JP2003227713A - Three-dimensional shape measuring apparatus and its error calibration method - Google Patents

Three-dimensional shape measuring apparatus and its error calibration method

Info

Publication number
JP2003227713A
JP2003227713A JP2002028331A JP2002028331A JP2003227713A JP 2003227713 A JP2003227713 A JP 2003227713A JP 2002028331 A JP2002028331 A JP 2002028331A JP 2002028331 A JP2002028331 A JP 2002028331A JP 2003227713 A JP2003227713 A JP 2003227713A
Authority
JP
Japan
Prior art keywords
axis
dimensional shape
measured
coordinate system
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002028331A
Other languages
Japanese (ja)
Inventor
Seiichi Kamiya
誠一 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002028331A priority Critical patent/JP2003227713A/en
Publication of JP2003227713A publication Critical patent/JP2003227713A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove a measurement error due to the axial position of a three- dimensional shape measuring apparatus using a cylindrical coordinates system. <P>SOLUTION: This calibration method is used for a three-dimensional shape measuring apparatus that uses a cylindrical coordinates system comprising two straight advancing axes, R and Z axes, and one rotary θ axis, to measure the three-dimensional shape of an object to be measured. The method includes a displacement detection step where the displacement between the axial position of the respective axes in the assumed and defined cylindrical coordinates system and that in the three-dimensional shape measuring apparatus is detected, a calibration value calculation step where a calibration value for converting the measurement result of the three-dimensional measuring apparatus into the measurement result in the assumed and defined axial position is calculated from the obtained displacement, and a calibration step where the measurement result of the object to be measured obtained by the three-dimensional measuring apparatus is calibrated by using a calibration value obtained from the calibration value calculation step. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光学部品や金型など
の物体表面形状を高精度に測定する3次元形状測定技術
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring technique for highly accurately measuring the surface shape of an object such as an optical component or a mold.

【0002】[0002]

【従来の技術】光学部品や金型などの物体表面形状を高
精度に測定する方法として、3次元形状測定機を用いる
方法が広く知られている。一般に3次元形状測定機は接
触型もしくは非接触型のプローブを被測定物に近づけ、
例えば両者がほぼ一定の距離になるようプローブ位置を
制御させた上で被測定物上をスキャンさせ、形状測定を
行うものである。
2. Description of the Related Art A method using a three-dimensional shape measuring machine is widely known as a method for measuring the surface shape of an object such as an optical component or a mold with high accuracy. Generally, a three-dimensional shape measuring machine brings a contact type or non-contact type probe close to the object to be measured,
For example, the shape of the object to be measured is measured by scanning the object to be measured after controlling the probe position so that the two have a substantially constant distance.

【0003】このような3次元形状測定機の校正方法の
ひとつとして、特開平11−83450号公報記載の
「光触針式形状測定機の誤差補正方法」が知られてい
る。
As one of the methods for calibrating such a three-dimensional shape measuring machine, there is known the "error correction method for the optical stylus type shape measuring machine" described in Japanese Patent Laid-Open No. 11-83450.

【0004】図7は、この方法に用いられる形状測定器
の要部構成図を示している。
FIG. 7 shows a configuration diagram of a main part of a shape measuring instrument used in this method.

【0005】図7において、101は被測定物であり測
定中に動かないように固定されている。Z軸基準ミラー
105とX軸基準ミラー106は、ほぼ直交するように
配置されている。X,Z方向に移動可能なステージ11
3上には、2台のレーザ測長器(107はZ軸レーザ測
長器,108はX軸レーザ測長器)、及び光プローブ1
02が配置されている。ステージ113は、光プローブ
102から出射された光束の集光点が被測定物101の
表面と一致するように、Z方向に移動制御する役割を担
っている。したがってステージ113をX方向に走査さ
せることで、被測定物の表面形状に沿った走査が可能と
なる。このようにして、被測定物の表面形状を走査させ
ながら、測定ポイント毎にX軸レーザ測長器、及びZ軸
レーザ測長器の読み値を座標データとして保存してお
き、後に演算処理を施すことで、被測定物の形状の測定
が可能となる。
In FIG. 7, 101 is an object to be measured, which is fixed so as not to move during measurement. The Z-axis reference mirror 105 and the X-axis reference mirror 106 are arranged so as to be substantially orthogonal to each other. Stage 11 movable in X and Z directions
Two laser length measuring devices (107 is a Z-axis laser length measuring device, 108 is an X-axis laser length measuring device), and the optical probe 1 are provided on the surface 3.
02 is arranged. The stage 113 has a role of controlling movement in the Z direction so that the focal point of the light beam emitted from the optical probe 102 coincides with the surface of the DUT 101. Therefore, by scanning the stage 113 in the X direction, it is possible to perform scanning along the surface shape of the measured object. In this way, the scanning values of the X-axis laser length-measuring device and the Z-axis laser length-measuring device are stored as coordinate data for each measurement point while scanning the surface shape of the object to be measured. By applying it, the shape of the object to be measured can be measured.

【0006】しかしながら、この測定結果には、被測定
物の傾斜に依存するプローブ誤差、及びX軸用基準ミラ
ーとZ軸用基準ミラー間の直交度ズレに起因する直交度
誤差が含まれている。
However, the measurement result includes a probe error depending on the inclination of the object to be measured and an orthogonality error due to an orthogonality deviation between the X-axis reference mirror and the Z-axis reference mirror. .

【0007】この直交度誤差の様子を図8に示す。直交
ズレ量をC(C≒数秒程度)とすると、以下に示すよう
な誤差が発生することになる。
The state of this orthogonality error is shown in FIG. If the orthogonal shift amount is C (C≈several seconds), the following error will occur.

【0008】 X測定値 X/cosC≒X …式(1) Z測定値 Z+X・sinC≒Z+XC …式(2) この直交度誤差は、経験的に実測結果から曲率半径Rに
比例することがわかっている。半径の異なる2つの球面
原器(ここでは、R=10,R=100)を測定した場
合、抽出した誤差成分に対して、X'=X/Rに変換し
た点列データE(R)を、プローブ誤差Epと直交度誤差
Es(R)で表現すると、 Es(10)=(E(100)−E(10))/9 …式(3) Ep=E(10)−(E(100)−E(10))/9 …式(4) となる。
X measurement value X / cosC≈X (formula (1)) Z measurement value Z + X · sinC≈Z + XC (formula (2)) It is empirically found that this orthogonality error is proportional to the radius of curvature R. ing. When two spherical prototypes having different radii (here, R = 10 and R = 100) are measured, the point sequence data E (R) converted into X ′ = X / R is applied to the extracted error component. , Es (10) = (E (100) −E (10)) / 9 Equation (3) Ep = E (10) − (E (100 ) -E (10)) / 9 Equation (4) is obtained.

【0009】ここでX'=X/R=sinθであるため、θ
=arcsinX'に変換することにより、変換されたデータ
は、傾きとプローブ誤差の関係を示すことになる。尚、
この時のプローブ誤差は測定点の傾斜から推測できるこ
とになる。これによって光プローブ誤差と直交度誤差を
分離させることが可能になり、光プローブ誤差や直交度
誤差を補正することで高精度な測定が実現できる。
Since X '= X / R = sin θ, θ
= ArcsinX ', the converted data shows the relationship between the slope and the probe error. still,
The probe error at this time can be estimated from the inclination of the measurement point. This makes it possible to separate the optical probe error and the orthogonality error, and by correcting the optical probe error and the orthogonality error, highly accurate measurement can be realized.

【0010】尚、上記公報ではX−Zの2軸間における
誤差補正方法を例に説明されているが、3次元でも全く
同一な方法で行なうことが可能である。
In the above publication, an error correction method between the two axes of X and Z is described as an example, but the same method can be used in three dimensions.

【0011】[0011]

【発明が解決しようとする課題】基準ミラー等の測定基
準を持つ3次元形状測定機において、複数の測定基準を
理想的な軸位置関係に配置するには物理的な限界があ
る。例えば2枚の基準ミラーを直交させるように厳密に
調整しても、現実的には数秒〜数十秒程度の直交度ズレ
が残ってしまうと考えられる。このような数秒〜数十秒
程度の直交度ズレによって生じる測定誤差に対しても無
視できないような高精度な測定を行う際、物理的に合わ
せ込めない直交度ズレ分は別の手段で検出し、計算処理
によって校正する方法が考えられる。先述した従来技術
例を含め一般に知られている3次元形状測定機では、ほ
とんどのものが直交座標系を採用しており、X軸、Y
軸、Z軸の各軸用の基準ミラーをほぼ直交するように配
置調整後、別の手段で直交度ズレ分を校正した後、被測
定物の3次元形状を検出するものである。
In a three-dimensional shape measuring machine having a measurement reference such as a reference mirror, there is a physical limit in arranging a plurality of measurement references in an ideal axial positional relationship. For example, even if the two reference mirrors are strictly adjusted so as to be orthogonal to each other, in reality, it is considered that the orthogonality deviation of about several seconds to several tens of seconds remains. When performing a highly accurate measurement that cannot be ignored even for the measurement error caused by the orthogonality deviation of several seconds to tens of seconds, the orthogonality deviation that cannot be physically aligned is detected by another means. A method of calibrating by calculation processing can be considered. Most of the generally known three-dimensional shape measuring machines including the above-mentioned prior art examples adopt an orthogonal coordinate system, and the X-axis, Y
The three-dimensional shape of the object to be measured is detected after arranging the reference mirrors for the axes Z and Z so that they are substantially orthogonal to each other and then calibrating the deviation of the orthogonality by another means.

【0012】一方、3次元座標値の表現方法として、直
交2軸(R軸,Z軸)と回転1軸(θ軸)で構成された
円筒座標系を利用することも広く知られている。3次元
形状測定機に円筒座標系を採用した場合、プローブ走査
速度を早くできるメリットが考えられる。すなわち被測
定物が軸対称形状である場合、軸に対して同心円位置の
形状は等しいため、プローブ走査をθ軸回転方向にとる
ことで、プローブ走査速度の制約条件となるサーボ目標
値の変化の抑制(プローブ追従変化量を小さく抑えるこ
と)が可能となり、プローブ走査速度を上げやすくな
る。
On the other hand, as a method of expressing three-dimensional coordinate values, it is widely known to use a cylindrical coordinate system composed of two orthogonal axes (R axis, Z axis) and one rotational axis (θ axis). When a cylindrical coordinate system is adopted in the three-dimensional shape measuring machine, there is an advantage that the probe scanning speed can be increased. That is, when the object to be measured has an axially symmetrical shape, the shapes of the concentric circles with respect to the axis are the same. It becomes possible to suppress (to suppress the change amount of probe following), and it becomes easy to increase the probe scanning speed.

【0013】したがって、θ軸の回転軸に被測定物の光
軸を合わせ込み、被測定物に対して同心円状、もしくは
渦巻き状にプローブを走査して測定する3次元形状測定
機は、プローブ走査速度を速めることで測定時間の短縮
が図れ、かつ測定時間短縮によって測定誤差要因である
経時的変動や環境変動に起因した誤差要因を抑制できる
ことになる。そのため、3次元形状測定機に円筒座標系
を採用するメリットは大きいと考えられる。
Therefore, the three-dimensional shape measuring machine for aligning the optical axis of the object to be measured with the rotation axis of the θ axis and scanning the probe concentrically or spirally with respect to the object to be measured is a probe scanning device. By increasing the speed, it is possible to shorten the measurement time, and by shortening the measurement time, it is possible to suppress the error factor due to the temporal variation or the environmental variation, which is the measurement error factor. Therefore, the merit of adopting the cylindrical coordinate system in the three-dimensional shape measuring machine is considered to be great.

【0014】しかしながら円筒座標系を採用した3次元
形状測定機においても、R軸、θ軸、Z軸を理想的な軸
位置関係に配置するには限界があり、より高精度な測定
を行う場合は理想的な軸位置関係からのズレ量を検出し
校正する必要がある。その上、基準ミラー間の直交度ズ
レを校正すれば良い直交座標系に比べ、円筒座標系では
軸間のズレや倒れも誤差要因となり得るため、校正する
必要がある。
However, even in a three-dimensional shape measuring machine adopting a cylindrical coordinate system, there is a limit in arranging the R axis, the θ axis, and the Z axis in an ideal axial positional relationship, and in the case of performing more accurate measurement. Needs to detect and calibrate the amount of deviation from the ideal axial positional relationship. In addition, in a cylindrical coordinate system, deviations between axes and tilts may cause an error, as compared with an orthogonal coordinate system in which it is sufficient to calibrate the orthogonality deviation between the reference mirrors. Therefore, it is necessary to calibrate.

【0015】そこで本発明の目的は、円筒座標系を採用
した3次元形状測定機の軸位置関係に起因する測定誤差
を除去すること、すなわち3次元形状測定機におけるR
軸、θ軸、Z軸の軸位置関係が、円筒座標系における理
想的なR軸、θ軸、Z軸の軸位置関係と比較してどのく
らいズレているのかを検出し、そのズレ量を基に3次元
形状測定機で測定した被測定物の測定結果を理想的な円
筒座標系の軸位置関係における測定結果へ変換させる校
正値を算出し、被測定物の3次元形状の測定結果に校正
値を反映させることである。
Therefore, an object of the present invention is to eliminate a measurement error caused by an axial positional relationship of a three-dimensional shape measuring machine which employs a cylindrical coordinate system, that is, R in the three-dimensional shape measuring machine.
Detects how much the axial positional relationship of the axes, θ-axis, and Z-axis is different from the ideal axial positional relationship of the R-axis, θ-axis, and Z-axis in the cylindrical coordinate system, and based on the deviation amount, A calibration value that converts the measurement result of the measured object measured by the 3D shape measuring instrument into the measurement result in the ideal axial coordinate relationship of the cylindrical coordinate system is calibrated to the measurement result of the 3D shape of the measured object. It is to reflect the value.

【0016】具体的には、R軸とZ軸とが作り出すR−
Z平面上において発生しているR軸とZ軸の直交度ズレ
角、θ軸の回転軸とZ軸の平行度ズレ角(X方向への軸
倒れ、及びY方向への軸倒れ)、θ軸の回転軸がR−Z
平面上に存在せずZ軸に対して発生している平行位置ズ
レ量(X方向への軸ズレ、及びY方向への軸ズレ)とい
った円筒座標系の軸位置関係に起因した測定誤差を校正
して誤差の低減を図り、より高精度な測定を実現させる
ことである。
Specifically, R- produced by the R-axis and the Z-axis
R-axis and Z-axis orthogonality deviation angles occurring on the Z plane, θ-axis rotation axis and Z-axis parallelism deviation angles (axis tilt in the X direction and Y direction), θ The axis of rotation is R-Z
Calibrates the measurement error caused by the axial positional relationship of the cylindrical coordinate system, such as the amount of parallel positional deviation that does not exist on the plane but occurs with respect to the Z axis (axial deviation in the X direction and axial deviation in the Y direction). Error to reduce the error and realize more accurate measurement.

【0017】[0017]

【課題を解決するための手段】上述した課題を解決し、
目的を達成するために、本発明に係わる3次元形状測定
機の誤差校正方法は、2つの直進軸であるR軸及びZ軸
と1つの回転軸であるθ軸とから構成される円筒座標系
を用いて被測定物の3次元形状を測定する3次元形状測
定機に用いられる、3次元形状測定機の誤差校正方法で
あって、仮想して定義された円筒座標系の各軸の軸位置
関係と3次元形状測定機の円筒座標系の各軸の軸位置関
係とのズレ量を検出するズレ量検出工程と、3次元形状
測定機の測定結果を、前記仮想して定義された軸位置関
係における測定結果へ変換させるための校正値を前記ズ
レ量から算出する校正値算出工程と、3次元形状測定機
で測定した被測定物の測定結果を前記校正値算出工程で
算出した校正値を用いて校正する校正工程とを具備する
ことを特徴としている。
[Means for Solving the Problems]
In order to achieve the object, an error calibration method for a three-dimensional shape measuring machine according to the present invention uses a cylindrical coordinate system composed of two linear axes, an R axis and a Z axis, and one rotational axis, the θ axis. A method for calibrating an error of a three-dimensional shape measuring machine used in a three-dimensional shape measuring machine for measuring a three-dimensional shape of an object to be measured using, the axial position of each axis of a virtually defined cylindrical coordinate system. A deviation amount detecting step of detecting a deviation amount between the relationship and the axial positional relationship of each axis of the cylindrical coordinate system of the three-dimensional shape measuring machine, and the measurement result of the three-dimensional shape measuring machine, the axis position virtually defined. A calibration value calculation step for calculating a calibration value for converting into a measurement result in the relation from the deviation amount, and a calibration value calculated in the calibration value calculation step for the measurement result of the object measured by a three-dimensional shape measuring machine. Characterized by having a calibration process for calibrating using That.

【0018】また、この発明に係わる3次元形状測定機
の誤差校正方法において、前記仮想して定義された円筒
座標系の軸位置関係は、R軸とZ軸とが直交し、Z軸の
軸方位とθ軸の軸方位が一致し、かつZ軸上にθ軸が存
在する円筒座標系の軸位置関係であることを特徴として
いる。
Further, in the error calibration method for the three-dimensional shape measuring machine according to the present invention, the axial positional relationship of the virtually defined cylindrical coordinate system is such that the R axis and the Z axis are orthogonal to each other and the Z axis is the axis. It is characterized by the axial positional relationship of the cylindrical coordinate system in which the azimuth and the axis azimuth of the θ axis match and the θ axis exists on the Z axis.

【0019】また、この発明に係わる3次元形状測定機
の誤差校正方法において、前記ズレ量検出工程では、R
軸とZ軸とが作り出すR−Z平面上でのR軸とZ軸との
直交度ズレ角と、θ軸の軸方位とZ軸の軸方位との平行
度ズレ角と、Z軸に対するθ軸の平行位置ズレ量とを算
出することを特徴としている。
In the error calibrating method for the three-dimensional shape measuring machine according to the present invention, in the deviation amount detecting step, R
Of the orthogonality between the R-axis and the Z-axis on the R-Z plane created by the axis and the Z-axis, the angle of parallelism between the axis azimuth of the θ-axis and the axis azimuth of the Z-axis, and θ with respect to the Z-axis. The feature is that the parallel position deviation amount of the axes is calculated.

【0020】また、この発明に係わる3次元形状測定機
の誤差校正方法において、前記ズレ量検出工程では、3
次元形状測定機の被測定物に、理想的な平面形状に加工
された平面原器又は理想的な平面形状に校正された平面
原器と、理想的な球面形状に加工された球面原器又は理
想的な球面形状に校正された球面原器とを用いて、前記
被測定物の3次元形状の測定を実施し、その測定結果を
用いて、前記仮想して定義された円筒座標系の軸位置関
係と3次元形状測定機の円筒座標系の軸位置関係とのズ
レ量を検出することを特徴としている。
In the error calibrating method for the three-dimensional shape measuring machine according to the present invention, in the deviation amount detecting step, 3
For the object to be measured of the dimensional shape measuring machine, a flat prototype processed into an ideal flat shape or a flat prototype calibrated into an ideal flat shape, and a spherical prototype processed into an ideal spherical shape or A three-dimensional shape of the object to be measured is measured using a spherical prototype calibrated to an ideal spherical shape, and the measurement result is used to determine the axis of the virtually defined cylindrical coordinate system. It is characterized in that the amount of deviation between the positional relationship and the axial positional relationship of the cylindrical coordinate system of the three-dimensional shape measuring machine is detected.

【0021】また、本発明に係わる3次元形状測定機
は、2つの直進軸であるR軸及びZ軸と1つの回転軸で
あるθ軸とから構成される円筒座標系を用いて被測定物
の3次元形状を測定する3次元形状測定機であって、被
測定物の形状に沿って走査させるプローブのR軸及びZ
軸及びθ軸の座標値を測定する測定手段と、3次元形状
測定機の円筒座標系の軸位置関係の誤差に起因する測定
誤差を校正するための校正値を算出する校正値算出手段
と、測定された座標値を前記校正値によって校正する校
正手段と、校正された座標値から被測定物の形状を算出
する形状算出手段とを具備することを特徴としている。
Further, the three-dimensional shape measuring machine according to the present invention uses a cylindrical coordinate system composed of two linear axes, an R axis and a Z axis, and one rotational axis, the θ axis, to be measured. A three-dimensional shape measuring machine for measuring the three-dimensional shape of the probe, the R-axis and Z of a probe for scanning along the shape of an object to be measured.
Measuring means for measuring coordinate values of the axis and the θ axis, and a calibration value calculating means for calculating a calibration value for calibrating a measurement error caused by an error in the axial positional relationship of the cylindrical coordinate system of the three-dimensional shape measuring machine, It is characterized by comprising a calibrating means for calibrating the measured coordinate values with the calibrated value and a shape calculating means for calculating the shape of the object to be measured from the calibrated coordinate values.

【0022】また、この発明に係わる3次元形状測定機
において、前記校正値算出手段は、校正開始を示す開始
指令手段の指令によって実行を開始し、実行して得られ
た校正値が前記校正手段による演算に用いられることを
特徴としている。
Further, in the three-dimensional shape measuring machine according to the present invention, the calibration value calculation means starts execution in response to a command from the start command means indicating the start of calibration, and the calibration value obtained by execution is the calibration means. It is characterized by being used in the calculation by.

【0023】以上のように本発明の3次元形状測定機の
誤差校正方法は、3次元形状測定機上で表現している円
筒座標系のR軸、θ軸、Z軸の軸位置関係が、円筒座標
系における理想的なR軸、θ軸、Z軸の軸位置関係と比
較してどのくらいズレが発生しているのかを測定し、そ
のズレ量を基に3次元形状測定機における軸位置関係を
円筒座標系の理想的な軸位置関係へ校正させることが可
能な校正値を算出し、被測定物の3次元形状測定値に校
正値を反映させるようにしたものである。
As described above, according to the error calibration method for the three-dimensional shape measuring machine of the present invention, the axial positional relationship of the R axis, the θ axis, and the Z axis of the cylindrical coordinate system represented on the three-dimensional shape measuring machine is Compared to the ideal axial positional relationship of the R-axis, θ-axis, and Z-axis in the cylindrical coordinate system, measure how much deviation has occurred, and based on the amount of deviation, the axial positional relationship in the three-dimensional shape measuring machine. Is calculated to be able to calibrate to the ideal axial positional relationship of the cylindrical coordinate system, and the calibration value is reflected in the three-dimensional shape measurement value of the measured object.

【0024】これによって円筒座標系を用いた3次元形
状測定機において、R軸とZ軸とが作り出すR−Z平面
上において発生しているR軸とZ軸との直交度ズレ角、
θ軸とZ軸との平行度ズレ角、θ軸がR−Z平面上に存
在せずZ軸に対して発生している平行位置ズレ量といっ
た円筒座標系の軸位置関係が原因で発生する測定誤差
が、校正によって大幅に低減され、より高精度な測定を
実現させることとなる。
As a result, in the three-dimensional shape measuring machine using the cylindrical coordinate system, the orthogonality deviation angle between the R axis and the Z axis generated on the RZ plane created by the R axis and the Z axis,
It occurs due to the axial positional relationship of the cylindrical coordinate system such as the parallelism deviation angle between the θ axis and the Z axis, and the parallel positional deviation amount that occurs with respect to the Z axis because the θ axis does not exist on the RZ plane. The measurement error is greatly reduced by the calibration, and the measurement with higher accuracy is realized.

【0025】また、3次元測定機におけるR軸、θ軸、
Z軸の軸位置関係は、従来は理想的な軸位置関係を持つ
ように厳密な軸位置調整が必要とされていたが、本発明
を採用すれば軸位置関係のズレ量を算出し、校正するこ
とができるようになるため、3次元形状測定機の製作段
階での軸位置関係の厳密な調整が必須ではなくなり、組
立作業の負荷の軽減が図れることになる。
The R axis, the θ axis, and
With respect to the axial positional relationship of the Z-axis, it has conventionally been necessary to perform strict axial positional adjustment so as to have an ideal axial positional relationship, but if the present invention is adopted, the amount of axial positional relationship deviation is calculated and calibrated. Therefore, it is not necessary to strictly adjust the axial positional relationship at the manufacturing stage of the three-dimensional shape measuring machine, and the load of assembling work can be reduced.

【0026】[0026]

【発明の実施の形態】以下、本発明の好適な一実施形態
について、添付図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0027】図1は本発明の3次元形状測定機の一実施
形態の要部構成図である。本実施形態が図7に示した従
来例と大きく異なる点は、プローブ走査方法として直交
2軸(R軸、Z軸)と回転1軸(θ軸)を有する円筒座
標系の測定座標軸を採用しており、直進運動を行うRス
テージ及びZステージ、回転運動を行うθステージ、基
準ミラーとしてR軸基準ミラー及びZ軸基準ミラーを備
えている点である。
FIG. 1 is a schematic view of the essential portions of an embodiment of a three-dimensional shape measuring machine of the present invention. The major difference of the present embodiment from the conventional example shown in FIG. 7 is that a measurement coordinate axis of a cylindrical coordinate system having two orthogonal axes (R axis, Z axis) and one rotation axis (θ axis) is adopted as a probe scanning method. That is, an R stage and a Z stage that perform a linear motion, a θ stage that performs a rotational motion, and an R axis reference mirror and a Z axis reference mirror as reference mirrors are provided.

【0028】次に図7の説明と一部重複するが、本実施
形態の構成の特徴について図1を用いて説明する。
Next, although partially overlapping the description of FIG. 7, features of the configuration of this embodiment will be described with reference to FIG.

【0029】図1において1は被測定物であり、ここで
は水平方向に保持して使用される軸対称非球面レンズで
ある。2は被測定物の表面形状1aに沿って走査するプ
ローブであり、ここではレンズに傷を付けない非接触型
の光プローブを示している。光プローブ2は、被測定物
1に対して垂直方向に移動するZステージ3、及び被測
定物に対して平行すなわち水平方向に移動するRステー
ジ4上に設置されている。ここでZステージ3は、光プ
ローブ2から出射された光束の集光点が被測定物1の表
面と常時一致するように、Z方向に移動制御する(以
下、サーボロックと呼ぶ)役割を担っている。したがっ
てRステージ4を用いて光プローブをR方向に走査させ
る際、Zステージ3をサーボロックさせておけば被測定
物の表面形状に沿った走査が可能となる。5はZ軸基準
ミラー、6はR軸基準ミラーであり、お互いがほぼ直交
するように配置されている。7はZ軸レーザ測長器であ
り、Z軸基準ミラー5からの相対距離を検出する役割を
担っている。したがってこのZ軸レーザ測長器7とZ軸
基準ミラー5とによって作り出されるレーザ直進方向及
び距離が、この3次元形状測定機におけるZ軸を形成す
るものである。同様に8はR軸レーザ測長器であり、R
軸基準ミラー6からの相対距離を検出する役割を担って
いる。したがってこのR軸レーザ測長器8とR軸基準ミ
ラー6とが作り出すレーザ直進方向及び距離が、この3
次元形状測定機におけるR軸を形成するものである。9
は被測定物を回転させる役割を担うθステージであり、
このθステージの回転軸(以下、θ回転軸と呼ぶ)の軸
方位と回転角度がこの3次元形状測定機におけるθ軸を
形成するものである。尚ここでのθステージは、エアー
ベアリングを採用しており、実際に回転するロータ部9
aと固定側のステータ部9bとから構成されている。ま
たロータ部9a上には、スケール10が取り付けられて
おり、スケール検出部11を利用してθステージの回転
角度が検出される。
In FIG. 1, reference numeral 1 is an object to be measured, which is an axisymmetric aspherical lens used by holding it in the horizontal direction. Reference numeral 2 denotes a probe that scans along the surface shape 1a of the object to be measured, and here, a non-contact type optical probe that does not scratch the lens is shown. The optical probe 2 is installed on a Z stage 3 that moves in the vertical direction with respect to the DUT 1 and an R stage 4 that moves in parallel with the DUT, that is, in the horizontal direction. Here, the Z stage 3 plays a role of controlling movement in the Z direction (hereinafter, referred to as servo lock) so that the focal point of the light beam emitted from the optical probe 2 always coincides with the surface of the DUT 1. ing. Therefore, when the optical probe is scanned in the R direction using the R stage 4, if the Z stage 3 is servo-locked, the scanning along the surface shape of the measured object becomes possible. Reference numeral 5 is a Z-axis reference mirror, and 6 is an R-axis reference mirror, which are arranged so as to be substantially orthogonal to each other. Reference numeral 7 denotes a Z-axis laser length measuring device, which plays a role of detecting a relative distance from the Z-axis reference mirror 5. Therefore, the laser straight-ahead direction and the distance created by the Z-axis laser length measuring device 7 and the Z-axis reference mirror 5 form the Z-axis in this three-dimensional shape measuring machine. Similarly, 8 is an R-axis laser length measuring device,
It plays the role of detecting the relative distance from the axis reference mirror 6. Therefore, the laser straight line direction and the distance created by the R-axis laser length measuring device 8 and the R-axis reference mirror 6 are these 3
The R axis is formed in the dimension measuring machine. 9
Is a θ stage that plays the role of rotating the DUT,
The axis direction and the rotation angle of the rotation axis of the θ stage (hereinafter referred to as the θ rotation axis) form the θ axis in this three-dimensional shape measuring machine. The θ stage here uses an air bearing, and the rotor part 9 that actually rotates is used.
It is composed of a and a stator portion 9b on the fixed side. A scale 10 is mounted on the rotor unit 9a, and the scale detection unit 11 is used to detect the rotation angle of the θ stage.

【0030】このように本実施形態では、被測定物側に
θ軸の回転機能を持たせる一方、光プローブ側にR軸及
びZ軸の直進機能を持たせており、軸走査の複合を用い
て被測定物の形状に合わせた光プローブの走査を被測定
物の全面にわたって実現できる構成となっている。
As described above, in the present embodiment, the object to be measured side is provided with the rotation function of the θ axis, while the optical probe side is provided with the R-axis and Z-axis rectilinear movement functions, and a combination of axis scanning is used. The scanning of the optical probe according to the shape of the measured object can be realized over the entire surface of the measured object.

【0031】次に本実施形態の3次元形状測定機におけ
る面形状測定方法について説明する。
Next, a surface shape measuring method in the three-dimensional shape measuring machine of this embodiment will be described.

【0032】被測定物をその面の頂点がθ回転軸とほぼ
一致するようにセッティングする。その後、光プローブ
の光束が作り出す集光点が被測定物の表面と一致する状
態となるようにRステージ4及びZステージ3を用いて
移動調整後、サーボロックを開始する。光プローブ2
は、光プローブの光束が作り出す集光点が被測定物の表
面に常時一致するようにサーボロックによってZ方向移
動の制御がかけられているため、θステージの回転始動
後、Rステージ4を走査させることで、θステージ9及
びRステージ4の走査位置に伴った被測定物1の表面形
状に合わせてZステージ3が上下する。したがってRス
テージ,θステージ,及びZステージの位置座標が、被
測定物の表面形状を表現していることになる。
The object to be measured is set so that the apex of its surface substantially coincides with the θ rotation axis. After that, the movement is adjusted by using the R stage 4 and the Z stage 3 so that the converging point created by the light beam of the optical probe coincides with the surface of the object to be measured, and then the servo lock is started. Optical probe 2
Is controlled by the servo lock to move in the Z direction so that the focal point produced by the light beam of the optical probe always coincides with the surface of the object to be measured. Therefore, after the rotation of the θ stage is started, the R stage 4 is scanned. By doing so, the Z stage 3 moves up and down according to the surface shape of the DUT 1 according to the scanning positions of the θ stage 9 and the R stage 4. Therefore, the position coordinates of the R stage, the θ stage, and the Z stage represent the surface shape of the measured object.

【0033】ここでは図2(a)に示すように、i番目に
取得した被測定物の表面形状の測定値は、円筒座標系を
用いて以下のように表現する。
Here, as shown in FIG. 2 (a), the measurement value of the surface shape of the object to be measured, which is i-th acquired, is expressed as follows using a cylindrical coordinate system.

【0034】 (Rmi,θmi,Zmi)=(Rli−Rc,θmi,Zmi) …式(5) ここで、"Rli"はRステージの位置座標を検出するR
軸レーザ測長器8の読み値、すなわちR軸基準ミラー6
を基準にして検出される光プローブ2までの相対距離と
なる。"Rc"は、θ回転軸上に光プローブ2の集光点が
存在する場合のR軸レーザ測長器8の読み値、すなわち
光プローブ2を用いて表現したR軸基準ミラー6とθ回
転軸間の相対距離となる。したがって"Rli−Rc"
は、θ回転軸から光プローブ2の集光点までの相対距
離、すなわち光プローブ2におけるR軸方向の測定半径
となる。"θmi"はθステージの角度情報を検出するス
ケール検出器11の読み値であり、すなわち被測定物の
θ方向の位置情報となる。また"Zmi"はZステージの
位置情報を検出するZ軸レーザ測長器7の読み値であ
り、すなわちZ軸基準ミラー5を基準にして検出される
光プローブ2までのZ軸方向の相対距離となる。
(Rmi, θmi, Zmi) = (Rli−Rc, θmi, Zmi) Equation (5) Here, “Rli” is R for detecting the position coordinate of the R stage.
The reading value of the axis laser length measuring device 8, that is, the R axis reference mirror 6
Is the relative distance to the optical probe 2 detected. "Rc" is a reading value of the R-axis laser length-measuring device 8 when the converging point of the optical probe 2 exists on the θ-rotation axis, that is, the R-axis reference mirror 6 and the θ rotation represented by using the optical probe 2. It is the relative distance between the axes. Therefore, "Rli-Rc"
Is the relative distance from the θ rotation axis to the condensing point of the optical probe 2, that is, the measurement radius in the R-axis direction of the optical probe 2. “θmi” is a reading value of the scale detector 11 that detects the angle information of the θ stage, that is, the position information of the measured object in the θ direction. Further, "Zmi" is a reading value of the Z-axis laser length measuring device 7 for detecting position information of the Z stage, that is, a relative distance in the Z-axis direction to the optical probe 2 detected with the Z-axis reference mirror 5 as a reference. Becomes

【0035】このように被測定物の表面形状に沿って光
プローブ2を走査している間、被測定物1及び光プロー
ブ2の円筒座標系の測定データ(Rli−Rc,θmi,
Zmi)を定期的に検出し、記憶させておけば被測定物の
表面形状が測定できることになる。
As described above, while the optical probe 2 is scanned along the surface shape of the object to be measured, measurement data (Rli-Rc, θmi,
If Zmi) is regularly detected and stored, the surface shape of the object to be measured can be measured.

【0036】理想的な球面形状を有する曲率半径Rの球
面原器において、形状高さ成分Ziはθ回転軸からの半
径Riを用いて以下のような関係式で表現できる。
In a spherical prototype having a radius of curvature R having an ideal spherical shape, the shape height component Zi can be expressed by the following relational expression using the radius Ri from the θ rotation axis.

【0037】 Zi=(Ri2/R) / {1+√[1−(Ri/R)2] } …式(6) しかしながら、円筒座標系を用いた3次元形状測定機に
よって測定された測定値は、被測定物のセッティングに
起因する影響も受けるため、式(6)に示すような関係
式に測定値をそのまま当てはまることはできない。ここ
で述べるセッティングとは、R軸,θ軸,Z軸の円筒座
標系で表現される座標原点と被測定物の面頂点が一致し
ているかどうかを示すものであり、特に調整することが
ない限りセッティング誤差が発生するのが常である。こ
のため測定値Rmiを式(6)における半径Riに代入し
て求められる形状高さ成分Ziは、測定値Zmiと一致し
ないことになる。そこでセッティング誤差が存在する場
合、すなわちθ軸の回転軸上に球面原器の面頂点が存在
していない場合でも、その時のセッティング誤差が既知
であれば、測定位置から形状高さ成分が推測できる関係
式について説明していく。
Zi = (Ri 2 / R) / {1 + √ [1− (Ri / R) 2 ]} Equation (6) However, the measurement value measured by the three-dimensional shape measuring machine using the cylindrical coordinate system. Is also affected by the setting of the object to be measured, and therefore the measured value cannot be directly applied to the relational expression as shown in Expression (6). The setting described here indicates whether or not the coordinate origin represented by the cylindrical coordinate system of the R axis, the θ axis, and the Z axis and the surface apex of the object to be measured match, and there is no particular adjustment. As long as there is a setting error. Therefore, the shape height component Zi obtained by substituting the measured value Rmi for the radius Ri in the equation (6) does not match the measured value Zmi. Therefore, even if there is a setting error, that is, even if the surface vertex of the spherical prototype does not exist on the rotation axis of the θ axis, if the setting error at that time is known, the shape height component can be estimated from the measurement position. The relational expressions will be explained.

【0038】理想的な軸位置関係を有する3次元形状測
定機において、セッティング誤差(dx,dy,dz)が
生じている球面原器を用いて実施した面形状測定の様子
を図2(b)に示す。同図は分かりやすく表現するため
に、セッティング誤差を誇張して図示している。尚、セ
ッティング誤差の説明を行う際、直交座標系を用いた表
現の方が解りやすいため、ここでは円筒座標系から直交
座標系に座標変換を行って考えることにする。ここでの
X軸(Rcosθ軸),及びZ軸は、円筒座標系における
R軸及びθ回転軸の名称のみ代わった同一軸と考えて良
い。
FIG. 2B shows how the surface shape measurement is performed by using a spherical prototype having a setting error (dx, dy, dz) in a three-dimensional shape measuring machine having an ideal axial positional relationship. Shown in. In the figure, the setting error is exaggerated for easy understanding. When describing the setting error, the expression using the Cartesian coordinate system is easier to understand, so here, the coordinate conversion from the cylindrical coordinate system to the Cartesian coordinate system will be considered. The X-axis (Rcos θ-axis) and the Z-axis here may be considered as the same axes that are replaced by the names of the R-axis and the θ-rotation axis in the cylindrical coordinate system.

【0039】セッティング誤差(dx,dy,dz)が生
じている球面原器において、測定ポイント(Xi,Yi)
上の半径Rdiは、以下のような関係式を用いて表現で
きる。
At the spherical prototype having the setting error (dx, dy, dz), the measurement point (Xi, Yi)
The upper radius Rdi can be expressed using the following relational expression.

【0040】 Xi=Rmi・cos(θmi)−dx …式(7) Yi=Rmi・sin(θmi)−dy …式(8) Rdi=√(Xi2+Yi2) …式(9) したがって、測定ポイント(Xi,Yi)上における球面
原器の測定推定値Zi'は、以下のような関係式を用いて
推測することができる。
Xi = Rmi · cos (θmi) −dx (Equation (7)) Yi = Rmi · sin (θmi) −dy (Equation (8)) Rdi = √ (Xi 2 + Yi 2 ) (Equation 9) Therefore, measurement The measured estimated value Zi 'of the spherical prototype on the point (Xi, Yi) can be estimated using the following relational expression.

【0041】 Zi'=(Rdi2/R) / {1+√[1−(Rdi/R)2] }+dz …式(10) このように理想的な軸位置関係を有する3次元形状測定
機において、セッティング誤差(dx,dy,dz)が正
しく検出されていれば、(Xi,Yi)ポイント上で得ら
れる測定値Zmiは、式(7)〜(10)を用いて形状
高さ成分Zi'として推測することが可能である。
Zi ′ = (Rdi 2 / R) / {1 + √ [1- (Rdi / R) 2 ]} + dz Equation (10) In the three-dimensional shape measuring machine having an ideal axial positional relationship as described above , If the setting error (dx, dy, dz) is correctly detected, the measured value Zmi obtained on the (Xi, Yi) point is the shape height component Zi 'using the equations (7) to (10). It is possible to guess as.

【0042】ここまでに説明してきた円筒座標系の測定
は、理想的な軸位置関係を有することが前提である。し
かしながら先述したように、R軸、θ軸、Z軸を理想的
な軸位置関係に配置するには限界があるため、円筒座標
系の測定値(Rli−Rc,θmi,Zmi)には、円筒座
標系の軸位置関係に起因した測定誤差が含まれている。
The measurement of the cylindrical coordinate system described so far is premised on having an ideal axial positional relationship. However, as described above, there is a limit in arranging the R axis, the θ axis, and the Z axis in an ideal axial positional relationship, so the measured values (Rli-Rc, θmi, Zmi) in the cylindrical coordinate system are The measurement error due to the axial positional relationship of the coordinate system is included.

【0043】例えば"Rli"、"Rc"及び"Zmi"は、そ
れぞれR軸基準ミラー6とR軸レーザ測長器8とが作り
出すR軸の相対距離、もしくはZ軸基準ミラー5とZ軸
レーザ測長器7とが作り出すZ軸の相対距離であるた
め、この2組の基準ミラーとレーザ測長器が作り出すレ
ーザの直進方向が厳密に直交していない場合、すなわち
R軸とZ軸とが作り出すR−Z平面上でのR軸とZ軸と
の直交度ズレ角(今後"R−Z直交ズレ"と呼ぶ)が存在
する場合は、測定誤差が発生してしまう。この2組の基
準ミラーが直交するように厳密な調整を行っても、現実
的にはR−Z直交ズレが数秒〜数十秒程度残留してしま
うと考えられる。また、θ回転軸とZ軸との平行度ズレ
角に起因する測定誤差(今後"Z−θ倒れ(X方向への軸
倒れ、Y方向への軸倒れ)"と呼ぶ)やθ軸の回転軸がR
−Z平面上に存在せずZ軸に対する平行位置ズレ量に起
因する測定誤差(今後"R測長ズレ(X方向ズレ、Y方向
ズレ)"と呼ぶ)も現実的には物理的な合わせ込み調整に
限界があり、Z−θ倒れは数秒から数十秒程度、R測長
ズレは数μm〜数十μm程度発生すると想定される。
For example, "Rli", "Rc", and "Zmi" are the relative distances of the R axes produced by the R axis reference mirror 6 and the R axis laser length measuring device 8, or the Z axis reference mirror 5 and the Z axis laser, respectively. Since this is the relative distance of the Z-axis produced by the length-measuring device 7, when the straight traveling directions of the laser produced by the two sets of reference mirrors and the laser length-measuring device are not exactly orthogonal, that is, the R-axis and the Z-axis are When there is a deviation angle of orthogonality between the R axis and the Z axis on the RZ plane to be created (hereinafter referred to as "RZ orthogonal deviation"), a measurement error occurs. Even if the two sets of reference mirrors are rigorously adjusted so as to be orthogonal to each other, it is considered that the RZ orthogonal deviation is left for several seconds to several tens seconds in reality. Also, a measurement error (hereinafter referred to as "Z-θ tilt (axis tilt in the X direction, axis tilt in the Y direction)") due to the parallelism deviation angle between the θ rotation axis and the Z axis, and rotation of the θ axis Axis is R
-A measurement error (hereinafter referred to as "R measurement deviation (X direction deviation, Y direction deviation)") that does not exist on the Z plane and is caused by the parallel position deviation amount with respect to the Z axis is actually physically adjusted. There is a limit to the adjustment, and it is assumed that the Z-θ fall will occur for several seconds to several tens of seconds and the R measurement deviation will occur for several μm to several tens of μm.

【0044】従ってより高精度な測定を行うため、3次
元形状測定機の円筒座標系の軸位置関係は理想的な軸位
置関係と比較してどのくらいズレているかを求め、それ
を基に校正する必要がある。
Therefore, in order to perform more accurate measurement, the axial positional relationship of the cylindrical coordinate system of the three-dimensional shape measuring machine is calculated by comparing with the ideal axial positional relationship, and calibration is performed based on that. There is a need.

【0045】では次にR−Z直交ズレ、Z−θ倒れ、R
測長ズレについて、各々にズレが発生している場合、円
筒座標系を用いて3次元形状測定機で測定された測定値
を、理想的な円筒座標系の軸位置関係へ変換する方法に
ついて説明する。
Then, R-Z orthogonal shift, Z-θ tilt, R
Regarding misalignment in length measurement, if there are deviations in each, explain the method of converting the measurement value measured by the three-dimensional shape measuring machine using the cylindrical coordinate system to the ideal axial positional relationship of the cylindrical coordinate system. To do.

【0046】まず"R−Z直交ズレ"による測定誤差の影
響について説明する。3次元形状測定機のR−Z平面上
において、理想的なR軸とZ軸の軸位置関係と言えるR
軸とZ軸の直交から"β"だけ角度ズレが発生している状
態をここでは"R−Z直交ズレ"と呼び、その時発生する
影響を図3(a)に示す。
First, the influence of the measurement error due to the "RZ orthogonal shift" will be described. On the R-Z plane of the three-dimensional shape measuring machine, it can be said that the R is an ideal axial positional relationship between the R axis and the Z axis.
A state in which an angle deviation of "β" is generated from the orthogonal between the axis and the Z axis is referred to as "RZ orthogonal deviation", and the influence occurring at that time is shown in FIG.

【0047】すなわちR軸レーザ測長器8とR軸基準ミ
ラー6とが作り出すR軸に対して、Z軸用レーザ測長器
とZ軸用基準ミラーとが作り出すZ軸が"β"(例、数十
秒程度)だけ直交からズレて取り付いている状態を示し
ている。3次元形状測定機にて得られた測定値を(Rm
i,θmi,Zmi)とすると、図3(b)に示すようにR
−Z直交ズレの影響で、R軸の測定値Rmiのみ測定誤
差が発生することになる。このR−Z直交ズレの誤差
は、以下に示すような計算処理によって、真値(Ri,θ
i,Zi)に校正することが可能である。
That is, with respect to the R axis produced by the R axis laser length measuring device 8 and the R axis reference mirror 6, the Z axis produced by the Z axis laser length measuring device and the Z axis reference mirror is "β" (example , Several tens of seconds) are attached from the orthogonal position. The measured value obtained by the three-dimensional shape measuring machine is (Rm
i, θmi, Zmi), as shown in FIG.
Due to the influence of the −Z orthogonal displacement, a measurement error occurs only in the measurement value Rmi of the R axis. The error of this R-Z orthogonal shift is calculated by the following calculation process to obtain the true value (Ri, θ
i, Zi) can be calibrated.

【0048】[0048]

【数1】 尚、円筒座標系を用いた測定を行っているが、軸位置関
係のズレ量の校正は直交座標系を用いた表現の方がわか
りやすいため、ここでは円筒座標系から直交座標系に座
標変換を行って考えることにする。円筒座標系で測定し
た測定値の校正を、直交座標系(Xi,Yi,Zi)に変
換して表現すると次のようになる。
[Equation 1] In addition, although the measurement is performed using the cylindrical coordinate system, it is easier to understand the expression using the orthogonal coordinate system for the calibration of the shift amount of the axial positional relationship, so here, the coordinate conversion from the cylindrical coordinate system to the orthogonal coordinate system is performed. I will go and think about it. The calibration of the measurement value measured in the cylindrical coordinate system is converted into the orthogonal coordinate system (Xi, Yi, Zi) and expressed as follows.

【0049】[0049]

【数2】 次に、"Z−θ倒れ"の校正方法について説明する。図4
(a)〜(c)にZ−θ倒れに起因した測定誤差の様子
を示す。円筒座標系(R,θ,Z)は、一般的に「R軸と
Z軸が直交し、かつZ軸とθ回転軸が同一軸上に存在す
る」定義の上で成立している。しかし図4(a),
(b)に示すように、θ回転軸とZ軸は同一軸上に存在
しておらず、Z軸に対してθ回転軸がRcos0°軸方向
すなわちX軸方向に"α"(例、数秒程度)だけ倒れた状
態をここでは"Z−θ倒れ(X方向への軸倒れ)"と呼ぶ。
Z−θ倒れ(X方向への軸倒れ)の影響で、R軸の測定値
Rmi及びZ軸の測定値Zmiに測定誤差が発生すること
になる。このようにZ−θ倒れ(X方向への軸倒れ)の影
響を受けた3次元形状測定機の測定値(Rmi,θmi,
Zmi)は、以下に示すような計算処理によって真値(R
i,θi,Zi)に校正する必要がある。
[Equation 2] Next, a method of calibrating “Z-θ tilt” will be described. Figure 4
(A) to (c) show the state of the measurement error caused by the Z-θ tilt. The cylindrical coordinate system (R, θ, Z) is generally established on the definition that “the R axis and the Z axis are orthogonal to each other, and the Z axis and the θ rotation axis are on the same axis”. However, in FIG.
As shown in (b), the θ rotation axis and the Z axis do not exist on the same axis, and the θ rotation axis with respect to the Z axis is “α” in the Rcos 0 ° axis direction, that is, the X axis direction (for example, several seconds). A state in which only a certain degree) is tilted is referred to as “Z-θ tilt (axis tilt in the X direction)” here.
Due to the influence of Z-θ tilt (axis tilt in the X direction), a measurement error occurs in the R-axis measurement value Rmi and the Z-axis measurement value Zmi. In this way, the measured values (Rmi, θmi, of the three-dimensional shape measuring machine affected by Z-θ tilt (axis tilt in the X direction)
Zmi) is a true value (R
It is necessary to calibrate to i, θi, Zi).

【0050】[0050]

【数3】 したがって、直交座標系(Xi,Yi,Zi)で表現した
校正方法は以下のようになる。
[Equation 3] Therefore, the calibration method expressed in the Cartesian coordinate system (Xi, Yi, Zi) is as follows.

【0051】[0051]

【数4】 同様に図4(c)に示すように、θ回転軸とZ軸は同一
軸上に存在しておらず、Z軸に対してθ軸がRsin0°
軸方向すなわちY軸方向に"γ"だけ倒れた状態をここで
は"Z−θ倒れ(Y方向への軸倒れ)"と呼ぶ。Z−θ倒れ
(Y方向への軸倒れ)の影響で、R軸の測定値Rmi及び
Z軸の測定値Zmiに測定誤差が発生することになる。
尚、この時発生するY方向への軸倒れによる誤差は、X
方向への軸倒れによる誤差と比較し、θ方向に90°位
相のずれた影響となる。このようにZ−θ倒れ(Y方向
への軸倒れ)の影響を受けた3次元形状測定機の測定値
(Rmi,θmi,Zmi)は、以下に示すような計算処理
によって真値(Ri,θi,Zi)に校正する必要がある。
[Equation 4] Similarly, as shown in FIG. 4C, the θ rotation axis and the Z axis do not exist on the same axis, and the θ axis is Rsin 0 ° with respect to the Z axis.
Here, a state of being tilted by "γ" in the axial direction, that is, the Y-axis direction is called "Z-θ tilt (axis tilt in the Y direction)". Z-θ collapse
Due to (axis tilt in the Y direction), a measurement error occurs in the measured value Rmi of the R axis and the measured value Zmi of the Z axis.
The error caused by the tilting of the axis in the Y direction at this time is X
Compared with the error due to the axis tilt in the direction, the effect is a 90 ° phase shift in the θ direction. In this way, the measured values of the three-dimensional shape measuring machine affected by Z-θ tilt (axis tilt in the Y direction)
(Rmi, θmi, Zmi) needs to be calibrated to the true value (Ri, θi, Zi) by the following calculation process.

【0052】[0052]

【数5】 直交座標系(Xi,Yi,Zi)で表現した校正方法は以
下のようになる。
[Equation 5] The calibration method expressed in the Cartesian coordinate system (Xi, Yi, Zi) is as follows.

【0053】[0053]

【数6】 次に"R測長ズレ(X方向ズレ,Y方向ズレ)"による測定
誤差の影響について説明する。θ回転軸とZ軸とは平行
な関係だがθ回転軸がR−Z平面上に存在せず、Z軸に
対してθ回転軸がX方向(Rcos0°方向)及びY方向
(Rsin0°方向)にそれぞれΔrx,Δry(例えば、数μ
m程度)だけ平行位置ズレした軸位置関係でR軸の測長
を行っているため、R測長値に測定誤差が発生する状態
を、ここでは"R測長ズレ(X方向ズレ、Y方向ズレ)"と
呼ぶ。
[Equation 6] Next, the influence of the measurement error due to "R measurement deviation (X direction deviation, Y direction deviation)" will be described. The θ rotation axis and the Z axis are parallel, but the θ rotation axis does not exist on the RZ plane, and the θ rotation axis is in the X direction (Rcos 0 ° direction) and the Y direction (Rsin 0 ° direction) with respect to the Z axis. Δrx and Δry (for example, several μ
Since the measurement of the R axis is performed in the axial positional relationship with a parallel position deviation of approximately m), a state where a measurement error occurs in the R measurement value is referred to as "R measurement deviation (X direction deviation, Y direction Gap) ".

【0054】図5(a)〜(c)に示すように、R測長
ズレ(X方向ズレ、Y方向ズレ)の影響で、R軸の測定値
Rmiにのみ測定誤差が発生することになる。尚、この
時発生するX方向ズレとY方向ズレは、θ方向に90°
位相のずれた誤差影響となる。このようにR測長ズレ
(X方向ズレ、Y方向ズレ)の影響を受けた3次元形状測
定機の測定値(Rmi,θmi,Zmi)は、以下に示すよ
うな計算処理によって真値(Ri,θi,Zi)に校正する
必要がある。
As shown in FIGS. 5A to 5C, a measurement error occurs only in the measurement value Rmi of the R axis due to the influence of the R measurement deviation (X direction deviation, Y direction deviation). . The X-direction deviation and the Y-direction deviation that occur at this time are 90 ° in the θ direction.
This results in a phase shift error. In this way, the R measurement deviation
The measured values (Rmi, θmi, Zmi) of the three-dimensional shape measuring machine affected by (X direction deviation, Y direction deviation) are calibrated to true values (Ri, θi, Zi) by the following calculation process. There is a need to.

【0055】[0055]

【数7】 したがって、直交座標系(Xi,Yi,Zi)で表現した
校正方法は以下のようになる。
[Equation 7] Therefore, the calibration method expressed in the Cartesian coordinate system (Xi, Yi, Zi) is as follows.

【0056】[0056]

【数8】 以上が、3次元形状測定機の円筒座標系の軸位置関係に
起因した測定誤差を、理想的な軸位置関係となるように
校正する方法となる。ここでは個別で説明してきたが、
本来の測定値にはこれら要因が同時に全て含まれている
と想定出来る。したがってこのときの校正値(校正行
列)Cは、前述した個別の校正値を掛け合わせれば良い
ため、次のように表現できる。尚、この時の座標系は、
円筒座標系より簡易的な表現が可能な直交座標系を用い
ている。
[Equation 8] The above is the method of calibrating the measurement error caused by the axial positional relationship of the cylindrical coordinate system of the three-dimensional shape measuring machine so as to obtain the ideal axial positional relationship. I have explained it individually here,
It can be assumed that the original measured value includes all of these factors at the same time. Therefore, the calibration value (calibration matrix) C at this time can be expressed as follows, since it is sufficient to multiply the above-mentioned individual calibration values. The coordinate system at this time is
The Cartesian coordinate system that can be expressed more simply than the cylindrical coordinate system is used.

【0057】[0057]

【数9】 この時の校正値(校正行列)Cは、円筒座標系を用いた
3次元形状測定機の測定値に対して表現しているので、
直交座標系に変換する場合には、次のように表現でき
る。
[Equation 9] Since the calibration value (calibration matrix) C at this time is expressed with respect to the measurement value of the three-dimensional shape measuring machine using the cylindrical coordinate system,
When converting to a Cartesian coordinate system, it can be expressed as follows.

【0058】[0058]

【数10】 このようにして、円筒座標系を用いた3次元形状測定機
の測定値(Rmi,θmi,Zmi)は、校正行列Cを用い
ることによって、理想的な軸位置関係に配置された円筒
座標系を有する3次元形状測定機の測定座標値として取
り扱うことが可能となる。
[Equation 10] In this way, the measurement values (Rmi, θmi, Zmi) of the three-dimensional shape measuring machine using the cylindrical coordinate system are calculated by using the calibration matrix C, and the cylindrical coordinate system arranged in the ideal axial positional relationship is calculated. It becomes possible to handle it as a measurement coordinate value of the three-dimensional shape measuring machine which it has.

【0059】では次にZ−θ倒れ(X方向軸への軸倒
れ、Y方向への軸倒れ)、R−Z直交ズレ、R測長ズレ
(X方向ズレ、Y方向ズレ)の各々のズレ量の検知方法を
説明する。
Then, Z-θ tilt (axis tilt in the X direction, axis tilt in the Y direction), R-Z orthogonal shift, and R measurement shift.
A method of detecting the respective deviation amounts (X-direction deviation and Y-direction deviation) will be described.

【0060】まず、"Z−θ倒れ"の検知方法について説
明する。先述したように、Z−θ倒れ(X方向軸倒れ、
Y方向軸倒れ)が混在する場合の校正行列Czθは、式
(14)、式(16)から次のように求められる。
First, a method of detecting "Z-θ tilt" will be described. As mentioned earlier, Z-θ tilt (X direction axis tilt,
The calibration matrix Czθ in the case where the Y-direction axis tilt) is mixed is obtained from the equations (14) and (16) as follows.

【0061】[0061]

【数11】 理想的な平面形状に加工された平面原器もしくは理想的
な平面形状に校正された平面原器(曲率R=∞)の傾きを
R軸の走りに合わせた状態(ほぼ水平状態)にセッティ
ングすれば、面測定中の測定値Zmiの変化は小さくな
り、R−Z直交ズレやR測長ズレは測定誤差として無視
可能なオーダーにすることができる。例えば、R軸の走
りに対して1'程度の傾斜になるようなワークセッティ
ングを施し、ワーク径φ200mmとすると、ワーク測
定時のZ最大変化量は200mm×sin(1')=58μ
mとなる。Z最大変化量58μmに対するR−Z直交ズ
レ30"の影響は58μm×sin(30")=8.5nmの
R軸の測長誤差となるが、このようにワークの傾きをR
軸の走りに合わせた状態においては、R軸の測定値が
8.5nmずれてもZ軸の測定値は変化しない(8.5
nm×sin(1')=2.5pnm)ため、無視可能と推
測できる。同様に、数μm程度の平行位置ズレが発生し
ても、ワークの傾きをR軸の走りに合わせた状態では、
測定値Zmiの変化量は微小となり、その時の測定誤差
は無視可能となる。
[Equation 11] Set the inclination of the flat prototype processed to the ideal flat shape or the flat prototype calibrated to the ideal flat shape (curvature R = ∞) to match the running of the R axis (almost horizontal state). For example, the change in the measured value Zmi during the surface measurement becomes small, and the RZ orthogonal displacement and the R measurement displacement can be made into a negligible order as a measurement error. For example, if the workpiece is set to have an inclination of about 1'with respect to the running of the R-axis and the workpiece diameter is φ200 mm, the maximum Z change amount during workpiece measurement is 200 mm x sin (1 ') = 58μ.
m. The influence of the R-Z orthogonal shift 30 ″ on the Z maximum change amount 58 μm is a measurement error of the R axis of 58 μm × sin (30 ″) = 8.5 nm.
In the state in which the measured value of the R-axis is shifted by 8.5 nm, the measured value of the Z-axis does not change in the state of being aligned with the running of the axis (8.5.
Since nm × sin (1 ′) = 2.5 pm), it can be assumed that it can be ignored. Similarly, even if a parallel positional deviation of about several μm occurs, when the inclination of the work is adjusted to the running of the R axis,
The amount of change in the measured value Zmi becomes minute, and the measurement error at that time can be ignored.

【0062】したがって、理想的な平面形状を有する平
面原器の傾きをR軸の走りに合わせるようにセッティン
グした状態で3次元形状測定機にて面形状測定を実施す
ると、得られたi個の測定値(Rmi,θmi,Zmi)
と理想的な円筒座標系に校正された測定値(Xi,Yi,
Zi)の関係は、以下のように表現できる。
Therefore, when the plane shape is measured by the three-dimensional shape measuring machine in a state where the inclination of the plane prototype having an ideal plane shape is set so as to match the running of the R axis, the obtained i Measured value (Rmi, θmi, Zmi)
And the measured values (Xi, Yi,
The relationship of Zi) can be expressed as follows.

【0063】[0063]

【数12】 尚、この時の被測定物に、セッティング誤差としてX軸
廻りの回転量ψx,Y軸廻りの回転量ψyが発生していた
場合、校正された測定値(Xi,Yi,Zi)は次のよう
な式で表現できる。
[Equation 12] At this time, if a rotation amount ψx around the X axis and a rotation amount ψy around the Y axis are generated as setting errors in the measured object at this time, the calibrated measurement value (Xi, Yi, Zi) is as follows. It can be expressed as

【0064】[0064]

【数13】 したがってZ−θ倒れ(β,γ)の算出は、(Rmi,
θmi)座標上での平面原器の面形状のZ測定値Zmiを
利用し、式(23)で導き出されるZ推測値Ziが最小
となるようなβ、及びγを最小2乗法を用いて算出する
ことで、実現できる。
[Equation 13] Therefore, the calculation of Z-θ tilt (β, γ) is (Rmi,
θmi) Using the Z measurement value Zmi of the surface shape of the flat prototype on the coordinates, β and γ are calculated using the least squares method so that the Z estimated value Zi derived by the equation (23) is minimized. It can be realized by doing.

【0065】次に、"R−Z直交ズレ"と"R測長ズレ"の
検知方法について説明する。図6は、Z−θ倒れα,
γ、R測長ズレΔrx,Δry、R−Z直交ズレβが潜在す
る円筒座標系の3次元形状測定機を用いて得られる測定
値(Rmi,θmi,Zmi)の様子を示す。図6に示さ
れるいるように、測定値(Rmi,θmi,Zmi)には
軸位置関係に起因した測定誤差が発生していることがわ
かる。
Next, a method of detecting "RZ orthogonal displacement" and "R measurement displacement" will be described. FIG. 6 shows Z-θ tilt α,
γ, R measurement deviations Δrx, Δry, and RZ orthogonal deviation β show the state of measurement values (Rmi, θmi, Zmi) obtained using a three-dimensional shape measuring machine with a cylindrical coordinate system. As shown in FIG. 6, it can be seen that the measurement values (Rmi, θmi, Zmi) have a measurement error due to the axial positional relationship.

【0066】R−Z直交ズレβやR測長ズレ(X方向ズ
レΔdx,Y方向ズレΔdy)を算出するにあたっては、
理想的な球面形状に加工された球面原器もしくは理想的
な球面形状に校正された球面原器を用いることが有効で
ある。Z−θ倒れα,γ、及びR測長ズレΔrx,Δry、
及びR−Z直交ズレβが潜在する円筒座標系の3次元形
状測定機において、理想的な球面形状に加工された、も
しくは理想的な球面形状に校正された球面原器がセッテ
ィング誤差(dx,dy,dz)を持つ状態で面形状測定
を行って得られたi個の測定値(Rmi,θmi,Zm
i)を理想的な円筒座標系の測定値(Xi,Yi,Zi)に
校正させるには、以下のような関係式を用いればよい。
When calculating the R-Z orthogonal deviation β and the R measurement deviation (X direction deviation Δdx, Y direction deviation Δdy),
It is effective to use a spherical prototype that is processed into an ideal spherical shape or a spherical prototype that is calibrated to an ideal spherical shape. Z-θ tilt α, γ, and R measurement deviation Δrx, Δry,
In a three-dimensional shape measuring machine with a cylindrical coordinate system in which R-Z orthogonal deviation β is latent, a spherical prototype machined to an ideal spherical shape or calibrated to an ideal spherical shape has a setting error (dx, i measurement values (Rmi, θmi, Zm) obtained by measuring the surface shape in the state of having dy, dz)
In order to calibrate i) to the ideal measured value (Xi, Yi, Zi) in the cylindrical coordinate system, the following relational expression may be used.

【0067】[0067]

【数14】 尚、この時、[Equation 14] At this time,

【0068】[0068]

【数15】 である。[Equation 15] Is.

【0069】また、Z−θ倒れα,γに起因したCzθ
は、先述したような方法で予め算出しておくことで、既
知のパラメータとして処理することが可能である。
Further, Czθ caused by Z-θ tilts α and γ
Can be processed as a known parameter by calculating in advance by the method as described above.

【0070】式(24)に示される測定値Zi、及び式
(24)に示される測定値Xi,Yiから算出することが
可能な測定推定値Zi'に着目する。すなわちまず、式
(24) における測定値Ziの意味する所は、理想的な
円筒座標系の軸位置関係からズレが生じた3次元形状測
定機を用いて球面原器を測定した際、得られた測定値Z
miを校正値(構成行列)にて校正することにより、軸
位置関係に起因する測定誤差を除いた測定値Ziに変換
できることを示す。一方、式(24)で得られる(X
i,Yi)を式(9)に代入し、式(10)を用いること
で、理想的な円筒座標系の軸位置関係を持つ3次元形状
測定機の測定ポイント(Xi,Yi)上における球面原器
の測定推定値Zi'を推測することができる。したがって
Z方向の測定値Zi及び測定推定値Zi'を用い、"Zi−
Zi'"の関係を最小とさせるように、未知のパラメータ
(Δrx,Δryとβ、及びワークセッティング誤差のd
x,dy,dz)を最小2乗法を用いて導き出せば良い。
Attention is paid to the measured value Zi 'shown in the equation (24) and the measured estimated value Zi' which can be calculated from the measured values Xi, Yi shown in the equation (24). That is, first, the meaning of the measured value Zi in the equation (24) is obtained when the spherical prototype is measured using a three-dimensional shape measuring machine in which the axial positional relationship of the ideal cylindrical coordinate system causes a deviation. Measured value Z
It is shown that by calibrating mi with a calibration value (constituent matrix), it can be converted into a measurement value Zi excluding the measurement error due to the axial positional relationship. On the other hand, (X
i, Yi) is substituted into equation (9) and equation (10) is used to obtain a spherical surface on the measurement point (Xi, Yi) of the three-dimensional shape measuring machine having an ideal axial coordinate relationship of the cylindrical coordinate system. The measured estimate Zi 'of the prototype can be inferred. Therefore, using the measured value Zi in the Z direction and the measured estimated value Zi ', "Zi-
In order to minimize the relationship of Zi '", unknown parameters (Δrx, Δry and β, and work setting error d
x, dy, dz) may be derived by using the least squares method.

【0071】このように得られたパラメータ、Z−θ倒
れα,γ及びR測長ズレΔrx,Δry及びR−Z直交ズレ
βは、式(19)及び式(20)にあらかじめ代入して
おく。これにより、3次元形状測定機を用いた被測定物
の形状を測定して得られた測定値(Rmi,θmi,Zm
i)は、式(20)で示される校正処理を行うことで、
円筒座標系の軸位置関係に起因した測定誤差を除いた測
定値(Xi,Yi,Zi)を算出することが可能となる。
これによって円筒座標系を用いた3次元形状測定機にお
ける軸位置関係に起因した測定誤差を校正することがで
き、高精度な面測定方法を確立できる。
The parameters thus obtained, the Z-θ inclinations α and γ, the R measurement deviations Δrx and Δry, and the RZ orthogonal deviation β are substituted in the equations (19) and (20) in advance. . Thereby, the measurement values (Rmi, θmi, Zm obtained by measuring the shape of the object to be measured using the three-dimensional shape measuring machine
i) is obtained by performing the calibration process shown in Expression (20),
It is possible to calculate the measurement values (Xi, Yi, Zi) excluding the measurement error caused by the axial positional relationship of the cylindrical coordinate system.
This makes it possible to calibrate the measurement error due to the axial positional relationship in the three-dimensional shape measuring machine using the cylindrical coordinate system, and to establish a highly accurate surface measuring method.

【0072】以上のように本実施形態は、ほぼ直交する
2つの直進軸(R軸、Z軸)と、1つの回転軸(θ軸)
とを有する円筒座標系を用いて被測定物の3次元形状を
測定する3次元形状測定機において、円筒座標系の軸位
置関係により発生してしまう測定誤差、すなわちR軸基
準ミラーとZ軸基準ミラーの直交度ズレが原因で発生す
る測定誤差"R−Z直交ズレ"、θ回転軸とZ軸の間のR
方向の平行位置ズレが原因で発生する測定誤差 "R測長
ズレ(X方向ズレ、Y方向ズレ)"、θ回転軸とZ軸の間
の平行度ズレが原因で発生する測定誤差"Z−θ倒れ(X
方向軸倒れ、Y方向軸倒れ"について、あらかじめそれ
ぞれのズレ量を算出し、そのズレ量を反映させて求めた
校正値を使って3次元形状測定値を補正することによ
り、円筒座標系の軸位置関係に起因した測定誤差の影響
を大幅に軽減できるようにしたものである。これによっ
て円筒座標系における高精度測定が実現できる。
As described above, in the present embodiment, two linear axes (R axis and Z axis) that are substantially orthogonal to each other and one rotation axis (θ axis).
In a three-dimensional shape measuring machine that measures a three-dimensional shape of an object to be measured using a cylindrical coordinate system having, a measurement error caused by an axial positional relationship of the cylindrical coordinate system, that is, an R-axis reference mirror and a Z-axis reference Measurement error "R-Z orthogonal misalignment" caused by misalignment of mirror orthogonality, R between θ rotation axis and Z axis
Measurement error "R measurement deviation (X direction deviation, Y direction deviation)" caused by parallel position deviation in the direction, and measurement error caused by parallelism deviation between θ rotation axis and Z axis "Z- θ fall (X
"Directional axis tilt, Y-direction axis tilt" are calculated in advance, and the three-dimensional shape measurement values are corrected using the calibration values obtained by reflecting the deviation amounts to correct the axes of the cylindrical coordinate system. The effect of the measurement error caused by the positional relationship can be significantly reduced, which enables highly accurate measurement in the cylindrical coordinate system.

【0073】尚、本実施形態は被測定物に回転機構であ
るθステージを配置してθ軸を形成させ、光プローブに
直進機構であるRステージ及びZステージを配置してR
軸、Z軸を形成させることで、被測定物の形状に合わせ
た光プローブの走査を被測定物の全面にわたって実現し
ていた。しかし被測定物に少なくとも回転機構であるθ
ステージもしくは直進機構であるRステージのいずれか
を設け、光プローブに他方を設け、かつ少なくとも被測
定物か光プローブの一方に直進機構であるZステージを
設けた構成を用いた場合であっても、被測定物の形状に
合わせた光プローブの走査を被測定物の全面にわたって
実現できることになり、この場合も本発明の3次元形状
測定機の校正方法を採用することができる。
In this embodiment, the θ stage which is the rotation mechanism is arranged on the object to be measured to form the θ axis, and the R stage and the Z stage which is the rectilinear mechanism are arranged on the optical probe to measure the R axis.
By forming the axis and the Z-axis, the scanning of the optical probe according to the shape of the measured object is realized over the entire surface of the measured object. However, at least the rotation mechanism θ
Even when using a configuration in which either the stage or the R stage, which is a rectilinear mechanism, is provided, the other is provided on the optical probe, and at least one of the DUT and the optical probe is provided with the Z stage, which is the rectilinear mechanism, The scanning of the optical probe according to the shape of the object to be measured can be realized over the entire surface of the object to be measured, and in this case also, the calibration method of the three-dimensional shape measuring machine of the present invention can be adopted.

【0074】尚、本実施形態の3次元形状測定機の校正
方法は、校正モードとして測定装置に備えることもでき
る。その際、校正値を算出する手段は、校正開始を示す
開始指令手段の指令によって実行を開始し、実行して得
られた校正値は座標値を校正する手段に反映される。定
期的に校正値を取り直すことで、環境変動や経年変化に
起因した軸位置関係の校正が可能である。
The calibration method for the three-dimensional shape measuring machine according to this embodiment can be provided in the measuring device as a calibration mode. At that time, the means for calculating the calibration value starts execution in response to the instruction of the start instruction means indicating the start of calibration, and the calibration value obtained by the execution is reflected in the means for calibrating the coordinate values. By periodically recalibrating the calibration values, it is possible to calibrate the axial positional relationship due to environmental changes and changes over time.

【0075】[0075]

【発明の効果】本発明は、3次元形状測定機上で表現し
ている円筒座標系のR軸、θ軸、Z軸の軸位置関係が、
理想的な座標位置関係を持つ円筒座標系のR軸、θ軸、
Z軸の軸位置関係とどのくらいズレているのかを検出で
きるようにしたものである。これによって円筒座標系を
採用した3次元形状測定機において、R軸基準ミラーと
Z軸基準ミラーの直交度ズレが原因で発生する測定誤
差"R−Z直交ズレ"、θ軸の回転軸とZ軸の間のR方向
の平行位置ズレが原因で発生する測定誤差 "R測長ズレ
(X方向ズレ、Y方向ズレ)"、θ回転軸とZ軸との間の
平行度ズレが原因で発生する測定誤差"Z−θ倒れ(X方
向軸倒れ、Y方向軸倒れ"といった円筒座標系の座標位
置関係に起因した測定誤差は、あらかじめ求めておいた
ズレ量から算出された校正値を用いて校正することがで
きるため、測定誤差を大幅に低減させることができ、よ
り高精度な測定を実現させることとなる。
According to the present invention, the axial positional relationship of the R axis, the θ axis, and the Z axis of the cylindrical coordinate system expressed on the three-dimensional shape measuring machine is
R-axis, θ-axis of a cylindrical coordinate system having an ideal coordinate positional relationship,
It is possible to detect how much there is a deviation from the positional relationship of the Z axis. As a result, in a three-dimensional shape measuring machine adopting a cylindrical coordinate system, a measurement error "R-Z orthogonal deviation" caused by the deviation of the orthogonality between the R-axis reference mirror and the Z-axis reference mirror, the rotation axis of the θ axis and the Z-axis. Measurement error caused by parallel misalignment in the R direction between axes "R measurement misalignment"
(X direction deviation, Y direction deviation) ", measurement error caused by parallelism deviation between θ rotation axis and Z axis" Z-θ tilt (X direction tilt, Y direction tilt) " The measurement error caused by the coordinate position relationship of the system can be calibrated using the calibration value calculated from the deviation amount obtained in advance, so the measurement error can be significantly reduced and higher accuracy can be achieved. The measurement will be realized.

【0076】このことは、3次元形状測定機に円筒座標
系を採用することで得られるメリット、すなわち軸対称
形状を有した被測定物に対して、θ軸の回転軸に被測定
物の光軸を合わせ込み、被測定物を同心円状、もしくは
渦巻き状にプローブ走査をすることにより、形状変化が
小さい分プローブ走査速度を速められるため、測定時間
の短縮が図れ、かつ測定時間短縮によって測定誤差要因
である経時的変動や環境変動に起因した誤差要因を抑制
できるといった効果を活かすことにつながると考えられ
る。
This is a merit obtained by adopting a cylindrical coordinate system in a three-dimensional shape measuring machine, that is, the optical axis of the object to be measured is the rotation axis of the θ axis with respect to the object to be measured having an axisymmetric shape. By aligning the axes and scanning the object to be measured concentrically or spirally, the probe scanning speed can be increased due to the small change in shape, so the measurement time can be shortened and the measurement error can be reduced by shortening the measurement time. It is thought that this will lead to the effect of being able to suppress the error factor caused by the temporal change and environmental change which are the factors.

【0077】また3次元測定機におけるR軸、θ軸、Z
軸の軸位置関係の調整に際し、本発明を採用することに
よりズレ量を算出、校正することが可能なため、従来の
様な厳密な軸位置調整を行う必要が無くなり、3次元形
状測定機の製作段階での組立作業の負荷の軽減が図れる
こととなる。
The R-axis, θ-axis and Z-axis in the three-dimensional measuring machine
When adjusting the axial positional relationship of the shafts, the deviation amount can be calculated and calibrated by adopting the present invention, so that it is not necessary to perform the strict axial position adjustment as in the conventional case, and thus the three-dimensional shape measuring machine The load of assembly work at the manufacturing stage can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の3次元形状測定機の要部概
略図である。
FIG. 1 is a schematic view of a main part of a three-dimensional shape measuring machine according to an embodiment of the present invention.

【図2】図2(a)は、i番目に取得した被測定物の表面
形状の測定値を示した図、図2(b)は、セッティング誤
差が生じている球面原器の面形状測定の様子を示した図
である。
FIG. 2 (a) is a diagram showing a measurement value of a surface shape of an object to be measured acquired at the i-th position, and FIG. 2 (b) is a surface shape measurement of a spherical prototype having a setting error. It is a figure showing a situation of.

【図3】図3(a)は、"R−Z直交ズレ"の存在する3次
元形状測定機において、球面原器の面測定を行う様子を
示した図、図3(b)は、球面原器の面測定時における"
R−Z直交ズレ"の測定誤差を示した図である。
FIG. 3 (a) is a diagram showing a state in which a surface of a spherical prototype is measured by a three-dimensional shape measuring machine having an “RZ orthogonal deviation”, and FIG. 3 (b) is a spherical surface. When measuring the surface of the prototype
It is a figure showing the measurement error of "RZ orthogonal shift".

【図4】図4(a)は、"Z−θ直交ズレ(X方向軸倒れ)"
の存在する3次元形状測定機において、球面原器の面測
定を行う様子を示した図、図4(b)は、球面原器の面測
定時における"Z−θ直交ズレ(X方向軸倒れ)"の測定
誤差を示した図、図4(c)は、球面原器の面測定時にお
ける"Z−θ直交ズレ(Y方向軸倒れ)"の測定誤差を示
した図である。
FIG. 4 (a) is a “Z-θ orthogonal displacement (X direction axis tilt)”.
Fig. 4 (b) is a diagram showing how the surface of a spherical prototype is measured in a three-dimensional shape measuring machine in which there is a "Z-θ orthogonal deviation (X direction axis tilt) when measuring the surface of a spherical prototype. FIG. 4 (c) is a diagram showing a measurement error of "Z-.theta. Orthogonal deviation (Y direction axis tilt)" at the time of measuring the surface of the spherical prototype.

【図5】図5(a)は、"R測長ズレ(X方向ズレ)"の存在
する3次元形状測定機において、球面原器の面測定を行
う様子を示した図、図5(b)は、球面原器の面測定時に
おける"R測長ズレ(X方向ズレ)"の測定誤差を示した
図、図5(c)は、球面原器の面測定時における"R測長
ズレ(Y方向ズレ)"の測定誤差を示した図である。
FIG. 5 (a) is a diagram showing a state in which a surface of a spherical prototype is measured in a three-dimensional shape measuring machine having “R measurement deviation (deviation in X direction)”, and FIG. ) Is a diagram showing a measurement error of "R measurement deviation (X direction deviation)" at the time of measuring the surface of the spherical prototype, and FIG. 5C shows "R measurement deviation at the time of measuring the surface of the spherical prototype. It is a figure showing the measurement error of "(Y direction gap)."

【図6】円筒座標系の軸位置関係に起因した測定誤差の
様子を示した図である。
FIG. 6 is a diagram showing a state of a measurement error caused by an axial positional relationship of a cylindrical coordinate system.

【図7】従来の3次元形状測定機の要部概略図である。FIG. 7 is a schematic view of a main part of a conventional three-dimensional shape measuring machine.

【図8】従来例の直交度ズレに起因する測定誤差の様子
を示した図である。
FIG. 8 is a diagram showing a state of a measurement error caused by a deviation of orthogonality in a conventional example.

【符号の説明】[Explanation of symbols]

1 被測定物(軸対称非球面レンズ) 1a 被測定物の表面形状 2 光プローブ 3 Zステージ 4 Rステージ 5 Z軸基準ミラー 6 R軸基準ミラー 7 Z軸レーザ測長器 8 R軸レーザ測長器 9 θステージ(エア−ベアリング) 9a エアーベアリングのロータ部 9b エアーベアリングのステータ部 10 スケール 11 スケール検出部 12 架台 13 XZステージ 1 Object to be measured (axisymmetric aspherical lens) 1a Surface shape of DUT 2 optical probe 3 Z stage 4 R stage 5 Z-axis reference mirror 6 R-axis reference mirror 7 Z-axis laser length measuring device 8 R-axis laser length measuring device 9 θ stage (air-bearing) 9a Air bearing rotor 9b Air bearing stator 10 scale 11 Scale detector 12 mounts 13 XZ stage

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 2つの直進軸であるR軸及びZ軸と1つ
の回転軸であるθ軸とから構成される円筒座標系を用い
て被測定物の3次元形状を測定する3次元形状測定機に
用いられる、3次元形状測定機の誤差校正方法であっ
て、 仮想して定義された円筒座標系の各軸の軸位置関係と3
次元形状測定機の円筒座標系の各軸の軸位置関係とのズ
レ量を検出するズレ量検出工程と、 3次元形状測定機の測定結果を、前記仮想して定義され
た軸位置関係における測定結果へ変換させるための校正
値を前記ズレ量から算出する校正値算出工程と、 3次元形状測定機で測定した被測定物の測定結果を前記
校正値算出工程で算出した校正値を用いて校正する校正
工程とを具備することを特徴とする3次元形状測定機の
誤差校正方法。
1. A three-dimensional shape measurement for measuring a three-dimensional shape of an object to be measured using a cylindrical coordinate system composed of two linear axes, an R axis and a Z axis, and one rotational axis, a θ axis. A method for calibrating an error of a three-dimensional shape measuring machine used in a machine, including the axial positional relationship of each axis of a virtually defined cylindrical coordinate system and 3
A deviation amount detecting step of detecting a deviation amount from an axial positional relationship of each axis of the cylindrical coordinate system of the three-dimensional shape measuring machine, and a measurement result of the three-dimensional shape measuring machine in the virtually defined axial positional relationship. A calibration value calculating step of calculating a calibration value for converting the result from the deviation amount, and a calibration result of the measurement result of the object measured by the three-dimensional shape measuring instrument, which is calibrated using the calibration value calculated in the calibration value calculating step. A method for calibrating an error of a three-dimensional shape measuring machine, comprising:
【請求項2】 前記仮想して定義された円筒座標系の軸
位置関係は、R軸とZ軸とが直交し、Z軸の軸方位とθ
軸の軸方位が一致し、かつZ軸上にθ軸が存在する円筒
座標系の軸位置関係であることを特徴とする請求項1に
記載の3次元形状測定機の誤差校正方法。
2. The axial positional relationship of the imaginarily defined cylindrical coordinate system is such that the R axis and the Z axis are orthogonal to each other, and the axial direction of the Z axis and θ
The error calibrating method for a three-dimensional shape measuring machine according to claim 1, wherein the axis positional relationship is a cylindrical coordinate system in which the axis directions of the axes are the same and the θ axis is present on the Z axis.
【請求項3】 前記ズレ量検出工程では、R軸とZ軸と
が作り出すR−Z平面上でのR軸とZ軸との直交度ズレ
角と、θ軸の軸方位とZ軸の軸方位との平行度ズレ角
と、Z軸に対するθ軸の平行位置ズレ量とを算出するこ
とを特徴とする請求項1又は2に記載の3次元形状測定
機の誤差校正方法。
3. In the deviation amount detecting step, an orthogonal deviation angle between the R axis and the Z axis on an RZ plane created by the R axis and the Z axis, an axis direction of the θ axis, and an axis of the Z axis. 3. The error calibrating method for a three-dimensional shape measuring machine according to claim 1, wherein a parallelism deviation angle with respect to the azimuth and a parallel position deviation amount of the θ axis with respect to the Z axis are calculated.
【請求項4】 前記ズレ量検出工程では、3次元形状測
定機の被測定物に、理想的な平面形状に加工された平面
原器又は理想的な平面形状に校正された平面原器と、理
想的な球面形状に加工された球面原器又は理想的な球面
形状に校正された球面原器とを用いて、前記被測定物の
3次元形状の測定を実施し、その測定結果を用いて、前
記仮想して定義された円筒座標系の軸位置関係と3次元
形状測定機の円筒座標系の軸位置関係とのズレ量を検出
することを特徴とする請求項1乃至3のいずれか1項に
記載の3次元形状測定機の誤差校正方法。
4. In the deviation amount detecting step, a flat prototype machined into an ideal flat shape or a flat prototype calibrated into an ideal flat shape is used as an object to be measured of a three-dimensional shape measuring machine, A three-dimensional shape of the object to be measured is measured by using a spherical prototype that is processed into an ideal spherical shape or a spherical prototype that is calibrated to an ideal spherical shape, and the measurement result is used. 4. The deviation amount between the axial positional relationship of the virtually defined cylindrical coordinate system and the axial positional relationship of the cylindrical coordinate system of the three-dimensional shape measuring machine is detected. The method for calibrating the error of the three-dimensional shape measuring machine according to the item.
【請求項5】 2つの直進軸であるR軸及びZ軸と1つ
の回転軸であるθ軸とから構成される円筒座標系を用い
て被測定物の3次元形状を測定する3次元形状測定機で
あって、 被測定物の形状に沿って走査させるプローブのR軸及び
Z軸及びθ軸の座標値を測定する測定手段と、 3次元形状測定機の円筒座標系の軸位置関係の誤差に起
因する測定誤差を校正するための校正値を算出する校正
値算出手段と、 測定された座標値を前記校正値によって校正する校正手
段と、 校正された座標値から被測定物の形状を算出する形状算
出手段とを具備することを特徴とする3次元形状測定
機。
5. A three-dimensional shape measurement for measuring a three-dimensional shape of an object to be measured using a cylindrical coordinate system composed of two linear axes, an R axis and a Z axis, and one rotation axis, a θ axis. And a measuring means for measuring the coordinate values of the R-axis, Z-axis and θ-axis of the probe to be scanned along the shape of the object to be measured, and the error in the axial positional relationship of the cylindrical coordinate system of the three-dimensional shape measuring machine. Calibration value calculating means for calculating a calibration value for calibrating the measurement error caused by the calibration value, calibration means for calibrating the measured coordinate value with the calibration value, and the shape of the DUT from the calibrated coordinate value. A three-dimensional shape measuring machine, comprising:
【請求項6】 前記校正値算出手段は、校正開始を示す
開始指令手段の指令によって実行を開始し、実行して得
られた校正値が前記校正手段による演算に用いられるこ
とを特徴とする請求項5に記載の3次元形状測定機。
6. The calibration value calculation means starts execution in response to a command from a start command means indicating the start of calibration, and the calibration value obtained by the execution is used for calculation by the calibration means. Item 3. The three-dimensional shape measuring instrument according to Item 5.
JP2002028331A 2002-02-05 2002-02-05 Three-dimensional shape measuring apparatus and its error calibration method Withdrawn JP2003227713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028331A JP2003227713A (en) 2002-02-05 2002-02-05 Three-dimensional shape measuring apparatus and its error calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028331A JP2003227713A (en) 2002-02-05 2002-02-05 Three-dimensional shape measuring apparatus and its error calibration method

Publications (1)

Publication Number Publication Date
JP2003227713A true JP2003227713A (en) 2003-08-15

Family

ID=27749581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028331A Withdrawn JP2003227713A (en) 2002-02-05 2002-02-05 Three-dimensional shape measuring apparatus and its error calibration method

Country Status (1)

Country Link
JP (1) JP2003227713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003112A (en) * 2004-06-15 2006-01-05 Fuji Photo Film Co Ltd Apparatus and method for measuring eccentricity, metal mold for lens, and imaging module
JP2006322868A (en) * 2005-05-20 2006-11-30 Olympus Corp Three-dimensional shape measuring technique
CN112697399A (en) * 2020-12-08 2021-04-23 厦门市计量检定测试院 Calibration method of lens measuring meter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003112A (en) * 2004-06-15 2006-01-05 Fuji Photo Film Co Ltd Apparatus and method for measuring eccentricity, metal mold for lens, and imaging module
JP4699714B2 (en) * 2004-06-15 2011-06-15 富士フイルム株式会社 Eccentricity measuring apparatus and eccentricity measuring method
JP2006322868A (en) * 2005-05-20 2006-11-30 Olympus Corp Three-dimensional shape measuring technique
CN112697399A (en) * 2020-12-08 2021-04-23 厦门市计量检定测试院 Calibration method of lens measuring meter

Similar Documents

Publication Publication Date Title
US6763319B2 (en) Profilometer and method for measuring, and method for manufacturing object of surface profiling
JP4429037B2 (en) Stage device and control method thereof
JP6020593B2 (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, recording medium recording program
EP2216621A1 (en) Lightwave interference measurement device
JP3474448B2 (en) Calibration method of coordinate axis squareness error and three-dimensional shape measuring device
CN110030962B (en) Lens measuring device and lens measuring method
JP2000304529A (en) Probe device and shape measuring device
JP5691398B2 (en) Mounting table, shape measuring device, and shape measuring method
JP5693086B2 (en) Processing method and processing apparatus
US8149383B2 (en) Method for determining the systematic error in the measurement of positions of edges of structures on a substrate resulting from the substrate topology
JP2003227713A (en) Three-dimensional shape measuring apparatus and its error calibration method
JP2013221929A (en) Three-dimensional measurement method and device
JP4753657B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2007232629A (en) Lens shape measuring instrument
JP4490793B2 (en) Three-dimensional measurement method
EP3534212B1 (en) Exposure apparatus, method thereof, and method of manufacturing article
JP2006098251A (en) Shape measuring instrument and shape measuring method
JP2004045231A (en) Three-dimensional measuring machine, calibration method therefor, and computer-readable storage medium stored with program for executing the method
JP5708548B2 (en) Shape measurement method
JP3827496B2 (en) Shape measurement method
JPH10332349A (en) Three-dimensional shape measuring method
JP2001133244A (en) Method and apparatus for measurement of shape
JPH09243304A (en) Shape measuring device, and method of positioning surface to be measured using it
JPH10103937A (en) Optical axis inclination measuring method for laser light and apparatus therefor
JPH1074687A (en) Stage device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405