JP2003227697A - Protecting pipe constituted of ceramic short pipe - Google Patents

Protecting pipe constituted of ceramic short pipe

Info

Publication number
JP2003227697A
JP2003227697A JP2002064519A JP2002064519A JP2003227697A JP 2003227697 A JP2003227697 A JP 2003227697A JP 2002064519 A JP2002064519 A JP 2002064519A JP 2002064519 A JP2002064519 A JP 2002064519A JP 2003227697 A JP2003227697 A JP 2003227697A
Authority
JP
Japan
Prior art keywords
pipe
ceramic
tube
metal
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002064519A
Other languages
Japanese (ja)
Inventor
Masaaki Fukuda
正明 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002064519A priority Critical patent/JP2003227697A/en
Publication of JP2003227697A publication Critical patent/JP2003227697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protecting pipe constituted of a ceramic short pipe which prolongs a service life of a steel pipe by protecting the steel pipe attached in an atmosphere with floating unburned carbide particles, ash, and other wear factors from wear and corrosion from an outer circumference of the steel pipe. <P>SOLUTION: A metal pin 2 is welded and attached on an outer circumference of a metal pipe 1, and a metal coil spring 3 is fitted therein. The metal coil spring is compressed, and is respectively fitted in a groove formed in an inner surface length direction of the ceramic short pipe 4, and the ceramic short pipe is slid to a predetermined position and is attached. Furthermore, a necessary number of the ceramic short pipes are sequentially attached and connected in the same way, and the outer circumference of the metal pipe is coasted and fixed by the ceramic short pipes to finish the ceramic protecting pipe as shown in Fig. 1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】(1)、本発明は石炭火力発
電所の石炭燃焼ボイラやごみ焼却炉のボイラ等におい
て、高温の燃焼熱を金属製パイプである熱交換チューブ
の内部を流れる水や空気に伝熱して高温蒸気や高温空気
を生成する熱交換チューブの外周から進行する未燃炭化
物粒子や灰の浮遊衝突による摩耗や燃焼ガスによる腐食
を防ぐ為のセラミック製短管及びこれを用いた保護管に
関するものである。 (2)、摩耗因子が流れる雰囲気の構造物例えば燃焼灰
を燃焼ガスから分離する電気集塵機の構造部材等摩耗因
子の衝突する部位に使用される丸鋼管や角鋼管の摩耗を
防ぐためのセラミック製短管及びこれを用いての保護管
に関するものである。 【0002】 【従来の技術】従来の技術としては、次の技術で耐摩
耗、耐腐食対策がなされている。 (1)、熱交換チューブにおいては、材質を耐摩耗性、
耐腐食性に優れている高ニッケル、高クロム含有の合金
鋼材質にして熱交換チューブを製作使用している。 (2)、熱交換チューブや構造部材に耐摩耗性、耐腐食
性に優れたセラミック材質の溶射皮膜を施工して対処し
ている。 【0003】 【本発明が解決しようとする課題】以上の従来技術には
次の課題がある。上記従来技術(1)の方法でもボイラ
内の燃焼ガスに含まれている未燃炭化物粒子や灰の浮遊
衝突による熱交換チューブ外周の摩耗速度は減少しては
いるが依然として摩耗は進行し、摩耗や腐食により肉厚
が一定限度まで減肉した都度安全性の観点からボイラの
稼働を中止して摩耗箇所を切断除去して新たな熱交換チ
ューブを溶接して取り替えているのが現状である。又上
記(2)の方法では、高温部においては被溶射物と溶射
皮膜との熱膨張率の差異から溶射皮膜が経時的に剥離脱
落して耐摩耗性、耐腐食性の効果が無くなるという課題
がある。更に温度の低い部所で使用されて熱膨張差の問
題発生のない部材でも、現在の技術ではセラミック溶射
の皮膜の厚さは最大でも2mm〜3mmしか施工できな
いため耐摩耗、耐腐食の期間が短いという課題がある。 【0004】本来セラミックはその特徴として耐摩耗性
や耐腐食性、耐熱性において他の材料に比較して抜群に
優れた性能をもっている。しかしながらセラミックは溶
接取り付けが出来ず、又脆性材料で脆くて割れやすいと
いう問題点がある。特に被取り付け材が鋼管でその外周
にセラミックを取り付ける技術としては、複数個のセラ
ミック短管に鋼管を貫通して鋼管の外周とセラミック内
周の隙間に充填剤を充填して取り付け固定する方法がと
られている。しかし、高温雰囲気における鋼管の熱膨張
率が大きく、対してセラミック及び充填剤の熱膨張率が
小さい為、鋼管の膨張や熱変形にセラミック管や充填剤
が追随できず割れて脱落する等の問題点が多く、あまり
普及してはいない。 【0005】又この方法では、熱交換チューブの本来の
役目である内部を流れる水や空気に熱伝達をする性能
が、セラミック管を熱交換チューブに取り付け固定する
ための充填剤の熱伝導率が低いため阻害されて、熱効率
が悪く熱交換チューブの保護管としては利用されていな
い。 【0006】又最近のボイラは熱効率の一層の向上をは
かるために、ボイラ内の更なる高温高圧化が進んでい
る。これに応じてボイラ内で配管される熱交換チューブ
やその他の部材は、この苛酷な雰囲気に耐えてより長期
にわたる耐摩耗、耐腐食の性能を発揮する対策が緊急に
望まれているのが現状である。 【0007】本発明はこうした業界の要望に答えて、セ
ラミック製短管を金属製パイプの保護管にして、しかも
熱伝達効率は低下せず又熱交換チューブ等金属製パイプ
の熱変形や振動は金属製バネに吸収させて直接セラミッ
ク保護管に影響しないようにしてセラミック保護管の割
れ損傷を防ぎ金属製パイプの熱交換チューブを長期間に
わたり保護して、以てボイラの稼働率の向上を目的とし
た発明である。 【0008】 【課題を解決するための手段】上記従来技術の課題を解
決するための本発明による実施例を以下に示す。 【0009】 【実施例1】いま金属製パイプである熱交換チューブの
摩耗、腐食を防止するための本発明によるセラミック製
短管の構成による保護管の実施例を示す。ボイラ内に配
管された熱交換チューブの摩耗や腐食が発生しやすい位
置は経験的に予見出来るので、その部分に該当する熱交
換チューブの外周に金属製ピンと金属製コイルバネを用
いて必要個数のセラミック製短管を連接被覆装着して保
護管とする実施例を以下に示す。 (1)、内面に長さ方向全長にわたり今回は4本の溝図
6の5を設けたセラミック製短管図6の4を複数個用意
する。今回はセラミック製短管の材質は耐摩耗性、耐熱
性、熱伝導性に優れている炭化珪素セラミックを使用し
た。 (2)、熱交換チューブ図4の1を金属製リング図5の
6に貫通させて所定の位置で金属製リング6を熱交換チ
ューブ1の外周に溶接取り付けする、図1の6。 (3)、セラミック製短管4の長さ寸法より短い範囲内
の間隔でセラミック製短管内面長さ方向に設けた4本の
溝部にそれぞれ対応する熱交換チューブの外周の所定の
位置に溝1本に対応して片側1本づつ合計4本、両側で
合計8本の金属製ピン図7の2を溶接して取り付ける。
図2の2,図3の2参照。 (4)、次ぎに金属製コイルバネ図8の3を熱交換チュ
ーブに溶接した各金属製ピン2にはめ込む、図2の3,
及び図3の3参照。この場合、金属製コイルバネ3の長
さはセラミック製短管4を装着して金属製コイルバネ3
が圧縮された状態になっても常に金属製ピン2の長さよ
り長くなる寸法のものを取り付ける。図3参照。 (5)、取り付けた金属製コイルバネ3を治具等で圧縮
してセラミック製短管の内面に設けた各溝図6の5には
め込み、セラミック製短管4をスライドして上記(2)
で取り付けた金属製リング6に突き当てて最初のセラミ
ック製短管4を装着する。 (6)、更に必要個数のセラミック製短管を上記
(3)、(4)、(5)の作業を繰り返して前に装着し
たセラミック製短管の端面に突き当てて装着する事によ
り必要個数のセラミック製短管4を順次熱交換チューブ
の外周に連接被覆して装着する。図1参照。 (7)、最後に熱交換チューブの端から金属製リング6
をはめ込みスライドして最後に装着したセラミック製短
管の端面に突き当てて熱交換チューブの外周に溶接取り
付けする事により、取り付けた複数個の連接したセラミ
ック製短管は固定され本発明による熱交換チューブの保
護管は完成する。図1参照。本発明により完成したセラ
ミック製短管により構成した保護管付き熱交換チューブ
は両端の金属部をそれぞれボイラ内で摩耗、腐食の起き
ない場所に位置する様に配置して前後の配管済みの熱交
換チューブと溶接接続してボイラ内への取り付けは完了
する。尚、セラミック製短管の端部を図10の7,図1
1の8,図12の9の如く外周や内周を段付きに加工し
てセラミック製短管を互いに差し込んで装着しても良
い、図9参照。又セラミック製短管の内面長さ方向に設
けた溝の本数は本実施例では4本設けたが、装着した際
のセラミック製短管の安定性を勘案してセラミック製短
管の直径の大小により溝の本数は増減して良い。装着す
るセラミック製短管の内面に設けた溝の長さや本数に応
じて金属製ピン2や金属製コイルバネ3の取り付け個数
も増減する。尚、セラミック製短管の材質は今回は炭化
珪素を使用したが、使用する場所の雰囲気条件に応じて
アルミナ系、窒化珪素系、ジルコニア系、窒化アルミ系
等から使用目的に応じた最適材質を選んで使用すれば良
い。又金属製ピンや金属製コイルバネの材質について
も、ステンレス系、インコネル系等使用する雰囲気に耐
える材質のものを選定して使用すれば良い。 【0010】 【実施例2】本発明による角鋼管への耐摩耗性を目的と
した保護管の実施例を以下に示す。 (1)、セラミック製角パイプ短管の内面の各側面に長
さ方向全長に各1本づつ合計4本の溝図16の13を設
けたセラミック製角パイプ短管図16の12を必要個数
用意する。 (2)、次ぎに角鋼管10をこれより内径の少し大きい
角鋼管短管図15の11に貫通させて所定の位置で角鋼
管10の外周に角鋼管短管11を溶接取り付けして固定
する。図13の11参照。 (3)、セラミック製角パイプ短管12の長さより短い
範囲内の間隔でセラミック製角パイプ短管12の内面に
長さ方向に設けた溝図16の13に対応する角鋼管10
の外周面の位置に溝1本に対応して片側1個従って溝4
本に対応して両側で合計8本の金属製ピン2を溶接して
取り付け固定する、図14の2参照。 (4)、次ぎに溶接取り付けした金属製ピン2に金属製
コイルバネ3をはめ込む。この場合はめ込む金属製コイ
ルバネ3の長さ寸法は、前記 【実施例1】と同じくセラミック製角パイプ短管12を
取り付けて金属製コイルバネ3が圧縮された状態になっ
ても金属製ピン2の長さよりも常に長い寸法のものを取
り付ける、図14。 (5)、取り付けた金属製コイルバネ3を治具等で圧縮
してセラミック製角パイプ短管12の内面に長さ方向に
設けた各溝にはめ込みセラミック製角パイプ短管12を
スライドして上記(2)で取り付けた角鋼管短管11に
突き当ててセラミック製角パイプ短管12を装着する。 (6)、更にセラミック製角パイプ短管12を上記
(3)、(4)、(5)の手順で前に取り付けたセラミ
ック製角パイプ短管12の端面に突き当てて固定する作
業を繰り返す事により必要個数のセラミック製角パイプ
短管12を角鋼管10の外周に被覆連接して取り付け
る、図13参照。 (7)、最後に角鋼管短管11を角鋼管10の端部より
はめ込んで、スライドして最後に取り付けたセラミック
製角パイプ短管12の端面に突き当てて、角鋼管短管1
1を角鋼管10の外周に溶接取り付けして固定すること
により本発明による角鋼管10の保護管は完成する、図
13参照。尚、本実施例では常温雰囲気での耐摩耗性を
必要とする部材の為アルミナ系セラミックを使用した
が、使用するセラミック製角パイプ短管の材質はアルミ
ナ系、窒化珪素系、炭化珪素系、窒化アルミ系等使用す
る場所の雰囲気条件によって必要とする性能をもった適
材材質のセラミックを選別して使用すれば良い。又金属
製ピン2や金属製コイルバネ3の材質についても、ステ
ンレス系、インコロイ系等使用する場所の雰囲気条件に
耐える材質を選定して使用すれば良い。 【0011】本発明による保護管の性能を確認するため
に、85.0MW級発電用加圧流動床複合発電プラント
のボイラ内の熱交換チューブに従来技術による熱交換チ
ューブと本発明による保護管付き熱交換チューブを同一
雰囲気条件の場所に取り付けて、約2年間の運転稼働後
に定期点検時でプラントが休止した際にその性能結果を
比較確認した、以下にその確認試験結果を示す。尚従来
技術による熱交換チューブは、従来この時点で全体の3
割強は摩耗や腐食により新品と取り替えられるのが慣例
であった。 【0012】 【確認試験方法】現在耐熱、耐摩耗性に優れているとし
て高温高圧ボイラの熱交換チューブに使用されているイ
ンコロイ800相等材質の高Ni,高Cr含有合金鋼鋼
管により以下に示す稼働雰囲気条件での性能比較試験を
行なった。 使用した熱交換チューブの寸法 外径φ34Xφ肉厚5.0mmX4,000mm. プラント稼働時のボイラ内取り付け場所雰囲気 ボイラ内圧力:7〜16ata. ボイラ内雰囲気温度:850度C石炭燃焼ガス中. 以上の加圧流動床ボイラ内で、特に摩耗の激しい部位に
下記3種類仕様の上記金属製パイプを熱交換チューブと
して取り付けて性能比較試験を行なった。 性能試験時間:ボイラ稼働開始より約14,000時間
連続運転後の定期点検時に3種類の性能検査をした。 次ぎにその試験内容及び試験結果を示す。 【0013】 【実機装着稼動性能試験】 【0014】 【発明の効果】以上の性能確認試験結果により本発明に
よる保護管付き熱交換チューブは従来技術による熱交換
チューブに比較して次の効果がある事が確認された。 (1)、本発明による保護管付き熱交換チューブにおい
て、使用したセラミック製短管の材質は金属と同等の熱
伝導率を持つ炭化珪素セラミックを使用し、又取り付け
方法も金属製ピンと金属製コイルバネのみにより取り付
け、熱伝達効率を低下させる介在物は無いため、熱交換
チューブの内部を流れる水への熱伝達効率は従来技術に
よる合金製の熱交換チューブに比較しても遜色はなく何
ら問題はなかった。 (2)、ボイラ内の浮遊未燃炭素粒子や灰の衝突はセラ
ミック製保護管で防御した為、金属製熱交換チューブの
摩耗や燃焼ガスによる腐食の発生は見られなかった。 (3)、ボイラ稼働における高温雰囲気での熱交換チュ
ーブの膨張変形による寸法変化や機器稼働時の振動によ
る影響は金属製コイルバネが吸収して、セラミック製短
管には直接影響を与えない為、保護管の割れや損傷は発
生しなかった。 (4)、前記性能確認試験に使用した3種類の熱交換チ
ューブにおいて、従来技術による熱交換チューブ2種類
は性能確認した際に摩耗が激しい為高Cr,高Ni含有
の合金鋼製鋼管に新規取り替えを行なったが、本発明に
よるセラミック製保護管はそのまま現在も継続使用して
既に新たに2年経過しているが、未だに正常に作動して
いる。 従って本発明による保護管付き熱交換チューブは効率の
低下を起こさず長期間にわたり使用出来る事も実証され
た次第である。
Description: BACKGROUND OF THE INVENTION [0001] The present invention relates to (1) the present invention, in a coal-fired boiler of a coal-fired power plant, a boiler of a refuse incinerator, etc., which uses a metal pipe to transfer high-temperature combustion heat. Heat transfer to water and air flowing inside a certain heat exchange tube to generate high temperature steam and high temperature air To prevent abrasion due to floating collision of unburned carbide particles and ash that progress from the outer periphery of the heat exchange tube and corrosion due to combustion gas And a protective tube using the same. (2) Ceramics for preventing abrasion of round steel pipes and square steel pipes used in a structure in an atmosphere in which a wear factor flows, for example, a structural member of an electrostatic precipitator that separates combustion ash from a combustion gas, such as a round steel pipe or a square steel pipe. The present invention relates to a short tube and a protective tube using the same. [0002] As a conventional technique, measures against wear and corrosion are taken by the following techniques. (1) For the heat exchange tube, the material is abrasion resistance,
We manufacture and use heat exchange tubes with alloy steel materials containing high nickel and high chromium that have excellent corrosion resistance. (2) A thermal spray coating made of a ceramic material having excellent wear resistance and corrosion resistance is applied to the heat exchange tubes and structural members. [0003] The above prior art has the following problems. In the method of the prior art (1), the wear rate of the outer circumference of the heat exchange tube due to the floating collision of unburned carbide particles and ash contained in the combustion gas in the boiler is reduced, but the wear is still progressing and the wear is continued. At present, the boiler is stopped for operation, cut off and removed from worn parts and welded with a new heat exchange tube for safety, whenever the wall thickness is reduced to a certain limit due to corrosion or corrosion. Further, in the above method (2), in a high temperature part, the thermal spray coating is peeled off and dropped off with time due to the difference in the thermal expansion coefficient between the thermal spray coating and the object to be sprayed, and the effects of wear resistance and corrosion resistance are lost. There is. Furthermore, even for members that are used in places with low temperatures and have no problem of thermal expansion difference, the thickness of the ceramic sprayed coating can be applied only up to 2 mm to 3 mm with the current technology, so the period of wear and corrosion resistance is reduced. There is a problem that it is short. [0004] Originally, ceramics have outstandingly superior performance in wear resistance, corrosion resistance and heat resistance as compared with other materials. However, there are problems that ceramics cannot be welded and are brittle and brittle because of brittle materials. In particular, as a technique for attaching a ceramic to the outer periphery of a steel pipe as a material to be attached, a method of penetrating the steel pipe through a plurality of short ceramic pipes, filling a gap between the outer circumference of the steel pipe and the inner circumference of the ceramic with a filler, and fixing the same. Has been taken. However, since the coefficient of thermal expansion of the steel pipe in a high-temperature atmosphere is large, and the coefficient of thermal expansion of the ceramic and the filler is small, the ceramic pipe and the filler cannot follow the expansion and thermal deformation of the steel pipe, causing problems such as cracking and falling off. There are many points and it is not very popular. In this method, the performance of transferring heat to water and air flowing inside the heat exchange tube, which is the original function of the heat exchange tube, and the thermal conductivity of the filler for fixing the ceramic tube to the heat exchange tube are fixed. Since it is low, it is hindered and has poor thermal efficiency and is not used as a protective tube for heat exchange tubes. Further, in recent boilers, the temperature and pressure inside the boiler have been further increased in order to further improve the thermal efficiency. In response to this, heat exchange tubes and other members installed in the boiler are urgently required to take measures to withstand the harsh atmosphere and exhibit long-term wear and corrosion resistance. It is. The present invention responds to the demands of the industry by using a short ceramic tube as a protective tube for a metal pipe, without reducing the heat transfer efficiency, and reducing the thermal deformation and vibration of a metal pipe such as a heat exchange tube. Absorbed by a metal spring to prevent direct damage to the ceramic protection tube to prevent cracking of the ceramic protection tube and to protect the heat exchange tube of the metal pipe for a long period of time, thereby improving the operating rate of the boiler Is an invention. An embodiment according to the present invention for solving the above-mentioned problems of the prior art will be described below. [Embodiment 1] An embodiment of a protection tube having a structure of a ceramic short tube according to the present invention for preventing abrasion and corrosion of a heat exchange tube which is a metal pipe will now be described. The locations where the heat exchange tubes in the boiler are likely to wear or corrode can be empirically predicted, so the required number of ceramics can be obtained by using metal pins and metal coil springs around the corresponding heat exchange tubes. An example in which a short tube is connected and covered to form a protective tube will be described below. (1) A plurality of ceramic short tubes 4 shown in FIG. 6 having four grooves 5 shown in FIG. This time, the material of the ceramic short tube was silicon carbide ceramic which has excellent wear resistance, heat resistance and thermal conductivity. (2) The heat exchange tube 1 in FIG. 4 penetrates through the metal ring 6 in FIG. 5 and the metal ring 6 is welded and attached to the outer periphery of the heat exchange tube 1 at a predetermined position. (3) Grooves are provided at predetermined positions on the outer periphery of the heat exchange tube corresponding to the four grooves provided in the length direction of the inner surface of the ceramic short tube at intervals within a range shorter than the length of the ceramic short tube 4. A total of four metal pins (see FIG. 7) are attached by welding, one on each side, and a total of eight on both sides.
See FIG. 2 and FIG. 3-2. (4) Then, the metal coil spring 3 of FIG. 8 is fitted into each metal pin 2 welded to the heat exchange tube.
And FIG. In this case, the length of the metal coil spring 3 is determined by attaching the ceramic short tube 4 to the metal coil spring 3.
Even if is compressed, always attach a pin that is longer than the length of the metal pin 2. See FIG. (5) The attached metal coil spring 3 is compressed by a jig or the like and fitted into each groove 5 shown in FIG. 6 provided on the inner surface of the ceramic short tube, and the ceramic short tube 4 is slid to make the above (2).
The first ceramic short tube 4 is mounted by abutting against the metal ring 6 attached in step (1). (6) The required number of ceramic short tubes are further required by repeating the operations of (3), (4), and (5) above and abutting the end surfaces of the previously mounted ceramic short tubes. The short tube 4 made of ceramic is successively connected to the outer periphery of the heat exchange tube and mounted. See FIG. (7) Finally, a metal ring 6 is inserted from the end of the heat exchange tube.
By inserting and sliding, the end face of the last mounted ceramic short pipe is abutted and welded to the outer circumference of the heat exchange tube, so that the plurality of connected ceramic short pipes are fixed and heat exchange according to the present invention is performed. The tube protection tube is completed. See FIG. The heat exchange tube with a protective tube composed of a ceramic short tube completed according to the present invention is arranged so that the metal parts at both ends are located in places where abrasion and corrosion do not occur in the boiler, and the heat exchange tube is installed before and after the pipe. The connection with the tube is completed by welding. In addition, the end of the short tube made of ceramic is shown in FIG.
As shown in 1-8 and 9 in FIG. 12, the outer periphery and the inner periphery may be stepped, and the ceramic short tubes may be inserted and attached to each other, see FIG. Although the number of grooves provided in the length direction of the inner surface of the ceramic short tube is four in this embodiment, the diameter of the ceramic short tube is made smaller in consideration of the stability of the ceramic short tube when it is mounted. Thus, the number of grooves may be increased or decreased. The number of metal pins 2 and metal coil springs 3 to be mounted is increased or decreased according to the length and number of grooves provided on the inner surface of the ceramic short tube to be mounted. The material of the ceramic short tube was silicon carbide this time, but the most suitable material according to the purpose of use is selected from alumina, silicon nitride, zirconia, aluminum nitride, etc. according to the atmospheric conditions of the place where it is used. You can choose and use it. Also, the material of the metal pin and the metal coil spring may be selected from stainless steel, Inconel, and the like that can withstand the used atmosphere. Embodiment 2 An embodiment of a protective tube for abrasion resistance to a square steel pipe according to the present invention will be described below. (1) Required number of ceramic square pipe short pipes in FIG. 16 provided with a total of four grooves 13 in FIG. 16 on each side of the inner surface of the ceramic square pipe short pipe in the lengthwise direction. prepare. (2) Next, the square steel pipe 10 is made to penetrate through the square steel pipe short pipe 11 having a slightly larger inner diameter than that shown in FIG. 15, and the square steel pipe short pipe 11 is fixed by welding to the outer periphery of the square steel pipe 10 at a predetermined position. . See 11 in FIG. (3) Grooves provided in the longitudinal direction on the inner surface of the ceramic square pipe 12 at intervals shorter than the length of the ceramic square pipe 12 and corresponding to the square steel pipe 10 corresponding to 13 in FIG.
One groove on one side corresponding to one groove, so that the groove 4
A total of eight metal pins 2 are welded and fixed on both sides corresponding to the book, see FIG. (4) Next, the metal coil spring 3 is fitted into the metal pin 2 welded and attached. In this case, the length of the metal coil spring 3 to be fitted is the same as that of the first embodiment even when the metal square spring short pipe 12 is attached and the metal coil spring 3 is compressed. Attach one that is always longer than that shown in FIG. (5) The attached metal coil spring 3 is compressed by a jig or the like and fitted into each groove provided in the length direction on the inner surface of the ceramic square pipe short pipe 12, and the ceramic square pipe short pipe 12 is slid. The short square pipe 12 made of ceramic is attached to the short square pipe 11 attached in (2). (6) Further, the operation of abutting and fixing the ceramic square pipe short pipe 12 against the end face of the ceramic square pipe short pipe 12 previously attached in the above steps (3), (4) and (5) is repeated. Accordingly, a required number of short square pipes 12 made of ceramic are attached to the outer periphery of the square steel pipe 10 by coating and connecting them, see FIG. (7) Finally, the square steel pipe short pipe 11 is fitted from the end of the square steel pipe 10 and slid to abut against the end face of the ceramic square pipe short pipe 12 which is finally attached.
The protective tube for the square steel pipe 10 according to the present invention is completed by welding and fixing 1 to the outer periphery of the square steel pipe 10, see FIG. In this example, alumina-based ceramic was used for members requiring wear resistance in a normal temperature atmosphere, but the material of the ceramic square pipe short pipe used was alumina-based, silicon nitride-based, silicon carbide-based, It is only necessary to select and use ceramics of a suitable material having the required performance depending on the atmospheric conditions of the place where it is used, such as aluminum nitride. Also, the material of the metal pin 2 and the metal coil spring 3 may be selected from materials that can withstand the atmospheric conditions of the place where it is used, such as stainless steel and Incoloy. In order to confirm the performance of the protection tube according to the present invention, the heat exchange tube in the boiler of the pressurized fluidized bed combined cycle power plant for 85.0 MW class power generation is equipped with the heat exchange tube according to the prior art and the protection tube according to the present invention. The heat exchange tubes were installed in a place under the same atmospheric conditions, and the performance results were compared and confirmed when the plant was shut down during regular inspection after operation for about two years. The results of the confirmation tests are shown below. Incidentally, the heat exchange tube according to the prior art has a total of 3
It was customary to replace the strength with a new one due to wear or corrosion. [Confirmation test method] The following operation is carried out by using high-Ni, high-Cr alloy steel pipes made of Incoloy 800 phase or the like, which are currently used for heat exchange tubes of high-temperature and high-pressure boilers because they are excellent in heat resistance and wear resistance. A performance comparison test was performed under atmospheric conditions. The dimensions of the heat exchange tube used were outer diameter φ34 × φ thickness 5.0 mm × 4,000 mm. Installation location in boiler during operation of plant Atmospheric boiler pressure: 7 to 16 ata. Boiler ambient temperature: 850 ° C in coal combustion gas. In the above pressurized fluidized bed boiler, a performance comparison test was performed by attaching the above-mentioned metal pipes of the following three types as heat exchange tubes to particularly abraded portions. Performance test time: Three types of performance tests were performed during periodic inspection after continuous operation for about 14,000 hours from the start of boiler operation. The test contents and test results are shown below. [Actual machine mounting operation performance test] From the results of the above performance confirmation test, it has been confirmed that the heat exchange tube with the protective tube according to the present invention has the following effects as compared with the heat exchange tube according to the prior art. (1) In the heat exchange tube with a protection tube according to the present invention, the material of the ceramic short tube used is silicon carbide ceramic having the same thermal conductivity as metal, and the mounting method is also a metal pin and a metal coil spring. There is no inclusion that lowers the heat transfer efficiency by mounting only, so the heat transfer efficiency to the water flowing inside the heat exchange tube is comparable to the heat transfer tube made of the alloy according to the prior art, and there is no problem. Did not. (2) Collision of suspended unburned carbon particles and ash in the boiler was prevented by a ceramic protective tube, so no wear of the metal heat exchange tube or corrosion due to the combustion gas was observed. (3) Since the metal coil spring absorbs the dimensional change due to the expansion and deformation of the heat exchange tube in a high temperature atmosphere during operation of the boiler and the vibration during operation of the equipment, it does not directly affect the ceramic short tube. No cracking or damage of the protective tube occurred. (4) Among the three types of heat exchange tubes used in the performance confirmation test, the two types of heat exchange tubes according to the prior art are new to high Cr and high Ni alloy steel tubes because of severe wear when the performance is confirmed. After the replacement, the ceramic protection tube according to the present invention has been used continuously for two years, and it is still operating normally. Therefore, it has been demonstrated that the heat exchange tube with the protective tube according to the present invention can be used for a long period of time without lowering the efficiency.

【図面の簡単な説明】 【図1】本発明による保護管取り付け完成品の斜視図で
ある。 【図2】保護管取り付け完成品 【図1】のa−a′断面図である。 【図3】保護管取り付け完成品 【図1】のb−b′断面図である。 【図4】保護される金属製パイプを示す図で(A)は側
面図、(B)は正面図である。 【図5】金属製リングを示す図で(A)は側面図、
(B)は正面図である。 【図6】セラミック製短管を示す図で(A)は側面図、
(B)は正面図である。 【図7】金属製ピンの斜視図である。 【図8】金属製コイルバネの斜視図である。 【図9】セラミック製短管を互いに差し込み式にした保
護管の完成品の断面図である。 【図10】最初に装着する差し込み式セラミック製短管
の図で(A)は側面図、(B)は正面図である。 【図11】中間で装着する差し込み式セラミック製短管
の側面図である。 【図12】最後に装着する差し込み式セラミック製短管
の側面図である。 【図13】本発明による角鋼管へのセラミック製短管の
構成による保護管の完成図である。 【図14】 【図13】のc−c′断面図である。 【図15】角鋼管短管を示す図で(A)は側面図、
(B)は正面図である。 【図16】セラミック製角パイプ短管を示す図で(A)
は斜視図、(B)は側面図である。 【符号の説明】 1:金属製パイプ. 2:金属製ピン. 3:金属製コイルバネ. 4:セラミック製短管. 5:溝. 6:金属製リング. 7:差し込み式セラミック製短管. 8:差し込み式セラミック製短管. 9:差し込み式セラミック製短管. 10:角鋼管. 11:角鋼管短管. 12:セラミック製角パイプ短管. 13:溝.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a completed protective tube mounting product according to the present invention. FIG. 2 is a sectional view taken along the line aa 'of FIG. FIG. 3 is a cross-sectional view taken along the line bb 'of FIG. 4A and 4B are views showing a metal pipe to be protected, wherein FIG. 4A is a side view and FIG. 4B is a front view. FIG. 5 is a view showing a metal ring, (A) is a side view,
(B) is a front view. FIG. 6 is a view showing a ceramic short tube, (A) is a side view,
(B) is a front view. FIG. 7 is a perspective view of a metal pin. FIG. 8 is a perspective view of a metal coil spring. FIG. 9 is a cross-sectional view of a completed protective tube in which ceramic short tubes are inserted into each other. 10A is a side view and FIG. 10B is a front view of a plug-in ceramic short tube to be firstly mounted. FIG. 11 is a side view of a plug-in type short ceramic tube installed in the middle. FIG. 12 is a side view of a plug-in ceramic short pipe to be finally mounted. FIG. 13 is a completed view of a protective tube having a configuration of a short ceramic tube to a square steel tube according to the present invention. FIG. 14 is a sectional view taken along the line cc 'of FIG. FIG. 15 is a view showing a square steel pipe short pipe, (A) is a side view,
(B) is a front view. FIG. 16 is a view showing a ceramic square pipe short pipe (A).
Is a perspective view, and (B) is a side view. [Description of symbols] 1: Metal pipe. 2: Metal pins. 3: Metal coil spring. 4: Ceramic short tube. 5: groove. 6: Metal ring. 7: Insertable ceramic short tube. 8: Plug-in ceramic short tube. 9: Plug-in ceramic short tube. 10: Square steel pipe. 11: Square steel pipe short pipe. 12: Ceramic square pipe short pipe. 13: groove.

Claims (1)

【特許請求の範囲】 内面の長さ方向に複数個の溝を設けた必要個数のセラミ
ック製短管を、金属製ピン及び金属製コイルバネを用い
て金属製パイプの外周に連続被覆する事を特徴とする保
護管。
Claims A feature is that a required number of ceramic short tubes provided with a plurality of grooves in a length direction of an inner surface are continuously coated on an outer periphery of a metal pipe using a metal pin and a metal coil spring. And protection tube.
JP2002064519A 2002-02-01 2002-02-01 Protecting pipe constituted of ceramic short pipe Pending JP2003227697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064519A JP2003227697A (en) 2002-02-01 2002-02-01 Protecting pipe constituted of ceramic short pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064519A JP2003227697A (en) 2002-02-01 2002-02-01 Protecting pipe constituted of ceramic short pipe

Publications (1)

Publication Number Publication Date
JP2003227697A true JP2003227697A (en) 2003-08-15

Family

ID=27751285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064519A Pending JP2003227697A (en) 2002-02-01 2002-02-01 Protecting pipe constituted of ceramic short pipe

Country Status (1)

Country Link
JP (1) JP2003227697A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535647A (en) * 2010-07-28 2013-09-12 マーティン ゲーエムベーハー フュール ウムヴェルト ウント エネルギテクニック Method for protecting heat exchange pipe of steam boiler equipment, molded product, heat exchange pipe and steam boiler equipment
CN107664443A (en) * 2017-11-02 2018-02-06 江阴德耐特重工科技有限公司 A kind of flue gas reheat tube assembly in power plant's low temperature dedusting therrmodynamic system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535647A (en) * 2010-07-28 2013-09-12 マーティン ゲーエムベーハー フュール ウムヴェルト ウント エネルギテクニック Method for protecting heat exchange pipe of steam boiler equipment, molded product, heat exchange pipe and steam boiler equipment
CN107664443A (en) * 2017-11-02 2018-02-06 江阴德耐特重工科技有限公司 A kind of flue gas reheat tube assembly in power plant's low temperature dedusting therrmodynamic system
CN107664443B (en) * 2017-11-02 2023-11-28 江阴德耐特重工科技有限公司 Flue gas reheat pipe assembly in low-temperature dust removal thermodynamic system of power plant

Similar Documents

Publication Publication Date Title
EP2535522B1 (en) Seal assembly comprising a w-shaped seal
KR101732782B1 (en) Heat exchanger having enhanced corrosion resistance
JP2006105129A (en) Shroud segment for turbine engine
US11940084B2 (en) Thermal insulating sleeve liner for fluid flow device and fluid flow device incorporating such liner
TW201638456A (en) Collar supported pressure parts for heat recovery steam generators
US7985046B2 (en) Repair of industrial gas turbine nozzle diaphragm packing
JP2008068262A (en) Header/stab tube welding structure and boiler equipment having the same
JP2003227697A (en) Protecting pipe constituted of ceramic short pipe
CN202141031U (en) Ceramic lined fire tube protective sleeve for boiler
CN201265043Y (en) Heat barrier composite cladding of high temperature resistant component
CN205479751U (en) A pipe strap for heat exchanger tube bundles is last
JP5584161B2 (en) Thermal spray material
KR20080081140A (en) A thermocouple for a flowing bed boiler
CN219955373U (en) Wear-resistant tile for tail flue
JP2008241166A (en) Soot removing device
JP6691834B2 (en) Heat transfer tube of fluidized bed boiler
CN217358226U (en) Compressed air energy storage heat exchanger tube bundle with anti-abrasion structure
JPS60205108A (en) Protector structure of heat transfer tube
CN214581205U (en) Novel boiler water wall tube unit and water wall tube group
JP3659715B2 (en) Internal liner for T-type or L-type hot gas piping
CN220489129U (en) Gradient ceramic alloy composite furnace tube
CN213515189U (en) High-temperature heat protection structure of heat exchanger
JPS61170554A (en) Member for highly corrosion resistant boiler
JP2000065488A (en) Hardwearing structure of heat transfer tube for fluidized bed boiler
JP5701311B2 (en) Alloy coated boiler parts