JP2003222582A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JP2003222582A
JP2003222582A JP2002020621A JP2002020621A JP2003222582A JP 2003222582 A JP2003222582 A JP 2003222582A JP 2002020621 A JP2002020621 A JP 2002020621A JP 2002020621 A JP2002020621 A JP 2002020621A JP 2003222582 A JP2003222582 A JP 2003222582A
Authority
JP
Japan
Prior art keywords
sample
probe
probe microscope
surface temperature
scanning probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002020621A
Other languages
Japanese (ja)
Other versions
JP3872352B2 (en
Inventor
Kazunori Ando
和徳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002020621A priority Critical patent/JP3872352B2/en
Publication of JP2003222582A publication Critical patent/JP2003222582A/en
Application granted granted Critical
Publication of JP3872352B2 publication Critical patent/JP3872352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure specimen surface temperature and, in particular, to do so by properly dealing with the movement when a measurement point is moved in a scanning probe microscope. <P>SOLUTION: The scanning probe microscope comprises a cantilever having a very small probe at the tip, a means for sensing cantilever displacement, a means for heating or cooling the specimen, a specimen moving means for moving the specimen, a means for measuring specimen surface temperature, and a means for moving the surface temperature measuring means. Surface temperature near a measurement point on the specimen surface is measured by the surface temperature measuring means. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、先端に微小な探針
を有するカンチレバーと、カンチレバーの変位を検出す
る手段と、試料を加熱冷却する手段、と試料を移動させ
る移動手段からなり、試料の表面凹凸形状あるいは試料
の表面物性を測定する走査型プローブ顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a cantilever having a minute probe at its tip, means for detecting displacement of the cantilever, means for heating and cooling the sample, and moving means for moving the sample. The present invention relates to a scanning probe microscope for measuring surface irregularities or surface physical properties of a sample.

【0002】[0002]

【従来の技術】従来の走査型プローブ顕微鏡は、先端に
微小な探針を有するカンチレバーと、カンチレバーの変
位を検出する手段と、試料を加熱冷却する手段と、試料
を移動させる試料移動手段からなり、試料の表面凹凸形
状あるいは試料の表面物性を測定する走査型プローブ顕
微鏡において、試料の温度は加熱冷却する手段に内蔵さ
れたヒータあるいは試料台の温度で代用されていた。ま
た温度較正の目的で予め試料に熱電対などを接着してヒ
ータあるいは試料台の代用温度との較正を行っていた。
2. Description of the Related Art A conventional scanning probe microscope comprises a cantilever having a minute probe at its tip, a means for detecting displacement of the cantilever, a means for heating and cooling the sample, and a means for moving the sample. In a scanning probe microscope for measuring the surface irregularities of a sample or the surface physical properties of the sample, the temperature of the sample was substituted by the temperature of a heater or a sample table built in a heating / cooling means. For the purpose of temperature calibration, a thermocouple or the like was previously attached to the sample to calibrate it with the substitute temperature of the heater or the sample table.

【0003】[0003]

【発明が解決しようとする課題】従来の走査型プローブ
顕微鏡では、試料温度を加熱冷却する手段に内蔵された
ヒータあるいは試料台の温度で代用されていたため、実
際の試料温度とは差があるという欠点があった。さらに
試料温度と試料表面温度にも差があり、また試料表面上
の場所によって温度差もあり、測定したいポイントの温
度を正確に知ることができないという欠点もあった。ま
た試料表面温度を較正目的のため試料表面に熱電対を予
め接着などで固定し測定されていたが、同じ試料表面で
別の場所の温度は測定できないという欠点があった。ま
たプローブ顕微鏡での測定では探針を所望の位置に移動
させて表面凹凸形状あるいは表面物性を測定する際、同
時に探針の接触している近傍の温度を正確に測定できな
い欠点もあった。また特に真空環境で測定するとき真空
容器の外側(大気側)から熱電対先端の位置を変更でき
ないという欠点もあった。
In the conventional scanning probe microscope, there is a difference from the actual sample temperature because the heater built in the means for heating and cooling the sample temperature or the temperature of the sample stage is used as a substitute. There was a flaw. Further, there is a difference between the sample temperature and the sample surface temperature, and there is also a temperature difference depending on the location on the sample surface, so that the temperature at the point to be measured cannot be accurately known. Further, the sample surface temperature was measured by fixing a thermocouple to the sample surface in advance by gluing or the like for the purpose of calibration, but there was a drawback that the temperature at another place could not be measured on the same sample surface. Further, in the measurement with a probe microscope, when the probe is moved to a desired position to measure the surface irregularity shape or surface physical properties, at the same time, the temperature in the vicinity of the contact of the probe cannot be accurately measured. There is also a drawback that the position of the tip of the thermocouple cannot be changed from the outside (atmosphere side) of the vacuum container, especially when measuring in a vacuum environment.

【0004】そこで本発明は、試料の表面温度を測定す
ることを課題とし、測定する場所を移動しても、それに
合わせて表面温度を測定することも課題とする。さら
に、探針の試料接触位置で得られる物性特性と試料表面
温度との関係を求めることも課題とする。
Therefore, the present invention has an object to measure the surface temperature of a sample, and also has an object to measure the surface temperature in accordance with the movement of the measuring place. Further, it is an object to obtain the relationship between the physical property obtained at the sample contact position of the probe and the sample surface temperature.

【0005】[0005]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明では、先端に微小な探針を有するカンチ
レバーとカンチレバーの変位を検出する手段と試料を加
熱冷却する手段と試料を移動させる試料移動手段からな
り試料の表面凹凸形状あるいは試料の表面物性を測定す
る走査型プローブ顕微鏡において、試料の表面温度を測
定する手段と表面温度測定手段を移動させる手段を有
し、探針と試料の接触位置近傍の試料表面温度を測定で
きるようにした。
In order to solve the above problems, according to the present invention, a cantilever having a minute probe at its tip, a means for detecting displacement of the cantilever, a means for heating / cooling the sample, and a sample are provided. In a scanning probe microscope for measuring the surface irregularities of the sample or the surface physical properties of the sample, which comprises a sample moving means for moving, it has a means for measuring the surface temperature of the sample and a means for moving the surface temperature measuring means, The sample surface temperature near the contact position of the sample can be measured.

【0006】[0006]

【発明の実施の形態】本発明は、図に示すように、先端
に微小な探針を有するカンチレバーと、カンチレバーの
変位を検出する手段と、試料を加熱冷却する手段と、試
料を移動させる手段からなり、試料の表面凹凸形状ある
いは試料の表面物性を測定する走査型プローブ顕微鏡に
おいて、試料の表面温度を測定する手段と表面温度測定
手段を移動させる手段を有し、温度測定したいポイント
に移動できるようにし、探針の試料との接触位置近傍の
試料表面温度を測定できるようにした。また探針近くの
試料表面温度と表面形状あるいは表面物性を測定できる
ようにした。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in the drawings, the present invention is a cantilever having a minute probe at its tip, a means for detecting displacement of the cantilever, a means for heating and cooling the sample, and a means for moving the sample. A scanning probe microscope that measures the surface irregularities of the sample or the surface properties of the sample, has a means for measuring the surface temperature of the sample and a means for moving the surface temperature measuring means, and can move to the point where the temperature measurement is desired. In this way, the sample surface temperature near the contact position of the probe with the sample can be measured. In addition, the sample surface temperature near the probe and the surface shape or surface physical properties can be measured.

【0007】[0007]

【実施例】実施例について図面を参照して説明すると、
図1は本発明における走査型プローブ顕微鏡の模式図で
ある。カンチレバー1の先端には探針2があり、試料3
とは探針2で接触する。試料3は加熱台4の上に設置さ
れている。加熱台4は内部にヒータ11が組み込まれて
いて、加熱台4あるいはヒータ11の温度を制御するた
めに温度センサ12が接続され、試料移動手段5の上に
設置されている。加熱台は近くに冷却部(図示せず)を
設け熱伝導で冷却することで冷却台であってもよい。試
料移動手段5は上下方向の動作と水平方向の動作が可能
である。上下方向に動作させることで探針2の針先を試
料に対して押し付け、離しの繰り返しの振動を与えるこ
とができる。水平方向の動作では、探針2と試料3との
接触位置を相対的に水平方向に移動させることができ
る。カンチレバー1にはレーザ7が照射されていて反射
光は変位検出手段8に到達し、変位検出手段8への到達
位置により探針2の上下方向の変位量が検出される。探
針2の近くには温度プローブ13が配置され、温度プロ
ーブ移動手段14に保持されている。温度プローブ移動
手段14は、例えば水平軸15方向の動作と水平軸周り
の回転動作が可能である。水平軸方向の動作で、試料表
面上で温度プローブ先端の位置を変更することがでる。
温度プローブ13の先端を曲げておけば水平軸周りの回
転動作で試料表面に接触させたり、離したりすることが
できる。また水平軸以外に紙面と垂直方向の軸を動作軸
として設けてもよい。温度プローブ移動手段14により
温度プローブ13の先端を探針2に近づけ、探針2が試
料3と接触している近傍の試料表面温度を測定すること
ができる。また温度プローブ移動手段14を用いずに、
探針2と試料3が離れているときに、温度プローブ13
の先端を探針2の先端の高さ位置より低い位置にしてお
いて試料3を上方へと移動させれば、先に温度プローブ
13の先端が試料3の表面に接触し、さらに試料3を上
方へと移動させれば次に探針2が接触することで、温度
プローブ13の先端を常時試料3の表面に接触させて試
料表面温度を測定してもよい。
EXAMPLES Examples will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a scanning probe microscope according to the present invention. There is a probe 2 at the tip of the cantilever 1, and a sample 3
Is contacted with the probe 2. The sample 3 is installed on the heating table 4. The heating table 4 has a heater 11 incorporated therein, a temperature sensor 12 is connected to control the temperature of the heating table 4 or the heater 11, and is installed on the sample moving means 5. The heating table may be a cooling table by providing a cooling unit (not shown) near the heating table and cooling by heat conduction. The sample moving means 5 is capable of vertical movement and horizontal movement. By operating the probe 2 in the vertical direction, the tip of the probe 2 can be pressed against the sample, and repeated vibrations can be applied. In the horizontal operation, the contact position between the probe 2 and the sample 3 can be relatively moved in the horizontal direction. The cantilever 1 is irradiated with the laser 7 and the reflected light reaches the displacement detecting means 8, and the amount of vertical displacement of the probe 2 is detected by the position at which the cantilever 1 reaches the displacement detecting means 8. A temperature probe 13 is arranged near the probe 2 and held by the temperature probe moving means 14. The temperature probe moving means 14 can be operated in the direction of the horizontal axis 15 and can be rotated about the horizontal axis, for example. The position of the temperature probe tip on the sample surface can be changed by the operation in the horizontal axis direction.
If the tip of the temperature probe 13 is bent, it can be brought into contact with or separated from the sample surface by a rotating operation around a horizontal axis. In addition to the horizontal axis, an axis perpendicular to the plane of the drawing may be provided as the operation axis. The tip of the temperature probe 13 can be brought close to the probe 2 by the temperature probe moving means 14, and the sample surface temperature in the vicinity where the probe 2 is in contact with the sample 3 can be measured. Also, without using the temperature probe moving means 14,
When the probe 2 and the sample 3 are separated, the temperature probe 13
If the tip of the probe 3 is moved to a position lower than the height of the tip of the probe 2 and the sample 3 is moved upward, the tip of the temperature probe 13 comes into contact with the surface of the sample 3 first, and The sample surface temperature may be measured by bringing the tip of the temperature probe 13 into constant contact with the surface of the sample 3 by contacting the probe 2 when moved upward.

【0008】温度プローブ13は、温度を熱起電力とし
て測定する熱電対プローブとしてもよい。また温度によ
る抵抗値の変化を検出するプローブとしてもよい。
The temperature probe 13 may be a thermocouple probe that measures temperature as thermoelectromotive force. Further, it may be a probe that detects a change in resistance value due to temperature.

【0009】図2に試料表面温度を測定する手段として
パイロメータを利用する別の実施例を示す。探針2の上
下方向の変位量を測定するとき、カンチレバー1自身が
別の変位検出手段21(例えばひずみ検出センサ)を内
蔵する場合で説明する。パイロメータ22はパイロメー
タ移動手段23に保持され、カンチレバー1および試料
3の上方に設置されている。パイロメータ移動手段23
は、左右方向動作と紙面垂直方向の動作が可能である。
パイロメータ22からはポイントレーザ24が試料表面
へ照射されていて、照射位置の試料表面温度を測定す
る。パイロメータ移動手段23によりポイントレーザ照
射位置を探針2に近づけていけば、探針2の試料3との
接触位置近傍の試料表面温度を測定することができる。
FIG. 2 shows another embodiment using a pyrometer as a means for measuring the sample surface temperature. A case where the cantilever 1 itself incorporates another displacement detection means 21 (for example, a strain detection sensor) when measuring the amount of vertical displacement of the probe 2 will be described. The pyrometer 22 is held by the pyrometer moving means 23 and is installed above the cantilever 1 and the sample 3. Pyrometer moving means 23
Can be operated in the left-right direction and in the direction perpendicular to the paper surface.
A point laser 24 is irradiated from the pyrometer 22 onto the sample surface, and the sample surface temperature at the irradiation position is measured. If the point laser irradiation position is brought closer to the probe 2 by the pyrometer moving means 23, the sample surface temperature in the vicinity of the contact position of the probe 2 with the sample 3 can be measured.

【0010】図3に真空容器と温度プローブを組み合わ
せた別の実施例を示す。真空容器61内に探針2を所有
するカンチレバー1、試料3、加熱台4、試料移動手段
5が配置されている。真空容器61には、真空排気手段
62が接続されている。真空容器61の上部にはウイン
ドウ63で真空気密性が確保されていて測定したい位置
を目視あるいは顕微鏡などによる観察で確認できるよう
になっている。レーザ7はウインドウ63を介して真空
容器61内に導入されカンチレバー1に照射される。照
射されたレーザ7の反射光はウインドウ63を介して大
気側に戻され変位検出手段8に到達する。試料3は加熱
台4上に設置される。加熱台4はヒータ11を内蔵され
ていて、また温度センサ12が接続されていて温度の制
御が行われる。温度プローブ13は温度プローブ移動手
段14に保持され、温度プローブ移動手段14は、例え
ばOリングシールなどの真空気密性を確保する部品31
で真空容器61に接続される。温度プローブ移動手段1
4は水平軸15方向の動作と水平軸周りの回転動作が可
能で、いずれの動作においても真空気密性は確保されて
いる。温度プローブ13の先端を曲げておけば回転動作
により試料3の表面に接触させたり離したりすることが
できる。また離した状態で水平方向の動作をすれば試料
3との接触位置を変更することができる。探針2と試料
3の接触位置近傍の試料表面温度を測定することができ
る。
FIG. 3 shows another embodiment in which a vacuum container and a temperature probe are combined. A cantilever 1 having a probe 2, a sample 3, a heating table 4, and a sample moving means 5 are arranged in a vacuum container 61. A vacuum exhaust unit 62 is connected to the vacuum container 61. A vacuum airtightness is ensured by a window 63 on the upper part of the vacuum container 61, and the position to be measured can be confirmed visually or by observation with a microscope or the like. The laser 7 is introduced into the vacuum container 61 through the window 63 and is applied to the cantilever 1. The reflected light of the irradiated laser 7 is returned to the atmosphere side through the window 63 and reaches the displacement detecting means 8. The sample 3 is installed on the heating table 4. The heating table 4 has a built-in heater 11 and a temperature sensor 12 connected thereto to control the temperature. The temperature probe 13 is held by the temperature probe moving means 14, and the temperature probe moving means 14 is a component 31 for ensuring vacuum airtightness such as an O-ring seal.
Is connected to the vacuum container 61. Temperature probe moving means 1
4 can be operated in the direction of the horizontal axis 15 and can be rotated about the horizontal axis, and the vacuum tightness is ensured in both operations. If the tip of the temperature probe 13 is bent, it can be brought into contact with or separated from the surface of the sample 3 by a rotating operation. Further, the contact position with the sample 3 can be changed by performing a horizontal operation in the separated state. The sample surface temperature in the vicinity of the contact position between the probe 2 and the sample 3 can be measured.

【0011】また、真空容器61にはガス導入64が配
置され、真空容器61内を真空排気したあと所望のガス
を導入して大気圧に戻し、一連の試料表面温度の測定を
してもよい。またガスの導入は、大気圧になる手前の負
圧状態で中止し、同じく一連の試料表面温度の測定をし
てもよい。また導入するガスに水分を含ませて、同じく
一連の試料表面温度の測定をしてもよい。また真空排気
せず、真空容器61内へガスあるいは水分を含めたガス
を常時流し続けて1気圧状態で測定してもよい。
Further, a gas introduction 64 is arranged in the vacuum container 61, and after evacuating the inside of the vacuum container 61, a desired gas may be introduced to return it to the atmospheric pressure and a series of sample surface temperatures may be measured. . Further, the introduction of the gas may be stopped in a negative pressure state before the atmospheric pressure is reached, and a series of sample surface temperatures may be similarly measured. Further, the introduced gas may be made to contain water, and the series of sample surface temperatures may be similarly measured. Alternatively, the gas or the gas containing water may be continuously flown into the vacuum container 61 without performing vacuum evacuation, and the measurement may be performed under the condition of 1 atm.

【0012】図4に別の実施例として、真空容器とパイ
ロメータを組み合わせた実施例を示す。探針2の上下方
向の変位量を測定するときカンチレバー自身が別の変位
検出手段21(例えばひずみ検出センサ)を内蔵する場
合で説明する。パイロメータ22はパイロメータ移動手
段23に保持され、カンチレバー1および試料3の上方
にあるウインドウ63の上に設置されている。パイロメ
ータ移動手段23は左右方向動作と紙面垂直方向の動作
が可能である。パイロメータからはポイントレーザ24
がウインドウ63を介して試料3の表面に照射されてい
て、照射位置の試料表面温度を測定する。パイロメータ
移動手段23によりポイントレーザ照射位置を探針に近
づけていけば、探針の試料との接触位置近傍の試料表面
温度を測定することができる。
FIG. 4 shows another embodiment in which a vacuum container and a pyrometer are combined. A case where the cantilever itself incorporates another displacement detecting means 21 (for example, a strain detecting sensor) when measuring the amount of vertical displacement of the probe 2 will be described. The pyrometer 22 is held by the pyrometer moving means 23, and is installed on the window 63 above the cantilever 1 and the sample 3. The pyrometer moving means 23 can be operated in the left-right direction and in the direction perpendicular to the paper surface. Point laser 24 from pyrometer
Is irradiated on the surface of the sample 3 through the window 63, and the sample surface temperature at the irradiation position is measured. If the point laser irradiation position is brought closer to the probe by the pyrometer moving means 23, the sample surface temperature in the vicinity of the contact position of the probe with the sample can be measured.

【0013】また、図3と同じく真空容器61にはガス
導入64が配置され、真空容器61内を真空排気した後
所望のガスを導入して大気圧に戻し、一連の試料表面温
度の測定をしてもよい。またガスの導入は、大気圧にな
る手前の負圧状態で中止し、同じく一連の試料表面温度
の測定をしてもよい。また導入するガスに水分を含ませ
て同じく一連の試料表面温度の測定をしてもよい。また
真空排気せず、真空容器61内へガスあるいは水分を含
めたガスを常時流し続けて1気圧状態で測定してもよ
い。
Further, as in FIG. 3, a gas introduction 64 is arranged in the vacuum container 61, and after evacuating the inside of the vacuum container 61, a desired gas is introduced and returned to atmospheric pressure to measure a series of sample surface temperatures. You may. Further, the introduction of the gas may be stopped in a negative pressure state before the atmospheric pressure is reached, and a series of sample surface temperatures may be similarly measured. Further, the introduced gas may be made to contain water, and a series of sample surface temperatures may be similarly measured. Alternatively, the gas or the gas containing water may be continuously flown into the vacuum container 61 without performing vacuum evacuation, and the measurement may be performed under the condition of 1 atm.

【0014】次に図5により、試料表面物性の中で粘弾
性特性を求める場合について説明する。カンチレバー1
の先端には探針2があり、試料3と接触している。試料
3は加熱台4の上に設置されている。試料移動手段5は
上下方向の動作と水平方向の動作が可能である。上下方
向に動作させることで探針2の針先を試料3に対して押
し付け、離しの繰り返しの振動を与えることができる。
水平方向の動作では探針2と試料3の接触位置を相対的
に移動させることができる。温度プローブ13の先端は
探針2の近くで試料3の表面に接触していて試料表面温
度を測定している。
Next, referring to FIG. 5, the case where the viscoelastic property is obtained among the physical properties of the sample will be described. Cantilever 1
Has a probe 2 at the tip thereof and is in contact with the sample 3. The sample 3 is installed on the heating table 4. The sample moving means 5 is capable of vertical movement and horizontal movement. By operating the probe 2 in the vertical direction, the tip of the probe 2 is pressed against the sample 3 and repeated vibrations of separation can be applied.
In the horizontal operation, the contact position between the probe 2 and the sample 3 can be moved relatively. The tip of the temperature probe 13 is in contact with the surface of the sample 3 near the probe 2 to measure the sample surface temperature.

【0015】試料3への振動は、試料移動手段5に内蔵
する上下動作によりモジュレーション入力6として与え
られる。カンチレバー1にはレーザ7が照射されてい
て、反射光は変位検出手段8に到達する。変位検出手段
8の到達位置によりカンチレバー1の変位が出力信号9
として得られる。
Vibration to the sample 3 is given as a modulation input 6 by the vertical movement built in the sample moving means 5. The cantilever 1 is irradiated with the laser 7, and the reflected light reaches the displacement detecting means 8. The displacement of the cantilever 1 is output as a signal 9 according to the position reached by the displacement detector 8.
Obtained as.

【0016】モジュレーション入力6には一般に正弦波
が利用され、出力信号9の波形は入力波形に対して時間
的に遅れる特性となる。時間的遅れの大きさは試料の粘
弾性特性を代表する値となる。またモジュレーション入
力6の振幅をA0とすると出力信号の振幅はA1とな
る。試料がやわらかければ出力振幅A1は入力振幅A0
より小さくなる。また、出力振幅A1の値の大きさから
も試料の粘弾性特性が測定できる。
A sine wave is generally used for the modulation input 6, and the waveform of the output signal 9 has a characteristic of being delayed in time with respect to the input waveform. The magnitude of the time delay is a value that represents the viscoelastic properties of the sample. When the amplitude of the modulation input 6 is A0, the amplitude of the output signal is A1. If the sample is soft, the output amplitude A1 is the input amplitude A0
It gets smaller. The viscoelastic property of the sample can also be measured from the magnitude of the value of the output amplitude A1.

【0017】まずモジュレーション入力6を加え、入力
波形に対する出力波形を測定する。次に試料3を別の所
望の温度にして同じく入力波形に対する出力波形を測定
することを繰り返していく。これにより得られる温度依
存の測定例を図6に示す。例えば出力波形の振幅に着目
すれば、図6(A)に示すように試料の表面温度の変化
に伴う振幅の変化がグラフとして得られる。試料表面温
度が大きくなるに従って振幅が小さくなる、つまり試料
がやわらかくなっていくといった粘弾性特性が測定され
る。次に、例えば入力波形に対する出力波形の時間遅れ
に着目すれば、図6(B)に示すように、試料の表面温
度の変化に伴う時間遅れの変化がグラフとして得られ
る。試料表面温度が大きくなるに従って時間遅れが大き
くなる、つまり試料がやわらかくなっていき、ある温度
以上になると試料内部の成分が反応してかたくなり時間
遅れがピークを乗り越えて減少しだすといった粘弾性特
性が測定される。また本発明では、温度プローブ移動手
段14により温度プローブ13の先端を探針2に近づけ
ることができるので、探針2の試料3との接触部で得ら
れる粘弾性特性と試料表面温度の関係を正確に測定する
ことができる。このため試料表面の温度による物性変化
を試料表面温度で関係づけられるのも、本発明の実施例
の一つである。
First, the modulation input 6 is added, and the output waveform with respect to the input waveform is measured. Next, the sample 3 is set to another desired temperature and the output waveform corresponding to the input waveform is similarly measured. FIG. 6 shows an example of the temperature-dependent measurement thus obtained. For example, if attention is paid to the amplitude of the output waveform, a change in the amplitude with a change in the surface temperature of the sample can be obtained as a graph as shown in FIG. Viscoelastic characteristics such that the amplitude decreases as the sample surface temperature increases, that is, the sample becomes softer, are measured. Next, for example, focusing on the time delay of the output waveform with respect to the input waveform, as shown in FIG. 6B, the change of the time delay with the change of the surface temperature of the sample is obtained as a graph. As the surface temperature of the sample increases, the time delay increases, that is, the sample becomes softer, and when the temperature rises above a certain temperature, the components inside the sample react and become harder, and the time delay begins to decrease beyond the peak. To be measured. Further, in the present invention, since the tip of the temperature probe 13 can be brought close to the probe 2 by the temperature probe moving means 14, the relationship between the viscoelastic property obtained at the contact portion of the probe 2 with the sample 3 and the sample surface temperature is shown. Can be measured accurately. Therefore, it is also one of the embodiments of the present invention that the change in physical properties due to the temperature of the sample surface can be related by the sample surface temperature.

【0018】以上までは試料表面物性として粘弾性特性
を測定する例を説明した。試料表面物性測定の対象とし
ては、摩擦特性でもよいし、吸着特性などでもよい。い
ずれの場合でも、本発明により測定する場所での正確な
試料表面温度の測定が可能となる。
Up to this point, the example of measuring the viscoelastic property as the physical property of the sample surface has been described. The object of measurement of the physical properties of the sample may be frictional characteristics, adsorption characteristics, or the like. In either case, the present invention enables accurate measurement of the sample surface temperature at the measurement location.

【0019】[0019]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。つま
り、先端に微小な探針を有するカンチレバーとカンチレ
バーの変位を検出する手段と試料を加熱冷却する手段と
試料を移動させる試料移動手段からなり、試料の表面凹
凸形状あるいは試料の表面物性を測定する走査型プロー
ブ顕微鏡において、試料の表面温度を測定する手段と表
面温度測定手段を移動させる手段を有すことで、温度を
測定したいポイントに表面温度を測定する手段を移動す
ることができ、表面の温度を測定できるという効果があ
る。また探針の試料との接触位置近傍の試料表面温度を
測定することで探針近くの試料表面温度と表面形状ある
いは表面物性を関係づける効果もある。
The present invention is carried out in the form as described above, and has the following effects. In other words, it consists of a cantilever with a minute probe at the tip, a means for detecting the displacement of the cantilever, a means for heating and cooling the sample, and a sample moving means for moving the sample, and measures the surface irregularities of the sample or the surface physical properties of the sample. In the scanning probe microscope, by having a means for measuring the surface temperature of the sample and a means for moving the surface temperature measuring means, it is possible to move the means for measuring the surface temperature to the point where the temperature is desired to be measured. The effect is that the temperature can be measured. Further, by measuring the sample surface temperature in the vicinity of the contact position of the probe with the sample, there is an effect that the sample surface temperature near the probe is related to the surface shape or surface physical property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における走査型プローブ顕微鏡の温度プ
ローブの構成を示す模式図。
FIG. 1 is a schematic diagram showing the configuration of a temperature probe of a scanning probe microscope according to the present invention.

【図2】本発明における走査型プローブ顕微鏡のパイロ
メータの構成を示す模式図。
FIG. 2 is a schematic diagram showing the configuration of a pyrometer of a scanning probe microscope according to the present invention.

【図3】本発明における走査型プローブ顕微鏡の温度プ
ローブと真空容器の組み合わせを示す模式図。
FIG. 3 is a schematic diagram showing a combination of a temperature probe and a vacuum container of the scanning probe microscope according to the present invention.

【図4】本発明における走査型プローブ顕微鏡のパイロ
メータと真空容器の組み合わせを示す模式図。
FIG. 4 is a schematic diagram showing a combination of a pyrometer of a scanning probe microscope and a vacuum container according to the present invention.

【図5】本発明における走査型プローブ顕微鏡での試料
表面物性測定のうち粘弾性特性を求める例を示す模式
図。
FIG. 5 is a schematic diagram showing an example of obtaining viscoelastic properties in the physical property measurement of a sample with a scanning probe microscope according to the present invention.

【図6】本発明における走査型プローブ顕微鏡により試
料表面物性と試料表面温度を関係づける例を示す模式
図。
FIG. 6 is a schematic diagram showing an example in which physical properties of a sample and a surface temperature of the sample are related by a scanning probe microscope according to the present invention.

【符号の説明】[Explanation of symbols]

1 カンチレバー A0 入力振幅 2 探針 A1 出力振幅 3 試料 21 別の変位検
出手段 4 加熱台 22 パイロメー
タ(赤外線検出) 5 試料移動手段 23 パイロメー
タ移動手段 6 モジュレーション入力 24 ポイントレ
ーザ 7 レーザ 31 真空気密性
を確保する部品 8 変位検出手段 61 真空容器 9 信号出力 62 真空排気手
段 11 ヒータ 63 ウインド
ウ 12 温度センサ 64 ガス導入 13 温度プローブ 14 温度プローブ移動手段 15 水平軸
1 cantilever A0 input amplitude 2 probe A1 output amplitude 3 sample 21 another displacement detecting means 4 heating table 22 pyrometer (infrared ray detection) 5 sample moving means 23 pyrometer moving means 6 modulation input 24 point laser 7 laser 31 ensuring vacuum tightness Components 8 Displacement detecting means 61 Vacuum container 9 Signal output 62 Vacuum exhausting means 11 Heater 63 Window 12 Temperature sensor 64 Gas introduction 13 Temperature probe 14 Temperature probe moving means 15 Horizontal axis

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 19/00 G01N 19/00 B ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) G01N 19/00 G01N 19/00 B

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 先端に微小な探針を有するカンチレバー
と、該カンチレバーの変位を検出する手段と、試料を加
熱冷却する手段と、試料を移動させる手段を有する走査
型プローブ顕微鏡において、試料の表面温度を測定する
表面温度測定手段と、該表面温度測定手段を移動させる
手段を有し、前記探針の試料との接触位置近傍の試料表
面温度と、表面形状、あるいは表面物性を測定すること
を特徴とする、走査型プローブ顕微鏡。
1. A surface of a sample in a scanning probe microscope having a cantilever having a minute probe at its tip, means for detecting displacement of the cantilever, means for heating and cooling the sample, and means for moving the sample. A surface temperature measuring means for measuring the temperature, and means for moving the surface temperature measuring means, for measuring the sample surface temperature near the contact position of the probe with the sample, the surface shape, or the surface physical property. Characteristic, scanning probe microscope.
【請求項2】 前記表面温度測定手段が熱電対プローブ
であることとした、請求項1記載の走査型プローブ顕微
鏡。
2. The scanning probe microscope according to claim 1, wherein the surface temperature measuring means is a thermocouple probe.
【請求項3】 前記探針を試料に接触させるとき、前記
熱電対プローブが先に試料に接触し、試料の表面温度を
測定することとした、請求項2記載の走査型プローブ顕
微鏡。
3. The scanning probe microscope according to claim 2, wherein when the probe is brought into contact with the sample, the thermocouple probe first comes into contact with the sample to measure the surface temperature of the sample.
【請求項4】 前記熱電対プローブの先端を動かす手段
を有し、前記熱電対プローブの先端を前記探針の近くに
配置し、前記熱電対プローブの先端を動かす手段により
試料表面に接触させたり、離したりすることとした、請
求項2記載の走査型プローブ顕微鏡。
4. A means for moving the tip of the thermocouple probe, wherein the tip of the thermocouple probe is arranged near the probe, and the means for moving the tip of the thermocouple probe is brought into contact with the sample surface. The scanning probe microscope according to claim 2, wherein the scanning probe microscope is separated from each other.
【請求項5】 真空容器と、排気の手段と、真空気密性
を確保する部品を有し、該真空容器の外側から前記熱電
対プローブの先端を動かすこととした、請求項4記載の
走査型プローブ顕微鏡。
5. The scanning type apparatus according to claim 4, further comprising a vacuum container, an evacuation unit, and a component for ensuring vacuum airtightness, wherein the tip of the thermocouple probe is moved from the outside of the vacuum container. Probe microscope.
【請求項6】 前記試料表面温度測定手段が温度による
抵抗値の変化を検出するプローブであることとした、請
求項1記載の走査型プローブ顕微鏡。
6. The scanning probe microscope according to claim 1, wherein the sample surface temperature measuring means is a probe for detecting a change in resistance value due to temperature.
【請求項7】 探針を試料に接触させたとき、前記抵抗
値の変化を検出するプローブが先に試料に接触し、常時
試料表面温度を測定することとした、請求項6記載の走
査型プローブ顕微鏡。
7. The scanning type according to claim 6, wherein when the probe is brought into contact with the sample, the probe for detecting the change in the resistance value is brought into contact with the sample first to constantly measure the sample surface temperature. Probe microscope.
【請求項8】 前記温度による抵抗値を検出するプロー
ブの先端を動かす手段を有し、前記プローブの先端を前
記探針の近くに配置し、前記プローブの先端を動かす手
段により試料表面に接触させたり、離したりすることと
した、請求項6記載の走査型プローブ顕微鏡。
8. A means for moving a tip of a probe for detecting a resistance value according to the temperature is provided, the tip of the probe is arranged near the probe, and is brought into contact with a sample surface by means for moving the tip of the probe. 7. The scanning probe microscope according to claim 6, wherein the scanning probe microscope is detached or separated.
【請求項9】 真空容器と、排気の手段と、真空気密性
を確保する部品を有し、該真空容器の外側から前記抵抗
値の変化を検出するプローブの先端を動かすこととし
た、請求項8記載の走査型プローブ顕微鏡。
9. A vacuum container, a means for exhausting air, and a part for ensuring vacuum airtightness, wherein the tip of a probe for detecting a change in the resistance value is moved from the outside of the vacuum container. 8. The scanning probe microscope according to 8.
【請求項10】 前記表面温度測定手段がパイロメータ
(赤外線検出)であることとした、請求項1記載の走査
型プローブ顕微鏡。
10. The scanning probe microscope according to claim 1, wherein the surface temperature measuring means is a pyrometer (infrared ray detection).
【請求項11】 前記パイロメータに温度を測定する機
能と温度測定するポイントにレーザを照射させる機能を
有し、パイロメータを移動させる手段により試料表面上
でのレーザポイント照射位置を確認して位置決めし、試
料表面温度を測定することとした、請求項10記載の走
査型プローブ顕微鏡。
11. The pyrometer has a function of measuring a temperature and a function of irradiating a laser to a temperature measurement point, and the laser point irradiation position on the sample surface is confirmed and positioned by means of moving the pyrometer, The scanning probe microscope according to claim 10, wherein the sample surface temperature is measured.
【請求項12】 真空容器と排気の手段と容器内を観察
するためのウインドウを有し、前記パイロメータ該ウイ
ンドウ上に配置することとした、請求項10記載の走査
型プローブ顕微鏡。
12. The scanning probe microscope according to claim 10, further comprising a vacuum container, a means for exhausting gas, and a window for observing the inside of the container, the pyrometer being arranged on the window.
【請求項13】 真空容器を有し、前記真空容器内を大
気圧にして測定することとした、請求項2、6、10の
いずれかに記載の走査型プローブ顕微鏡。
13. The scanning probe microscope according to claim 2, wherein the scanning probe microscope has a vacuum container, and the inside of the vacuum container is set to atmospheric pressure for measurement.
【請求項14】 真空容器と真空排気手段を有し、一度
真空にしてから真空容器内をガス置換してガス雰囲気中
で測定するようにした、請求項2、6、10のいずれか
に記載の走査型プローブ顕微鏡。
14. The method according to claim 2, further comprising a vacuum container and an evacuation means, wherein the vacuum container is once evacuated and then the inside of the vacuum container is replaced with gas for measurement in a gas atmosphere. Scanning probe microscope.
【請求項15】 測定環境の周囲に容器を有し、ガスを
導入する際に所望の水分を含ませて湿度雰囲気中で測定
することとした、請求項2、6、10のいずれかに記載
の走査型プローブ顕微鏡。
15. The method according to claim 2, wherein a container is provided around the measurement environment, and a desired moisture content is included when introducing the gas for measurement in a humidity atmosphere. Scanning probe microscope.
【請求項16】 前記表面温度測定手段で試料の表面温
度を測定しながら、試料温度を変化させ、試料の表面温
度と試料表面の物性変化の関係を測定することとした、
請求項13から15のいずれかに記載の走査型プローブ
顕微鏡。
16. The surface temperature of the sample is measured while the surface temperature measuring means is being changed, and the relationship between the surface temperature of the sample and the change in the physical properties of the sample surface is measured.
The scanning probe microscope according to claim 13.
JP2002020621A 2002-01-29 2002-01-29 Scanning probe microscope Expired - Fee Related JP3872352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002020621A JP3872352B2 (en) 2002-01-29 2002-01-29 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002020621A JP3872352B2 (en) 2002-01-29 2002-01-29 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2003222582A true JP2003222582A (en) 2003-08-08
JP3872352B2 JP3872352B2 (en) 2007-01-24

Family

ID=27744074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002020621A Expired - Fee Related JP3872352B2 (en) 2002-01-29 2002-01-29 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3872352B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242613A (en) * 2005-03-01 2006-09-14 Matsushita Electric Ind Co Ltd Sample analyzer
JP2006284363A (en) * 2005-03-31 2006-10-19 Toyobo Co Ltd Probe microscope and physical property measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242613A (en) * 2005-03-01 2006-09-14 Matsushita Electric Ind Co Ltd Sample analyzer
JP2006284363A (en) * 2005-03-31 2006-10-19 Toyobo Co Ltd Probe microscope and physical property measuring method
JP4557773B2 (en) * 2005-03-31 2010-10-06 東洋紡績株式会社 Probe microscope and method for measuring physical properties

Also Published As

Publication number Publication date
JP3872352B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP4845265B2 (en) Method and apparatus for measuring volatile content
US7398681B2 (en) Gas sensor based on dynamic thermal conductivity and molecular velocity
JP4511543B2 (en) Leakage detection apparatus and method using accumulation method
JP4049771B2 (en) Non-contact measurement method of sample surface temperature to be exposed naturally or artificially and apparatus therefor
JP4557773B2 (en) Probe microscope and method for measuring physical properties
US20080043806A1 (en) Stage for Holding Silicon Wafer Substrate and Method for Measuring Temperature of Silicon Wafer Substrate
CN111272289A (en) Real-time calibration device for thermal infrared imager
JP4908707B2 (en) How to correct gravimetric error during microwave heating
JP2003222582A (en) Scanning probe microscope
US7234860B2 (en) Dynamic dew point analysis method and a device for determining the dew point temperature and relative humidity
JP3670869B2 (en) Coating layer thermal resistance measurement method
JP4028484B2 (en) Equipment for calculating flow characteristics
JP2004198396A (en) Method for obtaining drift value of leak detector, method for obtaining zero-point fluctuation value, method for obtaining humidity correction coefficient, and method for calibrating leakage detector and the leakage detector
JP2000094523A (en) Method for determining condition for heat-sealing plastic
JP2006284598A (en) Scanning probe microscope
JP5015581B2 (en) Thermophysical property measurement method
US3678276A (en) Infrared radiometric detection of seal defects
JP3939050B2 (en) Scanning probe microscope
JP2726210B2 (en) Method and apparatus for evaluating thermophysical properties of sample
JP2003139677A (en) Scanning probe microscope
KR950010392B1 (en) Iner-pore measuring apparatus of subminiature molding products using surface heat-vibration
US5365876A (en) Crystal face temperature determination means
CN217005751U (en) Thermal wave imaging coating thickness measuring system
JPH1183802A (en) Desorption gas by temperature rise analysis method and apparatus
JPH11352037A (en) Testing machine for crack development

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3872352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees