JP2003223929A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JP2003223929A
JP2003223929A JP2002020874A JP2002020874A JP2003223929A JP 2003223929 A JP2003223929 A JP 2003223929A JP 2002020874 A JP2002020874 A JP 2002020874A JP 2002020874 A JP2002020874 A JP 2002020874A JP 2003223929 A JP2003223929 A JP 2003223929A
Authority
JP
Japan
Prior art keywords
sodium
sulfur
active material
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002020874A
Other languages
Japanese (ja)
Inventor
Hiromi Tokoi
博見 床井
Takeshi Hiranuma
平沼  健
Yoshinori Saito
義則 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002020874A priority Critical patent/JP2003223929A/en
Publication of JP2003223929A publication Critical patent/JP2003223929A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery in which a large output operation of a sodium- sulfur battery is possible and increase of battery capacity can be aimed at. <P>SOLUTION: This sodium-sulfur battery is made possible to make smooth charging/discharging, even at an operation over a long period of time with a large output, by forming suitable flow-way paths for sodium ions, sulfur, and sodium polysulfide in a collector electrode, which facilitates supply of an active material required for battery reaction to a battery reaction range and further making discharge of a reaction product. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はナトリウム硫黄電池
に係り、例えば高温型二次電池に好適なナトリウム硫黄
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery, and more particularly to a sodium-sulfur battery suitable for a high temperature secondary battery.

【0002】[0002]

【従来の技術】ナトリウム硫黄電池は、負極活物質にナ
トリウム、正極活物質に硫黄、及び多硫化ナトリウム等
溶融塩を、正極と負極の隔壁に、ナトリウムイオンに導
電性がある固体電解質が用いられる高温型二次電池であ
る。ナトリウムイオン導電性の固体電解質としては、ベ
ータアルミナが用いられ、袋管を用いる場合が多い。一
般に、ナトリウムイオン導電性の固体電解質とナトリウ
ムと硫黄を収納する1つの容器から1つの電池が構成さ
れる。これを単電池と呼ぶ。大電力を蓄えるには多数本
の単電池を直並列に接続して用いる。
2. Description of the Related Art A sodium-sulfur battery uses sodium as a negative electrode active material, sulfur as a positive electrode active material, and molten salt such as sodium polysulfide, and a solid electrolyte having conductivity for sodium ions as a partition wall between the positive electrode and the negative electrode. It is a high temperature type secondary battery. As the sodium ion conductive solid electrolyte, beta alumina is used, and a bag tube is often used. In general, one battery is composed of one container containing a sodium ion conductive solid electrolyte and sodium and sulfur. This is called a unit cell. To store a large amount of electric power, a large number of cells are connected in series and parallel.

【0003】ナトリウム硫黄電池の通常の運転温度は2
80℃〜370℃と高温であるため、複数の単電池を断
熱容器に詰めてモジュールとする。1単電池当たりの電
池出力を増大するには、電池のジュール損失を低減して
大電流で放電運転する必要がある。電池のジュール損失
を低減するには電池の内部抵抗を極力低減する必要があ
る。
The normal operating temperature of a sodium-sulfur battery is 2
Since the temperature is as high as 80 ° C. to 370 ° C., a plurality of unit cells are packed in a heat insulating container to form a module. In order to increase the battery output per single battery, it is necessary to reduce the Joule loss of the battery and perform discharge operation with a large current. In order to reduce the Joule loss of the battery, it is necessary to reduce the internal resistance of the battery as much as possible.

【0004】ナトリウム硫黄電池の放電反応は次式で示
せる。
The discharge reaction of a sodium-sulfur battery can be expressed by the following equation.

【0005】 Na+S → Na2x (x=3〜5) 充電反応は上式の逆反応である。Na + S → Na 2 S x (x = 3 to 5) The charging reaction is a reverse reaction of the above formula.

【0006】上記した電池反応は硫黄極で生じる。従っ
て、電池の内部抵抗の大半は、S極の抵抗であり、内部
抵抗を極力低減するには、S極の抵抗を低減することが
最も有効である。
The above-mentioned battery reaction occurs at the sulfur electrode. Therefore, most of the internal resistance of the battery is the resistance of the S pole, and in order to reduce the internal resistance as much as possible, it is most effective to reduce the resistance of the S pole.

【0007】従来の電池の一例は、図2に示したように
袋管状の固体電解質1の外表面に形成した硫黄極(正
極)3には正極活物質である硫黄、及び多硫化ナトリウ
ムが充填され充電や放電の電池反応を可能にするため、
電子伝導性を持った補助導電材を装着する。硫黄極3の
全領域に補助導電材を装着する必要があるため、硫黄極
内での電池活物質の流動性は極めて小さい。
In an example of a conventional battery, a sulfur electrode (positive electrode) 3 formed on the outer surface of a bag-shaped solid electrolyte 1 as shown in FIG. 2 is filled with sulfur as a positive electrode active material and sodium polysulfide. In order to allow battery reactions for charging and discharging,
Wear an auxiliary conductive material with electronic conductivity. Since it is necessary to attach the auxiliary conductive material to the entire area of the sulfur electrode 3, the fluidity of the battery active material in the sulfur electrode is extremely small.

【0008】電池出力の増大(高出力運転)には電池の
放電電流を増大する必要があり、硫黄極内での電池活物
質の流動性が求められる。
In order to increase the battery output (high output operation), it is necessary to increase the discharge current of the battery, and the fluidity of the battery active material in the sulfur electrode is required.

【0009】そこで、従来電池発想を転換した図3のよ
うな集電極10を用いて、電池活物質であるナトリウム
と硫黄のみを増大すれば電池容量が増大し、硫黄極9の
厚みを適切に選定することにより、電池の内部抵抗が低
減できる電池を提案した。
Therefore, by using a collector electrode 10 as shown in FIG. 3 which has changed the idea of a conventional battery, and increasing only sodium and sulfur which are battery active materials, the battery capacity is increased and the thickness of the sulfur electrode 9 is appropriately adjusted. We have proposed a battery whose internal resistance can be reduced by selecting it.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、高出力(例えば2倍出力以上)で電池を充
放電運転すると内部抵抗が上昇して電池の運転領域が狭
くなり、結果的に電池容量が充分取れない電池となるこ
とがあった。
However, in the above-mentioned prior art, when the battery is charged / discharged at a high output (for example, double output or more), the internal resistance increases and the operating range of the battery is narrowed. The battery may not have sufficient capacity.

【0011】本発明の目的は、電池の高出力運転が可能
で、かつ、電池容量の増大を安定して維持できるナトリ
ウム硫黄電池を提供することにある。
An object of the present invention is to provide a sodium-sulfur battery capable of high-power operation and capable of stably maintaining an increase in battery capacity.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明のナトリウム硫黄電池は、ナトリウムイオ
ン,硫黄,多硫化ナトリウムが円滑に集電極内で流動で
きる電池充放電方式を提案する。
In order to achieve the above object, the sodium-sulfur battery of the present invention proposes a battery charging / discharging system in which sodium ions, sulfur and sodium polysulfide can smoothly flow in the collector electrode.

【0013】具体的には集電極内にナトリウムイオン,
硫黄、並びに多硫化ナトリウムの適切な流路パスを設け
る。この適切な流路パスが形成されることによって、電
池反応に必要な活物質を電池反応領域へ供給し、さらに
反応生成物を排出することが容易となり、高出力で長期
間に渡って運転しても円滑な充放電が可能となる。
Specifically, sodium ions in the collecting electrode,
Provide appropriate flow paths for sulfur as well as sodium polysulfide. By forming this appropriate flow path, it becomes easy to supply the active material necessary for the battery reaction to the battery reaction region and further discharge the reaction products, and to operate at high output for a long period of time. Even then, smooth charge and discharge can be performed.

【0014】[0014]

【発明の実施の形態】(実施例1)図1は本発明に係る
NaS電池の第1の実施例であり、袋管状の固体電解質
1の長手方向(軸方向)に対して直角に切断した横断面
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 is a first embodiment of a NaS battery according to the present invention, which is cut at a right angle to the longitudinal direction (axial direction) of a tubular solid electrolyte 1. It is a cross section.

【0015】該図の如く、正極容器4内に固体電解質1
が装着され、固体電解質1の内部がナトリウム極(負
極)6となりナトリウム7が充填されている。固体電解
質1の外周には絶縁物を用いた高抵抗層13を設ける。
この高抵抗層13の一例としては、アルミナやガラス等
絶縁物を多孔体やメッシュに加工し、シート状に整形し
た物、または、粒子状や粉末状態の物を用いる。高抵抗
層13の外周には電子伝導性のある補助導電体14を設
ける。補助導電体14の一例としてはグラファイトやカ
ーボン、その他金属を多孔体やメッシュに加工し、シー
ト状に整形した物、または、粒子状や粉末状態の物を用
いる。さらに、その外周には充放電反応の電流を流すた
めの集電極10を設ける。集電極10は正極容器4と電
気的に接続されている。集電極10の外周にはさらに、
正極活物質の吸上げ供給パス15を設ける。正極活物質
の吸上げ供給パス15の一例としては毛細管力を利用
し、多硫化ナトリウムを供給したい場合には、多硫化ナ
トリウムに優先的に濡れ易い材料、すなわち、優先浸透
性がある材料を、硫黄を供給したい場合には硫黄に優先
浸透性がある材料を選定し、多孔体やメッシュに加工し
て用いるのが良い。多硫化ナトリウムに優先浸透性のあ
る材料としては、アルミナやガラス,ステンレス鋼等が
考えられる。一方、硫黄に優先浸透性のある材料として
は、グラファイトやカーボン等が考えられる。無論、多
孔体やメッシュではなく、集電極10の外表面にウイッ
クや溝を形成して同一の機能を果たさせることも可能で
ある。
As shown in the figure, the solid electrolyte 1 is placed in the positive electrode container 4.
Is attached, and the inside of the solid electrolyte 1 becomes a sodium electrode (negative electrode) 6 and is filled with sodium 7. A high resistance layer 13 using an insulator is provided on the outer periphery of the solid electrolyte 1.
As an example of the high resistance layer 13, a material obtained by processing an insulating material such as alumina or glass into a porous body or a mesh and shaping it into a sheet, or a material in a particle or powder state is used. An auxiliary conductor 14 having electron conductivity is provided on the outer periphery of the high resistance layer 13. As an example of the auxiliary conductor 14, graphite, carbon, or other metal processed into a porous body or a mesh and shaped into a sheet, or a particle or powder is used. Further, a collector electrode 10 for passing a current for charge / discharge reaction is provided on the outer periphery thereof. The collector electrode 10 is electrically connected to the positive electrode container 4. Further on the outer periphery of the collecting electrode 10,
A suction supply path 15 for the positive electrode active material is provided. As an example of the suction supply path 15 for the positive electrode active material, if capillary force is used and sodium polysulfide is to be supplied, a material that is preferentially wetted by sodium polysulfide, that is, a material that has preferential permeability, When supplying sulfur, it is preferable to select a material having a preferential permeability to sulfur and process it into a porous body or mesh before use. Alumina, glass, stainless steel, etc. are considered as the material having preferential permeability to sodium polysulfide. On the other hand, as a material having preferential permeability to sulfur, graphite, carbon, or the like can be considered. Of course, it is also possible to form a wick or a groove on the outer surface of the collecting electrode 10 instead of the porous body or the mesh so that the same function can be achieved.

【0016】次に、固体電解質1の径方向に向かう活物
質の流路パスについて説明する。径方向に向かう硫黄の
流路パス16を集電極10から固体電解質1に向かって
装着する。この時、硫黄の流路パス16は集電極10並
びに、正極活物質の吸上げ供給パス15を貫通してバル
ク18まで到達するように形成する。一方、多硫化ナト
リウムの半径方向に向かう流路パス17は、正極活物質
の吸上げ供給パス15から、集電極10,補助導電体1
4を貫通して高抵抗層13に向かい装着する。一方、ナ
トリウムイオンの径方向に向かう流路パス19も、集電
極10から補助導電体14を貫通して高抵抗層13に向
かい装着する。ナトリウムイオンは多硫化ナトリウムを
伝導パスとするため、ナトリウムイオンの流路パス19
は、多硫化ナトリウムの流路パス17と共用も可能であ
る。図1では共用した場合を表示した。活物質の液面2
0と液面上部の空間は硫黄蒸気とカバーガス21で覆わ
れている。
Next, the flow path of the active material in the radial direction of the solid electrolyte 1 will be described. A flow path path 16 for sulfur that goes in the radial direction is attached from the collecting electrode 10 toward the solid electrolyte 1. At this time, the sulfur flow path 16 is formed so as to reach the bulk 18 through the collector electrode 10 and the suction supply path 15 for the positive electrode active material. On the other hand, the flow path path 17 of the sodium polysulfide in the radial direction extends from the suction supply path 15 of the positive electrode active material to the collector electrode 10 and the auxiliary conductor 1.
It penetrates 4 and faces the high resistance layer 13, and attaches it. On the other hand, the flow path path 19 extending in the radial direction of sodium ions is also attached from the collecting electrode 10 through the auxiliary conductor 14 toward the high resistance layer 13. Since sodium ion uses sodium polysulfide as a conduction path, sodium ion flow path path 19
Can be shared with the sodium polysulfide flow path 17. In FIG. 1, the shared case is displayed. Liquid level 2 of active material
0 and the space above the liquid surface are covered with sulfur vapor and cover gas 21.

【0017】以下、充放電に伴う電池内の活物質挙動を
説明する。電池はナトリウムや硫黄等電池活物質が液体
状態となる300℃に加熱して運転した。放電運転で
は、補助導電体14に含浸された硫黄がナトリウム極
(負極)6から固体電解質1を透過したナトリウム7と
反応して、多硫化ナトリウム12を生成する。生成した
多硫化ナトリウム12は多硫化ナトリウムの流路パス1
7あるいは、高抵抗層13を流路パスとしてバルク18
へと流下する。不足する硫黄はバルク18の硫黄11か
ら硫黄の流路パス16を経て補助導電体14へと補給さ
れる。
The behavior of the active material in the battery due to charge / discharge will be described below. The battery was operated by heating it to 300 ° C. at which the battery active material such as sodium and sulfur becomes liquid. In the discharge operation, the sulfur impregnated in the auxiliary conductor 14 reacts with the sodium 7 that has permeated the solid electrolyte 1 from the sodium electrode (negative electrode) 6 to generate sodium polysulfide 12. The generated sodium polysulfide 12 is a sodium polysulfide flow path 1
7 or bulk 18 using the high resistance layer 13 as a flow path.
Run down to. The lacking sulfur is replenished from the sulfur 11 in the bulk 18 to the auxiliary conductor 14 via the sulfur flow path 16.

【0018】一方充電では、補助導電体14内の多硫化
ナトリウムをナトリウムと硫黄に解離し、ナトリウムは
ナトリウムイオンの流路パス19を通って高抵抗層13
へ向かい、さらに固体電解質1を透過してナトリウム極
(負極)6にもどる。硫黄は硫黄の流路パス16を経て
バルクの硫黄11へと流出する。無論、バルクでは硫黄
と五硫化ナトリウムは二層に分離する。充電反応で不足
した多硫化ナトリウムは多硫化ナトリウムの流路パス1
7あるいは、高抵抗層13を流路パスとしてバルク18
から補給される。さらに充電が進んでも多硫化ナトリウ
ムの流路パス17によって電池容器の底部に存在する多
硫化ナトリウムが吸上げられ、正極活物質(多硫化ナト
リウム)の吸上げ供給パス15を通って、補助導電体1
4の上部まで供給されるので正極容器4内に存在する殆
どの多硫化ナトリウムが充電可能である。
On the other hand, during charging, sodium polysulfide in the auxiliary conductor 14 is dissociated into sodium and sulfur, and the sodium passes through the sodium ion flow path 19 to form the high resistance layer 13.
To the sodium electrode (negative electrode) 6 through the solid electrolyte 1. Sulfur flows out to bulk sulfur 11 via the sulfur flow path 16. Of course, in the bulk, sulfur and sodium pentasulfide separate into two layers. Sodium polysulfide that was insufficient due to the charging reaction is sodium polysulfide flow path 1
7 or bulk 18 using the high resistance layer 13 as a flow path.
Will be supplied from. Even if the charging is further advanced, sodium polysulfide existing at the bottom of the battery container is sucked up by the sodium polysulfide flow path 17, and passes through the suction supply path 15 for the positive electrode active material (sodium polysulfide), and then the auxiliary conductor. 1
Since most of the sodium polysulfide existing in the positive electrode container 4 can be charged because it is supplied up to the upper part of 4.

【0019】なお、上記の硫黄の流路パス16,多硫化
ナトリウムの流路パス17,ナトリウムイオンの流路パ
ス19は固体電解質1の径方向に流路を形成するが、こ
れらのパスは固体電解質1の軸方向にも連続する構造と
する。また、硫黄の流路パス16,多硫化ナトリウムの
流路パス17,ナトリウムイオンの流路パス19は含浸
する電池活物質を除き、構成部材は必ずしも導電性部材
である必要はない。
The sulfur flow path 16, sodium polysulfide flow path 17 and sodium ion flow path 19 described above form a flow path in the radial direction of the solid electrolyte 1, but these paths are solid. The structure is also continuous in the axial direction of the electrolyte 1. In addition, the sulfur flow passage path 16, the sodium polysulfide flow passage path 17, and the sodium ion flow passage path 19 do not necessarily have to be conductive members except for the battery active material to be impregnated.

【0020】バルク18の活物質液面高さ22は、集電
極10全体が液面下になるように配置した。正極容器に
ついては図1では矩形としたが円形,楕円形等任意の形
状であっても何ら機能を損ねるものではない。
The active material liquid level height 22 of the bulk 18 was arranged so that the entire collecting electrode 10 was below the liquid level. Although the positive electrode container has a rectangular shape in FIG. 1, it does not impair the function even if it has an arbitrary shape such as a circular shape or an elliptical shape.

【0021】(実施例2)図4は本発明の第2の実施例
を示す図である。図1の正極活物質(多硫化ナトリウ
ム)の吸上げ供給パス15を除去し、かつ、硫黄の流路
パス16を除去して補助導電体14が直接バルクの電池
活物質とコンタクトできるように集電極10に開口部2
3を設けたものである。無論、ナトリウムイオンの流路
パス19を兼ねた多硫化ナトリウムの流路パス17が存
在し、電池反応に必要なナトリウムイオンと多硫化ナト
リウムを補助導電体14に供給する。
(Embodiment 2) FIG. 4 is a diagram showing a second embodiment of the present invention. The suction supply path 15 for the positive electrode active material (sodium polysulfide) of FIG. 1 is removed, and the flow path path 16 for sulfur is removed so that the auxiliary conductor 14 can directly contact the bulk battery active material. Opening 2 in electrode 10
3 is provided. Of course, there is a sodium polysulfide flow path 17 that also serves as a sodium ion flow path 19, and supplies sodium ions and sodium polysulfide necessary for the battery reaction to the auxiliary conductor 14.

【0022】(実施例3)図5は本発明の第3の実施例
を示す図である。図1の正極活物質(多硫化ナトリウ
ム)の吸上げ供給パス15を除去し、かつ、多硫化ナト
リウムの流路パス17を除去して補助導電体14が直接
バルクの電池活物質とコンタクトできるように集電極1
0に開口部23を設けたものである。無論、硫黄の流路
パス16が存在し、電池反応に必要な硫黄を補助導電体
14に供給する。
(Embodiment 3) FIG. 5 is a diagram showing a third embodiment of the present invention. By removing the suction supply path 15 of the positive electrode active material (sodium polysulfide) shown in FIG. 1 and the flow path path 17 of sodium polysulfide, the auxiliary conductor 14 can directly contact the bulk battery active material. Collector electrode 1
0 is provided with the opening 23. Of course, the sulfur flow path 16 is provided to supply the auxiliary conductor 14 with sulfur required for the cell reaction.

【0023】(実施例4)図6は本発明の第4の実施例
を示す図である。図1の正極活物質(多硫化ナトリウ
ム)の吸上げ供給パス15を除去したが、ナトリウムイ
オンの流路パス19を兼ねた多硫化ナトリウムの流路パ
ス17と硫黄の流路パス16が装備され、電池反応に必
要な硫黄と多硫化ナトリウムは補助導電体14に供給さ
れる。
(Embodiment 4) FIG. 6 is a diagram showing a fourth embodiment of the present invention. The suction supply path 15 for the positive electrode active material (sodium polysulfide) shown in FIG. 1 is removed, but a sodium polysulfide flow path 17 and a sulfur flow path 16 which also function as sodium ion flow paths 19 are provided. The sulfur and sodium polysulfide necessary for the battery reaction are supplied to the auxiliary conductor 14.

【0024】(実施例5)図7は本発明の第5の実施例
を示す図である。図1の正極活物質(多硫化ナトリウ
ム)の吸上げ供給パス15を正極容器4の内周に沿わせ
て構成し、ナトリウムイオンの流路パス19を兼ねた多
硫化ナトリウムの流路パス17を接触することにより、
電池反応に必要なナトリウムイオンと多硫化ナトリウム
を補助導電体14に供給する。
(Embodiment 5) FIG. 7 is a diagram showing a fifth embodiment of the present invention. The suction supply path 15 for the positive electrode active material (sodium polysulfide) of FIG. 1 is configured along the inner circumference of the positive electrode container 4, and the sodium polysulfide flow path 17 also serves as the sodium ion flow path 19. By touching,
Sodium ions and sodium polysulfide necessary for the battery reaction are supplied to the auxiliary conductor 14.

【0025】(実施例6)図8は本発明の第6の実施例
を示す図である。図1に示した正極容器4内の電池活物
質の液面22(実質的には硫黄11の液面)を下げて、
補助導電体14をカバーガス及び硫黄蒸気21に露出さ
せ、充放電運転した例である。この場合は、正極容器4
内を硫黄蒸気で満たす程度に減圧すると、さらに、特性
が改善される。理由は硫黄蒸気によって補助導電体14
に硫黄を供給することが可能となるためである。
(Sixth Embodiment) FIG. 8 is a diagram showing a sixth embodiment of the present invention. By lowering the liquid surface 22 (substantially the liquid surface of sulfur 11) of the battery active material in the positive electrode container 4 shown in FIG.
In this example, the auxiliary conductor 14 is exposed to the cover gas and the sulfur vapor 21 and the charging / discharging operation is performed. In this case, the positive electrode container 4
The characteristics are further improved by reducing the pressure so that the inside is filled with sulfur vapor. The reason is that the sulfur vapor causes the auxiliary conductor 14
This is because it becomes possible to supply sulfur to the.

【0026】なお、図1で正極活物質(多硫化ナトリウ
ム)の吸上げ供給パス15は硫黄吸上げ流路パスとする
事が可能である。また、上記二種の流路パスを固体電解
質の軸方向に交互に設けることも可能である。また、軸
方向ではなく、周方向に半分ずつ等設けることも有効で
ある。上記実施例は、固体電解質として、円筒管を用い
た。電池の性能を最大限引き出すには、固体電解質管を
水平に設置することが好ましい。
The suction supply path 15 for the positive electrode active material (sodium polysulfide) in FIG. 1 can be a sulfur suction passage path. It is also possible to alternately provide the two types of flow path in the axial direction of the solid electrolyte. It is also effective to provide half or the like in the circumferential direction instead of the axial direction. In the above example, a cylindrical tube was used as the solid electrolyte. In order to maximize the battery performance, it is preferable to install the solid electrolyte tube horizontally.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、従
来のナトリウム硫黄電池を2倍出力、かつ、2倍容量以
上の優れた電池特性で運転できる電池を提供できる。
As described above, according to the present invention, it is possible to provide a battery which can double the output of the conventional sodium-sulfur battery and can be operated with excellent battery characteristics of double the capacity or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の横断面を示す図。FIG. 1 is a diagram showing a cross section of a first embodiment of the present invention.

【図2】従来例の構造を示す図。FIG. 2 is a diagram showing a structure of a conventional example.

【図3】集電極を用いた電池の構造を示す図。FIG. 3 is a diagram showing a structure of a battery using a collecting electrode.

【図4】本発明の第2の実施例の横断面を示す図。FIG. 4 is a diagram showing a cross section of a second embodiment of the present invention.

【図5】本発明の第3の実施例の横断面を示す図。FIG. 5 is a diagram showing a cross section of a third embodiment of the present invention.

【図6】本発明の第4の実施例の横断面を示す図。FIG. 6 is a diagram showing a cross section of a fourth embodiment of the present invention.

【図7】本発明の第5の実施例の横断面を示す図。FIG. 7 is a diagram showing a cross section of a fifth embodiment of the present invention.

【図8】本発明の第6の実施例の横断面を示す図。FIG. 8 is a diagram showing a cross section of a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…固体電解質、2…安全容器、3…硫黄極、4…正極
容器、5…負極容器、6…ナトリウム極(負極)、7…
ナトリウム、8…多硫化ナトリウム極、9…硫黄極、1
0…集電極、11…硫黄、12…多硫化ナトリウム、1
3…高抵抗層、14…補助導電体、15,24…正極活
物質(多硫化ナトリウム)の吸上げ供給パス、16…硫
黄の流路パス、17…多硫化ナトリウムの流路パス、1
8…バルク、19…ナトリウムイオンの流路パス、20
…活物質液面、21…カバーガス及び硫黄蒸気、22…
活物質液面高さ、23…集電極の開口部。
1 ... Solid electrolyte, 2 ... Safety container, 3 ... Sulfur electrode, 4 ... Positive electrode container, 5 ... Negative electrode container, 6 ... Sodium electrode (negative electrode), 7 ...
Sodium, 8 ... Sodium polysulfide electrode, 9 ... Sulfur electrode, 1
0 ... Collection electrode, 11 ... Sulfur, 12 ... Sodium polysulfide, 1
3 ... High resistance layer, 14 ... Auxiliary conductor, 15, 24 ... Suction supply path of positive electrode active material (sodium polysulfide), 16 ... Sulfur flow path path, 17 ... Sodium polysulfide flow path path, 1
8 ... Bulk, 19 ... Sodium ion flow path, 20
… Active material liquid level, 21… Cover gas and sulfur vapor, 22…
Liquid level of active material, 23 ... Opening of collector electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 義則 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 5H029 AJ02 AJ03 AK05 AL13 AM15 BJ02 BJ16 DJ05 DJ07 DJ09 EJ07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshinori Saito             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. F-term (reference) 5H029 AJ02 AJ03 AK05 AL13 AM15                       BJ02 BJ16 DJ05 DJ07 DJ09                       EJ07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】ナトリウムを主成分とする負極活物質と、
硫黄または多硫化ナトリウム溶融塩を主成分とする正極
活物質と、前記負極活物質と正極活物質間に介在され、
ナトリウムイオンが通過できる固体電解質と、正極電流
を流す集電極とを備えたナトリウム硫黄電池において、
前記固体電解質と集電極間に補助導電体を装着して電池
反応領域を形成し、この電池反応領域に前記集電極から
固体電解質に向かうナトリウムイオンの流路パスを設け
たことを特徴とするナトリウム硫黄電池。
1. A negative electrode active material containing sodium as a main component,
A positive electrode active material containing sulfur or sodium polysulfide molten salt as a main component, and interposed between the negative electrode active material and the positive electrode active material,
In a sodium-sulfur battery provided with a solid electrolyte through which sodium ions can pass, and a collector electrode for passing a positive electrode current,
An auxiliary conductor is mounted between the solid electrolyte and the collecting electrode to form a battery reaction region, and a sodium ion flow path from the collecting electrode to the solid electrolyte is provided in the battery reaction region. Sulfur battery.
【請求項2】ナトリウムを主成分とする負極活物質と、
硫黄または多硫化ナトリウム溶融塩を主成分とする正極
活物質と、前記負極活物質と正極活物質間に介在され、
ナトリウムイオンが通過できる固体電解質と、正極電流
を流す集電極とを備えたナトリウム硫黄電池において、
前記固体電解質と集電極間に補助導電体を装着して電池
反応領域を形成し、この電池反応領域に多硫化ナトリウ
ムの流路パスを設けたことを特徴とするナトリウム硫黄
電池。
2. A negative electrode active material containing sodium as a main component,
A positive electrode active material containing sulfur or sodium polysulfide molten salt as a main component, and interposed between the negative electrode active material and the positive electrode active material,
In a sodium-sulfur battery provided with a solid electrolyte through which sodium ions can pass, and a collector electrode for passing a positive electrode current,
A sodium-sulfur battery, wherein an auxiliary conductor is attached between the solid electrolyte and the collector electrode to form a battery reaction region, and a flow path of sodium polysulfide is provided in the battery reaction region.
【請求項3】ナトリウムを主成分とする負極活物質、硫
黄または多硫化ナトリウム溶融塩を主成分とする正極活
物質、前記負極活物質と正極活物質間に介在し、ナトリ
ウムイオンが通過できる固体電解質ならびに、正極電流
を流す集電極を主たる構成要素とするナトリウム硫黄電
池において、前記固体電解質と集電極間に補助導電体を
装着すると共に、この補助導電体の内側層に高抵抗層を
設けて電池反応領域を形成し、この電池反応領域に硫黄
の流路パスを設けたことを特徴とするナトリウム硫黄電
池。
3. A negative electrode active material containing sodium as a main component, a positive electrode active material containing sulfur or sodium polysulfide molten salt as a main component, and a solid which is interposed between the negative electrode active material and the positive electrode active material and through which sodium ions can pass. In an electrolyte and a sodium-sulfur battery whose main component is a collecting electrode for passing a positive electrode current, an auxiliary conductor is attached between the solid electrolyte and the collecting electrode, and a high resistance layer is provided on the inner layer of the auxiliary conductor. A sodium-sulfur battery characterized in that a battery reaction region is formed and a sulfur flow path is provided in this battery reaction region.
【請求項4】請求項1ないし3のいずれかに記載のナト
リウム硫黄電池において、前記流路パスを円筒状固体電
解質の半径方向並びに軸方向に設けたことを特徴とした
ナトリウム硫黄電池。
4. The sodium-sulfur battery according to any one of claims 1 to 3, wherein the flow path is provided in a radial direction and an axial direction of the cylindrical solid electrolyte.
【請求項5】請求項1ないし3のいずれかに記載のナト
リウム硫黄電池において、前記流路パスを形成する構造
材として電気導電性のない材料を用いることを特徴とす
るナトリウム硫黄電池。
5. The sodium-sulfur battery according to any one of claims 1 to 3, wherein a material having no electrical conductivity is used as a structural material forming the flow path.
【請求項6】ナトリウムを主成分とする負極活物質と、
硫黄または多硫化ナトリウム溶融塩を主成分とする正極
活物質と、前記負極活物質と正極活物質間に介在され、
ナトリウムイオンが通過できる固体電解質と、正極電流
を流す集電極とを備えたナトリウム硫黄電池において、
前記固体電解質と集電極間に補助導電体を装着すると共
に、その補助導電体の内側層に高抵抗層を装着して電池
反応領域を形成し、この電池反応領域にナトリウムイオ
ンの流路パスと、多硫化ナトリウムの流路パスと、硫黄
の流路パスをそれぞれ1乃至複数個設けたことを特徴と
したナトリウム硫黄電池。
6. A negative electrode active material containing sodium as a main component,
A positive electrode active material containing sulfur or sodium polysulfide molten salt as a main component, and interposed between the negative electrode active material and the positive electrode active material,
In a sodium-sulfur battery provided with a solid electrolyte through which sodium ions can pass, and a collector electrode for passing a positive electrode current,
An auxiliary conductor is mounted between the solid electrolyte and the collector electrode, and a high resistance layer is mounted on the inner layer of the auxiliary conductor to form a battery reaction region, and a sodium ion flow path is formed in the battery reaction region. A sodium-sulfur battery characterized in that one or more sodium polysulfide flow paths and one or more sulfur flow paths are provided.
【請求項7】ナトリウムを主成分とする負極活物質と、
硫黄または多硫化ナトリウム溶融塩を主成分とする正極
活物質と、前記負極活物質と正極活物質間に介在され、
ナトリウムイオンが通過できる固体電解質と、正極電流
を流す集電極とを備えたナトリウム硫黄電池において、
前記固体電解質と集電極間に補助導電体を装着すると共
に、その補助導電体の内側層に高抵抗層を装着して電池
反応領域を形成し、この電池反応領域にナトリウムイオ
ンの流路パスと、多硫化ナトリウムの流路パスと、硫黄
の流路パスの少なくとも一つを設け、かつ、硫黄吸上げ
流路パスと多硫化ナトリウム吸上げ流路パスを固体電解
質の軸方向並びに周方向に交互に設置したことを特徴と
したナトリウム硫黄電池。
7. A negative electrode active material containing sodium as a main component,
A positive electrode active material containing sulfur or sodium polysulfide molten salt as a main component, and interposed between the negative electrode active material and the positive electrode active material,
In a sodium-sulfur battery provided with a solid electrolyte through which sodium ions can pass, and a collector electrode for passing a positive electrode current,
An auxiliary conductor is mounted between the solid electrolyte and the collector electrode, and a high resistance layer is mounted on the inner layer of the auxiliary conductor to form a battery reaction region, and a sodium ion flow path is formed in the battery reaction region. , At least one of a sodium polysulfide flow path and a sulfur flow path is provided, and the sulfur suction flow path and the sodium polysulfide suction flow path are alternated in the axial and circumferential directions of the solid electrolyte. A sodium-sulfur battery characterized by being installed in.
【請求項8】請求項1ないし7のいずれかに記載のナト
リウム硫黄電池において、前記固体電解質を水平に設置
したことを特徴としたナトリウム硫黄電池。
8. The sodium-sulfur battery according to any one of claims 1 to 7, wherein the solid electrolyte is installed horizontally.
JP2002020874A 2002-01-30 2002-01-30 Sodium-sulfur battery Pending JP2003223929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002020874A JP2003223929A (en) 2002-01-30 2002-01-30 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002020874A JP2003223929A (en) 2002-01-30 2002-01-30 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JP2003223929A true JP2003223929A (en) 2003-08-08

Family

ID=27744253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002020874A Pending JP2003223929A (en) 2002-01-30 2002-01-30 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2003223929A (en)

Similar Documents

Publication Publication Date Title
US3915741A (en) Sodium-sulfur cell with improved separator
US9130249B2 (en) Battery cell design and method of cooling battery cells
US4064325A (en) Electric storage batteries
SE503977C2 (en) Rechargeable, high-temperature electrochemical cell, cathode device for such a cell and method for producing starting material for the cathode
CA1054671A (en) Alkali metal/sulfur cell with gas fuel cell electrode
JP2015515723A (en) Batteries having non-polar alkali metal ion conducting honeycomb structure separator
CA2902908A1 (en) Low temperature battery with molten sodium-fsa electrolyte
JP6546099B2 (en) Alkali metal insertion materials as electrodes in electrolysis cells
CN103579689B (en) The manufacture method of electrochemical cell
JPS58157B2 (en) How to recharge secondary storage batteries
JP2003223929A (en) Sodium-sulfur battery
KR20160028748A (en) Na based Secondary Battery
JP2002184456A (en) Sodium-sulfur battery
JP2005122948A (en) Sodium-sulfur battery
KR101255242B1 (en) Electrochemical cell
CN202930503U (en) High-capacity NaNiCl single flat battery and battery pack thereof
US20200006813A1 (en) High temperature batteries
CN107146886B (en) Vanadium battery structure and electrode treatment process
JP2001243975A (en) Sodium sulfur battery, its usage and module using the same
JP2002298908A (en) Sodium secondary battery
JP2002367671A (en) Sodium sulfur battery
JP2002184457A (en) Sodium-sulfur battery
JP2005197139A (en) Sodium sulfur battery
JP2003331913A (en) Sodium-sulfur battery
JPH0430716B2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327