JP2003226947A - Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method - Google Patents

Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method

Info

Publication number
JP2003226947A
JP2003226947A JP2002025814A JP2002025814A JP2003226947A JP 2003226947 A JP2003226947 A JP 2003226947A JP 2002025814 A JP2002025814 A JP 2002025814A JP 2002025814 A JP2002025814 A JP 2002025814A JP 2003226947 A JP2003226947 A JP 2003226947A
Authority
JP
Japan
Prior art keywords
powder
hydride
soft magnetic
silicon steel
composite soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002025814A
Other languages
Japanese (ja)
Inventor
Muneaki Watanabe
宗明 渡辺
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002025814A priority Critical patent/JP2003226947A/en
Publication of JP2003226947A publication Critical patent/JP2003226947A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a complex soft magnetic sintered material having high strength, high density and high resistivity, and to provide its manufacturing method. <P>SOLUTION: The complex soft magnetic sintered material with high strength, high density and high resistivity has a sintered structure in which a hydride of rare-earth elements including Y, Zr hydrides, Ti hydrides, Hf hydrides, V hydrides, Ta hydrides or Pd hydrides (represented by metal hydrides, hereinafter) exists among particles of Fe-Si silicon steel. In the method for manufacturing the complex soft magnetic sintered material, 0.05 to 5.0 mass% of powder of the metal hydrides having 1 to 10 μm average particle size is added to powder of the Fe-Si silicon steel having 10 to 150 μm average particle size to undergo mixing and pulverization, and the resultant powder mixture is compacted, sintered in a nonoxidizing atmosphere at 900 to 1,200°C, and then heated in a hydrogen atmosphere at 150 to 800°C to undergo hydrogen treatment. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高強度、高密度およ
び高抵抗を有する複合軟磁性焼結材およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite soft magnetic sintered material having high strength, high density and high resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】Fe−Si系ケイ素鋼は軟磁性材料の内
でも最も多く使用されており、その用途は、発電機、大
型モータ、小型モータ、ステッピングモータなどのロー
タ・ステ−タ、電力トランスなど各種トランスの鉄心、
磁気シールドルーム、ドットプリンタのヨーク・ヘッド
など多岐に亘っている。 このFe−Si系ケイ素鋼粉末を燒結して得られた軟磁
性燒結材料は高磁束密度を有しているが、固有抵抗が低
く、これを磁心として用いると、渦電流損失が発生して
実効透磁率が低下するために、高周波用としては使用で
きない。これを避けるために、Fe−Si系ケイ素鋼粉
末の表面にシリカ、酸化チタン、アルミナ、酸化ホウ素、
鉄酸化物、スピネル構造を有するフェライトなどの固有
抵抗の大きい物質を被覆した複合軟磁性粉末を作製し、
この複合軟磁性粉末を燒結してFe−Si系ケイ素鋼粒
子の間に固有抵抗の大きいシリカ、酸化チタン、アルミ
ナ、酸化ホウ素、鉄酸化物などの酸化物やフェライトな
どを介在させた組織を有する複合軟磁性焼結材がすでに
提供されており、この複合軟磁性焼結材はFe−Si系
ケイ素鋼粉末の間に固有抵抗の大きな物質が介在してい
るために、抵抗値が大きくなり、渦電流損失の発生は大
幅に低下するところから高周波用として使用できるよう
になった。
2. Description of the Related Art Fe-Si type silicon steel is most widely used among soft magnetic materials, and its applications are rotors and stators for generators, large motors, small motors, stepping motors, and power transformers. Iron core of various transformers, etc.
There are various fields such as magnetically shielded rooms and yoke heads for dot printers. The soft magnetic sintered material obtained by sintering the Fe-Si-based silicon steel powder has a high magnetic flux density, but has a low specific resistance, and when it is used as a magnetic core, eddy current loss occurs and it is effective. It cannot be used for high frequencies because the permeability decreases. To avoid this, silica, titanium oxide, alumina, boron oxide, on the surface of the Fe-Si-based silicon steel powder,
We made composite soft magnetic powders coated with substances with large specific resistance such as iron oxide and ferrite with spinel structure.
This composite soft magnetic powder is sintered to have a structure in which oxides such as silica, titanium oxide, alumina, boron oxide, and iron oxide having high specific resistance, ferrite, and the like are interposed between Fe—Si-based silicon steel particles. A composite soft magnetic sintered material has already been provided, and this composite soft magnetic sintered material has a large resistance value because a substance having a large specific resistance is present between Fe-Si based silicon steel powder, Since the occurrence of eddy current loss is greatly reduced, it can now be used for high frequencies.

【0003】このFe−Si系ケイ素鋼粒子の間に固有
抵抗の大きい物質が介在している組織を有する複合軟磁
性焼結材は、Fe−Si系ケイ素鋼粉末にシリカ、酸化
チタン、アルミナ、酸化ホウ素、鉄酸化物、フェライト
等のコロイドを混合して複合軟磁性粉末を作製し、この
複合軟磁性粉末を焼結することにより作られる。 これら複合軟磁性粉末を焼結することにより得られた金
属軟磁性焼結材料のうちでも、Fe−Si系ケイ素鋼粉
末の表面にスピネル構造を有するフェライト層を被覆し
てなる複合軟磁性粉末を焼結して得られたFe−Si系
ケイ素鋼粒子同士をフェライト層により隔離した組織を
有する複合軟磁性焼結材が最も注目されている。
A composite soft magnetic sintered material having a structure in which a substance having a large specific resistance is interposed between the Fe--Si type silicon steel particles is a Fe--Si type silicon steel powder containing silica, titanium oxide, alumina, It is made by mixing colloids such as boron oxide, iron oxide and ferrite to prepare a composite soft magnetic powder, and sintering the composite soft magnetic powder. Among the metal soft magnetic sintered materials obtained by sintering these composite soft magnetic powders, the composite soft magnetic powders obtained by coating the surface of Fe—Si based silicon steel powder with the ferrite layer having the spinel structure are available. Most attention has been paid to a composite soft magnetic sintered material having a structure in which Fe-Si-based silicon steel particles obtained by sintering are isolated by a ferrite layer.

【0004】[0004]

【発明が解決しようとする課題】しかし、このFe−S
i系ケイ素鋼粒子同士をフェライト層により隔離した組
織を有する前記複合軟磁性燒結材は、高温で燒結して密
度を上げようとすると、フェライト層は分解または破壊
されるために十分な抵抗値が得られなくなり、実際の燒
結は900℃未満で行なわなければならず、かかる低温
で燒結すると、Fe−Si系ケイ素鋼粉末の表面に形成
されているフェライトの層は分解または破壊が極めて少
なくなって高抵抗の複合軟磁性燒結材がえられるが、反
面、焼結温度が低いために得られた複合軟磁性燒結材の
密度が低下し、したがって機械的強度、特に抗折力が低
下するという欠点があった。一方、シリカ、酸化チタ
ン、アルミナ、酸化ホウ素などの耐熱性に優れ高抵抗物
質からなる層をFe−Si系ケイ素鋼粒子の粒間に形成
してFe−Si系ケイ素鋼粒子同士を隔離した組織を有
する複合軟磁性燒結材は、シリカ、酸化チタン、アルミ
ナ、酸化ホウ素などの高抵抗物質は熱に対して安定して
いる所から高温で燒結しても燒結時に高抵抗物質粉末は
分解または破壊されることが無いが、Fe−Si系ケイ
素鋼粉末とシリカ、酸化チタン、アルミナ、酸化ホウ素
などの高抵抗物質粉末とは燒結時に拡散し固溶すること
が少なく、したがって、これら高抵抗物質粉末はFe−
Si系ケイ素鋼粒子同士の接合を妨げるために、十分な
機械的強度を有する複合軟磁性焼結材は得られないとい
う欠点がある。ところが、近年、これら複合軟磁性燒結材
は、電話機振動板、ドットプリンターのヘッド、電磁
弁、プランジャーなどの振動または衝撃を受ける部品に
も使用されようとしており、前記従来の複合軟磁性燒結
材では機械的強度が不十分であって、かかる振動または
衝撃を受ける部品に使用することのできる高強度で磁気
特性に優れた複合軟磁性燒結材が求められている。
However, this Fe-S
The composite soft magnetic sinter having a structure in which i-based silicon steel particles are isolated from each other by a ferrite layer has a sufficient resistance value because the ferrite layer is decomposed or destroyed when it is sintered at high temperature to increase the density. Since it cannot be obtained, the actual sintering must be carried out at less than 900 ° C. When the sintering is performed at such a low temperature, the ferrite layer formed on the surface of the Fe—Si-based silicon steel powder is extremely decomposed or destroyed. Although a high resistance composite soft magnetic sinter can be obtained, the density of the composite soft magnetic sinter obtained is low due to the low sintering temperature, so that the mechanical strength, especially the transverse rupture strength is reduced. was there. On the other hand, a structure in which Fe-Si-based silicon steel particles are isolated from each other by forming a layer made of a highly resistant substance having excellent heat resistance such as silica, titanium oxide, alumina, and boron oxide between Fe-Si-based silicon steel particles. The composite soft magnetic sinter that has a high resistance substance such as silica, titanium oxide, alumina, and boron oxide is stable against heat, so even if it is sintered at high temperature, the high resistance substance powder decomposes or breaks during sintering. However, Fe-Si-based silicon steel powder and high-resistance substance powders such as silica, titanium oxide, alumina, and boron oxide rarely diffuse and solid-solve during sintering, and therefore, these high-resistance substance powders Is Fe-
There is a drawback that a composite soft magnetic sintered material having sufficient mechanical strength cannot be obtained because it interferes with the joining of Si-based silicon steel particles. However, in recent years, these composite soft magnetic sinter materials are about to be used in parts such as telephone diaphragms, dot printer heads, solenoid valves, and plungers that are subject to vibration or impact. Therefore, there is a demand for a composite soft magnetic sinter that has insufficient mechanical strength and can be used for parts subject to such vibrations or impacts and that has high strength and excellent magnetic properties.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは、
高強度、高密度を有しかつ高抵抗を有する複合軟磁性焼
結材を得るべく研究を行った。その結果、 (イ)平均粒径:10〜150μmのFe−Si系ケイ
素鋼粉末に、いずれも平均粒径:1〜10μmを有する
Yを含む希土類元素(以下、Rで示す)の水素化物粉
末、Zrの水素化物粉末、Tiの水素化物粉末、Hfの
水素化物粉末、Vの水素化物粉末、Taの水素化物粉末
またはPdの水素化物粉末などを添加し混合粉砕して混
合粉末を作製し、この混合粉末を燒結すると、燒結時に
金属水素化物粉末は脱水素されてR、Zr、Ti、H
f、V、TaまたはPdの一部はFe−Si系ケイ素鋼
粒子の表面に拡散し固溶してFe−Si系ケイ素鋼粒子
同士の結合を強め、燒結終了後、水素雰囲気中で熱処理
すると、Fe−Si系ケイ素鋼粒子の粒間に存在する
R、Zr、Ti、Hf、V、TaまたはPdは水素を吸
収してFe−Si系ケイ素鋼粒子の表面にR、Zr、T
i、Hf、V、TaまたはPdの水素化物を形成し、F
e−Si系ケイ素鋼粒子がR、Zr、Ti、Hf、V、
TaまたはPdなどの水素化物により被覆されてFe−
Si系ケイ素鋼粒子とFe−Si系ケイ素鋼粒子の間に
R、Zr、Ti、Hf、V、TaまたはPdなどの水素
化物が介在した組織を有する複合軟磁性焼結材が得ら
れ、このR、Zr、Ti、Hf、V、TaまたはPdな
どの水素化物被膜は固有抵抗値が高いところから、高抵
抗を有する複合軟磁性焼結材が得られ、この複合軟磁性
焼結材は高温で燒結されるところから鉄酸化物またはフ
ェライト層を有する複合軟磁性焼結材と比較して高密度
および高強度を有し、またシリカ、酸化チタン、アルミ
ナ、酸化ホウ素などの耐熱性に優れ高抵抗物質からなる
層をFe−Si系ケイ素鋼粒子の粒界に形成した従来の
複合軟磁性燒結材に比べて機械的強度が向上する、
(ロ)前記燒結終了後、水素雰囲気中で熱処理する熱処
理工程において、水素雰囲気に含まれる水素量を調節す
ることによりYを含む希土類元素、Zr、Ti、Hf、
V、TaまたはPdなどの水素化の程度を調節すること
ができ、それによって、Fe−Si系ケイ素鋼粒子とF
e−Si系ケイ素鋼粒子との間に介在するR、Zr、T
i、Hf、V、TaまたはPdなどの水素化物の量を調
節することができ、それによって複合軟磁性焼結材の抵
抗値を調節することができるので低周波から高周波にわ
たる広範囲な周波数帯域において使用可能な複合軟磁性
燒結材が得られる、などの研究結果が得られたのであ
る。
Therefore, the present inventors have
Research was conducted to obtain a composite soft magnetic sintered material having high strength, high density, and high resistance. As a result, (a) hydride powder of rare earth element (hereinafter, represented by R) containing Y having an average particle size of 1 to 10 μm in Fe-Si based silicon steel powder having an average particle size of 10 to 150 μm. , Zr hydride powder, Ti hydride powder, Hf hydride powder, V hydride powder, Ta hydride powder or Pd hydride powder, etc. are added and mixed and pulverized to produce a mixed powder. When this mixed powder is sintered, the metal hydride powder is dehydrogenated during sintering, and R, Zr, Ti, H
Part of f, V, Ta or Pd diffuses on the surface of the Fe-Si based silicon steel particles and forms a solid solution to strengthen the bonding between the Fe-Si based silicon steel particles, and after the sintering, heat treatment in a hydrogen atmosphere. , R, Zr, Ti, Hf, V, Ta or Pd existing between the Fe-Si based silicon steel particles absorb hydrogen to form R, Zr, T on the surface of the Fe-Si based silicon steel particles.
form a hydride of i, Hf, V, Ta or Pd, F
e-Si-based silicon steel particles are R, Zr, Ti, Hf, V,
Fe- coated with a hydride such as Ta or Pd
A composite soft magnetic sintered material having a structure in which a hydride such as R, Zr, Ti, Hf, V, Ta or Pd is interposed between Si-based silicon steel particles and Fe-Si-based silicon steel particles is obtained. Since the hydride coating of R, Zr, Ti, Hf, V, Ta, or Pd has a high specific resistance value, a composite soft magnetic sintered material having high resistance can be obtained. Since it is sintered, it has higher density and higher strength than the composite soft magnetic sintered material with iron oxide or ferrite layer, and it has excellent heat resistance such as silica, titanium oxide, alumina, and boron oxide. Mechanical strength is improved as compared with the conventional composite soft magnetic sinter material in which a layer made of a resistance material is formed at the grain boundaries of Fe-Si-based silicon steel particles.
(B) In the heat treatment step of performing heat treatment in a hydrogen atmosphere after the completion of the sintering, the rare earth element containing Y, Zr, Ti, Hf, by adjusting the amount of hydrogen contained in the hydrogen atmosphere,
The degree of hydrogenation such as V, Ta or Pd can be controlled, and thereby Fe-Si based silicon steel particles and F
R, Zr, T present between the e-Si-based silicon steel particles
It is possible to adjust the amount of hydride such as i, Hf, V, Ta or Pd, and thereby to adjust the resistance value of the composite soft magnetic sintered material, so that in a wide frequency band from low frequency to high frequency. Research results were obtained, such as obtaining a compound soft magnetic sinter that can be used.

【0006】この発明は、かかる研究結果に基づいてな
されたものであって、 (1)Fe−Si系ケイ素鋼粒子の間に、Rの水素化
物、Zrの水素化物、Tiの水素化物、Hfの水素化
物、Vの水素化物、Taの水素化物またはPdの水素化
物(以下、これら水素化物を金属水素化物と総称する)が
介在している燒結組織を有する高強度、高密度および高
抵抗を有する複合軟磁性焼結材、に特徴を有するもので
ある。
The present invention has been made on the basis of the above research results. (1) R-hydride, Zr-hydride, Ti-hydride, Hf between Fe-Si type silicon steel particles. Hydride, V hydride, Ta hydride or Pd hydride (hereinafter, these hydrides are collectively referred to as metal hydrides) having a sintered structure with high strength, high density and high resistance. The composite soft magnetic sintered material has a feature.

【0007】Fe−Si系ケイ素鋼粒子とFe−Si系
ケイ素鋼粒子の間に介在する水素化物は、Fe−Si系
ケイ素鋼粒子が水素化物により被覆されてFe−Si系
ケイ素鋼粒子同士が金属水素化物により完全に隔離され
ている燒結組織を有することが一層の高抵抗をもたら
し、渦電流損失の発生を一層抑制することができる。従っ
て、この発明は、 (2)Fe−Si系ケイ素鋼粒子の間に金属水素化物が
介在し、Fe−Si系ケイ素鋼粒子が水素化物により被
覆されてFe−Si系ケイ素鋼粒子同士が金属水素化物
により隔離されている燒結組織を有する高強度、高密度
および高抵抗を有する複合軟磁性焼結材、に特徴を有す
るものである。
The hydride present between the Fe-Si type silicon steel particles and the Fe-Si type silicon steel particles is such that the Fe-Si type silicon steel particles are covered with the hydride and the Fe-Si type silicon steel particles are Having a sintered structure that is completely isolated by the metal hydride brings about higher resistance and can further suppress the occurrence of eddy current loss. Therefore, the present invention provides (2) a metal hydride is present between Fe-Si-based silicon steel particles, and Fe-Si-based silicon steel particles are covered with a hydride so that Fe-Si-based silicon steel particles are metallic. It is characterized by a composite soft magnetic sintered material having a high-strength, high-density and high resistance, which has a sintered structure isolated by a hydride.

【0008】この発明の複合軟磁性焼結材を製造するに
は、まず、平均粒径:10〜150μmを有する市販の
Fe−Si系ケイ素鋼粉末を用意し、さらに、いずれも
平均粒径:1〜10μmを有する市販のRの水素化物粉
末、Zrの水素化物粉末、Tiの水素化物粉末、Hfの
水素化物粉末、Vの水素化物粉末、Taの水素化物粉
末、Pdの水素化物粉末(以下、これら水素化物粉末を
金属水素化物粉末という)を用意し、前記Fe−Si系
ケイ素鋼粉末に対して前記金属水素化物粉末を0.05
〜5.0質量%添加し混合粉砕して混合粉末を作製し、
得られた混合粉末を圧粉成形し、非酸化性雰囲気中、温
度:900〜1200℃で焼結したのち、水素雰囲気
中、温度:150〜800℃で加熱することにより水素
化処理することにより得られる。この場合、水素雰囲気
中、温度:150〜800℃で加熱することにより水素
化処理する工程を、焼結後冷却する途中の工程において
雰囲気を水素雰囲気とすることにより代替することがで
きる。
In order to manufacture the composite soft magnetic sintered material of the present invention, first, a commercially available Fe--Si type silicon steel powder having an average particle size of 10 to 150 μm is prepared. Commercially available R hydride powder having 1-10 μm, Zr hydride powder, Ti hydride powder, Hf hydride powder, V hydride powder, Ta hydride powder, Pd hydride powder (hereinafter These hydride powders are referred to as metal hydride powders), and the metal hydride powder is added to the Fe-Si-based silicon steel powder in an amount of 0.05
~ 5.0 mass% is added, mixed and pulverized to prepare a mixed powder,
The obtained mixed powder is compacted and sintered in a non-oxidizing atmosphere at a temperature of 900 to 1200 ° C., and then heated in a hydrogen atmosphere at a temperature of 150 to 800 ° C. for hydrogenation treatment. can get. In this case, the step of hydrogenating by heating at a temperature of 150 to 800 ° C. in a hydrogen atmosphere can be replaced by setting the atmosphere to be a hydrogen atmosphere in the step of cooling after sintering.

【0009】したがって、この発明は、 (3)平均粒径:10〜150μmのFe−Si系ケイ
素鋼粉末に、平均粒径:1〜10μmを有する金属水素
化物粉末を0.05〜5.0質量%添加し混合粉砕して
混合粉末を作製し、得られた混合粉末を圧密成形し、圧
密成形体を非酸化性雰囲気中、温度:900〜1200
℃で焼結したのち、水素雰囲気中、温度:150〜80
0℃で加熱することにより水素化処理する高強度、高密
度および高抵抗を有する複合軟磁性焼結材の製造方法、 (4)平均粒径:10〜150μmのFe−Si系ケイ
素鋼粉末に、平均粒径:1〜10μmを有する金属水素
化物粉末を0.05〜5.0質量%添加し混合粉砕して
混合粉末を作製し、得られた混合粉末を圧密成形し、圧
密成形体を非酸化性雰囲気中、温度:900〜1200
℃で焼結し、焼結後冷却途中の温度範囲:150〜80
0℃における雰囲気を水素雰囲気とする高強度、高密度
および高抵抗を有する複合軟磁性焼結材の製造方法、に
特徴を有するものである。
Therefore, according to the present invention, (3) 0.05 to 5.0 of metal hydride powder having an average particle size of 1 to 10 μm is added to Fe-Si type silicon steel powder having an average particle size of 10 to 150 μm. % By mass, mixed and pulverized to prepare a mixed powder, and the obtained mixed powder is compacted.
After sintering at ℃, in a hydrogen atmosphere, temperature: 150-80
A method for producing a composite soft magnetic sintered material having high strength, high density and high resistance, which is hydrogenated by heating at 0 ° C. (4) An Fe-Si-based silicon steel powder having an average particle size of 10 to 150 μm , 0.05 to 5.0 mass% of metal hydride powder having an average particle diameter of 1 to 10 μm is added, mixed and pulverized to prepare a mixed powder, and the obtained mixed powder is compacted to obtain a compacted compact. Temperature: 900-1200 in non-oxidizing atmosphere
Sintering at C, temperature range during cooling after sintering: 150-80
The present invention is characterized by a method for producing a composite soft magnetic sintered material having high strength, high density and high resistance in which a hydrogen atmosphere is used as an atmosphere at 0 ° C.

【0010】この発明において、前記Rは、Y,Ce,
La,Pr,Nd,Sm,Gd,Ho,Er,Yb,L
uの内の1種以上である。また、この発明の高強度、高
密度および高抵抗を有する複合軟磁性焼結材を製造する
ためのFe−Si系ケイ素鋼粉末は、アトマイズ法、電
解法、還元法のいずれかの方法で作製したFe−Si系
ケイ素鋼粉末を使用することができる。さらに、この発
明の高強度、高密度および高抵抗を有する複合軟磁性焼
結材を製造するために使用するFe−Si系ケイ素鋼粉
末は、質量%で、Si:1〜10%を含み、残部がFe
および不可避不純物からなる組成のFe−Si系ケイ素
鋼(例えば、3%Si−Fe、6.5%Si−Fe)粉
末が好ましいが、これに限定されるものではなく、その
他一般に知られているFe−Si系ケイ素鋼粉末を使用
することができる。
In the present invention, R is Y, Ce,
La, Pr, Nd, Sm, Gd, Ho, Er, Yb, L
It is one or more of u. Further, the Fe-Si-based silicon steel powder for producing the composite soft magnetic sintered material having high strength, high density and high resistance of the present invention is produced by any of atomization method, electrolysis method and reduction method. Fe-Si based silicon steel powder can be used. Furthermore, the Fe-Si based silicon steel powder used for producing the composite soft magnetic sintered material having high strength, high density and high resistance of the present invention contains Si: 1 to 10% by mass, The balance is Fe
Fe-Si-based silicon steel (for example, 3% Si-Fe, 6.5% Si-Fe) powder having a composition of and unavoidable impurities is preferable, but the powder is not limited thereto and is generally known. Fe-Si based silicon steel powder can be used.

【0011】平均粒径:1〜10μmの金属水素化物粉
末の添加量を0.05質量%以上にした理由は、平均粒
径:1〜10μmの金属水素化物粉末が0.05質量%
未満含まれていても抵抗値に大きく影響を及ぼすことは
ないからであり、一方、5.0質量%を越えて含有する
と非磁性相の割合が多くなり、比透磁率の低下が著しく
なるので好ましくないことによるものである。金属水素
化物粉末はFe−Si系ケイ素鋼粉末に比べて粉砕され
やすいため、ボールミル等により混合粉砕することによ
り金属水素化物粉末はさらに微細化され、Fe−Si系
ケイ素鋼粉末の表面に金属水素化物粉末が均一に付着
し、金属水素化物粉末が均一に分散した混合粉末が得ら
れ、この混合粉末を圧密成形すると、金属水素化物粉末
が一層均一に分散した圧密成形体が得られる。
The reason why the addition amount of the metal hydride powder having an average particle size of 1 to 10 μm is 0.05% by mass or more is that the amount of the metal hydride powder having an average particle size of 1 to 10 μm is 0.05% by mass.
If it is contained in less than 5.0 mass%, the content of the non-magnetic phase will increase and the relative permeability will decrease remarkably. This is because it is not preferable. Since the metal hydride powder is more easily crushed than the Fe-Si-based silicon steel powder, the metal hydride powder is further refined by mixing and crushing with a ball mill or the like, and the metal hydride powder is added to the surface of the Fe-Si-based silicon steel powder. A mixed powder in which the hydride powder is evenly attached and the metal hydride powder is uniformly dispersed is obtained. When this mixed powder is compacted, a compacted body in which the metal hydride powder is evenly dispersed is obtained.

【0012】[0012]

【発明の実施の形態】実施例 原料粉末として、平均粒径:55μmを有し、成分組成
がSi:3%を含有し、残部がFeおよび不可避不純物
からなるFe−Si系ケイ素鋼粉末のアトマイズ粉末を
用意し、さらに、いずれも平均粒径:3μmを有するY
の水素化物粉末、Laの水素化物粉末、Ceの水素化物
粉末、Ndの水素化物粉末、Smの水素化物粉末、Zr
の水素化物粉末、Tiの水素化物粉末、Hfの水素化物
粉末、Vの水素化物粉末、Taの水素化物粉末またはP
dの水素化物粉末を用意した。前記Yの水素化物粉末、
Laの水素化物粉末、Ceの水素化物粉末、Ndの水素
化物粉末、Smの水素化物粉末、Zrの水素化物粉末、
Tiの水素化物粉末、Hfの水素化物粉末、Vの水素化
物粉末、Taの水素化物粉末またはPdの水素化物粉末
を表1に示される配合組成となるように前記Fe−Si
系ケイ素鋼アトマイズ粉末に添加し、混合粉砕して混合
粉末を作製し、この混合粉末を6ton/cm2の成形
圧をかけることにより縦:40mm、横:10mm、厚
さ:5mmの寸法を有する圧密体を成形し、得られた圧
密体を不活性ガス雰囲気中、1100℃の温度で焼結
し、焼結後の冷却工程において800℃まで冷却した時
点で雰囲気が水素雰囲気となるように水素を供給し、こ
の水素雰囲気は少なくとも150℃に冷却するまで保持
することにより水素化処理して本発明複合軟磁性焼結材
1〜11、比較複合軟磁性焼結材1〜2を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Atomized Fe-Si-based silicon steel powder having an average particle diameter of 55 μm, a composition of Si: 3%, and the balance being Fe and unavoidable impurities as a raw material powder. A powder is prepared, and each Y has an average particle diameter of 3 μm.
Hydride powder, La hydride powder, Ce hydride powder, Nd hydride powder, Sm hydride powder, Zr
Hydride powder, Ti hydride powder, Hf hydride powder, V hydride powder, Ta hydride powder or P
A hydride powder of d was prepared. The hydride powder of Y,
La hydride powder, Ce hydride powder, Nd hydride powder, Sm hydride powder, Zr hydride powder,
The Fe—Si hydride powder of Ti, the hydride powder of Hf, the hydride powder of V, the hydride powder of Ta, or the hydride powder of Pd was adjusted to have the composition shown in Table 1 above.
It is added to the system-based silicon steel atomized powder, mixed and pulverized to prepare a mixed powder, and the mixed powder is subjected to a molding pressure of 6 ton / cm 2 to have dimensions of length: 40 mm, width: 10 mm, thickness: 5 mm. A compact is molded, the compact is sintered in an inert gas atmosphere at a temperature of 1100 ° C., and hydrogen is added so that the atmosphere becomes a hydrogen atmosphere when cooled to 800 ° C. in the cooling step after sintering. Was supplied, and this hydrogen atmosphere was held until it was cooled to at least 150 ° C. to carry out hydrogenation treatment to produce inventive composite soft magnetic sintered materials 1 to 11 and comparative composite soft magnetic sintered materials 1 and 2.

【0013】従来例 比較のために、Fe−Si系ケイ素鋼アトマイズ粉末の
表面に(Mn17Zn16Fe6734を被覆した複合粉末
を用意し、この複合粉末を800℃で燒結することによ
り粒界にフェライト相を有する従来複合軟磁性焼結材を
作製した。
For comparison with the conventional example, a composite powder in which (Mn 17 Zn 16 Fe 67 ) 3 O 4 is coated on the surface of Fe-Si type silicon steel atomized powder is prepared, and the composite powder is sintered at 800 ° C. As a result, a conventional composite soft magnetic sintered material having a ferrite phase at the grain boundary was produced.

【0014】このようにして得られた本発明複合軟磁性
焼結材1〜11、比較複合軟磁性焼結材1〜2および従
来複合軟磁性焼結材の組織をSEMで観察した結果、本
発明複合軟磁性焼結材1〜11および比較複合軟磁性焼
結材1〜2にはいずれもFe結晶粒の粒界に水素化金属
が介在している組織を有していた。さらに本発明複合軟
磁性焼結材1〜11、比較複合軟磁性焼結材1〜2およ
び従来複合軟磁性焼結材について相対密度および抗折力
を測定し、その結果を表1に示し、さらに、本発明複合軟
磁性焼結材1〜11、比較複合軟磁性焼結材1〜2およ
び従来複合軟磁性焼結材について、磁束密度、抵抗値お
よび周波数:100KHzの高周波における比透磁率を
測定し、その結果を表1に示した。
The structures of the thus obtained composite soft magnetic sintered materials 1 to 11 of the present invention, the comparative composite soft magnetic sintered materials 1 and 2 and the conventional composite soft magnetic sintered material were observed by SEM. The invented composite soft magnetic sintered materials 1 to 11 and the comparative composite soft magnetic sintered materials 1 and 2 each had a structure in which a metal hydride was present at the grain boundary of Fe crystal grains. Further, relative densities and transverse rupture strengths of the composite soft magnetic sintered materials 1 to 11 of the present invention, the comparative composite soft magnetic sintered materials 1 to 2 and the conventional composite soft magnetic sintered material were measured, and the results are shown in Table 1. Furthermore, regarding the composite soft magnetic sintered materials 1 to 11 of the present invention, the comparative composite soft magnetic sintered materials 1 to 2 and the conventional composite soft magnetic sintered material, the magnetic flux density, the resistance value and the relative permeability at a high frequency of 100 KHz are shown. The measurement was performed, and the results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に示される結果から、本発明複合軟磁
性焼結材1〜11は、粒界にフェライト相を有する従来
複合軟磁性焼結材に比べて磁気特性および抵抗値につい
ては遜色が無いが、本発明複合軟磁性焼結材1〜11は
従来複合軟磁性焼結材に比べて一層高密度を有すると共
に一層機械的強度が高いことが分かる。しかし、比較複
合軟磁性焼結材1〜2は機械的特性または磁気特性の内
の少なくともいずれかが劣るので好ましくないことが分
かる。
From the results shown in Table 1, the composite soft magnetic sintered materials 1 to 11 of the present invention have a magnetic property and resistance comparable to those of the conventional composite soft magnetic sintered materials having a ferrite phase at the grain boundary. However, it is understood that the composite soft magnetic sintered materials 1 to 11 of the present invention have higher density and higher mechanical strength than the conventional composite soft magnetic sintered materials. However, it is understood that the comparative composite soft magnetic sintered materials 1 and 2 are inferior in at least one of the mechanical properties and the magnetic properties, and thus are not preferable.

【0017】[0017]

【発明の効果】この発明は、高密度で機械的強度が優
れ、さらに高周波の比透磁率の高い複合軟磁性焼結材を
提供することができ、電気および電子産業において優れ
た効果をもたらすものである。
INDUSTRIAL APPLICABILITY The present invention can provide a composite soft magnetic sintered material having a high density, excellent mechanical strength, and high relative permeability at high frequencies, and brings excellent effects in the electric and electronic industries. Is.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 AA26 AB10 AC01 BC12 CA00 DA21 FA08 FA14 KA43 5E041 AA02 AA19 BC08 BD01 CA04 HB03 NN03 NN06 NN18    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4K018 AA26 AB10 AC01 BC12 CA00                       DA21 FA08 FA14 KA43                 5E041 AA02 AA19 BC08 BD01 CA04                       HB03 NN03 NN06 NN18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Fe−Si系ケイ素鋼粒子の間に、Yを含
む希土類元素の水素化物、Zrの水素化物、Tiの水素
化物、Hfの水素化物、Vの水素化物、Taの水素化物
またはPdの水素化物(以下、これらを金属水素化物と
いう)が介在した燒結組織を有することを特徴とする高
強度、高密度および高抵抗を有する複合軟磁性焼結材。
1. A rare earth element hydride containing Y, Zr hydride, Ti hydride, Hf hydride, V hydride, Ta hydride or Fe-Si based silicon steel particles. A composite soft magnetic sintered material having high strength, high density and high resistance, which has a sintered structure in which hydrides of Pd (hereinafter, these are referred to as metal hydrides) intervene.
【請求項2】Fe−Si系ケイ素鋼粒子の間に金属水素
化物が介在し、Fe−Si系ケイ素鋼粒子が水素化物に
より被覆されてFe−Si系ケイ素鋼粒子同士が金属水
素化物により隔離されている燒結組織を有することを特
徴とする高強度、高密度および高抵抗を有する複合軟磁
性焼結材。
2. A metal hydride is interposed between Fe—Si type silicon steel particles, the Fe—Si type silicon steel particles are covered with the hydride, and the Fe—Si type silicon steel particles are separated from each other by the metal hydride. A composite soft magnetic sintered material having high strength, high density and high resistance, which is characterized by having a sintered structure.
【請求項3】平均粒径:10〜150μmのFe−Si
系ケイ素鋼粉末に、平均粒径:1〜10μmを有する金
属水素化物粉末を0.05〜5.0質量%添加し混合粉
砕して混合粉末を作製し、得られた混合粉末を圧密成形
し、圧密成形体を非酸化性雰囲気中、温度:900〜1
200℃で焼結したのち、水素雰囲気中、温度:150
〜800℃で加熱することにより水素化処理することを
特徴とする高強度、高密度および高抵抗を有する複合軟
磁性焼結材の製造方法。
3. Fe-Si having an average particle size of 10 to 150 μm.
0.05 to 5.0 mass% of metal hydride powder having an average particle diameter of 1 to 10 μm is added to the silicon-based silicon steel powder, mixed and pulverized to prepare a mixed powder, and the obtained mixed powder is compacted. , The consolidated compact in a non-oxidizing atmosphere, temperature: 900-1
After sintering at 200 ° C, in a hydrogen atmosphere, temperature: 150
A method for producing a composite soft magnetic sintered material having high strength, high density and high resistance, which is characterized by performing a hydrogenation treatment by heating at ˜800 ° C.
【請求項4】平均粒径:10〜150μmのFe−Si
系ケイ素鋼粉末に、平均粒径:1〜10μmを有する金
属水素化物粉末を0.05〜5.0質量%添加し混合粉
砕して混合粉末を作製し、得られた混合粉末を圧密成形
し、圧密成形体を非酸化性雰囲気中、温度:900〜1
200℃で焼結し、焼結後冷却途中の温度範囲:150
〜800℃における雰囲気を水素雰囲気とすることを特
徴とする高強度、高密度および高抵抗を有する複合軟磁
性焼結材の製造方法。
4. Fe-Si having an average particle size of 10 to 150 μm.
0.05 to 5.0 mass% of metal hydride powder having an average particle diameter of 1 to 10 μm is added to the silicon-based silicon steel powder, mixed and pulverized to prepare a mixed powder, and the obtained mixed powder is compacted. , The consolidated compact in a non-oxidizing atmosphere, temperature: 900-1
Temperature range during sintering at 200 ° C. and cooling after sintering: 150
A method for producing a composite soft magnetic sintered material having high strength, high density and high resistance, characterized in that an atmosphere at ˜800 ° C. is a hydrogen atmosphere.
JP2002025814A 2002-02-01 2002-02-01 Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method Withdrawn JP2003226947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025814A JP2003226947A (en) 2002-02-01 2002-02-01 Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025814A JP2003226947A (en) 2002-02-01 2002-02-01 Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003226947A true JP2003226947A (en) 2003-08-15

Family

ID=27747849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025814A Withdrawn JP2003226947A (en) 2002-02-01 2002-02-01 Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003226947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102711A (en) * 2007-10-24 2009-05-14 Denso Corp Soft magnetic sintering material, method for producing the same, and electromagnetic structure
JP2013076166A (en) * 2012-11-21 2013-04-25 Denso Corp Method for manufacturing soft magnetic sintering material
CN107018647A (en) * 2017-05-24 2017-08-04 合肥工业大学 A kind of multilayer electromagnetic shielding cabinet with special teeth groove, arc-shaped slot structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102711A (en) * 2007-10-24 2009-05-14 Denso Corp Soft magnetic sintering material, method for producing the same, and electromagnetic structure
JP2013076166A (en) * 2012-11-21 2013-04-25 Denso Corp Method for manufacturing soft magnetic sintering material
CN107018647A (en) * 2017-05-24 2017-08-04 合肥工业大学 A kind of multilayer electromagnetic shielding cabinet with special teeth groove, arc-shaped slot structure
CN107018647B (en) * 2017-05-24 2024-02-13 合肥工业大学 Multilayer electromagnetic shielding cabinet body with special tooth slot and arc clamping groove structure

Similar Documents

Publication Publication Date Title
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
EP2947670B1 (en) Method for manufacturing powder magnetic core, powder magnetic core, and coil component
EP1705670B1 (en) Functionally graded rare earth permanent magnet
CN105047343B (en) Permanent magnet and motor
CN107710351B (en) R-T-B based sintered magnet and its manufacturing method
TWI364765B (en) Rare earth permanent magnet
JP4702547B2 (en) Functionally graded rare earth permanent magnet
JP3405806B2 (en) Magnet and manufacturing method thereof
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
EP3354759A1 (en) Soft magnetic alloy and magnetic device
CN106319323B (en) A kind of Sintered NdFeB magnet assistant alloy slab and preparation method thereof
EP3364425A1 (en) Soft magnetic alloy and magnetic device
CN108701517A (en) The manufacturing method of R-T-B based sintered magnets
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
EP3477664B1 (en) Soft magnetic alloy and magnetic device
JP2002299114A (en) Dust core
EP3441990B1 (en) Soft magnetic alloy and magnetic device
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JPH01175705A (en) Manufacture of rare earth magnet
JP2003226947A (en) Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method
CN109509628A (en) A kind of preparation method of sintered NdFeB composite powder
JP2003239035A (en) Composite soft magnetic sintered material with high strength, high density, and high resistivity, and its manufacturing method
JP2003347113A (en) Composite magnetic material and its manufacturing method
JP2003226903A (en) Complex soft magnetic sintered compact with high strength, high density and high resistivity, and its manufacturing method
JP2003239049A (en) Composite soft magnetic sintered material with high strength, high density, and high resistivity, and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405