configuration diagram of the mixer.

【図3】そのミキサの有無の相違によるNOx低減率の
相違を示す図。
FIG. 3 is a diagram showing a difference in NOx reduction rate due to the presence or absence of the mixer.

【図4】本発明の別のエンジンの排ガス浄化装置を示す
構成図。
FIG. 4 is a configuration diagram showing another engine exhaust gas purification apparatus of the present invention.

【符号の説明】[Explanation of symbols]

11 ディーゼルエンジン 16 排気管 24 選択還元型触媒 29 液体噴射ノズル 32 尿素系液体 51 ミキサ 52 ミキサ本体 52a 筒部 53,54,55 仕切板 53a,54a,55a ガス孔 11 diesel engine 16 Exhaust pipe 24 Selective reduction catalyst 29 Liquid injection nozzle 32 Urea liquid 51 mixer 52 Mixer body 52a tube 53,54,55 Partition plate 53a, 54a, 55a Gas holes

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G091 AA10 AA18 AA28 AB05 BA14 CA13 CA17 CA27 DA01 DA02 DB10 EA01 EA03 EA17 GB01W GB09X GB10X HA37 HB06 4D048 AA06 AB02 AC03 BA11X BA35X CC23 CC38 CC61   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3G091 AA10 AA18 AA28 AB05 BA14                       CA13 CA17 CA27 DA01 DA02                       DB10 EA01 EA03 EA17 GB01W                       GB09X GB10X HA37 HB06                 4D048 AA06 AB02 AC03 BA11X                       BA35X CC23 CC38 CC61

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エンジン(11)の排気管(16)に設けられた
選択還元型触媒(24)と、前記選択還元型触媒(24)より排
ガス上流側の排気管(16)に設けられ前記選択還元型触媒
(24)に向けて尿素系液体(32)を噴射可能な液体噴射ノズ
ル(29)とを備えた排ガス浄化装置において、 前記液体噴射ノズル(29)から噴射された前記液体(32)を
排ガスに混合可能に構成されたミキサ(51)が前記液体噴
射ノズル(29)と前記選択還元型触媒(24)の間の前記排気
管(16)に設けられたことを特徴とするエンジンの排ガス
浄化装置。
1. A selective reduction catalyst (24) provided on an exhaust pipe (16) of an engine (11), and an exhaust pipe (16) provided on an exhaust gas upstream side of the selective reduction catalyst (24), Selective reduction type catalyst
In an exhaust gas purifying apparatus having a liquid injection nozzle (29) capable of injecting a urea liquid (32) toward (24), the liquid (32) injected from the liquid injection nozzle (29) is used as exhaust gas. An exhaust gas purifying apparatus for an engine, characterized in that a mixer (51) configured to be mixable is provided in the exhaust pipe (16) between the liquid injection nozzle (29) and the selective reduction catalyst (24). .
【請求項2】 ミキサ(51)が、軸線方向に排ガスを通過
可能な筒部(52a)を有するミキサ本体(52)と、前記筒部
(52a)の内部の排ガスの通過を遮るように前記ミキサ本
体(52)に所定の間隔をあけて設けられ複数のガス孔(53
a,54a,55a)がそれぞれ形成された複数枚の仕切板(53,5
4,55)とを備え、 前記複数のガス孔(53a,54a,55a)は隣接する前記仕切板
(53,54,55)に形成された複数のガス孔(53a,54a,55a)と
前記筒部(52a)の軸線方向に重ならないように前記複数
の仕切板(53,54,55)にそれぞれ形成された請求項1記載
のエンジンの排ガス浄化装置。
2. A mixer main body (52) having a tubular portion (52a) capable of passing exhaust gas in an axial direction, and the tubular portion.
A plurality of gas holes (53) are provided in the mixer body (52) at predetermined intervals so as to block passage of exhaust gas inside the (52a).
a, 54a, 55a) with a plurality of partition plates (53, 5a)
4, 55), the plurality of gas holes (53a, 54a, 55a) are adjacent to the partition plate
(53, 54, 55) a plurality of gas holes (53a, 54a, 55a) formed in the plurality of partition plates (53, 54, 55) so as not to overlap in the axial direction of the tubular portion (52a) The exhaust gas purifying apparatus for an engine according to claim 1, which is formed respectively.
JP2002032385A 2002-02-08 2002-02-08 Exhaust emission control device for engine Pending JP2003232218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032385A JP2003232218A (en) 2002-02-08 2002-02-08 Exhaust emission control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032385A JP2003232218A (en) 2002-02-08 2002-02-08 Exhaust emission control device for engine

Publications (1)

Publication Number Publication Date
JP2003232218A true JP2003232218A (en) 2003-08-22

Family

ID=27775524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032385A Pending JP2003232218A (en) 2002-02-08 2002-02-08 Exhaust emission control device for engine

Country Status (1)

Country Link
JP (1) JP2003232218A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009608A (en) * 2004-06-23 2006-01-12 Hino Motors Ltd Exhaust emission control device
WO2006096098A1 (en) * 2005-03-08 2006-09-14 Volvo Lastvagnar Ab Apparatus for mixing a liquid medium into a gaseous medium
EP1770253A1 (en) * 2004-07-16 2007-04-04 Nissan Diesel Motor Co., Ltd. Exhaust purification apparatus for engine
WO2008035623A1 (en) 2006-09-21 2008-03-27 Hino Motors, Ltd. Engine exhaust gas purification apparatus
JP2008075610A (en) * 2006-09-23 2008-04-03 Hino Motors Ltd Exhaust gas treating device
EP2019190A1 (en) 2007-07-23 2009-01-28 Mazda Motor Corporation Exhaust gas after treatment system for internal combustion engine
DE102008032110A1 (en) 2007-07-20 2009-01-29 Mitsubishi Fuso Truck and Bus Corp., Kawasaki Exhaust gas purification device for a motor
US7500355B2 (en) 2003-09-30 2009-03-10 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US7533520B2 (en) 2006-04-24 2009-05-19 Fleetguard, Inc. Exhaust aftertreatment mixer with stamped muffler flange
EP2060756A2 (en) 2007-11-14 2009-05-20 Mazda Motor Corporation Method and system using a reduction catalyst to reduce nitrate oxide
US7712305B2 (en) 2006-08-23 2010-05-11 Universal Silencer, Llc Exhaust aftertreatment system with spiral mixer
WO2011070647A1 (en) * 2009-12-08 2011-06-16 トヨタ自動車株式会社 Exhaust emission control system for internal combustion engine
JP2011202512A (en) * 2010-03-24 2011-10-13 Hino Motors Ltd Apparatus for control of exhaust emission
JP2011528088A (en) * 2009-09-18 2011-11-10 クワン ソン カンパニー リミテッド SCR system with bypass system
JP2012112262A (en) * 2010-11-22 2012-06-14 Ud Trucks Corp Exhaust emission control device
US8499548B2 (en) 2008-12-17 2013-08-06 Donaldson Company, Inc. Flow device for an exhaust system
US8539761B2 (en) 2010-01-12 2013-09-24 Donaldson Company, Inc. Flow device for exhaust treatment system
JP2013226550A (en) * 2012-04-25 2013-11-07 Umicore Ag & Co Kg Static type gas mixer
JP2014219013A (en) * 2014-08-26 2014-11-20 Udトラックス株式会社 Exhaust emission control device
US8915064B2 (en) * 2007-05-15 2014-12-23 Donaldson Company, Inc. Exhaust gas flow device
US8938954B2 (en) 2012-04-19 2015-01-27 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
CN104806327A (en) * 2009-12-08 2015-07-29 丰田自动车株式会社 Exhaust purification system of internal combustion engine
WO2016062516A1 (en) * 2014-10-21 2016-04-28 Volkswagen Aktiengesellschaft Exhaust-gas treatment device for an exhaust system of an internal combustion engine
US9422844B2 (en) 2007-07-20 2016-08-23 Mitsubishi Fuso Truck And Bus Corporation Exhaust purification device for engine
US9494066B2 (en) 2011-06-02 2016-11-15 Toyota Jidosha Kabushiki Kaisha Control apparatus for an internal combustion engine
US9670811B2 (en) 2010-06-22 2017-06-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9707525B2 (en) 2013-02-15 2017-07-18 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
JP2020037902A (en) * 2018-09-04 2020-03-12 株式会社Soken Exhaust emission control device for internal combustion engine

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028516B2 (en) 2003-09-30 2011-10-04 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
US7500355B2 (en) 2003-09-30 2009-03-10 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
JP2006009608A (en) * 2004-06-23 2006-01-12 Hino Motors Ltd Exhaust emission control device
EP1770253A1 (en) * 2004-07-16 2007-04-04 Nissan Diesel Motor Co., Ltd. Exhaust purification apparatus for engine
US7784273B2 (en) 2004-07-16 2010-08-31 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
EP1770253A4 (en) * 2004-07-16 2009-11-04 Nissan Diesel Motor Co Exhaust purification apparatus for engine
WO2006096098A1 (en) * 2005-03-08 2006-09-14 Volvo Lastvagnar Ab Apparatus for mixing a liquid medium into a gaseous medium
US7533520B2 (en) 2006-04-24 2009-05-19 Fleetguard, Inc. Exhaust aftertreatment mixer with stamped muffler flange
US7712305B2 (en) 2006-08-23 2010-05-11 Universal Silencer, Llc Exhaust aftertreatment system with spiral mixer
JP2008075543A (en) * 2006-09-21 2008-04-03 Hino Motors Ltd Exhaust emission control device for engine
WO2008035623A1 (en) 2006-09-21 2008-03-27 Hino Motors, Ltd. Engine exhaust gas purification apparatus
JP2008075610A (en) * 2006-09-23 2008-04-03 Hino Motors Ltd Exhaust gas treating device
US8915064B2 (en) * 2007-05-15 2014-12-23 Donaldson Company, Inc. Exhaust gas flow device
DE102008032110A1 (en) 2007-07-20 2009-01-29 Mitsubishi Fuso Truck and Bus Corp., Kawasaki Exhaust gas purification device for a motor
US9422844B2 (en) 2007-07-20 2016-08-23 Mitsubishi Fuso Truck And Bus Corporation Exhaust purification device for engine
US7992379B2 (en) 2007-07-20 2011-08-09 Mitsubishi Fuso Truck And Bus Corporation Exhaust purification device for engine
DE102008032110B4 (en) * 2007-07-20 2015-02-12 Mitsubishi Fuso Truck And Bus Corp. Exhaust gas purification device for a motor
EP2019190A1 (en) 2007-07-23 2009-01-28 Mazda Motor Corporation Exhaust gas after treatment system for internal combustion engine
US8347606B2 (en) 2007-07-23 2013-01-08 Mazda Motor Corporation Exhaust gas after treatment system and method for operating an exhaust gas after treatment system for internal combustion engine
EP2019190B1 (en) * 2007-07-23 2011-05-04 Mazda Motor Corporation Exhaust gas after treatment system for internal combustion engine
EP2060756A2 (en) 2007-11-14 2009-05-20 Mazda Motor Corporation Method and system using a reduction catalyst to reduce nitrate oxide
US8117833B2 (en) 2007-11-14 2012-02-21 Mazda Motor Corporation Method and system using a reduction catalyst to reduce nitrate oxide
US8499548B2 (en) 2008-12-17 2013-08-06 Donaldson Company, Inc. Flow device for an exhaust system
US9925502B2 (en) 2008-12-17 2018-03-27 Donaldson Company, Inc. Flow device for an exhaust system
JP2013189979A (en) * 2009-09-18 2013-09-26 Kwang Sung Co Ltd Scr system having bypass system
JP2011528088A (en) * 2009-09-18 2011-11-10 クワン ソン カンパニー リミテッド SCR system with bypass system
CN102667083A (en) * 2009-12-08 2012-09-12 丰田自动车株式会社 Exhaust gas purification system for an internal combustion engine
WO2011070647A1 (en) * 2009-12-08 2011-06-16 トヨタ自動車株式会社 Exhaust emission control system for internal combustion engine
JP5472318B2 (en) * 2009-12-08 2014-04-16 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
EP3043039A1 (en) * 2009-12-08 2016-07-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
US9359927B2 (en) 2009-12-08 2016-06-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
US8943802B2 (en) 2009-12-08 2015-02-03 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
CN102667083B (en) * 2009-12-08 2015-03-25 丰田自动车株式会社 Exhaust gas purification system for an internal combustion engine
CN104806327A (en) * 2009-12-08 2015-07-29 丰田自动车株式会社 Exhaust purification system of internal combustion engine
US9810126B2 (en) 2010-01-12 2017-11-07 Donaldson Company, Inc. Flow device for exhaust treatment system
US8539761B2 (en) 2010-01-12 2013-09-24 Donaldson Company, Inc. Flow device for exhaust treatment system
JP2011202512A (en) * 2010-03-24 2011-10-13 Hino Motors Ltd Apparatus for control of exhaust emission
US10294841B2 (en) 2010-06-22 2019-05-21 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10968800B2 (en) 2010-06-22 2021-04-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US11608764B2 (en) 2010-06-22 2023-03-21 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9670811B2 (en) 2010-06-22 2017-06-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
JP2012112262A (en) * 2010-11-22 2012-06-14 Ud Trucks Corp Exhaust emission control device
US9494066B2 (en) 2011-06-02 2016-11-15 Toyota Jidosha Kabushiki Kaisha Control apparatus for an internal combustion engine
US9598999B2 (en) 2012-04-19 2017-03-21 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US9458750B2 (en) 2012-04-19 2016-10-04 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US8938954B2 (en) 2012-04-19 2015-01-27 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US10533477B2 (en) 2012-04-19 2020-01-14 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
JP2013226550A (en) * 2012-04-25 2013-11-07 Umicore Ag & Co Kg Static type gas mixer
US9707525B2 (en) 2013-02-15 2017-07-18 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10245564B2 (en) 2013-02-15 2019-04-02 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US11110406B2 (en) 2013-02-15 2021-09-07 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10603642B2 (en) 2013-02-15 2020-03-31 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
JP2014219013A (en) * 2014-08-26 2014-11-20 Udトラックス株式会社 Exhaust emission control device
WO2016062516A1 (en) * 2014-10-21 2016-04-28 Volkswagen Aktiengesellschaft Exhaust-gas treatment device for an exhaust system of an internal combustion engine
JP2020037902A (en) * 2018-09-04 2020-03-12 株式会社Soken Exhaust emission control device for internal combustion engine
JP7099912B2 (en) 2018-09-04 2022-07-12 株式会社Soken Exhaust purification device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP2003232218A (en) Exhaust emission control device for engine
US20100005787A1 (en) Exhaust gas purification apparatus for engine
JP3951774B2 (en) NOx purification device for internal combustion engine
RU2643260C2 (en) System and device for reducing formation of reductant deposits in systems for additional exhaust purification
JP5781290B2 (en) Exhaust gas purification device
EP1669566B1 (en) Exhaust gas purification device of engine
US20100199643A1 (en) Exhaust gas purification system
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
JP2004239109A (en) Exhaust gas emission control device for engine
EP3364004B1 (en) Exhaust gas purification device for ship
CN101627190A (en) Exhaust gas purification apparatus for internal combustion engine
US9162198B2 (en) Method and device for mixing compressed air and reducing agent and motor vehicle having the device
JP2004257325A (en) NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
US20110030350A1 (en) Exhaust gas purifying apparatus
JP2004270565A (en) Exhaust emission control system for diesel engine
JP6419672B2 (en) Ship exhaust gas purification system
US20090084088A1 (en) Exhaust gas purifying system
JP2010281275A (en) Denitration equipment for scr, and control device thereof
JPWO2013136614A1 (en) Exhaust gas purification device
JP2005113688A (en) Engine exhaust emission control device
JP2007051924A (en) MEASURING INSTRUMENT OF NH3 AND NOx IN EXHAUST GAS
CN209237722U (en) A kind of exhaust gas cleaner for threst stand
JP2006266192A (en) Exhaust emission control device for engine
JP2013124608A (en) Exhaust emission control device of internal combustion engine
JP4224983B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403