JP2003221509A - Thermosetting resin composition, adhesive film, copper- clad laminate and printed-circuit board - Google Patents

Thermosetting resin composition, adhesive film, copper- clad laminate and printed-circuit board

Info

Publication number
JP2003221509A
JP2003221509A JP2002020853A JP2002020853A JP2003221509A JP 2003221509 A JP2003221509 A JP 2003221509A JP 2002020853 A JP2002020853 A JP 2002020853A JP 2002020853 A JP2002020853 A JP 2002020853A JP 2003221509 A JP2003221509 A JP 2003221509A
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
adhesive film
copper
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002020853A
Other languages
Japanese (ja)
Other versions
JP4172179B2 (en
Inventor
Tetsuya Saito
哲也 齊藤
Kazumasa Takeuchi
一雅 竹内
Hiroko Tanaka
裕子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002020853A priority Critical patent/JP4172179B2/en
Publication of JP2003221509A publication Critical patent/JP2003221509A/en
Application granted granted Critical
Publication of JP4172179B2 publication Critical patent/JP4172179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a resin composition as an adhesive having high heat resistance sufficiently resistant to lead free soldering for providing a highly heat resistant copper-clad laminate and a printed-circuit board and provide an adhesive film using the same. <P>SOLUTION: This thermosetting resin composition has 3-20% tensile elongation and 0.05-7% coefficient of thermal expansion at 50-300°C after thermosetting the composition. This adhesive film is prepared by forming a layer of the resin composition at least on one side of a support base or an adherent body in the state of B stage. This copper-clad laminate and this printed-circuit board include the adhesive film or the resin composition. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は耐熱性に優れた熱硬
化性樹脂組成物、それを用いた接着フィルム、銅張り積
層板およびプリント配線板に関する。
TECHNICAL FIELD The present invention relates to a thermosetting resin composition having excellent heat resistance, an adhesive film using the same, a copper-clad laminate and a printed wiring board.

【0002】[0002]

【従来の技術】フレキシブルプリント配線板は、主に耐
熱信頼性が高く高弾性率なポリイミドフィルムと銅箔と
を接着剤を介して加熱圧着することにより作製されてい
るが、現在、プリント配線板は、近年の環境に対する関
心と共に、電子部品にも鉛フリー化の要求が強くなって
いる。このため、現在種々の鉛フリーはんだが市販、あ
るいは開発されているが、これらの鉛フリーはんだはい
ずれも融点が高く、高いリフロー温度で接続を行う必要
がある。このため、電子材料も従来以上の高い耐熱性が
求められるようになっている。
2. Description of the Related Art A flexible printed wiring board is manufactured mainly by heat-pressing a polyimide film having high heat-reliability and high elastic modulus and a copper foil through an adhesive. With the recent interest in the environment, there is an increasing demand for lead-free electronic components. For this reason, various lead-free solders are currently on the market or developed, but all of these lead-free solders have high melting points and it is necessary to connect at a high reflow temperature. Therefore, electronic materials are required to have higher heat resistance than ever before.

【0003】[0003]

【発明が解決しようとする課題】現在、接着剤としては
主にエポキシ樹脂や可溶性ポリイミド樹脂が用いられて
いる。しかし、エポキシ樹脂は安価であるが、可とう性
が低く、熱膨張率が高いため、耐熱性が十分でない。ま
た、可溶性ポリイミド樹脂についても現在のところ熱に
よる物性変化が大きく、このため耐熱性は十分でない。
また、銅箔に対する接着力も不十分である。本発明は、
かかる現状に鑑みなされたもので、特に耐熱性に優れた
熱硬化性樹脂組成物、接着フィルム、銅張り積層板およ
びプリント配線板に関する。
At present, epoxy resins and soluble polyimide resins are mainly used as adhesives. However, although the epoxy resin is inexpensive, it has low flexibility and a high coefficient of thermal expansion, so that it does not have sufficient heat resistance. In addition, the soluble polyimide resin also has a large change in its physical properties due to heat at the present time, and therefore its heat resistance is not sufficient.
Moreover, the adhesive force to the copper foil is also insufficient. The present invention is
The present invention has been made in view of the above circumstances, and particularly relates to a thermosetting resin composition having excellent heat resistance, an adhesive film, a copper-clad laminate, and a printed wiring board.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の問題
点を解消すべく、銅箔やポリイミドフィルムなど特に熱
膨張係数の小さい支持体を接着できる樹脂組成物につい
て鋭意検討を重ねた結果、熱硬化性樹脂を接着剤として
用い、熱膨張率と伸び率とを制御することによって、鉛
フリーはんだにも十分対応しうる高い耐熱性を持った接
着剤となることを見出し、本発明に到達した。本発明の
第1の特徴は、熱硬化後の、引っ張り伸び率が3〜20
%であり、50〜300℃における熱膨張率が0.05
〜7%である熱硬化性樹脂組成物である。ここで、熱硬
化後の弾性率が0.3〜3GPaであること、熱硬化後
の引っ張り破断強度が50〜300MPaであること、
ポリアミドおよびポリアミドイミドの少なくとも一方を
含有することが好ましい。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have made extensive studies on a resin composition capable of adhering a support having a particularly small coefficient of thermal expansion such as a copper foil or a polyimide film. In the present invention, by using a thermosetting resin as an adhesive and controlling the thermal expansion coefficient and the elongation coefficient, it is possible to obtain an adhesive having a high heat resistance that is sufficiently compatible with lead-free solder. Arrived The first feature of the present invention is that the tensile elongation after heat curing is 3 to 20.
%, And the coefficient of thermal expansion at 50 to 300 ° C. is 0.05.
It is a thermosetting resin composition which is -7%. Here, the elastic modulus after thermosetting is 0.3 to 3 GPa, and the tensile rupture strength after thermosetting is 50 to 300 MPa,
It is preferable to contain at least one of polyamide and polyamide-imide.

【0005】本発明の第2の特徴は、支持基材または被
接着体の少なくとも片面に、上記いずれかの熱硬化性樹
脂組成物の層がBステージ状態で形成されている接着フ
ィルムである。ここで、Bステージ状態の熱硬化性樹脂
組成物の引張り伸び率が30〜300%であり、弾性率
が0.05〜300MPaであるのが好ましい。本発明
の第3の特徴は、熱硬化された上記いずれかの熱硬化性
樹脂組成物の層または熱硬化性樹脂組成物が熱硬化され
た上記いずれかの接着フィルムを含み、熱硬化性樹脂組
成物の層の少なくとも片面に導電体層が積層されている
銅張り積層板である。本発明の第4の特徴は、上記銅張
り積層板を含むプリント配線板である。
A second feature of the present invention is an adhesive film in which a layer of any of the above thermosetting resin compositions is formed in a B stage state on at least one surface of a supporting substrate or an adherend. Here, it is preferable that the thermosetting resin composition in the B stage state has a tensile elongation of 30 to 300% and an elastic modulus of 0.05 to 300 MPa. A third feature of the present invention is a layer of the thermosetting resin composition that is thermoset, or an adhesive film that is thermoset of the thermosetting resin composition. A copper-clad laminate in which a conductor layer is laminated on at least one side of a composition layer. A fourth feature of the present invention is a printed wiring board including the copper-clad laminate.

【0006】本発明において特に注目すべき点は、接着
剤に用いる熱硬化性樹脂組成物の、硬化後の伸び率と熱
膨張率を制御した点にある。例えば熱硬化性樹脂組成物
によって銅箔を接着した場合、このプリント配線板が実
装の行程中にリフローなどによって高温にさらされる
と、一般に熱膨張係数の低い銅箔と、熱膨張係数の高い
接着剤との間に応力が発生し、界面や接着剤内部におい
て亀裂が生じる。本発明では、熱硬化性樹脂を用いた接
着剤において、熱膨張率を小さく抑え、かつ伸び率を適
度に制御することによって、耐熱性に優れた接着性樹脂
組成物となることを見出した。
What is particularly noteworthy in the present invention is that the elongation percentage and thermal expansion coefficient after curing of the thermosetting resin composition used for the adhesive are controlled. For example, when a copper foil is adhered with a thermosetting resin composition, when this printed wiring board is exposed to high temperature due to reflow during the mounting process, generally, a copper foil with a low thermal expansion coefficient and an adhesive with a high thermal expansion coefficient are attached. Stress is generated between the adhesive and the adhesive, and cracks occur at the interface and inside the adhesive. In the present invention, it has been found that, in an adhesive agent using a thermosetting resin, an adhesive resin composition having excellent heat resistance can be obtained by suppressing the coefficient of thermal expansion to be small and controlling the elongation rate appropriately.

【0007】[0007]

【発明の実施の形態】本発明における熱硬化性樹脂組成
物は、熱硬化後の引っ張り伸び率が3〜20%であり、
好ましくは5〜15%であり、かつ、熱硬化後の50〜
300℃における熱膨張率が0.05〜7%、好ましく
は0.1〜5%、特に好ましくは0.2〜3%である。
これによって、高温下において銅箔やポリイミドなどの
被接着体との熱膨張率の差によって発生する応力を軽減
し、かつ適度な伸び率によって発生した応力を緩和する
ことが出来るため、耐熱性に優れた接着性樹脂組成物と
することが出来る。熱硬化性樹脂組成物の熱硬化後の引
っ張り伸び率が小さすぎると発生した応力を十分に緩和
することが出来ず、引っ張り伸び率が大きすぎると、応
力によって容易に接着剤が塑性変形を起こしてしまい、
接着剤層が変形してしまう。また、熱硬化後の50〜3
00℃における熱膨張率が大きすぎても小さすぎても、
被接着体との熱膨張率の差が大きくなり、この結果大き
な応力が発生して、耐熱性が悪くなる。
BEST MODE FOR CARRYING OUT THE INVENTION The thermosetting resin composition of the present invention has a tensile elongation of 3 to 20% after thermosetting.
It is preferably 5 to 15%, and 50 to 50% after heat curing.
The coefficient of thermal expansion at 300 ° C. is 0.05 to 7%, preferably 0.1 to 5%, and particularly preferably 0.2 to 3%.
This reduces the stress caused by the difference in the coefficient of thermal expansion with the adherend such as copper foil or polyimide under high temperature, and it is also possible to relieve the stress caused by the appropriate elongation, so that the heat resistance An excellent adhesive resin composition can be obtained. If the tensile elongation after thermosetting of the thermosetting resin composition is too small, the generated stress cannot be relaxed sufficiently, and if the tensile elongation is too large, the stress easily causes plastic deformation of the adhesive. And
The adhesive layer is deformed. Also, 50 to 3 after heat curing
If the coefficient of thermal expansion at 00 ° C is too large or too small,
The difference in coefficient of thermal expansion from that of the adherend becomes large, and as a result, large stress is generated, resulting in poor heat resistance.

【0008】本発明における引張り伸び率とは、引張り
試験機によって試料を一定速度で引張ったときに試料が
伸びる割合、すなわち、例えば厚さ50μmの試料を1
0mm×80mmの短冊状に切断し、長尺方向の両端1
0mmを固定して5mm/分の速度で引張った場合に、
試料が切断されるまでに試料が伸びる割合を示す。また
この時、試料が切断された瞬間に試料が受けている引っ
張りの応力を、本発明における破断強度とする。本発明
における熱膨張率は、TMA(熱機械測定装置)で測定
した試料の引っ張り熱膨張率、すなわち、例えば厚さ5
0μmの試料を5mm×30mmの短冊状に切断し、長
尺方向の両端5mmを固定し、5g重の荷重を加えたま
ま、試料を50〜300℃の温度まで5℃/分の速度で
加熱した場合に、試料が変形して伸びる割合を示す。本
発明における弾性率は、DVE(広域動的粘弾性測定装
置)で測定される室温における貯蔵弾性率、すなわち、
例えば厚さ50μmの試料を5mm×30mmの短冊状
に切断し、長尺方向の両端5mmを固定し、測定周波数
10MHzで動的粘弾性を測定した場合の室温における
貯蔵弾性率を示す。
The tensile elongation in the present invention means the ratio of elongation of a sample when the sample is pulled at a constant speed by a tensile tester, that is, for example, a sample having a thickness of 50 μm is 1
Cut into 0 mm x 80 mm strips, 1 at both ends in the long direction
When 0 mm is fixed and pulled at a speed of 5 mm / min,
The rate at which the sample stretches before the sample is cut is shown. At this time, the tensile stress applied to the sample at the moment when the sample is cut is defined as the breaking strength in the present invention. The coefficient of thermal expansion in the present invention is the tensile coefficient of thermal expansion of the sample measured by TMA (thermomechanical measuring device), that is, for example, the thickness of 5
A sample of 0 μm is cut into a strip of 5 mm × 30 mm, fixed at both ends 5 mm in the longitudinal direction, and the sample is heated to a temperature of 50 to 300 ° C. at a rate of 5 ° C./min while a load of 5 g is applied. When the sample is processed, the ratio of deformation and elongation of the sample is shown. The elastic modulus in the present invention is a storage elastic modulus at room temperature measured by DVE (wide range dynamic viscoelasticity measuring apparatus), that is,
For example, a storage elastic modulus at room temperature is shown when a sample having a thickness of 50 μm is cut into a strip of 5 mm × 30 mm, both ends in the longitudinal direction are fixed at 5 mm, and dynamic viscoelasticity is measured at a measurement frequency of 10 MHz.

【0009】また、熱硬化性樹脂組成物の熱硬化後の弾
性率は小さすぎるとタックによりベタつき、大きすぎる
と加熱時の応力が大きくなり耐熱性が悪くなるため、好
ましくは0.01〜5GPa、より好ましくは0.3〜
3GPa、特に好ましくは1〜2.5GPaがよい。さ
らに、熱硬化性樹脂組成物の熱硬化後の引っ張り破断強
度は、小さすぎると発生した応力によって熱硬化性樹脂
が容易に変形を起こさず、大きすぎると接着力が低下す
るため、好ましくは20〜500MPa、より好ましく
は50〜300MPaがよい。
If the elastic modulus of the thermosetting resin composition after thermosetting is too small, it becomes sticky due to tack, and if it is too large, the stress during heating increases and the heat resistance deteriorates. Therefore, it is preferably 0.01-5 GPa. , And more preferably 0.3 to
3 GPa, particularly preferably 1 to 2.5 GPa. Furthermore, the tensile rupture strength after thermosetting of the thermosetting resin composition is preferably 20 because the thermosetting resin does not easily deform due to the generated stress when it is too small, and the adhesive strength is reduced when it is too large. ˜500 MPa, more preferably 50 to 300 MPa.

【0010】本発明においては、上記条件を満たす熱硬
化性樹脂組成物であれば、用いる樹脂の種類は特に制限
されず、エポキシ樹脂、フェノール樹脂、ポリアミド樹
脂、マレイミド樹脂、ポリアミック酸樹脂、ポリアミド
イミド樹脂、ビスマレイミド−トリアジン樹脂などが例
示できる。中でも接着性に優れることから、ポリアミド
およびポリアミドイミドの少なくとも一方を含有するこ
とが好ましく、低熱膨張率と低弾性率化を図れることか
らシロキサン構造とパラ型アラミド構造を有するポリア
ミド樹脂、もしくはポリアミドイミド樹脂を含有すると
より好ましい。また絶縁抵抗など電気的信頼性に優れた
エポキシ樹脂を併せて含有すると好ましい。また、有機
溶剤に可溶である熱硬化性樹脂組成物であるのが作業性
の点で好ましい。本発明の熱硬化性樹脂組成物は、低コ
ストと省エネルギーの観点から、用いる熱硬化性樹脂は
250℃以下の低温で硬化反応が行えることが好まし
い。
In the present invention, the type of resin used is not particularly limited as long as it is a thermosetting resin composition satisfying the above-mentioned conditions, and epoxy resin, phenol resin, polyamide resin, maleimide resin, polyamic acid resin, polyamideimide are used. Examples thereof include resins and bismaleimide-triazine resins. Among them, it is preferable to contain at least one of polyamide and polyamideimide because of its excellent adhesiveness, and a polyamide resin having a siloxane structure and a para-aramid structure or a polyamideimide resin because it can achieve a low coefficient of thermal expansion and a low elastic modulus. Is more preferable. Further, it is preferable to additionally contain an epoxy resin having excellent electrical reliability such as insulation resistance. Further, a thermosetting resin composition that is soluble in an organic solvent is preferable from the viewpoint of workability. In the thermosetting resin composition of the present invention, from the viewpoint of low cost and energy saving, it is preferable that the thermosetting resin used can undergo a curing reaction at a low temperature of 250 ° C. or lower.

【0011】本発明における上記熱硬化後の伸び率と5
0〜300℃における熱膨張率とを満たす熱硬化性樹脂
組成物は、例えば、比較的伸び率が高いアラミド構造を
有するポリアミドイミド樹脂(A)と、熱膨張係数の低
いノボラック型のエポキシ樹脂(B)とを、(A)/
(B)=90/10〜60/40重量部で配合して実現
することができる。これよりもポリアミドイミド樹脂
(A)の配合比が多くなると熱硬化後の50〜300℃
における熱膨張率が大きくなり、またノボラック型エポ
キシ樹脂(B)の配合比が多くなると伸び率が小さくな
る。ここで用いるアラミド構造を有するポリアミドイミ
ド樹脂(A)は特に制限されないが、例えば非プロトン
性極性溶媒の存在下で、ジアミンの混合物に無水トリメ
リット酸を反応させ、反応生成物としてジイミドジカル
ボン酸を得た後、芳香族ジカルボン酸を共存させ、ジイ
ソシアネートを反応させることにより得ることができ
る。本発明においては、ジアミンの混合物の混合物の合
計モル数に対し、1.80〜2.20倍モル量の無水ト
リメリット酸を反応させて、ジイミドジカルボン酸を合
成するのが好ましい。このジイミドジカルボン酸を製造
するに際し、非プロトン性極性溶媒の存在下に、50〜
90℃で反応させ、さらに非プロトン性極性溶媒の0.
1〜0.5重量比(10重量%〜50重量%)で芳香族炭
化水素を投入し、120〜180℃で反応を行うと好ま
しい。この反応終了後は、芳香族炭化水素は蒸留などに
より除去し、続いて芳香族ジカルボン酸を加え、ジイソ
シアネートと反応させてポリアミドイミドを製造でき
る。ここで原料に用いるジアミンとしては芳香族ジアミ
ンを、ジイソシアネートとしては芳香族ジイソシアネー
トを、芳香族ジカルボン酸としてはテレフタル酸を用い
ると、特性バランスに優れた樹脂組成物が得られるため
好ましい。また、ジアミンとしてシロキサンジアミンを
併用すると弾性率が下がるため好ましい。ノボラック型
のエポキシ樹脂(B)は、例えばフェノールノボラック
型フェノール樹脂、クレゾールノボラック型エポキシ樹
脂、ビスフェノールAノボラック型エポキシ樹脂等を用
いることができる。
In the present invention, the elongation after heat curing and 5
The thermosetting resin composition satisfying the coefficient of thermal expansion at 0 to 300 ° C. includes, for example, a polyamide-imide resin (A) having an aramid structure having a relatively high elongation rate and a novolac type epoxy resin having a low coefficient of thermal expansion ( B) and (A) /
(B) = 90/10 to 60/40 parts by weight can be compounded and realized. If the compounding ratio of the polyamide-imide resin (A) is higher than this, 50 to 300 ° C. after thermosetting
The coefficient of thermal expansion becomes large and the elongation becomes small as the compounding ratio of the novolac type epoxy resin (B) increases. The polyamideimide resin (A) having an aramid structure used here is not particularly limited, but for example, a mixture of diamines is reacted with trimellitic anhydride in the presence of an aprotic polar solvent, and diimidedicarboxylic acid is used as a reaction product. After it is obtained, it can be obtained by allowing aromatic dicarboxylic acid to coexist and reacting with diisocyanate. In the present invention, it is preferable to synthesize a diimidedicarboxylic acid by reacting 1.80 to 2.20 times the molar amount of trimellitic anhydride with respect to the total number of moles of the mixture of diamines. When producing this diimidedicarboxylic acid, in the presence of an aprotic polar solvent,
The reaction was carried out at 90 ° C. and the aprotic polar solvent of 0.
It is preferable to add aromatic hydrocarbons at a ratio of 1 to 0.5 wt% (10 wt% to 50 wt%) and carry out the reaction at 120 to 180 ° C. After completion of this reaction, aromatic hydrocarbons can be removed by distillation or the like, and then aromatic dicarboxylic acid can be added and reacted with diisocyanate to produce polyamideimide. It is preferable to use an aromatic diamine as the diamine, an aromatic diisocyanate as the diisocyanate, and a terephthalic acid as the aromatic dicarboxylic acid, since a resin composition excellent in property balance can be obtained. In addition, it is preferable to use siloxane diamine as the diamine because the elastic modulus decreases. As the novolac type epoxy resin (B), for example, phenol novolac type phenol resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin or the like can be used.

【0012】本発明の熱硬化性樹脂組成物には、硬化剤
や硬化促進剤、チキソ性付与剤、レベリング剤、無機充
填剤などを適宜配合してもかまわないことは言うまでも
ない。これらを配合して、充分に撹拌した後、泡がなく
なるまで静置して本発明の熱硬化性樹脂組成物を得るこ
とができる。
It goes without saying that the thermosetting resin composition of the present invention may appropriately contain a curing agent, a curing accelerator, a thixotropic agent, a leveling agent, an inorganic filler and the like. The thermosetting resin composition of the present invention can be obtained by blending these components, stirring the mixture sufficiently, and then allowing the mixture to stand until bubbles are removed.

【0013】次に、本発明の接着フィルムについて説明
する。本発明の接着フィルムは、支持基材または被接着
体の少なくとも片面に、上記した本発明の熱硬化性樹脂
組成物の、Bステージ状態の層が形成されている接着フ
ィルムである。この接着フィルムは、例えば、上記の熱
硬化性樹脂組成物を溶剤で10〜100Pの粘度に調整
した後、テープ状またはフィルム状の支持体に塗布し、
次いで加熱乾燥して得られる。Bステージ状態の熱硬化
性樹脂の層を得るための加熱乾燥条件は50〜160℃
で2〜30分間が好ましい。塗布厚は加熱乾燥後で5〜
100μmが好ましい。本発明におけるBステージ状態
とは、樹脂組成物を塗布した後、加熱乾燥することによ
って、硬化反応における反応率を1〜70%とした状態
および樹脂組成物に含まれる溶剤分の割合を0.1〜5
0重量%とした状態の、少なくとも一方の状態を示す。
Next, the adhesive film of the present invention will be described. The adhesive film of the present invention is an adhesive film in which a layer in the B stage state of the thermosetting resin composition of the present invention is formed on at least one surface of a supporting substrate or an adherend. This adhesive film is, for example, after the thermosetting resin composition is adjusted to a viscosity of 10 to 100 P with a solvent, and then applied to a tape-shaped or film-shaped support,
Then, it is dried by heating. The heating and drying conditions for obtaining the layer of the thermosetting resin in the B stage state are 50 to 160 ° C.
2 to 30 minutes is preferable. The coating thickness is 5 after heating and drying.
100 μm is preferable. The B stage state in the present invention means a state in which the reaction rate in the curing reaction is set to 1 to 70% by applying the resin composition and then drying by heating, and the ratio of the solvent component contained in the resin composition is 0. 1-5
At least one state of 0% by weight is shown.

【0014】ここで支持体としては、銅箔、ポリイミド
フィルム、ポリエチレンテレフタラートフィルム、ポリ
エチレンナフタレートフィルム、ポリエチレンフィル
ム、アラミドフィルム、ポリアミドフィルムなどが例示
できる。被接着体としては、シリコーンウェハやガラス
エポキシ基板、ポリイミド基板などを用いることができ
る。この接着フィルムは、そのまま支持体または被接着
体ごと接着フィルムとして用いることができ、また支持
体から熱硬化性樹脂層を剥がして熱硬化性樹脂層単独で
接着に用いることも出来る。
Examples of the support include copper foil, polyimide film, polyethylene terephthalate film, polyethylene naphthalate film, polyethylene film, aramid film and polyamide film. As the adherend, a silicone wafer, a glass epoxy substrate, a polyimide substrate, or the like can be used. This adhesive film can be used as it is as an adhesive film together with a support or an adherend, or the thermosetting resin layer can be peeled from the support and used alone for adhesion.

【0015】本発明の接着フィルムにおける、Bステー
ジ状態の熱硬化性樹脂は、引っ張り伸び率は好ましくは
10〜500%、より好ましくは30〜300%であ
り、弾性率は好ましくは0.01〜700MPa、より
好ましくは0.05〜300MPa、特に好ましくは
0.1〜100MPaである。これにより、取り扱い性
や耐熱性に優れた接着フィルムが得られる。Bステージ
状態の熱硬化性樹脂の伸び率が大きいと加熱圧着後の膜
厚安定性が悪くなり、伸び率が小さいと加熱圧着後の接
着力が劣る。また、Bステージ状態の熱硬化性樹脂の弾
性率が大きいとフィルムの反りが大きくなるため取り扱
い性が悪くなり、弾性率が小さいと加熱圧着の際に熱硬
化性樹脂が流れ出す。
The thermosetting resin in the B-stage state in the adhesive film of the present invention has a tensile elongation of preferably 10 to 500%, more preferably 30 to 300%, and an elastic modulus of preferably 0.01 to. It is 700 MPa, more preferably 0.05 to 300 MPa, and particularly preferably 0.1 to 100 MPa. Thereby, an adhesive film having excellent handleability and heat resistance can be obtained. If the elongation of the thermosetting resin in the B-stage is large, the film thickness stability after thermocompression bonding becomes poor, and if the elongation is small, the adhesive strength after thermocompression bonding becomes poor. If the thermosetting resin in the B-stage state has a large elastic modulus, the film warps to a large extent, resulting in poor handleability. If the elastic modulus is small, the thermosetting resin flows out during thermocompression bonding.

【0016】本発明の銅張り積層板は、熱硬化後の本発
明の熱硬化性樹脂組成物の層を含むか、または熱硬化性
樹脂組成物が熱硬化後である本発明の接着フィルムを含
み、硬化した熱硬化性樹脂組成物の層の少なくとも片面
に導電体層が積層されている。銅張り積層板の導電体層
としては、銅箔、スパッタ銅、メッキ銅、ニッケル、ク
ロム等が挙げられる。中でも銅箔は、回路加工が容易な
こと、電気特性に優れることのため、好ましい。
The copper-clad laminate of the present invention comprises the adhesive film of the present invention which contains a layer of the thermosetting resin composition of the present invention after thermosetting, or the thermosetting resin composition is after thermosetting. A conductor layer is laminated on at least one surface of the layer of the thermosetting resin composition which is contained and cured. Examples of the conductor layer of the copper-clad laminate include copper foil, sputtered copper, plated copper, nickel and chromium. Among them, copper foil is preferable because it can be easily processed into a circuit and has excellent electrical characteristics.

【0017】銅張り積層板の導電体層を形成する手法は
特に制限されないが、例えば、上記接着フィルムから支
持体を必要に応じて剥離した後、接着フィルムを銅箔や
前記被接着体などと積層し加熱圧着する方法や、上記接
着フィルムを積層した後加熱硬化し、その後スパッタや
蒸着、メッキなどの手法で導電体層を形成する方法など
が例示できる。低コスト化の観点から、接着フィルムと
銅箔とを銅箔の粗化面で挟んで積層し、0.5〜100
MPaの圧力で、150〜300℃において30〜30
0分間プレスを行うことによって銅張り積層板を製造す
るのが好ましい。こうして得られた銅張り積層板は、耐
熱性、接着性に優れる。
The method for forming the conductor layer of the copper-clad laminate is not particularly limited. For example, after peeling the support from the adhesive film as needed, the adhesive film is replaced with a copper foil or the adherend. Examples thereof include a method of laminating and thermocompression bonding, a method of laminating the above-mentioned adhesive films, followed by heating and curing, and then forming a conductor layer by a method such as sputtering, vapor deposition or plating. From the viewpoint of cost reduction, the adhesive film and the copper foil are sandwiched between the roughened surfaces of the copper foil and laminated, and 0.5 to 100
30 to 30 at 150 to 300 ° C. at a pressure of MPa
It is preferable to produce a copper clad laminate by pressing for 0 minutes. The copper-clad laminate thus obtained has excellent heat resistance and adhesiveness.

【0018】本発明のプリント配線板は、上記本発明の
銅張り積層板を含むものであり、プリント配線板を製造
する一例を挙げると、銅張り積層板に市販のドライフィ
ルムレジストを密着させた後、回路パターンのフォトマ
スクを密着させ、1000mJ/cmの紫外線で露光
し、現像液で現像した後、エッチング液でエッチングを
行って回路形成した後、市販の剥離液でフィルムレジス
トを剥離して製造できる。本発明のプリント配線板は、
鉛フリーはんだなど高温プロセスにおいて信頼性の高い
プリント配線板として有用に使用できる。
The printed wiring board of the present invention includes the above-mentioned copper-clad laminate of the present invention. As an example of producing the printed wiring board, a commercially available dry film resist is adhered to the copper-clad laminate. After that, a photomask having a circuit pattern is brought into close contact with the substrate, exposed to ultraviolet rays of 1000 mJ / cm 2 , developed with a developing solution, etched with an etching solution to form a circuit, and then the film resist is peeled off with a commercially available peeling solution. Can be manufactured. The printed wiring board of the present invention is
It can be usefully used as a highly reliable printed wiring board in high temperature processes such as lead-free soldering.

【0019】[0019]

【実施例】次に実施例により本発明を具体的に説明する
が、本発明はこれらに限定されるものではない。 (ポリアミドイミド(1)樹脂の合成)環流冷却器を連
結したコック付き25mlの水分定量受器、温度計、攪
拌機を備えた1Lのセパラブルフラスコに、反応性シリ
コーンオイルKF―8010(信越化学工業株式会社
製、シロキサンジアミン、アミン当量408)32.6
4g(0.04モル)、無水トリメリット酸 15.3
7g(0.084モル)、N−メチル−2−ピロリドン
(以下、NMPという。)163gを仕込み、80℃で
30分間攪拌した。そしてトルエン100mlを投入し
てから温度を上げ約160℃で2時間環流させた。水分
定量受器に水が約2.5ml以上たまっていること、水
の流出が見られなくなっていることを確認し、水分定量
受器にたまっている流出液を除去しながら、約190℃
まで温度を上げて、トルエンを除去した。その後、溶液
を室温に戻し、水分定量受器をはずし、テレフタル酸
9.97g(0.06モル)、MDI(4,4−ジフェ
ニルメタンジイソシアネート)30.03g(0.12
モル)、トリエチルアミン 2.1g(0.021モ
ル)を投入し、120℃で4時間反応させた。反応終了
後、ポリアミドイミド(1)樹脂のNMP溶液を得た。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited thereto. (Synthesis of Polyamideimide (1) Resin) In a 1 L separable flask equipped with a 25 ml water quantitative receiver with a cock connected to a reflux condenser, a thermometer, and a stirrer, a reactive silicone oil KF-8010 (Shin-Etsu Chemical Co., Ltd.) was used. Co., Ltd., siloxane diamine, amine equivalent 408) 32.6
4 g (0.04 mol), trimellitic anhydride 15.3
7 g (0.084 mol) and 163 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) were charged and stirred at 80 ° C. for 30 minutes. Then, 100 ml of toluene was added, the temperature was raised, and the mixture was refluxed at about 160 ° C. for 2 hours. Make sure that about 2.5 ml or more of water has accumulated in the moisture quantitative receiver and that no outflow of water is visible.
The temperature was raised to and the toluene was removed. Then, return the solution to room temperature, remove the water content receiver, and remove terephthalic acid.
9.97 g (0.06 mol), MDI (4,4-diphenylmethane diisocyanate) 30.03 g (0.12)
Mol) and 2.1 g (0.021 mol) of triethylamine were added and reacted at 120 ° C. for 4 hours. After the reaction was completed, an NMP solution of polyamideimide (1) resin was obtained.

【0020】(ポリアミドイミド(2)樹脂の合成)環
流冷却器を連結したコック付き25mlの水分定量受
器、温度計、攪拌機を備えた1Lのセパラブルフラスコ
に、3,4―ジアミノジフェニルエーテル 10.01
g(0.05モル)、無水トリメリット酸 20.17
g(0.105モル)、NMP 160gを仕込み、8
0℃で30分間攪拌した。そしてトルエン100mlを
投入してから温度を上げ約160℃で2時間環流させ
た。水分定量受器に水が約2.5ml以上たまっている
こと、水の流出が見られなくなっていることを確認し、
水分定量受器にたまっている流出液を除去しながら、約
190℃まで温度を上げて、トルエンを除去した。その
後、溶液を室温に戻し、水分定量受器をはずし、テレフ
タル酸 8.31g(0.05モル)、MDI(4,4
−ジフェニルメタンジイソシアネート)30.03g
(0.12モル)、トリエチルアミン 2.1g(0.
021モル)を投入し、120℃で4時間反応させた。
反応終了後、ポリアミドイミド(2)樹脂のNMP溶液
を得た。
(Synthesis of Polyamideimide (2) Resin) 3,4-diaminodiphenyl ether was added to a 1 L separable flask equipped with a 25 ml water content quantitative receiver with a cock connected to a reflux condenser, a thermometer and a stirrer. 01
g (0.05 mol), trimellitic anhydride 20.17
g (0.105 mol) and 160 g of NMP were charged, and 8
The mixture was stirred at 0 ° C for 30 minutes. Then, 100 ml of toluene was added, the temperature was raised, and the mixture was refluxed at about 160 ° C. for 2 hours. Confirm that about 2.5 ml of water has accumulated in the moisture quantitative receiver and that no outflow of water is visible.
While removing the effluent accumulated in the moisture quantitative receiver, the temperature was raised to about 190 ° C. to remove toluene. Then, the solution was returned to room temperature, the moisture quantitative receiver was removed, and terephthalic acid 8.31 g (0.05 mol) and MDI (4,4
-Diphenylmethane diisocyanate) 30.03 g
(0.12 mol), triethylamine 2.1 g (0.
021 mol) was added and the reaction was carried out at 120 ° C. for 4 hours.
After the reaction was completed, an NMP solution of polyamideimide (2) resin was obtained.

【0021】(実施例1〜4)熱硬化後の引っ張り伸び
率が3〜20%となり、かつ50〜300℃における熱
膨張率が0.05〜7%となるように、上記ポリアミド
イミド(1)とエポキシ樹脂を配合し、各種特性値を調
べた。すなわち、攪拌器付きの500mlフラスコに上
記のポリアミドイミド(1)とYDCN−703(東都
化成株式会社製、クレゾールノボラック型エポキシ樹
脂)を表1に示した配合比で加え、さらに2−エチル−
4−メチルイミダゾール0.1gを加えた後、NMPで
希釈してよく攪拌し、粘度20Pになるようにワニスを
調製した。このワニスを完全に泡がなくなるまで24時
間静置脱泡した後、ポリエチレンテレフタラートフィル
ムの片面に塗布し、120℃で7分間乾燥した後、上記
フィルムから乾燥した塗布層を剥離して厚さ80μmの
Bステージ状態の接着フィルムの試料を得た。得られた
Bステージ状態の接着フィルム試料について、下記の手
法で引っ張り伸び率、弾性率を測定し、結果を表1に併
記した。
(Examples 1 to 4) The polyamide imide (1) was prepared so that the tensile elongation after heat curing was 3 to 20% and the coefficient of thermal expansion at 50 to 300 ° C was 0.05 to 7%. ) And an epoxy resin were mixed and various characteristic values were examined. That is, the above-mentioned polyamide imide (1) and YDCN-703 (Cresol novolac type epoxy resin manufactured by Tohto Kasei Co., Ltd.) were added to a 500 ml flask equipped with a stirrer at a compounding ratio shown in Table 1, and 2-ethyl-
After adding 0.1 g of 4-methylimidazole, it was diluted with NMP and well stirred to prepare a varnish having a viscosity of 20P. This varnish was allowed to stand for 24 hours to defoam until it completely disappeared, then applied on one side of a polyethylene terephthalate film, dried at 120 ° C. for 7 minutes, and then the dried coating layer was peeled off from the film to a thickness. A sample of an adhesive film in a B stage state of 80 μm was obtained. With respect to the obtained adhesive film sample in the B stage state, the tensile elongation percentage and elastic modulus were measured by the following methods, and the results are also shown in Table 1.

【0022】続いて、500mm角に切断した上記接着
フィルム試料を2枚の銅箔(商品名F2WS-18、古河サー
キットフォイル株式会社製)の粗化面の間に挟み、4M
Paの圧力において200℃で2時間プレスして両面銅
張り積層板試料を得た。得られた両面銅張り積層板試料
を25mm角に切断し、288℃のはんだ恒温漕に浮か
べて銅箔がふくれるまでの時間を測定し、結果を表1に
併記した。別に、両面銅張り積層板試料の両面の銅を完
全にエッチングした後、残ったフィルム試料を水洗し
て、良く乾燥した。この乾燥したフィルム試料につい
て、下記の方法で引っ張り伸び率、引っ張り破断強度、
弾性率、熱膨張率を測定し、結果を表1に併記した。
Subsequently, the above adhesive film sample cut into 500 mm square was sandwiched between two roughened surfaces of copper foil (trade name F2WS-18, manufactured by Furukawa Circuit Foil Co., Ltd.), and 4 M
A double-sided copper-clad laminate sample was obtained by pressing at 200 ° C. for 2 hours under a pressure of Pa. The obtained double-sided copper-clad laminate sample was cut into 25 mm square pieces, and the time until the copper foil swells was measured by floating in a solder constant temperature bath at 288 ° C. The results are also shown in Table 1. Separately, after completely etching the copper on both sides of the double-sided copper-clad laminate sample, the remaining film sample was washed with water and dried well. For this dried film sample, the tensile elongation, tensile break strength,
The elastic modulus and the coefficient of thermal expansion were measured, and the results are also shown in Table 1.

【0023】・引っ張り伸び率、引っ張り破断強度 フィルム試料を幅10mm、長さ80mmに切断し、上
下10mmづつを治具で挟んで、上下に50mm/分の
速度で100kgテンシロン(オリエンテック株式会社
製、商品名)を用いて、サンプルが破断するまで引っ張
った。治具にかかる力を測定することで破断強度と伸び
率を測定した。 ・弾性率 フィルム試料を幅5mm、長さ30mmに切断し、両端
5mmを治具で挟み込み、DVE(広域動的粘弾性測定
装置)によって、測定周波数10MHzにおける室温の
弾性率を測定した。 ・熱膨張率 フィルム試料を幅5mm、長さ150mmに切断し、上
下10mmずつを治具で挟んでTMA(熱機械分析装置)
によって、5gの加重をかけながら、5℃/分の速度で
昇温した。試料の変位量から50〜300℃における熱
膨張率を算出した。
Tensile elongation, tensile breaking strength A film sample is cut into a width of 10 mm and a length of 80 mm, and the upper and lower 10 mm are sandwiched by a jig, and the upper and lower sides are 100 kg Tensilon (manufactured by Orientec Co., Ltd.). , Trade name) was used to pull the sample until it broke. Breaking strength and elongation were measured by measuring the force applied to the jig. -Elastic modulus film sample was cut into a width of 5 mm and a length of 30 mm, both ends were sandwiched with a jig of 5 mm, and the elastic modulus at room temperature at a measurement frequency of 10 MHz was measured by DVE (wide dynamic viscoelasticity measuring device).・ The coefficient of thermal expansion film sample is cut into a width of 5 mm and a length of 150 mm, and the top and bottom 10 mm are sandwiched by jigs, and TMA (thermomechanical analyzer)
The temperature was raised at a rate of 5 ° C./min while applying a weight of 5 g. The coefficient of thermal expansion at 50 to 300 ° C. was calculated from the amount of displacement of the sample.

【0024】(実施例5)実施例3と同じワニスを用
い、Bステージ状態の接着フィルムの管理条件のみを変
更し、その他は実施例3と同様にして試料の作製と物性
の測定を行った。すなわち実施例3で得られたワニスを
ポリエチレンテレフタラートフィルムに塗布し、170
℃で20分間乾燥して厚さ80μmのBステージ状態の
接着フィルムを得た。得られたBステージ状態の接着フ
ィルムについて、実施例3と同様に引っ張り伸び率、弾
性率を測定し、結果を表1に示した。さらにこのBステ
ージ状態の接着フィルムを用いて同様に銅張り積層板を
作製し、はんだ耐熱性を評価した。また、銅箔をエッチ
ングして硬化後のフィルムの引っ張り伸び率、引っ張り
破断強度、弾性率、熱膨張率を測定し、結果を表1に併
記した。
(Example 5) Using the same varnish as in Example 3, only the control conditions of the adhesive film in the B stage state were changed, and the other conditions were the same as in Example 3 to prepare a sample and measure its physical properties. . That is, the varnish obtained in Example 3 was applied to a polyethylene terephthalate film, and 170
It was dried at 0 ° C. for 20 minutes to obtain an adhesive film in a B stage state having a thickness of 80 μm. The tensile elongation and elastic modulus of the obtained adhesive film in the B stage state were measured in the same manner as in Example 3, and the results are shown in Table 1. Further, a copper clad laminate was prepared in the same manner using this adhesive film in the B stage state, and the solder heat resistance was evaluated. The tensile elongation, tensile breaking strength, elastic modulus, and thermal expansion coefficient of the cured film obtained by etching the copper foil were measured, and the results are shown in Table 1.

【0025】(実施例6)攪拌器付きの500mlフラ
スコに上記のポリアミドイミド(2)とYDCN−70
3(東都化成株式会社製、クレゾールノボラック型エポ
キシ樹脂)を表1に示した配合比で加え、さらに2−エ
チル−4−メチルイミダゾール0.1gを加えた後、N
MPで希釈してよく攪拌し、粘度20Pになるよう調製
した。このワニスを用いて、実施例1と同様にしてBス
テージ状態におけるフィルムの引っ張り伸び率、弾性
率、銅張り積層板のはんだ耐熱性、硬化後のフィルムの
引っ張り伸び率、引っ張り破断強度、弾性率、熱膨張
率、はんだ耐熱性を測定した。結果を表1に併記する。
Example 6 Polyamideimide (2) and YDCN-70 were placed in a 500 ml flask equipped with a stirrer.
3 (Toto Kasei Co., Ltd., cresol novolac type epoxy resin) was added at the compounding ratio shown in Table 1, and 0.1 g of 2-ethyl-4-methylimidazole was added, and then N was added.
It was diluted with MP, stirred well, and adjusted to have a viscosity of 20P. Using this varnish, in the same manner as in Example 1, the tensile elongation percentage, elastic modulus, solder heat resistance of the copper clad laminate, tensile elongation percentage of the film after curing, tensile breaking strength, elastic modulus of the film in the B stage state. The thermal expansion coefficient and the solder heat resistance were measured. The results are also shown in Table 1.

【0026】(比較例1〜3)攪拌器付きの500ml
フラスコに上記のポリアミドイミドとYDCN−703
(東都化成株式会社製、クレゾールノボラック型エポキ
シ樹脂)を表1に示した配合比で加え、さらに2−エチ
ル−4−メチルイミダゾール0.1gを加えた後、NM
Pで希釈してよく攪拌し、粘度20Pになるよう調製し
た。これらのワニスを用いて、実施例1と同様にBステ
ージ状態におけるフィルムの引っ張り伸び率、弾性率、
銅張り積層板のはんだ耐熱性、硬化後のフィルムの引っ
張り伸び率、引っ張り破断強度、弾性率、熱膨張率、は
んだ耐熱性を測定した。結果を表1に併記する。
(Comparative Examples 1 to 3) 500 ml with a stirrer
Add the above polyamideimide and YDCN-703 to the flask.
(Tohto Kasei Co., Ltd., cresol novolac type epoxy resin) was added at the compounding ratio shown in Table 1, and 0.1 g of 2-ethyl-4-methylimidazole was further added, followed by NM.
It was diluted with P, stirred well, and adjusted to have a viscosity of 20P. Using these varnishes, as in Example 1, the tensile elongation percentage, elastic modulus, and tensile elongation of the film in the B stage state,
The solder heat resistance of the copper-clad laminate, the tensile elongation of the cured film, the tensile breaking strength, the elastic modulus, the coefficient of thermal expansion, and the solder heat resistance were measured. The results are also shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示すように、実施例1〜6ではいず
れも比較例1〜3に比べてはんだ耐熱性がいずれも優れ
ていた。また、熱硬化後のフィルムの破断強度が50M
Pa以上であった実施例3、4は、同じ条件で作製し、
破断強度が50MPa未満であった実施例1、2と比較
して、特にはんだ耐熱性に優れていた。さらに、Bステ
ージ状態のフィルムの伸び率が30%以上であり、弾性
率が300MPa以下である実施例3に比べて、同じワ
ニスを用いてBステージ状態のフィルムの伸び率が30
%未満であり、弾性率も300MPaより大である実施
例5ははんだ耐熱性が劣っていた。また、熱硬化後のフ
ィルムの弾性率が3MPaより大である実施例6は熱硬
化後のフィルムの弾性率が3MPa以下である実施例1
〜5に比べてはんだ耐熱性が悪かった。
As shown in Table 1, all of Examples 1 to 6 were superior in solder heat resistance to Comparative Examples 1 to 3. Also, the breaking strength of the film after thermosetting is 50M.
Examples 3 and 4 with Pa or more were manufactured under the same conditions,
The solder heat resistance was particularly excellent as compared with Examples 1 and 2 in which the breaking strength was less than 50 MPa. Further, compared with Example 3 in which the elongation rate of the film in the B stage state is 30% or more and the elastic modulus is 300 MPa or less, the elongation rate of the film in the B stage state is 30 using the same varnish.
%, And the elastic modulus was greater than 300 MPa, Example 5 was inferior in solder heat resistance. Further, Example 6 in which the elastic modulus of the film after thermosetting is higher than 3 MPa is Example 1 in which the elastic modulus of the film after thermal curing is 3 MPa or less.
The solder heat resistance was poorer than that of Nos.

【0029】[0029]

【発明の効果】本発明の熱硬化性接着樹脂組成物は、鉛
フリー化など今後高耐熱化が求められる電子部品に最適
であり、これを用いた接着フィルムによって、ポリイミ
ドや銅箔を高い耐熱性を維持したまま接着できる。この
ため高い耐熱性を有する銅張り積層板ならびにプリント
配線板を作製することができる。
INDUSTRIAL APPLICABILITY The thermosetting adhesive resin composition of the present invention is most suitable for electronic parts which are required to have high heat resistance in the future such as lead-free, and the adhesive film using the polyimide film can improve heat resistance of polyimide and copper foil. Can be adhered while maintaining the property. Therefore, a copper-clad laminate and a printed wiring board having high heat resistance can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09J 179/08 C09J 179/08 B 201/00 201/00 H05K 1/03 610 H05K 1/03 610P (72)発明者 田中 裕子 茨城県下館市大字小川1500番地 日立化成 工業株式会社総合研究所内 Fターム(参考) 4F100 AB17B AK01A AK46A AK50A AK53 AL05A BA02 BA03 BA10B BA10C GB43 JA02A JB13A JG01B JJ03 JK02A JK06 JK07A JK08A YY00A 4J002 AA021 BH021 CC031 CD001 CL001 CM041 GF00 GJ01 GQ00 4J004 AA11 AB05 CC02 EA05 FA05 4J040 DG001 EB031 EC001 EG001 EH021 EH031 EK111 JA09 JB02 LA06 LA08 NA20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09J 179/08 C09J 179/08 B 201/00 201/00 H05K 1/03 610 H05K 1/03 610P (72 ) Inventor Yuko Tanaka 1500 Ogawa, Shimodate City, Ibaraki Prefecture F-term in the Research Institute, Hitachi Chemical Co., Ltd. CC031 CD001 CL001 CM041 GF00 GJ01 GQ00 4J004 AA11 AB05 CC02 EA05 FA05 4J040 DG001 EB031 EC001 EG001 EH021 EH031 EK111 JA09 JB02 LA06 LA08 NA20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化後の、引っ張り伸び率が3〜20
%であり、50〜300℃における熱膨張率が0.05
〜7%である熱硬化性樹脂組成物。
1. The tensile elongation after heat curing is 3 to 20.
%, And the coefficient of thermal expansion at 50 to 300 ° C. is 0.05.
The thermosetting resin composition is 7%.
【請求項2】 熱硬化後の弾性率が0.3〜3GPaで
ある請求項1に記載の熱硬化性樹脂組成物。
2. The thermosetting resin composition according to claim 1, wherein the elastic modulus after thermosetting is 0.3 to 3 GPa.
【請求項3】 熱硬化後の引っ張り破断強度が50〜3
00MPaである請求項1または請求項2に記載の熱硬
化性樹脂組成物。
3. The tensile rupture strength after thermosetting is 50 to 3
The thermosetting resin composition according to claim 1 or 2, which has a pressure of 00 MPa.
【請求項4】 ポリアミドおよびポリアミドイミドの少
なくとも一方を含有する請求項1〜請求項3のいずれか
に記載の熱硬化性樹脂組成物。
4. The thermosetting resin composition according to claim 1, which contains at least one of polyamide and polyamideimide.
【請求項5】 支持基材または被接着体の少なくとも片
面に、請求項1〜請求項4のいずれかに記載の熱硬化性
樹脂組成物の層がBステージ状態で形成されている接着
フィルム。
5. An adhesive film in which a layer of the thermosetting resin composition according to any one of claims 1 to 4 is formed in a B stage state on at least one surface of a supporting substrate or an adherend.
【請求項6】 Bステージ状態の熱硬化性樹脂組成物の
引張り伸び率が30〜300%であり、弾性率が0.0
5〜300MPaである請求項5に記載の接着フィル
ム。
6. The thermosetting resin composition in the B stage has a tensile elongation of 30 to 300% and an elastic modulus of 0.0.
The adhesive film according to claim 5, which has a pressure of 5 to 300 MPa.
【請求項7】 熱硬化された請求項1〜4のいずれかに
記載の熱硬化性樹脂組成物の層または熱硬化性樹脂組成
物が熱硬化された請求項5〜6のいずれかに記載の接着
フィルムを含み、熱硬化性樹脂組成物の層の少なくとも
片面に導電体層が積層されている銅張り積層板。
7. The layer of the thermosetting resin composition according to any one of claims 1 to 4 which is heat-cured or the thermosetting resin composition according to any one of claims 5 to 6. And a conductor layer laminated on at least one surface of the thermosetting resin composition layer.
【請求項8】 請求項7に記載の銅張り積層板を含むプ
リント配線板。
8. A printed wiring board including the copper-clad laminate according to claim 7.
JP2002020853A 2002-01-30 2002-01-30 Thermosetting resin composition, adhesive film, copper-clad laminate and printed wiring board Expired - Fee Related JP4172179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002020853A JP4172179B2 (en) 2002-01-30 2002-01-30 Thermosetting resin composition, adhesive film, copper-clad laminate and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002020853A JP4172179B2 (en) 2002-01-30 2002-01-30 Thermosetting resin composition, adhesive film, copper-clad laminate and printed wiring board

Publications (2)

Publication Number Publication Date
JP2003221509A true JP2003221509A (en) 2003-08-08
JP4172179B2 JP4172179B2 (en) 2008-10-29

Family

ID=27744238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002020853A Expired - Fee Related JP4172179B2 (en) 2002-01-30 2002-01-30 Thermosetting resin composition, adhesive film, copper-clad laminate and printed wiring board

Country Status (1)

Country Link
JP (1) JP4172179B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310643A (en) * 2005-04-28 2006-11-09 Sumitomo Electric Ind Ltd Flexible printed wiring board
JP2006315391A (en) * 2005-04-12 2006-11-24 Hitachi Chem Co Ltd Laminated plate and printed circuit board using the same
JP2007305963A (en) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd Substrate for mounting semiconductor element with stress relaxation layer and its manufacturing method
JP2008279666A (en) * 2007-05-11 2008-11-20 Panefuri Kogyo Kk Metallic tone decorative sheet and metallic tone decorative material
JPWO2013133041A1 (en) * 2012-03-08 2015-07-30 東亞合成株式会社 Halogen-free flame retardant adhesive composition
JP2016088050A (en) * 2014-11-11 2016-05-23 住友ベークライト株式会社 Metal film with resin layer
WO2022202427A1 (en) * 2021-03-24 2022-09-29 太陽インキ製造株式会社 Thermosetting resin composition, dry film, cured product, printed wiring board, and electric/electronic component
WO2023167060A1 (en) * 2022-03-01 2023-09-07 三井化学株式会社 Laminate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315391A (en) * 2005-04-12 2006-11-24 Hitachi Chem Co Ltd Laminated plate and printed circuit board using the same
JP2006310643A (en) * 2005-04-28 2006-11-09 Sumitomo Electric Ind Ltd Flexible printed wiring board
JP2007305963A (en) * 2006-04-14 2007-11-22 Hitachi Chem Co Ltd Substrate for mounting semiconductor element with stress relaxation layer and its manufacturing method
JP2008279666A (en) * 2007-05-11 2008-11-20 Panefuri Kogyo Kk Metallic tone decorative sheet and metallic tone decorative material
JPWO2013133041A1 (en) * 2012-03-08 2015-07-30 東亞合成株式会社 Halogen-free flame retardant adhesive composition
JP2016088050A (en) * 2014-11-11 2016-05-23 住友ベークライト株式会社 Metal film with resin layer
WO2022202427A1 (en) * 2021-03-24 2022-09-29 太陽インキ製造株式会社 Thermosetting resin composition, dry film, cured product, printed wiring board, and electric/electronic component
WO2023167060A1 (en) * 2022-03-01 2023-09-07 三井化学株式会社 Laminate

Also Published As

Publication number Publication date
JP4172179B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
CN101400514B (en) Metallic laminate and method for preparing the same
JP4455806B2 (en) Prepreg and laminate
JP4619860B2 (en) Flexible laminate and method for manufacturing the same
JP2009132929A (en) Primer, electroconductor foil with resin, laminated plate and method of producing laminated plate
JP2011514266A (en) High adhesion polyimide copper clad laminate and method for producing the same
JP5092452B2 (en) Modified polyamideimide resin, adhesive using the same, and printed circuit board
JP4642479B2 (en) COF laminate and COF film carrier tape
JP2003221509A (en) Thermosetting resin composition, adhesive film, copper- clad laminate and printed-circuit board
JP4517749B2 (en) Prepreg and metal-clad laminate and printed circuit board using the same
JP2016141015A (en) Double-sided metal-clad laminate and method of manufacturing the same
JP4363137B2 (en) Substrate film with metal foil layer and substrate film with double-sided metal foil
JP5158397B2 (en) Heat-resistant adhesive sheet, metal foil-clad laminate, and wiring board for area array semiconductor package
JP4976380B2 (en) Metal laminate
JP4238172B2 (en) Flame retardant resin composition and metal-clad laminate for flexible printed wiring board using the flame retardant resin composition
JP2008045036A (en) Polyamide resin, and composition and adhesive each using the same, adhesive sheet using the adhesive, and printed circuit board using the adhesive sheet
JP4763964B2 (en) Method for producing polyimide metal laminate
JP5055244B2 (en) Polyimide metal laminate
JP4328138B2 (en) Polyimide metal laminate
JP2012162084A (en) Base material with resin, and resinated copper foil with resin
JP4409898B2 (en) Polyimide metal laminate
JP2001212904A (en) Adhesive applied conductor-polyimide laminated sheet
JP2004051910A (en) Resin film and metal-clad laminated sheet
JP2003089784A (en) Heat-resistant adhesive film for buildup substrate
JP2010037489A (en) Adhesive film, and metal foil with resin
JP2797044B2 (en) Bonding method and adhesive member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R151 Written notification of patent or utility model registration

Ref document number: 4172179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees