JP2003231098A - Complex including thin-film type particle having skeleton composed of carbon and its manufacturing method - Google Patents

Complex including thin-film type particle having skeleton composed of carbon and its manufacturing method

Info

Publication number
JP2003231098A
JP2003231098A JP2002032882A JP2002032882A JP2003231098A JP 2003231098 A JP2003231098 A JP 2003231098A JP 2002032882 A JP2002032882 A JP 2002032882A JP 2002032882 A JP2002032882 A JP 2002032882A JP 2003231098 A JP2003231098 A JP 2003231098A
Authority
JP
Japan
Prior art keywords
thin film
film particles
composite according
particles
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002032882A
Other languages
Japanese (ja)
Inventor
Masukazu Hirata
益一 平田
Takuya Goto
拓也 後藤
Koji Takenaka
浩司 竹中
Tatsu Iwasaki
龍 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002032882A priority Critical patent/JP2003231098A/en
Priority to US10/359,683 priority patent/US6828015B2/en
Publication of JP2003231098A publication Critical patent/JP2003231098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a complex including thin-film type particles having a skeleton composed of carbon and to provide its manufacturing method. <P>SOLUTION: The thin-film type particles having the skeleton composed of the carbon and polymer, or a matrix component are mixed together by a method using liquid having affinity for the both so as to provide a relatively low periodicity complex. The thin-film type particles and chemical reactive thereto are mixed and reacted to each other so as to obtain the complex with relatively low periodicity, which is formed of the thin-film type particles and a low molecular weight part connecting the plurality of thin-film type particles to one another by covalent bond. The complexes have properties such as high strength, a barrier performance to the low molecule, conductivity, an antistatic performance, an electromagnetic shielding performance, light resistance, and weather resistance. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素からなる骨格
を持つ薄膜状粒子を含む複合体とその作製方法および用
途に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite including thin film particles having a skeleton made of carbon, a method for producing the same, and its use.

【0002】[0002]

【従来の技術】近年、形状の異方性が高い物質の探索と
その応用が急速に進行している。炭素原子を骨格とする
異方性形状の物質としては、1次元では黒鉛繊維やそれ
が特に細くなったカーボンナノチューブが知られてお
り、2次元では黒鉛、フッ化黒鉛、酸化黒鉛などが知ら
れている。これらのうち、黒鉛、フッ化黒鉛、酸化黒鉛
はいずれも2次元的な基本層が積み重なった多層構造体
であり、一般に層数の非常に多いものが知られている。
さらに、酸化黒鉛については、層数の少ない非常に薄い
ものも作られており(例えば、N.A.Kotov et al.,Adv.M
ater.,8,637(1996))、本発明者らも先に、そのような
酸化黒鉛(層数が1枚の場合は例えば酸化グラフェンと
呼ぶことが望ましい(グラフェンは黒鉛の1層分の名
称))の薄膜状粒子を高収率で製造する方法を見出すと
共に、それを還元して層数の非常に少ない黒鉛(層数が
1枚の場合はグラフェンと呼ぶことが望ましい)類似の
薄膜状粒子を得た(特願2000−277307)。さ
らに、本発明者らは、特に大きく広がった薄膜状粒子や
薄膜状粒子が積層して広がった積層集合体と、それらの
還元物を得た(特願2001−374537、特願20
01−374538)。
2. Description of the Related Art In recent years, the search for substances having high shape anisotropy and their applications have been rapidly progressing. As an anisotropic material having a carbon atom as a skeleton, one-dimensionally known graphite fibers and particularly thinned carbon nanotubes, and two-dimensionally known graphite, fluorinated graphite, graphite oxide, etc. ing. Of these, graphite, fluorinated graphite, and graphite oxide are all multilayer structures in which two-dimensional basic layers are stacked, and it is generally known that the number of layers is very large.
Furthermore, for graphite oxide, very thin ones with a small number of layers have been made (eg, NAKotov et al., Adv.M.
Ater., 8, 637 (1996)), the inventors of the present invention previously mentioned that it is desirable to call such graphite oxide (when the number of layers is one, for example, graphene oxide (graphene is the name of one layer of graphite)). ) And a graphite having a very small number of layers by reducing it (preferably called graphene when the number of layers is one). (Japanese Patent Application No. 2000-277307). Furthermore, the present inventors have obtained a particularly widespread thin film particle and a laminated aggregate in which thin film particles are laminated and expanded, and a reduced product thereof (Japanese Patent Application Nos. 2001-374537 and 20).
01-374538).

【0003】ここで、酸化黒鉛の基本層は、炭素原子1
個分または2個分の厚さの炭素骨格(sp3炭素とsp2
炭素からなり、sp3炭素が多い)と、その骨格の両側
の面に酸性の水酸基などが結合した構造を持つと考えら
れている(例えば、T.Nakajima et al.,Carbon,26,357
(1988);M.Mermoux et al.,Carbon,29,469(1991))。炭
素骨格の厚さが炭素原子1個分で、その両側の面に水酸
基などがあり、層間の水が極めて少ない場合には、基本
層の厚さは0.61nmである。また、酸化の程度が高
く、よく乾燥された場合、酸化黒鉛に含まれる酸素は4
0wt%程度である。
Here, the basic layer of graphite oxide is 1 carbon atom.
Carbon skeletons of one or two thicknesses (sp 3 carbon and sp 2
Consisting of carbon, sp 3 carbons and often), on both sides of the plane of the skeleton, such as acidic hydroxyl group is believed to have a structure bonded (e.g., T.Nakajima et al., Carbon, 26,357
(1988); M. Mermoux et al., Carbon, 29, 469 (1991)). When the thickness of the carbon skeleton is one carbon atom, hydroxyl groups are present on both sides of the carbon skeleton, and the amount of water between the layers is extremely small, the thickness of the basic layer is 0.61 nm. In addition, when the degree of oxidation is high and it is dried well, the oxygen contained in the oxidized graphite is 4
It is about 0 wt%.

【0004】この酸化黒鉛の薄膜状粒子(以下では酸化
型の薄膜状粒子と呼ぶ)は、部分的に、または完全に還
元されることで、黒鉛類似のsp2結合の多い電子状態
となり、電気伝導性が高くなる。特に、酸化黒鉛の一般
的挙動として、加熱による還元で多層内部まで黒鉛類似
の構造にすることが可能であり、複数の粒子が互いに結
合した状態で加熱すれば、多層粒子内部の層間や複数の
粒子間に分子間力が生じて、通常の黒鉛フィルムなどの
巨視的な形状の付与も可能であることが知られている
(J.Maire et al.,Carbon,6,555(1968))。酸化型の薄
膜状粒子は、同様の加熱により還元型の薄膜状粒子にな
る(特願2000−277307)。
The graphite oxide thin-film particles (hereinafter referred to as “oxidation-type thin-film particles”) are partially or completely reduced to be in an electronic state with many sp 2 bonds similar to graphite, resulting in an electrical state. Higher conductivity. In particular, as a general behavior of graphite oxide, it is possible to form a graphite-like structure up to the inside of the multilayer by reduction by heating. It is known that an intermolecular force is generated between the particles to give a macroscopic shape such as an ordinary graphite film (J.Maire et al., Carbon, 6,555 (1968)). Oxidized thin film particles are reduced to thin film particles by the same heating (Japanese Patent Application No. 2000-277307).

【0005】ここで、薄膜状粒子が完全に還元された場
合には、薄膜状粒子の各基本層はほぼ黒鉛の基本層(グ
ラフェン)になる。多層粒子であれば、層間距離はほぼ
黒鉛の層間距離に一致するが、各層の相互位置関係は黒
鉛のそれよりも乱れた乱層気味の構造となる。また、部
分的な還元の場合には、各基本層に酸素などが残り、そ
の層間距離は黒鉛の層間距離よりも大きくなる。
Here, when the thin film particles are completely reduced, each basic layer of the thin film particles becomes a basic layer (graphene) of graphite. In the case of multi-layer particles, the interlayer distance substantially matches the interlayer distance of graphite, but the mutual positional relationship of the layers has a disordered structure that is more disturbed than that of graphite. Further, in the case of partial reduction, oxygen or the like remains in each basic layer, and the interlayer distance becomes larger than the interlayer distance of graphite.

【0006】以上のような酸化型と還元型の薄膜状粒子
は、酸素の分率が高い場合には酸化黒鉛ナノフィルム
(1層であれば酸化グラフェンナノフィルム)、酸素の
分率が低い場合や酸素が無い場合には黒鉛ナノフィルム
(1層であればグラフェンナノフィルム)、と呼ぶこと
ができる。さらに、統一的には、それぞれ、酸化型の単
層カーボンナノフィルムと多層カーボンナノフィルム、
還元型の単層カーボンナノフィルムと多層カーボンナノ
フィルム、と呼ぶことができる。このカーボンナノフィ
ルムの名称であれば、前記のように乱層気味でありなが
ら黒鉛と呼ぶことによる混乱が生じない。
The above-mentioned oxidized and reduced thin-film particles have a graphite oxide nanofilm (graphene oxide nanofilm if there is one layer) when the oxygen fraction is high, and a low oxygen fraction. When there is no oxygen, it can be called a graphite nanofilm (graphene nanofilm if there is one layer). Furthermore, as a unified approach, the oxidation type single-layer carbon nanofilm and multilayer carbon nanofilm, respectively,
It can be referred to as a reduced single-layer carbon nanofilm and a multi-layer carbon nanofilm. With the name of this carbon nanofilm, although it is a disordered layer as described above, there is no confusion caused by calling it graphite.

【0007】このような酸化型や還元型の薄膜状粒子に
ついては、高分子との複合体もいくつか合成されてい
る。それらはいずれも薄膜状粒子と高分子との層間化合
物であり、その層間距離(層構造の基本周期の間隔)
は、混合比率や合成時の添加物にも依存するが、ポリエ
チレンオキシドとの複合体で1.28nm(Y.Matsuo e
tal.,Carbon,34,672(1996)、ポリエチレンオキシドを添
加)、ポリアニリンとの複合体で1.2nm(S.Higash
ika et al.,Carbon,37,351(1999)、アニリン(モノマ
ー)を層間で重合)、ポリ酢酸ビニルとの複合体で1.
15nm(P.Liu etal.,Carbon,37,2073(1999)、酢酸ビ
ニル(モノマー)を層間で重合)と報告されている。
With respect to such oxidized or reduced thin film particles, some composites with polymers have been synthesized. All of them are intercalation compounds of thin film particles and polymers, and the inter-layer distance (interval of basic period of layer structure)
Is 1.28 nm (Y.Matsuo e) in the complex with polyethylene oxide, although it depends on the mixing ratio and additives during synthesis.
tal., Carbon, 34, 672 (1996), polyethylene oxide added), 1.2 nm in complex with polyaniline (S. Higash
ika et al., Carbon, 37, 351 (1999), polymerizing aniline (monomer) between layers), and a complex with polyvinyl acetate 1.
15 nm (P. Liu et al., Carbon, 37, 2073 (1999), vinyl acetate (monomer) is polymerized between layers).

【0008】[0008]

【発明が解決しようとする課題】しかし、これらの合成
例は、いずれも比較的高い分率で薄膜状粒子を含み、そ
の全体が層間化合物である周期性の高い複合体を対象と
したものであった。これに対して、フィラーなどの強化
成分とマトリックス成分とを単純に混合した通常の複合
材料のような、薄膜状粒子の大部分が相対的にランダム
に配置されて含まれる高分子との複合体や、多数の薄膜
状粒子の間を低分子量の部分により共有結合で繋いで形
成される複合体は報告されていなかった。
However, all of these synthesis examples are aimed at a complex having a high periodicity, which contains thin film particles in a relatively high fraction, and the whole of which is an intercalation compound. there were. On the other hand, a composite with a polymer in which most of the thin film particles are relatively randomly arranged, such as a normal composite material in which a reinforcing component such as a filler and a matrix component are simply mixed. Moreover, a complex formed by covalently connecting a large number of thin film-like particles with a low molecular weight portion has not been reported.

【0009】また、より広い立場で捉えると、この薄膜
状粒子のような2次元の異方性形状の粒子と高分子との
複合体としては、特に層状粘土鉱物(珪酸塩)を剥離さ
せた平面状粒子を含む複合体が知られており(例えば、
K.Yano et al.,J.Appl.Polym.Sci.,49,1259(1993))、
また、炭素系の異方性形状の粒子と高分子との複合体と
しては、カーボンナノチューブを含む複合体が知られて
いる(例えば、X.Gonget al.,Chem.Mater.,12,1049(200
0))。これらは、いずれもランダムな複合体である。
From a broader perspective, a layered clay mineral (silicate) is exfoliated as a composite of a polymer and a two-dimensional anisotropic particle such as a thin film particle. Composites containing planar particles are known (eg,
K.Yano et al., J.Appl.Polym.Sci., 49,1259 (1993)),
As a composite of carbon-based anisotropic particles and a polymer, a composite containing carbon nanotubes is known (for example, X.Gonget al., Chem. Mater., 12, 1049 ( 200
0)). All of these are random complexes.

【0010】このようなランダムな複合体は、比較的低
い分率の薄膜状粒子を含む場合でも、高強度などの各種
性質を発現しやすく、また複合体全体での異方性が低い
ために扱いやすいと考えられる。さらに、複合体の製造
も、単純な混合で可能になれば、比較的容易になる。
Such a random composite easily exhibits various properties such as high strength even when it contains a relatively low fraction of thin film particles, and the anisotropy of the whole composite is low. It is considered to be easy to handle. Furthermore, the manufacture of the composite is also relatively easy if simple mixing is possible.

【0011】本発明の目的は、このような、薄膜状粒子
と高分子、または薄膜状粒子と反応性の化合物から形成
される比較的周期性の低い複合体と、その簡便な製造方
法を提供することにある。
An object of the present invention is to provide a complex having a relatively low periodicity formed from such a thin film particle and a polymer or a compound reactive with the thin film particle, and a simple production method thereof. To do.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、薄膜状粒子(特に酸化型)と高分
子との親和性の向上と、両者の種々の添加方法を検討し
て、薄膜状粒子と高分子との周期性の低い複合体とその
製造方法および用途に関する本発明を完成させた。
In order to achieve the above-mentioned object, the present inventors have improved the affinity between thin film particles (particularly oxidized type) and a polymer and various addition methods of both. By studying, the present invention concerning a composite having a low periodicity of thin film particles and a polymer, a method for producing the same, and an application thereof was completed.

【0013】[0013]

【発明の実施の形態】(酸化型の薄膜状粒子の合成)本
発明に用いる酸化型の薄膜状粒子(酸化型のカーボンナ
ノフィルム)には、先に特願2000−277307お
よび特願2001−374537で開示したような、不
純物が少なく、層構造が発達した結晶性の高い黒鉛を原
料として、化学的または電気化学的な酸化を行い、さら
に小さなイオンなどをできるだけ除去するように精製し
て、自発的な層の分離を進めたものを用いる。さらに、
特に層の分離を進める方法として、薄膜状粒子の分散液
を100℃付近で加熱する方法がある。
BEST MODE FOR CARRYING OUT THE INVENTION (Synthesis of Oxidizing Type Thin Film Particles) The oxidizing type thin film particles (oxidizing type carbon nanofilm) used in the present invention are described in Japanese Patent Application No. 2000-277307 and Japanese Patent Application No. 2001-2001. As disclosed in 374537, using graphite with few impurities and high crystallinity with a developed layer structure as a raw material, chemical or electrochemical oxidation is performed, and purification is performed to remove even smaller ions as much as possible, Use the one that has promoted spontaneous layer separation. further,
In particular, as a method of promoting the separation of layers, there is a method of heating a dispersion liquid of thin film particles at about 100 ° C.

【0014】以上により、酸化型のカーボンナノフィル
ムと呼べるような、極めて薄い薄膜状粒子が水に分散し
た分散液が合成される。
As described above, a dispersion in which extremely thin thin film particles are dispersed in water, which can be called an oxidized carbon nanofilm, is synthesized.

【0015】薄膜状粒子の寸法は、比較的小さなものと
しては、厚さ(原料黒鉛でのc軸の方向)が0.4nm
〜10nm、望ましくは0.4nm〜5nmであり、平
面方向(原料黒鉛でのa軸とb軸の方向)の大きさが2
0nm以上、望ましくは200nm以上、さらに望まし
くは1μm以上である。この寸法は、薄膜状粒子を含む
複合体の用途によって選択すればよい。
The size of the thin-film particles is such that the thickness (the direction of the c-axis in the raw material graphite) is 0.4 nm as a relatively small particle.
10 nm, preferably 0.4 nm to 5 nm, and the size in the plane direction (direction of a-axis and b-axis in raw graphite) is 2
It is 0 nm or more, preferably 200 nm or more, and more preferably 1 μm or more. This size may be selected depending on the application of the composite including thin film particles.

【0016】薄膜状粒子の合成が終了した段階におい
て、薄膜状粒子の形態は水を分散媒とする分散液であ
る。この分散液の分散媒を、水から、水以外のメタノー
ル、エタノール、アセトン、2−ブタノンなどの比誘電
率で約15以上の高極性の液体に交換することが可能で
ある。このような水以外の高極性の液体を主な分散媒と
するための手段として、元の分散液に含まれる水よりも
十分多量の水以外の高極性の分散媒を加えて希釈する方
法、水以外の高極性の分散媒を加えてから遠心分離とデ
カンテーションなどで上澄みを除くことを繰り返して水
以外の高極性の分散媒に徐々に交換する方法、などがあ
る。
When the synthesis of the thin film particles is completed, the thin film particles are in the form of a dispersion liquid containing water as a dispersion medium. It is possible to replace the dispersion medium of this dispersion liquid with water, instead of water, with a highly polar liquid having a relative dielectric constant of about 15 or more, such as methanol, ethanol, acetone, or 2-butanone. As a means for using such a high-polarity liquid other than water as the main dispersion medium, a method of diluting by adding a sufficiently high-polarity dispersion medium other than water contained in the original dispersion liquid, There is a method in which a high-polarity dispersion medium other than water is added and then the supernatant is repeatedly removed by centrifugation and decantation to gradually exchange the high-polarity dispersion medium other than water.

【0017】このように、酸化型の薄膜状粒子は多くの
液体を分散媒とした分散液にすることができるため、各
種の高分子や反応性の化合物との混合が極めて容易にな
る。この分散液は、薄膜状粒子の形状の異方性が高いた
め、濃度による流動性の変化が大きい。含まれる薄膜状
粒子の寸法や形状に依存するが、例えば2wt%付近の
濃度の分散液は、容器を傾けても流動しない。
As described above, since the oxidation type thin film particles can be made into a dispersion liquid containing many liquids as a dispersion medium, mixing with various polymers and reactive compounds becomes extremely easy. In this dispersion, the shape anisotropy of the thin film particles is high, and therefore the fluidity changes greatly depending on the concentration. Although depending on the size and shape of the thin film particles contained, the dispersion liquid having a concentration of, for example, about 2 wt% does not flow even when the container is tilted.

【0018】(還元型の薄膜状粒子の合成)酸化型の薄
膜状粒子の還元には、還元剤を用いる各種の公知の還元
反応や電極反応(電解還元)が利用可能である。ただ
し、特に還元剤を用いる場合には、基本層まで分解でき
ていないと、多層粒子の内部までの完全な還元は困難で
あると考えられる。他方、酸化黒鉛の一般的挙動として
知られている加熱による還元(J.Maire et al.,Carbon,
6,555(1968))では、多層内部までほぼ完全に還元する
ことが可能である。酸化型の薄膜状粒子は、先に特願2
000−277307で開示したように、同様の加熱に
より還元型の薄膜状粒子になる。
(Synthesis of Reducing Thin Film Particles) Various known reducing reactions using a reducing agent and electrode reactions (electrolytic reduction) can be used to reduce the oxidizing thin film particles. However, especially when a reducing agent is used, complete reduction to the inside of the multilayer particles is considered difficult unless the basic layer is decomposed. On the other hand, reduction by heating, which is known as the general behavior of graphite oxide (J.Maire et al., Carbon,
6,555 (1968)), it is possible to reduce almost completely to the inside of multiple layers. Oxidized thin-film particles were previously described in Japanese Patent Application 2
As disclosed in 000-277307, reduction type thin film particles are formed by similar heating.

【0019】ここで、薄膜状粒子が完全に還元されれ
ば、薄膜状粒子の各基本層はほぼ黒鉛の基本層(グラフ
ェン)になる。層間距離(単層の場合は定義されない)
はほぼ黒鉛の層間距離に一致するが、各層の相互位置関
係は黒鉛のそれよりも少し乱れた乱層気味の構造とな
る。また、複数の薄膜状粒子の平面方向の相互位置関係
は、非常に乱れた(ほとんどランダムな)乱層構造とな
り、さらに複数の粒子の間に隙間のある構造となる。
Here, if the thin-film particles are completely reduced, each basic layer of the thin-film particles becomes a basic graphite layer (graphene). Interlayer distance (undefined for single layer)
Is almost the same as the interlayer distance of graphite, but the mutual positional relationship of the layers is a disordered structure that is a little more disturbed than that of graphite. In addition, the mutual positional relationship in the plane direction of the plurality of thin film particles has a very disordered (almost random) disordered layer structure, and further, there is a gap between the plurality of particles.

【0020】他方、薄膜状粒子の還元の程度は、必ずし
も完全である必要は無く、その目的により部分還元でも
よい。この場合には、各基本層は酸素などを含み、その
層間距離は黒鉛の層間距離よりも大きくなる。
On the other hand, the degree of reduction of the thin-film particles does not necessarily have to be perfect, and partial reduction may be used depending on the purpose. In this case, each basic layer contains oxygen and the like, and its interlayer distance is larger than that of graphite.

【0021】加熱による還元は、特に150℃〜200
℃付近で急激に生じ、さらに非酸化性の雰囲気下や真空
中では1000℃以上まで緩やかに進行する。また、さ
らに高温で加圧することで、より大きな結晶になること
が期待される。他方、空気中では600℃以下で焼失す
るため、わずかに酸素などが残る部分的な還元のみが可
能である。加熱による還元の際には、水、酸素、炭素化
合物などの脱離が生じる。その結果、酸素の分率は還元
前の40wt%程度から、0〜35wt%程度に変化す
る。
The reduction by heating is particularly carried out at 150 ° C to 200 ° C.
It rapidly occurs at around ℃, and further slowly progresses to 1000 ℃ or more in a non-oxidizing atmosphere or in vacuum. Further, it is expected that a larger crystal will be formed by pressing at a higher temperature. On the other hand, since it burns down in air at 600 ° C. or lower, only partial reduction in which oxygen or the like remains is possible. During the reduction by heating, desorption of water, oxygen, carbon compounds, etc. occurs. As a result, the oxygen fraction changes from about 40 wt% before reduction to about 0 to 35 wt%.

【0022】以上のようにして、比較的低温の加熱で、
酸化型の薄膜状粒子(酸化型のカーボンナノフィルム)
から還元型の薄膜状粒子(還元型のカーボンナノフィル
ム)が合成される。
As described above, by heating at a relatively low temperature,
Oxidized thin film particles (oxidized carbon nanofilm)
From this, reduced thin film particles (reduced carbon nanofilm) are synthesized.

【0023】複合体の製造では、この加熱による還元
を、複合体にしてから行うことや、後記のように高分子
などとの混合時に同時に行うことが可能である。
In the production of the composite, it is possible to carry out the reduction by heating after forming the composite, or simultaneously with the mixing with the polymer as will be described later.

【0024】(薄膜状粒子の複合体成分としての特徴)
以上のように合成される薄膜状粒子は、その各層が高い
周期性の緻密な炭素骨格を持ち、特に還元型の薄膜状粒
子では骨格にパイ電子の多いさらに緻密な構造になる。
そのため、薄膜状粒子をフィラー成分としてマトリック
ス成分である高分子などと複合化することで、複合体に
対して、高い強度、低い熱変形性、低分子などに対する
高いバリヤ性、高い熱伝導性、導電性(特に還元型の場
合)、耐光性や耐候性などを付与することが可能であ
る。ここで、強度については、薄膜状粒子は緻密な骨格
を持ちながら大きく変形することが可能であるため、他
の変形困難なフィラーと比較して、曲げ強度などは低め
になるが、複合体全体の変形に追随し易いので破壊しに
くくなる。導電性については、回路用などの一般的な導
体としての利用も可能であるが、複合体の導電性は金属
などに比較して低いので、帯電防止性や電磁遮蔽性(電
波からX線までの広い波長域)、または発熱用の抵抗体
などでの利用が主になる。また、薄膜状粒子は、非酸化
性の雰囲気や真空中では2000℃以上まで安定である
ために複合体に耐熱性を与え、他方、空気中などでは6
00℃程度で焼失するために複合体の焼却による廃棄が
容易で、マトリックス成分が無害であれば有害な気体も
発生しない。また、薄膜状粒子は500℃程度以下では
極めて安定であるため、酸素の侵入を遮蔽することで複
合体に難燃性を与え、また、複合体を溶融して再利用す
ることも可能である。以上の多くの特徴のうち、薄膜状
粒子に由来する導電性や加熱による焼失などは、珪酸塩
の平面状粒子を含む複合体とは大きく異なるものであ
る。
(Characteristics of thin film particles as a composite component)
Each layer of the thin-film particles synthesized as described above has a dense periodic carbon skeleton, and in particular, the reduced-type thin-film particles have a more dense structure with many pi-electrons in the skeleton.
Therefore, by combining the thin film particles as a filler component with a polymer that is a matrix component, for the composite, high strength, low thermal deformability, high barrier property against small molecules, high thermal conductivity, It is possible to impart conductivity (particularly in the case of reduction type), light resistance and weather resistance. Here, regarding the strength, the thin film particles have a dense skeleton and can be greatly deformed, so the bending strength is lower than other fillers that are difficult to deform, but the composite as a whole It is easy to follow the deformation of so that it is difficult to break. Regarding conductivity, it can be used as a general conductor for circuits, but since the conductivity of composites is lower than that of metals, antistatic properties and electromagnetic shielding properties (from radio waves to X-rays) Wide wavelength range), or mainly used as a heating resistor. Further, since the thin film-like particles are stable up to 2000 ° C. or higher in a non-oxidizing atmosphere or vacuum, they give heat resistance to the composite, while in air or the like,
Since it burns down at about 00 ° C., it is easy to discard the composite by incineration, and if the matrix component is harmless, no harmful gas is generated. Further, since the thin film particles are extremely stable at a temperature of about 500 ° C. or less, it is possible to impart flame retardancy to the composite by blocking the invasion of oxygen, and it is also possible to melt and reuse the composite. . Among the many characteristics described above, the conductivity derived from the thin-film particles and the burnout due to heating are significantly different from those of the complex containing the silicate flat particles.

【0025】特に酸化型の薄膜状粒子は極性の官能基を
持ち、多くの液体に対して親和性がある。そのため、通
常は扱いにくい薄い炭素系物質を、分散液の形態で容易
に扱い、複合体の製造に用いることができる。その中で
も水分散液は特に容易に扱うことが可能で、複合体の製
造に際して臭気や有害な廃棄物なども生じない。さらに
その官能基により、後記のようにマトリックス成分であ
る高分子や各種の反応性の化合物と共有結合させること
も可能である。これらの特徴は、カーボンナノチューブ
(特に未処理の場合)を含む複合体とは異なるものであ
る。
In particular, the oxidative thin-film particles have polar functional groups and have an affinity for many liquids. Therefore, a thin carbon-based material, which is usually difficult to handle, can be easily handled in the form of a dispersion and used for manufacturing a composite. Among them, the aqueous dispersion can be handled particularly easily, and no odor or harmful waste is generated during the production of the composite. Further, by the functional group, it is possible to covalently bond with a polymer as a matrix component and various reactive compounds as described later. These characteristics differ from composites containing carbon nanotubes, especially when untreated.

【0026】また、薄膜状粒子の個々の粒子が持つ電子
物性や光学物性などを期待する場合には、高分子中に分
散させることで、例えば複数の薄膜状粒子を相互に孤立
させることができる。
When the electronic properties and optical properties of the individual thin film particles are expected, a plurality of thin film particles can be isolated from each other by dispersing them in a polymer. .

【0027】(マトリックスとなる高分子成分)本発明
におけるマトリックスとなる高分子成分には、一般に知
られている多くの有機高分子(例えば、Polymer Handbo
ok(John Wiley & Sons,Inc.)、Encyclopedia of Polyme
r Science and Engineering(同)、13901の化学商
品(化学工業日報社)に記載されているもの)や無機高分
子(例えば、ゾル−ゲル法で作製可能であるもの)が使
用可能である。その分子形状についても、直鎖状、環
状、分岐状、多くの架橋構造を含むものなどを、目的に
応じて選択することが可能であり、また、共重合体や複
数の高分子の混合物でもよい。また、薄膜状粒子との親
和性を向上させるために、極性基などが導入された共重
合体や変性高分子を用いてもよい。さらに、重合性の化
合物として公知のモノマーやオリゴマーなどの比較的小
さな分子の段階で薄膜状粒子に混合し、その後で重合し
て高分子にしてもよい。その重合には、開始剤の使用、
紫外光などの電磁波や電子線などの粒子線の照射、加熱
などの公知の各種方法を利用することができる。
(Polymer component serving as matrix) The polymer component serving as a matrix in the present invention includes many commonly known organic polymers (for example, Polymer Handbo).
ok (John Wiley & Sons, Inc.), Encyclopedia of Polyme
r Science and Engineering (ibid.), 13901 chemical products (chemical products described in Kagaku Kogyo Nippo Co., Ltd.) and inorganic polymers (for example, those which can be prepared by the sol-gel method) can be used. Regarding the molecular shape, it is possible to select a linear, cyclic, branched, or many crosslinked structure depending on the purpose, and also a copolymer or a mixture of a plurality of polymers. Good. Further, in order to improve the affinity with the thin film particles, a copolymer or modified polymer having a polar group introduced may be used. Further, it may be mixed into thin film particles at the stage of relatively small molecules such as known monomers and oligomers as polymerizable compounds, and then polymerized to form a polymer. Use of an initiator for the polymerization,
Various known methods such as irradiation with electromagnetic waves such as ultraviolet light and particle beams such as electron beams, heating, and the like can be used.

【0028】(高分子成分などの混合方法)薄膜状粒子
と高分子を均一に混合する混合方法としては、高分子の
極性が高く、かつ極性の高い溶媒に溶解可能な場合に
は、その高分子を極性の高い溶媒に溶解させた溶液を用
いて、酸化型の薄膜状粒子の分散液と混合することが可
能である。この混合液を乾燥すれば複合体を得ることが
できる。ここで、混合後に重合するなら、モノマーやオ
リゴマーなどの重合性の化合物または重合性の化合物の
溶液を上記と同様に混合して、その後で重合してもよ
い。その際、高分子などの溶媒と薄膜状粒子の分散媒と
して、同じ液体か、互いに相溶性のある複数の液体を用
いることが望ましい。この混合方法では、分散液の濃度
についての制限は特に無く、比較的高めの濃度(ただし
粒子相互の接触があるため、特に濃縮しないなら数wt
%が上限である)の分散液を用いることが可能である。
また、固体の高分子を薄膜状粒子の分散液に直接溶解さ
せることもできるが、薄膜状粒子の濃度が高い場合に
は、高分子の溶解により薄膜状粒子が分散媒を奪われて
凝析を生じる可能性が高くなる。
(Mixing Method of Polymer Components, etc.) As a mixing method for uniformly mixing the thin film particles and the polymer, when the polymer has a high polarity and can be dissolved in a highly polar solvent, It is possible to use a solution in which the molecule is dissolved in a highly polar solvent and mix it with the dispersion liquid of the oxidized thin film particles. A composite can be obtained by drying this mixed solution. If polymerization is performed after mixing, a polymerizable compound such as a monomer or an oligomer or a solution of the polymerizable compound may be mixed in the same manner as above, and then the polymerization may be performed. At this time, it is desirable to use the same liquid or a plurality of liquids that are compatible with each other as a dispersion medium for the solvent such as a polymer and the thin film particles. In this mixing method, there is no particular limitation on the concentration of the dispersion liquid, and a relatively high concentration (however, if there is no mutual concentration of particles, several wt% unless particularly concentrated).
% Is the upper limit).
Although a solid polymer can be directly dissolved in a dispersion liquid of thin film particles, when the concentration of the thin film particles is high, the thin film particles are deprived of the dispersion medium by the dissolution of the polymer and coagulated. Is more likely to occur.

【0029】また、加熱により溶融可能な高分子であれ
ば、高分子の極性が高い場合と低い場合のいずれにも適
用可能な混合方法として、高分子を高温で溶融状態にし
て、脱気しながら、酸化型の薄膜状粒子の分散液を徐々
に加えることが可能である。その場合、高温の加熱と脱
気により、混合と共に分散媒の除去と薄膜状粒子の還元
の両方が進行する。この際、薄膜状粒子は還元されるに
従って極性が低下するので、極性の低い高分子の中にも
均一に分散する。ただし、この混合方法では、分散液の
濃度が高いと、高分子と薄膜状粒子との混合よりも薄膜
状粒子同士の凝集が優先し、複合体の分散性が低下す
る。そのため、この凝集が少ないように、比較的低めの
濃度の分散液を用いることが望ましい。この濃度は、薄
膜状粒子の大きさなどにも依存するが、概ね2wt%以
下である。
Further, as long as the polymer is meltable by heating, a mixing method applicable to both cases where the polymer has high polarity and low polarity, the polymer is melted at high temperature and degassed. Meanwhile, it is possible to gradually add the dispersion liquid of the oxidative thin film particles. In that case, both the removal of the dispersion medium and the reduction of the thin film particles proceed with the mixing by heating at high temperature and deaeration. At this time, since the thin film particles have a reduced polarity as they are reduced, they are evenly dispersed in a polymer having a low polarity. However, in this mixing method, when the concentration of the dispersion liquid is high, the aggregation of the thin film particles has priority over the mixing of the polymer and the thin film particles, and the dispersibility of the composite decreases. Therefore, it is desirable to use a dispersion liquid having a relatively low concentration so as to reduce this aggregation. This concentration is approximately 2 wt% or less, though it depends on the size of the thin film particles.

【0030】他の混合方法として、高分子の微細な粉末
に分散液を噴霧して乾燥させてから加熱することや、高
濃度の薄膜状粒子を含む複合体にさらに高分子を加える
ことなども可能である。
As another mixing method, it is possible to spray the dispersion liquid on a fine polymer powder, dry it, and then heat it, or to add a polymer to a complex containing high concentration thin film particles. It is possible.

【0031】さらに、薄膜状粒子と高分子との親和性を
高めることが可能な、他の成分を加えてもよい。
Further, other components capable of enhancing the affinity between the thin film particles and the polymer may be added.

【0032】(反応性の化合物との反応)酸化型の薄膜
状粒子は、水酸基やカルボキシル基などの多数の官能基
を持っている。それらの官能基により、例えば、水酸基
には、ホルムアルデヒド、カルボン酸類、イソシアン酸
エステル類、エポキシ化合物、他の水酸基を持つ化合物
などとの反応が、カルボキシル基には、他の水酸基を持
つ化合物、他のカルボン酸類などとの反応が期待でき
る。そこで、薄膜状粒子に対して共有結合を形成可能な
複数の官能基または多官能性の1つ以上の官能基を持つ
反応性の化合物を用いて複数の薄膜状粒子の間を低分子
量の部分により共有結合で繋ぐことや、薄膜状粒子とマ
トリックス成分である高分子との間に共有結合を生成さ
せることが可能である。特に、高分子が複数の官能基ま
たは複数の結合を生じる官能基を持っていると、複数の
薄膜状粒子の間を効率よく架橋することが可能である。
(Reaction with Reactive Compound) Oxidizing thin film particles have a large number of functional groups such as a hydroxyl group and a carboxyl group. Depending on their functional groups, for example, the hydroxyl group reacts with formaldehyde, carboxylic acids, isocyanic acid esters, epoxy compounds, compounds having other hydroxyl groups, etc., and the carboxyl group has compounds having other hydroxyl groups, etc. Can be expected to react with carboxylic acids. Therefore, by using a reactive compound having a plurality of functional groups capable of forming a covalent bond to the thin film particles or one or more polyfunctional functional groups, a low molecular weight portion is provided between the plurality of thin film particles. It is possible to form a covalent bond between the thin film particles and the polymer that is the matrix component by using a covalent bond. In particular, when the polymer has a plurality of functional groups or a functional group that causes a plurality of bonds, it is possible to efficiently crosslink between the plurality of thin film particles.

【0033】(反応性の化合物との複合体の作製)この
ような反応性の化合物と薄膜状粒子の複合体は、薄膜状
粒子の分散液と、反応性の化合物、または反応性の化合
物の溶液を混合し、反応を生じさせて多数の薄膜状粒子
の間を繋ぐと共に、分散液の分散媒、または分散液の分
散媒と溶液の溶媒を除くことで作製可能である。その
際、薄膜状粒子の分散媒と反応性の化合物の溶媒とし
て、同一の液体か、互いに相溶性のある複数の液体を用
いることが望ましい。
(Preparation of Complex with Reactive Compound) Such a complex of the reactive compound and the thin film particles is prepared by dispersing the thin film particle dispersion, the reactive compound, or the reactive compound. It can be prepared by mixing a solution, causing a reaction to connect many thin film particles, and removing the dispersion medium of the dispersion liquid or the dispersion medium of the dispersion liquid and the solvent of the solution. At this time, it is desirable to use the same liquid or a plurality of liquids that are compatible with each other as the solvent of the compound reactive with the dispersion medium of the thin film particles.

【0034】(薄膜状粒子の分率)複合体中における薄
膜状粒子の分率については、特に制限は無いが、高強度
や低分子に対するバリヤ性などを期待する場合には1v
ol%以上が必要になる。ただし、構造材料などの場合
では、分率が高すぎても脆くなり、また層間化合物にな
って本発明の範囲を外れるため、高分子や反応性の化合
物などの密度にも依存するが、最高で70vol%程
度、通常は50vol%程度が薄膜状粒子の分率の上限
になる。これに対して、多孔質体で触媒などの機能材料
とする場合などでは、多くの薄膜状粒子の間を少しの低
分子量の部分で繋げばよいため、99vol%程度が上
限になる。他方、薄膜状粒子を孤立させるなら、例えば
0.0001〜0.1vol%程度が望ましい。
(Fraction of Thin-Film Particles) The proportion of thin-film particles in the composite is not particularly limited, but it is 1 v when expecting high strength or barrier property against small molecules.
ol% or more is required. However, in the case of structural materials, even if the fraction is too high, it becomes brittle, and since it becomes an intercalation compound and falls outside the scope of the present invention, it depends on the density of polymers and reactive compounds, but The upper limit of the fraction of the thin film particles is about 70 vol%, usually about 50 vol%. On the other hand, when a porous material is used as a functional material such as a catalyst, many thin film particles may be connected by a small low molecular weight portion, so that the upper limit is about 99 vol%. On the other hand, if the thin-film particles are isolated, for example, about 0.0001 to 0.1 vol% is desirable.

【0035】(薄膜状粒子の形状変化)複合体中におい
て、薄膜状粒子の形状が変化することがある。これは、
薄膜状粒子が極めて薄く、変形し易いことにより、高分
子などとの親和性が低いと凝集(低濃度では単独で自己
凝集、高濃度ではさらに複数で凝集)を生じるためであ
る。その結果、得られる複合体の各種性能は、一般に、
薄膜状粒子が完全に平面状に広がって分散している場合
に期待される性能よりも低くなる。しかし、この薄膜状
粒子の変形により、複合体に巨視的な変形を加えても薄
膜状粒子とマトリックス成分との界面でのずれが生じに
くくなり、剥離を抑制する効果が生じる。また、熱可塑
性樹脂などのマトリックス成分であれば、マトリックス
成分の変形に従って、薄膜状粒子も破壊されずに変形可
能である。そこで、凝集を低減することを含めて、多数
の薄膜状粒子の配向性を高める目的で、複合体を延伸し
てもよい。
(Shape Change of Thin Film Particles) The shape of the thin film particles may change in the composite. this is,
This is because the thin-film particles are extremely thin and are easily deformed, so that when the affinity with a polymer or the like is low, aggregation (self-aggregation at a low concentration, further aggregation at a high concentration) occurs. As a result, the various properties of the resulting composite are generally
The performance is lower than that expected when the thin film particles are spread and dispersed completely in a plane. However, due to the deformation of the thin film particles, even if a macroscopic deformation is applied to the composite, the displacement at the interface between the thin film particles and the matrix component is less likely to occur, and the effect of suppressing peeling is produced. Further, if it is a matrix component such as a thermoplastic resin, the thin film particles can be deformed without being destroyed even when the matrix component is deformed. Therefore, the composite may be stretched for the purpose of enhancing the orientation of a large number of thin-film particles, including reducing aggregation.

【0036】(複合体の用途)本発明で得られる薄膜状
粒子を含む複合体は、前記のような薄膜状粒子の複合体
成分としての特徴により、各種の構造材料や機能材料な
どに用いることができる。より具体的には、高強度の材
料、低熱変形性の材料、低分子などに対する高いバリヤ
性の材料、高熱伝導性の材料、回路などに用いる導電性
の材料、帯電防止性の材料、電磁遮蔽性(電波からX線
までの広い波長域)の材料、発熱用の抵抗性材料、耐光
性や耐候性の材料、焼却可能な材料、溶融して再利用可
能な材料、難燃性の材料、非酸化性雰囲気における耐熱
性の材料、塗料、封止材やレジストなどの保護用の材
料、薄膜状粒子の個々の粒子が持つ電子物性や光学物性
などを用いた材料、などである。また、多孔質であれ
ば、触媒や吸着用の材料などである。なお、これらの用
途では、各用途に応じて公知の各種の添加成分を加えて
もよい。
(Use of Composite) The composite containing the thin film particles obtained in the present invention is used for various structural materials and functional materials due to the characteristics of the composite particles of the thin film particles as described above. You can More specifically, high-strength materials, low-heat-deformable materials, materials with high barrier properties against small molecules, high-heat conductive materials, conductive materials used for circuits, antistatic materials, electromagnetic shielding. Materials (wide wavelength range from radio waves to X-rays), heat resistant materials, light resistance and weather resistance materials, incinerator materials, meltable and reusable materials, flame retardant materials, Examples include heat resistant materials in a non-oxidizing atmosphere, paints, materials for protection such as encapsulating materials and resists, materials using electronic properties and optical properties of individual thin film particles. Further, if it is porous, it may be a catalyst or a material for adsorption. In addition, in these applications, various known additive components may be added according to each application.

【0037】また、本発明で得られる複合体を低酸素の
雰囲気で熱処理して炭化を進めることで、さらに高性能
の複合体とすることも可能である。
It is also possible to obtain a composite of higher performance by heat treating the composite obtained in the present invention in a low oxygen atmosphere to promote carbonization.

【0038】[0038]

【実施例】以下、実施例を用いて本発明をさらに詳しく
説明するが、本発明はこれによって限定されるものでは
ない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0039】薄膜状粒子とその分散液として、以下のも
のを用いた。
The following were used as the thin film particles and the dispersion thereof.

【0040】(広がりが約20μmの酸化型の薄膜状粒
子の作製)天然黒鉛((株)エスイーシー製、SNO−2
5、純度99.97wt%以上、2900℃の加熱で不
純物などを除いた精製品、平均粒径24μm、粒径4.
6μm以下と61μm以上が各5wt%)10gを、硝
酸ナトリウム(純度99%)7.5g、硫酸(純度96
%)621g、過マンガン酸カリウム(純度99%)4
5gからなる混合液中に入れ、約20℃で5日間、緩や
かに撹拌しながら放置した。得られた高粘度の液を、5
wt%硫酸水溶液(希釈用の水には伝導度0.1μS/
cm未満のものを用いた(以下同じ))1000cm3
約1時間で撹拌しながら加えて、さらに2時間撹拌し
た。得られた液に過酸化水素(30wt%水溶液)30
gを加えて、2時間撹拌した。
(Production of Oxidized Thin Film Particles with Spread of about 20 μm) Natural Graphite (SNO-2, SNO-2)
5. Purity 99.97 wt% or more, purified product obtained by removing impurities by heating at 2900 ° C., average particle size 24 μm, particle size 4.
6 g or less and 61 μm or more are 5 wt% each, 10 g, sodium nitrate (purity 99%) 7.5 g, sulfuric acid (purity 96
%) 621 g, potassium permanganate (purity 99%) 4
The mixture was placed in a mixed solution of 5 g and left at about 20 ° C. for 5 days with gentle stirring. The obtained high-viscosity liquid was added to 5
wt% sulfuric acid aqueous solution (conductivity of 0.1 μS / for diluted water)
It was added to 1000 cm 3 of less than 1 cm (the same applies hereinafter) with stirring for about 1 hour, and stirred for another 2 hours. Hydrogen peroxide (30 wt% aqueous solution) 30 was added to the obtained liquid.
g and stirred for 2 hours.

【0041】この液を、3wt%硫酸/0.5wt%過
酸化水素の混合水溶液を用いた遠心分離と水を用いた遠
心分離で精製して、薄膜状粒子の水分散液を得た。液の
一部の乾燥前後の重量変化から、液中の薄膜状粒子の濃
度は0.45wt%となった。また、40℃で真空乾燥
させた薄膜状粒子の元素分析で、酸素は約42wt%、
水素は約2wt%であった。
This liquid was purified by centrifugation using a mixed aqueous solution of 3 wt% sulfuric acid / 0.5 wt% hydrogen peroxide and centrifugation using water to obtain an aqueous dispersion of thin film particles. From the weight change of a part of the liquid before and after drying, the concentration of thin film particles in the liquid was 0.45 wt%. In addition, in the elemental analysis of the thin film particles dried in vacuum at 40 ° C., oxygen is about 42 wt%,
Hydrogen was about 2 wt%.

【0042】得られた水分散液をガラス板に載せて乾燥
させ、X線回折測定を行った。0.83nmに対応する
ピークが得られた。これは一般的に知られている酸化黒
鉛(層間に水を保持した場合)の層間距離に対応する。
The resulting aqueous dispersion was placed on a glass plate and dried, and X-ray diffraction measurement was performed. A peak corresponding to 0.83 nm was obtained. This corresponds to the interlayer distance of generally known graphite oxide (when water is held between the layers).

【0043】同じ水分散液を水で100倍に希釈してか
らガラス板に載せて乾燥させて、薄膜状粒子の厚さの平
均値を出すことを試みた。液中から乾燥してガラス板に
付着した多数の粒子の平均の厚さが約12nmと計算
(粒子の密度を2.1g/cm 3とした)される場合
に、液が拡がった全面にほぼ粒子3枚程度以上が重なっ
ていることが光学顕微鏡(OM)観察で確認された(粒
子は極めて薄いが、ガラスよりも反射率が高いため、識
別できた)。これより、個々の薄膜状粒子の厚さは平均
4nm未満となった。また、この観察で、薄膜状粒子の
平面方向の大きさは平均約20μm程度であることが確
認された。
Dilute the same aqueous dispersion 100 times with water
And place it on a glass plate to dry, and then flatten the thickness of the thin-film particles.
I tried to get the average value. Dry from the liquid and put on a glass plate
Calculated the average thickness of a large number of attached particles is about 12 nm
(The particle density is 2.1 g / cm 3And if)
In addition, about 3 particles or more are overlaid on the entire surface where the liquid spreads
Was confirmed by optical microscope (OM) observation (grain
Although the child is extremely thin, it has a higher reflectance than glass,
I was able to separate). From this, the thickness of each thin film particle is an average
It was less than 4 nm. Also, in this observation, thin film particles
It is confirmed that the average size in the plane direction is about 20 μm.
It has been certified.

【0044】また、この分散液を遠心で濃縮して、濃度
1.5wt%の分散液とし、さらにそれを希釈して濃度
0.5wt%の分散液を得た。
Further, this dispersion was concentrated by centrifugation to obtain a dispersion having a concentration of 1.5 wt%, which was further diluted to obtain a dispersion having a concentration of 0.5 wt%.

【0045】(広がりが約2μm以下の酸化型の薄膜状
粒子の作製)小さな天然黒鉛((株)エスイーシー製、S
NO−2、精製品、平均粒径2μm、粒径5μm以上が
約5wt%)を、メタノール(純度99.8%)中での
沈降速度の差で分別し、比較的沈降の遅い粒子(全体の
約15wt%)を得た。この分別した天然黒鉛1gを、
硝酸ナトリウム0.75g、硫酸62.1g、過マンガ
ン酸カリウム4.5gからなる混合液中に入れ、約20
℃で5日間、緩やかに撹拌しながら放置した。得られた
高粘度の液を、5wt%硫酸水溶液300cm 3に撹拌
しながら加えて、さらに2時間撹拌した。得られた液に
過酸化水素(30wt%水溶液)3gを加えて、2時間
撹拌した。
(Oxidized thin film with a spread of about 2 μm or less
Preparation of particles) Small natural graphite (S Co., Ltd., S
NO-2, purified product, average particle size 2μm, particle size 5μm or more
About 5 wt%) in methanol (purity 99.8%)
Particles with relatively slow sedimentation (total
About 15 wt%) was obtained. 1 g of this separated natural graphite
Sodium nitrate 0.75g, sulfuric acid 62.1g, permanga
Approximately 20
It was left for 5 days at 0 ° C. with gentle stirring. Got
A highly viscous liquid is a 5 wt% sulfuric acid aqueous solution 300 cm 3Stir to
While stirring, the mixture was stirred for 2 hours. In the obtained liquid
Add 3 g of hydrogen peroxide (30 wt% aqueous solution) for 2 hours
It was stirred.

【0046】この液を、3wt%硫酸/0.5wt%過
酸化水素の混合水溶液を用いた遠心分離と水を用いた遠
心分離で精製して、薄膜状粒子の水分散液(濃度0.8
5wt%)を得た。
This solution was purified by centrifugation using a mixed aqueous solution of 3 wt% sulfuric acid / 0.5 wt% hydrogen peroxide and centrifugation using water to obtain an aqueous dispersion of thin film particles (concentration: 0.8
5 wt%) was obtained.

【0047】希釈した液のOM観察より、薄膜状粒子の
厚さは平均4nm未満となった。
From the OM observation of the diluted solution, the average thickness of the thin film particles was less than 4 nm.

【0048】(加熱による還元と粒子の変化)前記の、
平均の広がりが約20μmで平均の厚さが4nm未満の
酸化型の薄膜状粒子の水分散液を、広がりが1cm×1
cm程度、乾燥後の厚さが約30μmになるようにホウ
珪酸ガラスの基板に載せ、埃よけをして約20℃、相対
湿度約40%で放置して乾燥させてから、順次温度を高
めながら真空加熱(さらに1200℃の高温については
ガラス板から剥離してアルゴン中で加熱)して、X線回
折測定で層間距離の変化を調べた(測定は空気中、約2
0℃)。
(Reduction by heating and change of particles)
An aqueous dispersion of oxidized thin film-like particles having an average spread of about 20 μm and an average thickness of less than 4 nm has a spread of 1 cm × 1.
cm, about 30 μm in thickness after drying, placed on a borosilicate glass substrate, dust-protected and left at about 20 ° C., relative humidity about 40% to dry, and then temperature While increasing the temperature, vacuum heating (further peeling from the glass plate and heating in argon at a high temperature of 1200 ° C.) was performed, and the change in interlayer distance was examined by X-ray diffraction measurement (measurement was performed in air at about 2
0 ° C).

【0049】層間距離を与えるピークは、加熱温度が高
くなるにつれて、酸化黒鉛のピーク(酸素を含む層構造
に対応、20℃では層間距離0.83nm)のみから、
酸化黒鉛のピークと黒鉛類似のピークに至るピークとの
共存(酸素を含む層構造部分とあまり含まない層構造部
分が共存していることに対応、150℃では同0.55
nmと0.38nm)を経て、黒鉛類似のピーク(酸素
をほとんど含まない、または含まない層構造に対応、ピ
ークの広がりは黒鉛よりも大きい、300℃で同0.3
7nm、1200℃で同0.34nm)のみになった。
From the peak of the oxide graphite (corresponding to the layer structure containing oxygen, the interlayer distance is 0.83 nm at 20 ° C.) as the heating temperature increases, the peak giving the interlayer distance is
Coexistence of peaks of graphite oxide and peaks similar to graphite (corresponding to the coexistence of a layer structure part containing oxygen and a layer structure part not containing much oxygen, 0.55
nm and 0.38 nm), corresponding to a graphite-like peak (corresponding to a layered structure containing little or no oxygen, the broadening of the peak is larger than that of graphite, the same at 300 ° C.).
7 nm, the same was 0.34 nm at 1200 ° C.).

【0050】色調と電気抵抗(通常のテスターを用いて
電極間隔1mm程度で簡易測定、同じ方法で厚さ0.5
mmの低配向の黒鉛シートは1.5Ω)は、20℃で茶
褐色と32MΩ以上(測定範囲外)、100℃で濃い茶
褐色と20MΩ、150℃で暗い銀色と10kΩ、20
0℃で銀色と300Ω、1200℃で明るい銀色と5
Ω、であった。また、熱重量分析では、特に150℃〜
210℃付近の重量減少が著しかった。
Color tone and electric resistance (simple measurement using an ordinary tester with an electrode interval of about 1 mm, thickness 0.5 by the same method)
mm low orientation graphite sheet is 1.5Ω), brown at 20 ° C. and 32 MΩ or more (outside the measuring range), dark brown at 20 ° C. and 20 MΩ, dark silver at 150 ° C. and 10 kΩ, 20
5Ω with silver color at 0 ℃ and 300Ω and bright silver color at 1200 ℃
It was Ω. In thermogravimetric analysis, especially,
The weight loss at around 210 ° C was remarkable.

【0051】(分散媒の交換)前記の、平均の広がりが
約20μmで平均の厚さが4nm未満の酸化型の薄膜状
粒子の水分散液を遠心瓶に入れ、アセトン(25℃にお
ける比誘電率20.7、純度99.5%、水分散液の約
2倍〜4倍、操作が進むにつれて倍率は増大)を加えて
再分散と遠心分離(7000rpm、30分)と上澄み
の廃棄を合計3回繰り返した。得られた沈殿は濃度が約
1.7wt%で、流動性のない固まりであった。
(Exchange of Dispersion Medium) The above-mentioned aqueous dispersion of oxidized thin film particles having an average spread of about 20 μm and an average thickness of less than 4 nm was placed in a centrifuge bottle and placed in acetone (specific dielectric at 25 ° C.). Rate 20.7, purity 99.5%, about 2 to 4 times that of the aqueous dispersion, the magnification increases as the operation proceeds), and redispersion and centrifugation (7000 rpm, 30 minutes) and discarding of the supernatant are added. Repeated 3 times. The obtained precipitate had a concentration of about 1.7 wt% and was a solid without fluidity.

【0052】さらにこの固まりを遠心瓶に入れたまま、
2−ブタノン(20℃における比誘電率18.5、純度
99%、アセトン分散液の約4倍)を加えて再分散と遠
心分離(7000rpm、30分)と上澄みの廃棄を合
計3回繰り返した。得られた沈殿は濃度が約2.0wt
%で、流動性のない固まりであった。
Further, with this lump put in a centrifuge bottle,
2-Butanone (relative dielectric constant at 20 ° C., 18.5, purity 99%, about 4 times that of acetone dispersion) was added, and redispersion, centrifugation (7000 rpm, 30 minutes), and discarding of the supernatant were repeated 3 times in total. . The obtained precipitate has a concentration of about 2.0 wt.
%, It was a non-flowable mass.

【0053】これとは別に、前記の、平均の広がりが約
20μmで平均の厚さが4nm未満の酸化型の薄膜状粒
子と、平均の広がりが約2μm未満の薄膜状粒子の、2
種の水分散液をそれぞれ遠心瓶に入れ、メタノール(2
5℃における比誘電率32.7、純度99.8%、水分
散液の約2倍〜4倍、操作が進むにつれて倍率は増大)
を加えて再分散と遠心分離(5000rpm、30分)
と上澄みの廃棄を合計2回繰り返した。得られた分散液
は、順に濃度が0.25wt%と0.20wt%であっ
た。また、さらに濃縮した場合のメタノール中で流動性
が無くなる濃度は、共に約1.6wt%であった。
Apart from this, the above-mentioned oxidized type thin film particles having an average spread of about 20 μm and an average thickness of less than 4 nm and thin film particles having an average spread of less than about 2 μm are
Put each seed water dispersion into a centrifuge bottle and add methanol (2
(Relative permittivity at 5 ° C: 32.7, purity: 99.8%, about 2 to 4 times that of an aqueous dispersion, the magnification increases as the operation proceeds)
And redispersion and centrifugation (5000 rpm, 30 minutes)
The discarding of the supernatant was repeated twice in total. The resulting dispersions had a concentration of 0.25 wt% and 0.20 wt%, respectively. Further, the concentration at which fluidity disappeared in methanol when further concentrated was about 1.6 wt%.

【0054】以上のように、酸化型の薄膜状粒子は水以
外の液体でも分散系を作ることができた。ただし、誘電
率の低下に伴い、粒子間の反発が小さくなるために、よ
り高濃度の沈殿を生成しやすくなった。また、その形状
の異方性が高いために、数%の低濃度でも周囲の分散媒
を保持して、分散液の流動性が著しく低下した。
As described above, the oxide type thin film particles were able to form a dispersion system with a liquid other than water. However, as the dielectric constant decreased, the repulsion between the particles became smaller, and it became easier to generate a higher-concentration precipitate. Further, because of its high shape anisotropy, the surrounding dispersion medium was retained even at a low concentration of several%, and the fluidity of the dispersion liquid was significantly reduced.

【0055】実施例1 薄膜状粒子のメタノール分散液とポリ酢酸ビニル(PV
Ac)のメタノール溶液とを混合し、得られた液を乾燥
して複合体を得た。
Example 1 Methanol dispersion of thin film particles and polyvinyl acetate (PV
The methanol solution of Ac) was mixed, and the obtained solution was dried to obtain a complex.

【0056】PVAc(重合度約1500)をメタノー
ルに溶解し、この溶液に、平均の広がりが約20μmで
平均の厚さが4nm未満の酸化型の薄膜状粒子のメタノ
ール分散液(濃度0.25wt%)、または平均の広が
りが約2μm未満で平均の厚さが4nm未満の酸化型の
薄膜状粒子のメタノール分散液(濃度0.20wt%)
を、乾燥後の全体に対する薄膜状粒子の分率が2wt%
または4wt%になるようにそれぞれ加えて、合計の濃
度で約4wt%のPVAcといずれかの薄膜状粒子とを
含む各混合溶液を作製した。また、対照としてPVAc
単独の溶液を作製した。
PVAc (polymerization degree: about 1500) was dissolved in methanol, and a methanol dispersion of oxidized thin film-like particles (concentration: 0.25 wt) having an average spread of about 20 μm and an average thickness of less than 4 nm was dissolved in this solution. %), Or a methanol dispersion of oxidized thin film particles having an average spread of less than about 2 μm and an average thickness of less than 4 nm (concentration: 0.20 wt%).
The percentage of thin film particles to the whole after drying is 2 wt%
Alternatively, each of them was added so as to be 4 wt%, and each mixed solution containing about 4 wt% of PVAc in total concentration and one of the thin film particles was prepared. Also, PVAc as a control
A single solution was made.

【0057】これらの混合溶液(広がりが約20μmと
約2μmのそれぞれについて、乾燥後の分率が2wt%
と4wt%の合計4種)を、孔の大きさ80×80μm
のステンレス鋼製の網を通してゴミを除いてから、乾燥
後の厚さが約30μmになる液量でガラス板上に展開
し、乾燥(約25℃の後で50℃に昇温、50℃で真空
乾燥、さらに100℃に昇温(同時にアニール))して
から、室温で剥離し、4種の複合体のフィルムを得た。
また、PVAc単独溶液を、ポリスチレンの容器に展開
し、乾燥後に剥離してスライドガラス上に移して、10
0℃で真空乾燥してから、室温で剥離し、PVAcのフ
ィルムとした。
These mixed solutions (for each of the spreads of about 20 μm and about 2 μm, the fraction after drying was 2 wt%
And 4 wt% in total of 4 types) with a pore size of 80 × 80 μm
After removing the dust through the stainless steel net, the solution was spread on a glass plate with a liquid volume such that the thickness after drying was about 30 μm, and dried (after about 25 ° C., heated to 50 ° C., at 50 ° C. After vacuum drying and further heating to 100 ° C. (simultaneous annealing), peeling was performed at room temperature to obtain a film of four kinds of composites.
Further, the PVAc single solution was spread in a polystyrene container, peeled off after drying, transferred onto a slide glass, and
After vacuum drying at 0 ° C., peeling was performed at room temperature to obtain a PVAc film.

【0058】これらの4種の複合体フィルムは、PVA
c単独のしなやかなフィルムに比較して、少し固く、脆
いものであった。
These four composite films are PVA
The film was slightly stiffer and brittle as compared with the supple film of c alone.

【0059】得られた各フィルムのうち、分率4wt%
の2種を、厚さを正確に測定してから、水を入れたガラ
ス製の試料瓶の口に接着した。接着は、少量のメタノー
ルをフィルムの周囲にのみ滴下して行った。このフィル
ム付き容器をシリカゲル入りのデシケーター(温度25
〜30℃、相対湿度1%未満)の中に放置し、放置前後
の水の重量変化から水の透過係数を求めた。透過係数
は、wvx/{Atp(1−H/100)}で計算し
た。ここで、wは重量変化、vは水1gの気体体積(2
5℃、1気圧で1360cm3)、xは厚さ、Aは透過
面積、tは放置時間、pは水の蒸気圧(相対湿度100
%に相当、25℃で3140Pa)、Hは相対湿度(単
位は%、ここでは0%とする)である。
Of the obtained films, the fraction is 4 wt%
After accurately measuring the thickness of each of the two types, they were adhered to the mouth of a glass sample bottle containing water. The adhesion was performed by dropping a small amount of methanol only around the film. This film container is placed in a desiccator containing silica gel (temperature 25
It was allowed to stand in an atmosphere of -30 ° C and relative humidity of less than 1%), and the water permeability coefficient was determined from the weight change of water before and after standing. The transmission coefficient was calculated by wvx / {Atp (1-H / 100)}. Here, w is the weight change, v is the gas volume of 1 g of water (2
5 ° C., 1 atm and 1360 cm 3 ), x is thickness, A is permeation area, t is standing time, p is water vapor pressure (relative humidity 100
%, 3140 Pa at 25 ° C.), and H is relative humidity (unit is%, here 0%).

【0060】水の透過係数は、広がりが約2μm以下の
薄膜状粒子を4wt%含む複合体で2.4×10-10
3cm/cm2/s/Pa、広がりが約20μmの薄膜
状粒子を4wt%含む複合体で3.6×10-10cm3
m/cm2/s/Paとなり、いずれも薄膜状粒子を含
まないPVAc単独で得られた透過係数4.7×10
-10cm3cm/cm2/s/Paよりも小さく、薄膜状
粒子によるバリヤ性の向上が確認された。特に広がりが
約2μm以下の薄膜状粒子を用いた場合には、フィルム
の厚さよりもかなり小さい粒子であるため、ほぼ均一な
フィルムとなり、バリヤ性の向上の効果が大きかったと
考えられる。
The water permeability coefficient is such that the spread is about 2 μm or less.
2.4 × 10 with a composite containing 4 wt% of thin film particles-Tenc
m3cm / cm2/ S / Pa, thin film with a spread of about 20 μm
X 10 in a composite containing 4 wt% of spherical particles-Tencm3c
m / cm2/ S / Pa, both containing thin film particles
Permeability coefficient obtained with PVAc alone 4.7 × 10
-Tencm3cm / cm2/ S / Pa, smaller than thin film
It was confirmed that the particles improved the barrier property. Especially the spread
When using thin-film particles of about 2 μm or less, the film
Since the particles are much smaller than the thickness of
It became a film, and the effect of improving the barrier property was great.
Conceivable.

【0061】得られた複合体フィルムのX線回折測定を
行った。層間距離1.65nmに対応するピークが得ら
れた。これは薄膜状粒子のみの場合に得られる値0.8
3nmとは異なり、また、PVAc単独のフィルムは、
このピークを与えなかった。薄膜状粒子の分率が4wt
%の複合体において、PVAcの体積分率は薄膜状粒子
のそれの約50倍である。そのため、全体で層間化合物
になっていると仮定すると、その層間距離は、薄膜状粒
子のみの層間距離の約50倍になるから、30nm以上
となる。この距離は通常のX線回折の測定範囲ではない
ので、この値に近い構造が部分的に存在する可能性を否
定できないが、得られた1.65nmがこの計算値に一
致しないことと、単純な混合と比較的短時間の放置では
そのような長周期の構造の形成が困難であることから、
複合体で得られた層間距離1.65nmは、複合体全体
の周期構造ではないことは明らかである。そのため、P
VAcの一部が多数の薄膜状粒子の内部に侵入して短い
周期(1.65nm)の層間化合物を形成し、その多数
の層間化合物の粒子が残りのPVAcのマトリックスの
中にランダムに存在(ただし、異方性形状の粒子なので
配向気味、粒子間の平均距離は数十nm)する構造にな
っていると考えられた。
The composite film thus obtained was subjected to X-ray diffraction measurement. A peak corresponding to an interlayer distance of 1.65 nm was obtained. This is a value of 0.8 obtained when only thin particles are used.
Unlike 3 nm, PVAc alone film
It did not give this peak. Thin film particle fraction is 4wt
% Composite, the volume fraction of PVAc is about 50 times that of thin film particles. Therefore, if it is assumed that the compound is an intercalation compound as a whole, the inter-layer distance is about 50 times the inter-layer distance of only the thin film particles, and thus is 30 nm or more. Since this distance is not within the normal X-ray diffraction measurement range, it is undeniable that there is a partial structure close to this value, but the fact that the 1.65 nm obtained does not match this calculated value, Since it is difficult to form such a long-period structure by simple mixing and leaving it for a relatively short time,
It is clear that the interlayer distance of 1.65 nm obtained in the composite is not the periodic structure of the entire composite. Therefore, P
A part of VAc penetrates into a large number of thin film-like particles to form an intercalation compound having a short period (1.65 nm), and the particles of the intercalation compound are randomly present in the remaining PVAc matrix ( However, it was considered that the particles had an anisotropic shape and had a structure in which they tended to be oriented and the average distance between the particles was several tens nm).

【0062】得られた複合体フィルムを厚さ方向に切断
して超薄切片を作製し、透過型電子顕微鏡(TEM)で
観察した。局所的に折れ曲がって変形しているが全体と
しては比較的よく広がった薄膜状粒子が、PVAcのマ
トリックス中にランダム(ただし、混合溶液の乾燥時に
は、主に液の深さ方向に寸法が減少したため、薄膜状粒
子は複合体フィルムの平面方向に配向気味)に存在して
いることが確認された。
The obtained composite film was cut in the thickness direction to prepare an ultrathin section, which was observed with a transmission electron microscope (TEM). Thin film particles that were locally bent and deformed but spread relatively well as a whole were randomly distributed in the PVAc matrix (however, when the mixed solution was dried, the size decreased mainly in the depth direction of the solution). It was confirmed that the thin-film particles were present in the plane direction of the composite film).

【0063】実施例2 直鎖状低密度ポリエチレン(日本ポリケム(株)、ノバテ
ックLL UF421)(LLDPE)を240℃で溶
融、攪拌し、そこに広がりが約20μmで平均の厚さが
4nm未満の酸化型の薄膜状粒子の水分散液(濃度1.
5wt%)を加圧して徐々に注入し、同時に別の脱気部
分を減圧にして水の除去と薄膜状粒子の加熱還元を行う
ことで、還元型の薄膜状粒子を約1wt%含むLLDP
Eの複合体を作製した。複合体は均一で黒色であった。
この複合体は110℃の加熱で延伸することができた。
Example 2 A linear low density polyethylene (Novatec LL UF421) (LLDPE) manufactured by Nippon Polychem Co., Ltd. was melted and stirred at 240 ° C., and the spread was about 20 μm and the average thickness was less than 4 nm. Aqueous dispersion of oxidized thin film particles (concentration 1.
LLDP containing about 1 wt% of reduced thin film particles by pressurizing (5 wt%) and gradually injecting it, and at the same time reducing the pressure of another degassing portion to remove water and heat-reduce the thin film particles.
A composite of E was made. The composite was uniform and black.
This composite could be stretched by heating at 110 ° C.

【0064】実施例3 2,2−ビス(4−ヒドロキシフェニル)プロパンのポ
リカーボネート(三菱エンジニアリングプラスチックス
(株)、ユーピロン H4000)(PC)を260℃で
溶融した以外は実施例2と同様にして、還元型の薄膜状
粒子を約0.2wt%含むPCの塊状の複合体を作製し
た。複合体は均一で黒色であった。
Example 3 Polycarbonate of 2,2-bis (4-hydroxyphenyl) propane (Mitsubishi Engineering Plastics
In the same manner as in Example 2 except that Iupilon H4000 (PC) (PC) was melted at 260 ° C., a block-shaped composite of PC containing about 0.2 wt% of reduced thin film particles was prepared. The composite was uniform and black.

【0065】得られた塊状の複合体の、本体の部分と、
冷却で硬化するまでに引き延ばされた部分から、超薄切
片を作製し、TEMで観察した。両方の部分で、局所的
に大きく折れ曲がって変形しているが全体としては比較
的よく広がった(引き延ばされた部分ではさらによく広
がった)薄膜状粒子が、PCのマトリックス中にランダ
ムに存在していることが確認された。
A main body portion of the obtained block-shaped composite;
An ultrathin section was prepared from the portion stretched until it was hardened by cooling, and observed by TEM. Thin film-like particles that were locally largely bent and deformed in both parts but spread relatively well as a whole (even better in the stretched part) were randomly present in the matrix of PC. It was confirmed that

【0066】実施例4 カプロラクタムのポリアミド(三菱エンジニアリングプ
ラスチックス(株)、ノバミッド 1020J)(PA
6)を230℃で溶融した以外は実施例2と同様にし
て、還元型の薄膜状粒子を約0.2wt%含むPA6の
複合体を作製した。複合体は均一で黒色であった。
Example 4 Polyamide of caprolactam (Novamid 1020J, Mitsubishi Engineering Plastics Co., Ltd.) (PA
A composite of PA6 containing about 0.2 wt% of reduced thin film particles was prepared in the same manner as in Example 2 except that 6) was melted at 230 ° C. The composite was uniform and black.

【0067】得られた塊状の複合体から実施例3と同様
に超薄切片を作製し、TEMで観察した。実施例3と類
似の形態の薄膜状粒子が確認された。
An ultrathin section was prepared from the obtained massive composite in the same manner as in Example 3 and observed by TEM. It was confirmed that thin-film particles having a morphology similar to that of Example 3 were obtained.

【0068】実施例5 メタキシリレンジアミンとアジピン酸のポリアミド(三
菱エンジニアリングプラスチックス(株)、レニー 60
01)(PAMXD6)を260℃で溶融した以外は実
施例2と同様にして、還元型の薄膜状粒子を約0.2w
t%含むPAMXD6の複合体を作製した。複合体は均
一で黒色であった。
Example 5 Polyamide of metaxylylenediamine and adipic acid (Reny 60, Mitsubishi Engineering Plastics Co., Ltd.)
No. 01) (PAMXD6) was melted at 260 ° C., and the reduced thin film particles were treated with about 0.2 w in the same manner as in Example 2.
A complex of PAMXD6 containing t% was prepared. The composite was uniform and black.

【0069】実施例6 エチレン−ビニルアルコール共重合体((株)クラレ、エ
バール G156A、エチレンのモル分率は0.47)
(EVOH)を200℃で溶融した以外は実施例2と同
様にして、還元型の薄膜状粒子を約0.2wt%含むE
VOHの複合体を作製した。複合体は均一で黒色であっ
た。
Example 6 Ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., Eval G156A, ethylene mole fraction 0.47)
E containing about 0.2 wt% of reduced thin film particles was prepared in the same manner as in Example 2 except that (EVOH) was melted at 200 ° C.
A composite of VOH was made. The composite was uniform and black.

【0070】実施例7 ポリメチレンオキシド(三菱エンジニアリングプラスチ
ックス(株)、ユピタール F40−10)(POM)を
210℃で溶融した以外は実施例2と同様にして、還元
型の薄膜状粒子を約0.2wt%含むPOMの複合体を
作製した。複合体は均一で黒色であった。
Example 7 In the same manner as in Example 2 except that polymethylene oxide (Iupital F40-10, Mitsubishi Engineering Plastics Co., Ltd.) (POM) was melted at 210 ° C. A composite of POM containing 0.2 wt% was made. The composite was uniform and black.

【0071】実施例8 平均の広がりが約20μmで平均の厚さが4nm未満の
酸化型の薄膜状粒子の2−ブタノン分散液(濃度2.0
wt%)に2−ブタノンを加え、撹拌して、濃度0.5
%の2−ブタノン分散液とした。この液と、エポキシ樹
脂(クレゾールノボラックエポキシ型(1分子中に複数
のエポキシ基を持つ)、硬化剤にイミダゾール類、60
wt%の2−ブタノン溶液)を混合して、ポリテトラフ
ルオロエチレン製の容器に入れ、60℃に加熱、攪拌し
ながら減圧して2−ブタノンを除いてから、160℃、
2時間で加熱、硬化させることで、約1.5wt%の薄
膜状粒子を含むエポキシ樹脂硬化物の複合体を得た。
Example 8 A 2-butanone dispersion of oxidized thin film particles having an average spread of about 20 μm and an average thickness of less than 4 nm (concentration: 2.0
wt.%) with 2-butanone and stirred to give a concentration of 0.5
% 2-butanone dispersion. This solution, epoxy resin (cresol novolac epoxy type (having multiple epoxy groups in one molecule), curing agent imidazoles, 60
wt% 2-butanone solution), mixed in a container made of polytetrafluoroethylene, heated to 60 ° C., depressurized while stirring to remove 2-butanone, and then 160 ° C.
By heating and curing for 2 hours, a composite of an epoxy resin cured product containing approximately 1.5 wt% of thin film particles was obtained.

【0072】この複合体では、エポキシ樹脂のエポキシ
基が開環して薄膜状粒子の水酸基と結合することで、薄
膜状粒子とマトリックスのエポキシ樹脂との間にもマト
リックス内部と同様に多数の共有結合を生じていると考
えられる。
In this composite, the epoxy groups of the epoxy resin are ring-opened and bonded to the hydroxyl groups of the thin film particles, so that the thin film particles and the epoxy resin of the matrix share a large number of molecules like the inside of the matrix. It is considered that binding is occurring.

【0073】実施例9 pHを3段階に変化させて細孔分布を調節するゾルゲル
法で、薄膜状粒子とシリカガラスの複合体を作製した。
Example 9 A composite of thin film particles and silica glass was prepared by the sol-gel method in which the pH was changed in three steps to control the pore distribution.

【0074】テトラメトキシシラン60cm3とメタノ
ール30cm3の混合液に、0.01Nアンモニア水溶
液30cm3を加え、0℃で1時間攪拌した。この第1
段階のゾルにおけるテトラメトキシシランの加水分解率
(ガスクロマトグラフによる)は37%であった。さら
に、このゾルに0.05N塩酸水溶液24cm3を加
え、0℃で1時間攪拌して加水分解を終了させて第2段
階のゾルとした。このゾル20gに、平均の広がりが約
20μmで平均の厚さが4nm未満の酸化型の薄膜状粒
子の水分散液(濃度0.5wt%、pHは約1.5)1
0gを加えて攪拌してから、さらに0.1Nアンモニア
水溶液を加えてpHを約4.5に調節し、第3段階のゾ
ルを作製した。
[0074] to a mixture of tetramethoxysilane 60cm 3 of methanol 30 cm 3, was added 0.01N aqueous ammonia solution 30 cm 3, and stirred for 1 hour at 0 ° C.. This first
The degree of hydrolysis of tetramethoxysilane (by gas chromatography) in the sol of the step was 37%. Further, 24 cm 3 of 0.05N hydrochloric acid aqueous solution was added to this sol, and the mixture was stirred at 0 ° C. for 1 hour to complete the hydrolysis to obtain a second stage sol. An aqueous dispersion (concentration 0.5 wt%, pH about 1.5) of oxidized thin film particles having an average spread of about 20 μm and an average thickness of less than 4 nm in 20 g of this sol 1
After adding 0 g and stirring, a 0.1N ammonia aqueous solution was further added to adjust the pH to about 4.5 to prepare a sol of the third stage.

【0075】このゾルを小さなポリスチレン製の複数の
容器に深さ約3mmで注ぎ、ゲル化させた。このゲル
を、多量の水に浸漬して塩化アンモニウムを除いた後
に、開口率3%の蓋をした容器に入れて、恒温恒湿器中
で乾燥(40℃、相対湿度80%の条件から、40℃、
相対湿度20%の条件まで15日で移行)し、酸化型の
薄膜状粒子を含む多孔質シリカガラスの茶褐色の複合体
を得た。さらに、この多孔質の複合体を空気中で400
℃まで加熱後にアルゴン中で1000℃まで加熱、焼成
して、無孔質の黒色の複合体を得た。この複合体中の還
元型の薄膜状粒子は約0.7wt%と計算された。
This sol was poured into a plurality of small polystyrene containers at a depth of about 3 mm to cause gelation. This gel was immersed in a large amount of water to remove ammonium chloride, then placed in a container with a lid having an opening ratio of 3%, and dried in a thermo-hygrostat (from 40 ° C. and 80% relative humidity, 40 ° C,
After shifting to a condition of relative humidity of 20% in 15 days), a dark brown complex of porous silica glass containing oxidized thin film particles was obtained. In addition, this porous composite is 400
After heating to ℃, it was heated to 1000 ℃ in argon and baked to obtain a non-porous black composite. The reduced thin film particles in this composite were calculated to be about 0.7 wt%.

【0076】また、特に加熱前の複合体では、テトラメ
トキシシランが加水分解されて生成した珪酸の水酸基と
酸化型の薄膜状粒子の水酸基とが脱水結合することで、
薄膜状粒子とマトリックスのシリカとの間にもマトリッ
クス内部と同様に多数の共有結合を生じていると考えら
れる。
Particularly, in the complex before heating, the hydroxyl groups of silicic acid produced by the hydrolysis of tetramethoxysilane and the hydroxyl groups of the oxidized thin film particles are dehydrated and bonded,
It is considered that a large number of covalent bonds are generated between the thin film particles and the silica of the matrix, as in the inside of the matrix.

【0077】[0077]

【発明の効果】本発明の、炭素からなる骨格を持つ薄膜
状粒子(酸化型と還元型のカーボンナノフィルム)と、
高分子や反応性の化合物との複合体は、相対的に周期性
の低い構造を持つ新規な系であり、高強度、低分子に対
するバリヤ性、導電性、帯電防止性、電磁遮蔽性、耐光
性や耐候性などの性質を有する。
EFFECTS OF THE INVENTION Thin film particles (oxidized and reduced carbon nanofilms) having a carbon skeleton of the present invention,
A complex with a polymer or a reactive compound is a novel system having a structure with relatively low periodicity, and has high strength, barrier property against small molecules, conductivity, antistatic property, electromagnetic shielding property, light resistance. It has properties such as heat resistance and weather resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】X線回折像(上から順に、薄膜状粒子、ポリ酢
酸ビニル、広がりが約2μm以下の酸化型の薄膜状粒子
4wt%とポリ酢酸ビニルの複合体)
FIG. 1 X-ray diffraction image (composite of thin film particles, polyvinyl acetate, and 4 wt% of oxidized thin film particles having a spread of about 2 μm or less and polyvinyl acetate in this order from the top).

【図2】透過型電子顕微鏡(TEM)像(広がりが約2
μm以下の酸化型の薄膜状粒子2wt%とポリ酢酸ビニ
ルの複合体の断面)
FIG. 2 is a transmission electron microscope (TEM) image (spreading is about 2
Cross-section of a composite of 2 wt% of oxide type thin film particles of less than μm and polyvinyl acetate)

【図3】TEM像(図2と同じ複合体、細部)FIG. 3 TEM image (same complex as FIG. 2, details)

【図4】TEM像(広がりが約2μm以下の酸化型の薄
膜状粒子4wt%とポリ酢酸ビニルの複合体の断面)
FIG. 4 is a TEM image (cross section of a composite of 4 wt% of oxidized thin film particles having a spread of about 2 μm or less and polyvinyl acetate).

【図5】TEM像(広がりが約20μmの酸化型の薄膜
状粒子2wt%とポリ酢酸ビニルの複合体の断面)
FIG. 5 is a TEM image (cross section of a composite of 2 wt% of oxide type thin film particles having a spread of about 20 μm and polyvinyl acetate).

【図6】TEM像(図5と同じ複合体、細部)FIG. 6 TEM image (same composite as FIG. 5, details)

【図7】TEM像(広がりが約20μmの還元型の薄膜
状粒子0.2wt%とポリカーボネートの複合体の引き
延ばされた部分の断面、薄膜状粒子が断面に対して斜め
に位置しているために例えば図5と比較して幅が広く見
えている)
FIG. 7 is a TEM image (a cross section of an extended portion of a composite of 0.2 wt% of reduced thin film particles having a spread of about 20 μm and a polycarbonate, where the thin film particles are positioned obliquely to the cross section). Therefore, the width is wider than that in Fig. 5, for example.)

【図8】TEM像(図7と同じ複合体、細部)FIG. 8: TEM image (same complex as FIG. 7, details)

フロントページの続き (72)発明者 竹中 浩司 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 岩崎 龍 神奈川県平塚市東八幡5丁目6番2号 三 菱瓦斯化学株式会社平塚研究所内 Fターム(参考) 4G046 EB02 EB07 EC01 EC02 EC05 EC06 EC07 Continued front page    (72) Inventor Koji Takenaka             22 Wadai, Tsukuba City, Ibaraki Mitsubishi Gas Chemical             Research Institute, Inc. (72) Inventor Ryu Iwasaki             5-6 Higashi-Hachiman 5-2, Hiratsuka City, Kanagawa Prefecture             Ryogas Chemical Co., Ltd. Hiratsuka Research Center F-term (reference) 4G046 EB02 EB07 EC01 EC02 EC05                       EC06 EC07

Claims (26)

【特許請求の範囲】[Claims] 【請求項1】 (a)黒鉛を酸化して得られる、厚さが
0.4nm〜10nm、平面方向の大きさが20nm以
上で、比誘電率が15以上の液体に親液性があり、炭素
からなる骨格を持つ酸化型の薄膜状粒子、または(b)
その薄膜状粒子を酸素含有率が0〜35wt%になるよ
うに部分的または完全に還元した還元型の薄膜状粒子
と、(c)マトリックス成分になる高分子とから形成さ
れる複合体。
1. A liquid obtained by oxidizing (a) graphite, having a thickness of 0.4 nm to 10 nm, a size in a plane direction of 20 nm or more, and a relative dielectric constant of 15 or more is lyophilic. Oxidized thin-film particles having a carbon skeleton, or (b)
A composite formed from reduced thin film particles obtained by partially or completely reducing the thin film particles to an oxygen content of 0 to 35 wt% and (c) a polymer serving as a matrix component.
【請求項2】 (a)黒鉛を酸化して得られる、厚さが
0.4nm〜10nm、平面方向の大きさが20nm以
上で、比誘電率が15以上の液体に親液性があり、炭素
からなる骨格を持つ酸化型の薄膜状粒子、または(b)
その薄膜状粒子を酸素含有率が0〜35wt%になるよ
うに部分的または完全に還元した還元型の薄膜状粒子
と、(d)それらの多数の薄膜状粒子の間を共有結合で
繋ぐ低分子量の部分とから形成される複合体。
2. A liquid obtained by (a) oxidizing graphite, having a thickness of 0.4 nm to 10 nm, a size in the plane direction of 20 nm or more, and a relative dielectric constant of 15 or more is lyophilic. Oxidized thin-film particles having a carbon skeleton, or (b)
The thin film particles of reduction type obtained by partially or completely reducing the thin film particles so that the oxygen content becomes 0 to 35% by weight, and (d) a low number of these thin film particles connected by a covalent bond. A complex formed from a molecular weight moiety.
【請求項3】 全体が一様な層間化合物ではなく、周期
性の低い内部構造を持つことを特徴とする請求項1およ
び請求項2に記載の複合体。
3. The composite according to claim 1, which is not an intercalation compound which is wholly uniform, but has an internal structure with low periodicity.
【請求項4】 酸化型の薄膜状粒子の分散液を溶融状態
の高分子に混合してから、分散液の分散媒を除くことを
特徴とする請求項1および請求項3に記載の複合体の製
造方法。
4. The composite according to claim 1, wherein the dispersion liquid of the oxidative thin film particles is mixed with the polymer in a molten state, and then the dispersion medium of the dispersion liquid is removed. Manufacturing method.
【請求項5】 酸化型の薄膜状粒子の分散液を溶液状態
の高分子に混合してから、分散液の分散媒と溶液の溶媒
を除くことを特徴とする請求項1および請求項3に記載
の複合体の製造方法。
5. The method according to claim 1 or 3, wherein the dispersion liquid of the oxidative thin film particles is mixed with the polymer in a solution state, and then the dispersion medium of the dispersion liquid and the solvent of the solution are removed. A method for producing the described composite.
【請求項6】 酸化型の薄膜状粒子の分散液を重合性の
化合物または重合の化合物の溶液と混合し、その重合性
の化合物を重合させて高分子にすると共に、分散液の分
散媒、または分散液の分散媒と溶液の溶媒を除くことを
特徴とする請求項1および請求項3に記載の複合体の製
造方法。
6. A dispersion liquid of oxidizable thin film particles is mixed with a polymerizable compound or a solution of a polymerization compound, and the polymerizable compound is polymerized to form a polymer, and a dispersion medium of the dispersion liquid, Alternatively, the dispersion medium of the dispersion liquid and the solvent of the solution are removed, and the method for producing the composite according to claim 1 or claim 3,
【請求項7】 酸化型の薄膜状粒子の分散媒と、高分子
の溶媒または重合性の化合物の溶媒とが、同一の液体、
または互いに相溶性のある複数の液体であることを特徴
とする請求項5および請求項6に記載の複合体の製造方
法。
7. A liquid medium in which the dispersion medium of the oxidative thin film particles and the solvent of the polymer or the solvent of the polymerizable compound are the same liquid,
Alternatively, it is a plurality of liquids that are compatible with each other, and the method for producing a composite according to claim 5 or 6, wherein
【請求項8】 酸化型の薄膜状粒子の分散液と、薄膜状
粒子に対して共有結合を形成可能な複数の官能基または
多官能性の1つ以上の官能基を持つ反応性の化合物また
はその化合物の溶液とを混合して、多数の薄膜状粒子の
間を繋ぐと共に、分散液の分散媒、または分散液の分散
媒と溶液の溶媒を除くことを特徴とする請求項2および
請求項3に記載の複合体の製造方法。
8. A dispersion of oxidized thin film particles and a reactive compound having a plurality of functional groups capable of forming a covalent bond to the thin film particles or one or more polyfunctional functional groups. 3. A solution of the compound is mixed to connect a number of thin film particles, and the dispersion medium of the dispersion liquid or the dispersion medium of the dispersion liquid and the solvent of the solution is removed. 4. The method for producing the composite according to item 3.
【請求項9】 酸化型の薄膜状粒子の分散媒と反応性の
化合物の溶媒とが、同一の液体、または互いに相溶性の
ある複数の液体であることを特徴とする請求項8に記載
の複合体の製造方法。
9. The method according to claim 8, wherein the dispersion medium of the oxidative thin film particles and the solvent of the reactive compound are the same liquid or a plurality of liquids having compatibility with each other. Method for producing composite.
【請求項10】 請求項1〜請求項4に記載の複合体を
用いた高強度の材料。
10. A high-strength material using the composite according to any one of claims 1 to 4.
【請求項11】 請求項1〜請求項4に記載の複合体を
用いた低熱変形性の材料。
11. A low heat-deformable material using the composite according to any one of claims 1 to 4.
【請求項12】 請求項1〜請求項4に記載の複合体を
用いた低分子バリヤ性の材料。
12. A low-molecular barrier material using the composite according to any one of claims 1 to 4.
【請求項13】 請求項1〜請求項4に記載の複合体を
用いた高熱伝導性の材料。
13. A material having high thermal conductivity, which uses the composite according to any one of claims 1 to 4.
【請求項14】 請求項1〜請求項4に記載の複合体を
用いた導電性の材料。
14. A conductive material using the composite according to any one of claims 1 to 4.
【請求項15】 請求項1〜請求項4に記載の複合体を
用いた帯電防止性の材料。
15. An antistatic material using the composite according to claim 1.
【請求項16】 請求項1〜請求項4に記載の複合体を
用いた電磁遮蔽性の材料。
16. An electromagnetic shielding material using the composite according to any one of claims 1 to 4.
【請求項17】 請求項1〜請求項4に記載の複合体を
用いた発熱用の材料。
17. A heat-generating material using the composite according to any one of claims 1 to 4.
【請求項18】 請求項1〜請求項4に記載の複合体を
用いた耐光性および耐候性の材料。
18. A light-resistant and weather-resistant material using the composite according to any one of claims 1 to 4.
【請求項19】 請求項1〜請求項4に記載の複合体を
用いた焼却可能な材料。
19. An incinerable material using the composite according to any one of claims 1 to 4.
【請求項20】 請求項1〜請求項4に記載の複合体を
用いた溶融して再利用可能な材料。
20. A meltable and reusable material using the composite according to any one of claims 1 to 4.
【請求項21】 請求項1〜請求項4に記載の複合体を
用いた難燃性の材料。
21. A flame-retardant material using the composite according to any one of claims 1 to 4.
【請求項22】 請求項1〜請求項4に記載の複合体を
用いた非酸化性雰囲気における耐熱性の材料。
22. A heat resistant material in a non-oxidizing atmosphere using the composite according to any one of claims 1 to 4.
【請求項23】 請求項1〜請求項4に記載の複合体を
用いた塗料、封止材やレジストなどの保護用の材料。
23. A protective material such as a coating material, a sealing material or a resist, which uses the composite according to any one of claims 1 to 4.
【請求項24】 請求項1〜請求項4に記載の複合体を
用いた、薄膜状粒子の個々の粒子が持つ電子物性や光学
物性などを用いた材料。
24. A material using the composite according to any one of claims 1 to 4, which uses electronic properties and optical properties of individual particles of thin film particles.
【請求項25】 請求項1〜請求項4に記載の複合体を
用いた触媒および吸着用の材料。
25. A catalyst and adsorption material using the composite according to any one of claims 1 to 4.
【請求項26】 請求項1〜請求項4に記載の複合体を
低酸素の雰囲気で熱処理して炭化を進めた材料。
A material obtained by heat treating the composite according to any one of claims 1 to 4 in a low oxygen atmosphere to promote carbonization.
JP2002032882A 2002-02-08 2002-02-08 Complex including thin-film type particle having skeleton composed of carbon and its manufacturing method Pending JP2003231098A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002032882A JP2003231098A (en) 2002-02-08 2002-02-08 Complex including thin-film type particle having skeleton composed of carbon and its manufacturing method
US10/359,683 US6828015B2 (en) 2002-02-08 2003-02-07 Composite containing thin-film particles having carbon skeleton, method of reducing the thin-film particles, and process for the production of the composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032882A JP2003231098A (en) 2002-02-08 2002-02-08 Complex including thin-film type particle having skeleton composed of carbon and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003231098A true JP2003231098A (en) 2003-08-19

Family

ID=27775866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032882A Pending JP2003231098A (en) 2002-02-08 2002-02-08 Complex including thin-film type particle having skeleton composed of carbon and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003231098A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053773A (en) * 2003-07-23 2005-03-03 Mitsubishi Gas Chem Co Inc Dispersion of thin film-like particle with skeleton consisting of carbon
JP2008063168A (en) * 2006-09-05 2008-03-21 Japan Fine Ceramics Center Graphite sheet and its production method
JP2010506013A (en) * 2006-10-06 2010-02-25 ザ、トラスティーズ オブ プリンストン ユニバーシティ Functional graphene-polymer nanocomposites for gas barrier applications
JP2010506014A (en) * 2006-10-06 2010-02-25 ザ、トラスティーズ オブ プリンストン ユニバーシティ Functional graphene-rubber nanocomposites
JP2011510905A (en) * 2008-02-05 2011-04-07 ジョン・エム・クレイン Coatings containing functionalized graphene sheets and articles coated with those coatings
JP2011513167A (en) * 2008-02-28 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Graphite nanoplatelets and compositions
JP2012236753A (en) * 2010-06-07 2012-12-06 Toyota Central R&D Labs Inc Fine graphite particle, graphite particle dispersion liquid containing the same, and method for producing the fine graphite particle
JP2013510065A (en) * 2009-11-03 2013-03-21 ヴェルサリス ソシエタ ペル アチオニ Method for producing nanoscale graphene platelets with high dispersibility in low polar polymer matrix and associated polymer composition
JP2017512747A (en) * 2014-03-28 2017-05-25 マンチェスター大学The University of Manchester Reduced graphene oxide barrier material, method for producing the same, and use thereof
JP2018515410A (en) * 2015-03-23 2018-06-14 ガーマー インク.Garmor, Inc. Design composite structure using graphene oxide

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053773A (en) * 2003-07-23 2005-03-03 Mitsubishi Gas Chem Co Inc Dispersion of thin film-like particle with skeleton consisting of carbon
JP4678152B2 (en) * 2003-07-23 2011-04-27 三菱瓦斯化学株式会社 Dispersion of thin film particles with a carbon skeleton
JP2008063168A (en) * 2006-09-05 2008-03-21 Japan Fine Ceramics Center Graphite sheet and its production method
KR101487363B1 (en) * 2006-10-06 2015-01-30 더 트러스티즈 오브 프린스턴 유니버시티 Functional graphene-polymer nanocomposites for gas barrier applications
JP2010506013A (en) * 2006-10-06 2010-02-25 ザ、トラスティーズ オブ プリンストン ユニバーシティ Functional graphene-polymer nanocomposites for gas barrier applications
JP2010506014A (en) * 2006-10-06 2010-02-25 ザ、トラスティーズ オブ プリンストン ユニバーシティ Functional graphene-rubber nanocomposites
JP2016193827A (en) * 2008-02-05 2016-11-17 ザ、トラスティーズ オブ プリンストン ユニバーシティ Coatings containing functionalized graphene sheets and articles coated with those coatings
JP2014205619A (en) * 2008-02-05 2014-10-30 ザ、トラスティーズ オブ プリンストン ユニバーシティ Coatings including functionalized graphene sheets, and articles coated with those coatings
US9039938B2 (en) 2008-02-05 2015-05-26 The Trustees Of Princeton University Coatings containing functionalized graphene sheets and articles coated therewith
JP2011510905A (en) * 2008-02-05 2011-04-07 ジョン・エム・クレイン Coatings containing functionalized graphene sheets and articles coated with those coatings
JP2011513167A (en) * 2008-02-28 2011-04-28 ビーエーエスエフ ソシエタス・ヨーロピア Graphite nanoplatelets and compositions
JP2013510065A (en) * 2009-11-03 2013-03-21 ヴェルサリス ソシエタ ペル アチオニ Method for producing nanoscale graphene platelets with high dispersibility in low polar polymer matrix and associated polymer composition
JP2012236753A (en) * 2010-06-07 2012-12-06 Toyota Central R&D Labs Inc Fine graphite particle, graphite particle dispersion liquid containing the same, and method for producing the fine graphite particle
JP2017512747A (en) * 2014-03-28 2017-05-25 マンチェスター大学The University of Manchester Reduced graphene oxide barrier material, method for producing the same, and use thereof
US10583407B2 (en) 2014-03-28 2020-03-10 The University Of Manchester Reduced graphene oxide barrier materials
JP2018515410A (en) * 2015-03-23 2018-06-14 ガーマー インク.Garmor, Inc. Design composite structure using graphene oxide

Similar Documents

Publication Publication Date Title
US6828015B2 (en) Composite containing thin-film particles having carbon skeleton, method of reducing the thin-film particles, and process for the production of the composite
Mallakpour et al. Recent development in the synthesis of polymer nanocomposites based on nano-alumina
Yeh et al. Comparative studies of the properties of poly (methyl methacrylate)–clay nanocomposite materials prepared by in situ emulsion polymerization and solution dispersion
EP1832553B1 (en) Clay film product
US20180002179A1 (en) Carbon nanotube dispersion and method of manufacturing conductive film
EP2444374B1 (en) Moisture-proof film for electronic devices
KR101348865B1 (en) Manufacturing method of nano-structured composites using gelation materials
Jin et al. A general bio-inspired, novel interface engineering strategy toward strong yet tough protein based composites
CN113929927B (en) Polyvinyl alcohol-modified graphene oxide nano composite aqueous dispersion and preparation method thereof
JP2003231098A (en) Complex including thin-film type particle having skeleton composed of carbon and its manufacturing method
CN113813796B (en) Nano composite dispersion liquid, high-gas-barrier nano composite film and preparation method thereof
JP5540332B2 (en) Polymer direct graft nanoparticles
WO2018230638A1 (en) Carbon-modified boron nitride, method for producing same, and highly heat-conductive resin composition
WO2001060745A1 (en) Carbon-coated porous silica powder, process for producing the same, and conductive resin composition containing the powder
EP2109908B1 (en) Hydrophilic inorganic aggregate, its preparation process, hydrophilic composite material and bipolarplate for fuel cell comprising it
Yaghoubi et al. Synthesis of physically crosslinked PAM/CNT flakes nanocomposite hydrogel films via a destructive approach
Bogdal et al. Microwave-assisted synthesis of hybrid polymer materials and composites
WO1997027155A1 (en) Polyimide composite powder, and method for producing the same
CN112341704B (en) Ti3C2Aramid short fiber reinforced polypropylene composite material and preparation method thereof
JP5137050B2 (en) Nylon composite clay membrane and method for producing the same
Yu et al. Preparation and characterization of carboxymethyl polyvinyl alcohol–graphite nanosheet composites
Zhang et al. Electrical conductivity of graphene/polymer nanocomposites
JP2006160593A (en) Fiber strengthened clay film and its manufacturing method
KR20220074080A (en) Layered nanostructure-based solid electrolyte with high mechanical properties and thermal stability, and its manufacturing method
JP2005206655A (en) Polyion complex composite and its preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071003