JP2003221251A - Device for manufacturing glass tube for optical fiber, method for manufacturing glass tube for optical fiber, and method for manufacturing preform for optical fiber - Google Patents

Device for manufacturing glass tube for optical fiber, method for manufacturing glass tube for optical fiber, and method for manufacturing preform for optical fiber

Info

Publication number
JP2003221251A
JP2003221251A JP2002022566A JP2002022566A JP2003221251A JP 2003221251 A JP2003221251 A JP 2003221251A JP 2002022566 A JP2002022566 A JP 2002022566A JP 2002022566 A JP2002022566 A JP 2002022566A JP 2003221251 A JP2003221251 A JP 2003221251A
Authority
JP
Japan
Prior art keywords
optical fiber
manufacturing
glass
glass pipe
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002022566A
Other languages
Japanese (ja)
Inventor
Masaaki Hirano
正晃 平野
Masashi Onishi
正志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002022566A priority Critical patent/JP2003221251A/en
Priority to US10/476,787 priority patent/US20040129030A1/en
Priority to PCT/JP2003/000239 priority patent/WO2003059828A1/en
Priority to KR10-2003-7014404A priority patent/KR20040077449A/en
Priority to CNB038004828A priority patent/CN1261379C/en
Priority to EP03701720A priority patent/EP1394124A4/en
Priority to CNA038012340A priority patent/CN1564789A/en
Priority to PCT/JP2003/000841 priority patent/WO2003064338A1/en
Priority to EP03703074A priority patent/EP1471040A4/en
Priority to KR10-2004-7004158A priority patent/KR20040078640A/en
Publication of JP2003221251A publication Critical patent/JP2003221251A/en
Priority to US10/796,052 priority patent/US6997016B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for manufacturing a glass tube for an optical fiber capable of reducing manufacturing costs of the optical fiber, a method for manufacturing the glass tube for the optical fiber and a method for manufacturing a preform for the optical fiber. <P>SOLUTION: The glass tube for the optical fiber is manufactured by heating a long glass material 10 with a heat source 11 relatively moving in the longitudinal direction of the glass material 10 to soften the glass material 10 and pressing a piercing tool 12 into the end of the softened glass material 10 to make a hollow part H. The piercing tool 12 is provided with a tapered piercing part 14 to pierce the glass material 10 and a column part 15 connected to the bottom of the piercing part 14 and having the continuous cross sections approximately congruent with the contour of the bottom. The column part 15 has length L in the longitudinal direction capable of touching the inner wall 10A of the glass material 10 composing the hollow part H until the temperature of the glass material 10 composing the hollow part H reaches the lowest temperature at which the glass material 10 can maintain the shape of the cross section by itself. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ用ガラ
スパイプの製造装置、光ファイバ用ガラスパイプの製造
方法、及び、光ファイバ用母材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber glass pipe manufacturing apparatus, an optical fiber glass pipe manufacturing method, and an optical fiber base material manufacturing method.

【0002】[0002]

【従来の技術】光ファイバ用ガラスパイプの製造方法と
しては、石英ガラスロッドを熱源によって加熱軟化しな
がら、石英ガラスロッドの中心に穿孔治具を圧入する方
法(特開平7−109135号公報参照)が知られてい
る。すなわち、図6(A)の概略断面図に示すように、
長尺状のガラス素材50をガラス素材50の長手方向に
沿って相対移動する熱源51によって加熱することによ
りガラス素材50を軟化させながら、穿孔治具52の穿
孔部52Aをガラス素材50の端面から圧入して、光フ
ァイバ用ガラスパイプを製造する。
2. Description of the Related Art As a method for manufacturing an optical fiber glass pipe, a quartz glass rod is heated and softened by a heat source, and a punching jig is press-fitted into the center of the quartz glass rod (see Japanese Patent Laid-Open No. 7-109135). It has been known. That is, as shown in the schematic sectional view of FIG.
While heating the long glass material 50 by the heat source 51 that relatively moves along the longitudinal direction of the glass material 50 to soften the glass material 50, the perforation portion 52A of the perforation jig 52 is cut from the end surface of the glass material 50. The glass pipe for optical fiber is manufactured by press fitting.

【0003】このように得られる光ファイバ用ガラスパ
イプは、その中空に、ガラスロッドを挿入した後、コラ
プスすることにより、光ファイバを製造するための光フ
ァイバ用母材とされる。または、光ファイバ用ガラスパ
イプは、その内周壁に、MCVD法(ModifiedChemical
Vapor phase Deposition),PCVD法(Plasma Chemica
l Vapor phaseDeposition)等のCVD法(Chemical Vapo
r phase Deposition)でガラスを積層した後、コラプス
して中実とすることにより、光ファイバ用母材とされ
る。
The glass pipe for an optical fiber thus obtained is used as an optical fiber preform for producing an optical fiber by inserting a glass rod into the hollow and then performing a collapse. Alternatively, the glass pipe for optical fiber has an MCVD (Modified Chemical) method on its inner peripheral wall.
Vapor phase Deposition), PCVD method (Plasma Chemica
l Vapor phase Deposition) and other CVD methods (Chemical Vapo
After laminating glass by (r phase deposition), it is made into a solid material by collapsing to obtain a base material for an optical fiber.

【0004】しかしながら、上記した従来の光ファイバ
用ガラスパイプの製造方法によれば、中空H’を構成す
る軟化状態のガラス素材が、表面張力によって中空H’
の中心軸方向に張り出し、図6(B)に示すように、中
空H’の断面形状が長手方向に沿って一様ではない光フ
ァイバ用ガラスパイプ53が製造されやすい。このよう
に、光ファイバ用ガラスパイプ53は、内径と外径の比
が長手方向で一定でない。よって、前記した方法に順じ
て、光ファイバ用ガラスパイプ53から得られる光ファ
イバ用母材は、コア径とクラッド径の比が長手方向で一
定でなく、また、このような光ファイバ用母材のコア断
面は楕円形状となりやすいので、得られる光ファイバの
コア径は長手方向で一定でなく、特性は良好でない。そ
のため、特性が良好な光ファイバを選別するための検査
にかかるコストや、特性不良の光ファイバの廃却など
が、光ファイバの製造コストの低減を妨げる理由となっ
ていた。
However, according to the above-mentioned conventional method for producing a glass pipe for an optical fiber, the glass material in the softened state forming the hollow H'is hollow H'due to surface tension.
6B, the glass pipe 53 for an optical fiber is easy to manufacture in which the cross-sectional shape of the hollow H ′ is not uniform along the longitudinal direction as shown in FIG. 6B. As described above, in the optical fiber glass pipe 53, the ratio of the inner diameter to the outer diameter is not constant in the longitudinal direction. Therefore, according to the method described above, the optical fiber preform obtained from the optical fiber glass pipe 53 does not have a constant ratio of the core diameter to the clad diameter in the longitudinal direction. Since the core cross section of the material tends to be elliptical, the core diameter of the obtained optical fiber is not constant in the longitudinal direction, and the characteristics are not good. Therefore, the cost of the inspection for selecting the optical fiber having good characteristics and the disposal of the optical fiber having the poor characteristics have been the reasons for preventing the reduction of the manufacturing cost of the optical fiber.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためになされたものであり、その目的は、光
ファイバの製造コストを低減できる光ファイバ用ガラス
パイプの製造装置、光ファイバ用ガラスパイプの製造方
法、及び、光ファイバ用母材の製造方法を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is an optical fiber glass pipe manufacturing apparatus capable of reducing the manufacturing cost of an optical fiber, and an optical fiber. An object of the present invention is to provide a manufacturing method of a glass pipe for use and a manufacturing method of a base material for optical fiber.

【0006】[0006]

【課題を解決するための手段】請求項1に係る光ファイ
バ用ガラスパイプの製造装置は、ガラス素材を軟化可能
な熱源と、熱源によって軟化されたガラス素材に圧入し
て中空を設けることが可能な穿孔治具とを有する光ファ
イバ用ガラスパイプの製造装置であって、穿孔治具は、
ガラス素材を穿孔する先細り形状の穿孔部と、穿孔部の
底面部で接続するとともに底面部の輪郭線と略合同の断
面形状が連続する柱状部とを備え、柱状部は、中空を構
成するガラス素材が少なくとも断面形状を自己維持する
温度に到達するまで中空を構成するガラス素材の内周壁
に対して摺接可能な長手方向長さを有することを特徴と
している。
In the apparatus for manufacturing an optical fiber glass pipe according to a first aspect of the present invention, a heat source capable of softening a glass material and a hollow can be formed by press-fitting the glass material softened by the heat source. A manufacturing apparatus of an optical fiber glass pipe having a piercing jig, wherein the piercing jig is
A tapered perforated portion for perforating a glass material, and a columnar portion that is connected at the bottom surface portion of the perforated portion and has a continuous cross-sectional shape that is substantially congruent with the contour line of the bottom surface portion. It is characterized in that it has a length in the longitudinal direction capable of sliding contact with the inner peripheral wall of the glass material forming the hollow until at least the temperature at which the material self-maintains the cross-sectional shape is reached.

【0007】このような構成によれば、長尺状のガラス
素材の長手方向に沿って熱源を相対移動させることによ
り、ガラス素材を加熱・軟化させながら、穿孔治具の穿
孔部をガラス素材の端面から圧入して、光ファイバ用ガ
ラスパイプを製造できる。ここで、穿孔治具は、ガラス
素材を穿孔する先細り形状の穿孔部と、穿孔部の底面部
で接続するとともに底面部の輪郭線と略合同の断面形状
が連続する柱状部とを備えるので、穿孔部により形成さ
れた直後の中空を構成するガラス素材の内周形状は、穿
孔部の底面部の輪郭線形状と対応している。そして、柱
状部は、中空を構成するガラス素材が少なくとも断面形
状を自己維持する温度に到達するまで中空を構成するガ
ラス素材の内周壁に対して摺接可能な長手方向長さを有
しているので、中空を構成する軟化状態のガラス素材
が、表面張力によって中空の中心軸方向に張り出すのを
防止でき、中空の断面形状が長手方向に沿って一様の光
ファイバ用ガラスパイプを確実に製造できる。
According to such a structure, the heat source is relatively moved along the longitudinal direction of the long glass material to heat and soften the glass material, and the perforated portion of the perforation jig is made of the glass material. The glass pipe for optical fiber can be manufactured by press fitting from the end face. Here, since the punching jig has a tapered punching portion for punching a glass material, and a columnar portion that is connected at the bottom surface portion of the punching portion and has a continuous cross-sectional shape that is substantially congruent with the contour line of the bottom surface portion, The inner peripheral shape of the glass material forming the hollow immediately after being formed by the perforated portion corresponds to the contour line shape of the bottom surface portion of the perforated portion. The columnar portion has a length in the longitudinal direction capable of sliding contact with the inner peripheral wall of the glass material forming the hollow until at least the temperature at which the glass material forming the hollow self-maintains the cross-sectional shape is reached. Therefore, it is possible to prevent the glass material in the softened state that constitutes the hollow from projecting in the central axis direction of the hollow due to surface tension, and ensure that the glass pipe for optical fibers has a hollow cross-sectional shape that is uniform along the longitudinal direction. Can be manufactured.

【0008】よって、請求項1に係る光ファイバ用ガラ
スパイプの製造装置によれば、最終的に得られる光ファ
イバのコアの径を長手方向で確実に一定とでき、特性が
良好な光ファイバを確実に製造できる。これにより、特
性が良好な光ファイバを選別するための検査や、特性不
良の光ファイバの廃却の度合いを低減できるので、光フ
ァイバの製造コストを低減できる。
Therefore, according to the optical fiber glass pipe manufacturing apparatus of the first aspect, the diameter of the core of the finally obtained optical fiber can be surely made constant in the longitudinal direction, and an optical fiber having good characteristics can be obtained. Can be reliably manufactured. As a result, it is possible to reduce an inspection for selecting an optical fiber having a good characteristic and a degree of discarding an optical fiber having a poor characteristic, so that a manufacturing cost of the optical fiber can be reduced.

【0009】請求項2に係る光ファイバ用ガラスパイプ
の製造装置は、前記柱状部の外径の変動率が、長手方向
において0.5%以下であり、周方向において0.5%
以下であることを特徴としている。このような構成によ
れば、特に、光ファイバ用ガラスパイプの中空に、ガラ
スロッドを挿入した後、コラプスすることによって光フ
ァイバ用母材を製造する場合において、コア部もしくは
クラッド部が楕円化することを防止できる。また、パイ
プ内面にツールによる傷をつけることが無いため、コラ
プス面において気泡が発生するのを確実に抑制できるの
で、より確実に、特性が良好な光ファイバを製造でき
る。
In the optical fiber glass pipe manufacturing apparatus according to the second aspect, the fluctuation rate of the outer diameter of the columnar portion is 0.5% or less in the longitudinal direction and 0.5% in the circumferential direction.
It is characterized by the following. According to such a configuration, in particular, in the case of manufacturing the optical fiber preform by inserting the glass rod into the hollow of the optical fiber glass pipe and then performing the collapse, the core part or the clad part becomes elliptical. Can be prevented. Moreover, since the inner surface of the pipe is not damaged by the tool, it is possible to reliably suppress the generation of bubbles on the collapse surface, and thus it is possible to more reliably manufacture an optical fiber having good characteristics.

【0010】請求項3に係る光ファイバ用ガラスパイプ
の製造装置は、前記柱状部に対して内周壁が摺接するガ
ラス素材を冷却可能な冷却手段が設けられたことを特徴
としている。このような構成によれば、柱状部に対して
内周壁が摺接するとともに軟化状態にあるガラス素材の
温度を、迅速に、断面形状を自己維持する温度に到達さ
せることができるので、例えば、柱状部の長手方向長さ
の短縮や、熱源の加熱設定温度の上昇などが可能であ
り、光ファイバ用ガラスパイプの製造装置の仕様範囲を
拡大できる。
An optical fiber glass pipe manufacturing apparatus according to a third aspect of the present invention is characterized in that a cooling means capable of cooling the glass material whose inner peripheral wall is in sliding contact with the columnar portion is provided. According to such a configuration, the temperature of the glass material in the softened state in which the inner peripheral wall is in sliding contact with the columnar portion can be quickly reached to the temperature at which the cross-sectional shape is self-maintained. It is possible to shorten the length of the section in the longitudinal direction and increase the heating set temperature of the heat source, and it is possible to expand the range of specifications of the optical fiber glass pipe manufacturing apparatus.

【0011】前記冷却手段としては、空冷手段または水
冷手段が有用であることから、請求項4に係る光ファイ
バ用ガラスパイプの製造装置は、冷却手段が空冷手段ま
たは水冷手段であることを特徴としている。
Since the air cooling means or the water cooling means is useful as the cooling means, the apparatus for manufacturing an optical fiber glass pipe according to the fourth aspect is characterized in that the cooling means is the air cooling means or the water cooling means. There is.

【0012】請求項5に係る光ファイバ用ガラスパイプ
の製造装置は、冷却手段が、柱状部に設けられたことを
特徴としている。このような構成によれば、軟化状態の
ガラス素材の内周壁を直接に冷却できるので、ガラス素
材の温度を、より迅速に、断面形状を自己維持する温度
に到達させることができる。よって、光ファイバ用ガラ
スパイプの製造装置の仕様範囲をより拡大できる。
An apparatus for manufacturing an optical fiber glass pipe according to a fifth aspect is characterized in that the cooling means is provided in the columnar portion. With such a configuration, the inner peripheral wall of the softened glass material can be directly cooled, so that the temperature of the glass material can be more quickly reached to a temperature at which the cross-sectional shape is self-maintained. Therefore, the specification range of the optical fiber glass pipe manufacturing apparatus can be further expanded.

【0013】請求項6に係る光ファイバ用ガラスパイプ
の製造方法は、長尺状のガラス素材をガラス素材の長手
方向に沿って相対移動する熱源によって加熱することに
より、ガラス素材を軟化させながら穿孔治具をガラス素
材の端面から圧入して中空を設ける光ファイバ用ガラス
パイプの製造方法であって、穿孔治具を、ガラス素材を
穿孔する先細り形状の穿孔部と、穿孔部の底面部で接続
するとともに底面部の輪郭線と略合同の断面形状が連続
する柱状部とを備える穿孔治具とし、かつ、柱状部の長
手方向長さを、中空を構成するガラス素材が少なくとも
断面形状を自己維持する温度に到達するまで中空の周壁
に対して摺接可能な長さに設定することを特徴としてい
る。
According to a sixth aspect of the present invention, there is provided a method for manufacturing an optical fiber glass pipe, wherein a long glass material is heated by a heat source that relatively moves along the longitudinal direction of the glass material to soften the glass material and perforate the glass material. A method for manufacturing an optical fiber glass pipe in which a jig is press-fitted from the end face of a glass material to provide a hollow, wherein a piercing jig is connected to a tapered piercing portion for piercing a glass material and a bottom portion of the piercing portion. And a columnar part having a cross-sectional shape that is substantially congruent with the contour line of the bottom part and has a continuous columnar shape, and the length of the columnar part in the longitudinal direction is self-maintaining at least the cross-sectional shape of the glass material forming the hollow. It is characterized in that the length is set so that it can be slidably contacted with the hollow peripheral wall until the temperature reaches the temperature.

【0014】このような構成によれば、穿孔治具を、ガ
ラス素材を穿孔する先細り形状の穿孔部と、穿孔部の底
面部で接続するとともに底面部の輪郭線と略合同の断面
形状が連続する柱状部とを備える穿孔治具とするので、
穿孔部により形成された直後の中空を構成するガラス素
材の内周形状を、穿孔部の底面部の輪郭線形状と対応さ
せることができる。そして、柱状部の長手方向長さを、
中空を構成するガラス素材が少なくとも断面形状を自己
維持する温度に到達するまで中空の周壁に対して摺接可
能な長さに設定するので、中空を構成する軟化状態のガ
ラス素材を、表面張力によって中空の中心軸方向に張り
出すのを防止でき、中空の断面形状が長手方向に沿って
一様の光ファイバ用ガラスパイプを確実に製造できる。
According to this structure, the punching jig is connected to the tapered punching portion for punching the glass material at the bottom portion of the punching portion, and the cross-sectional shape substantially congruent with the contour line of the bottom portion is continuous. Since it is a drilling jig including a columnar portion to
The inner peripheral shape of the glass material forming the hollow immediately after being formed by the perforated portion can be made to correspond to the contour line shape of the bottom surface portion of the perforated portion. Then, the longitudinal length of the columnar portion is
The glass material forming the hollow is set to a length that allows sliding contact with the hollow peripheral wall until at least the temperature at which the cross-sectional shape self-maintains is reached. It is possible to prevent the hollow glass from protruding in the direction of the central axis, and it is possible to reliably manufacture a glass pipe for an optical fiber whose hollow cross-sectional shape is uniform along the longitudinal direction.

【0015】よって、請求項6に係る光ファイバ用ガラ
スパイプの製造方法によれば、最終的に得られる光ファ
イバのコアの径を長手方向で確実に一定とでき、特性が
良好な光ファイバを確実に製造できる。これにより、特
性が良好な光ファイバを選別するための検査や、特性不
良の光ファイバの廃却の度合いを低減できるので、光フ
ァイバの製造コストを低減できる。
Therefore, according to the method for manufacturing an optical fiber glass pipe of the sixth aspect, the diameter of the core of the finally obtained optical fiber can be surely made constant in the longitudinal direction, and an optical fiber having good characteristics can be obtained. Can be reliably manufactured. As a result, it is possible to reduce an inspection for selecting an optical fiber having a good characteristic and a degree of discarding an optical fiber having a poor characteristic, so that a manufacturing cost of the optical fiber can be reduced.

【0016】請求項7に係る光ファイバ用ガラスパイプ
の製造方法は、柱状部の外径の変動率を、長手方向にお
いて0.5%以下とし、周方向において0.5%以下と
することを特徴としている。このような構成によれば、
特に、光ファイバ用ガラスパイプの中空に、ガラスロッ
ドを挿入した後、コラプスすることによって光ファイバ
用母材を製造する場合において、コラプス面において気
泡が発生するのを確実に抑制できるので、より確実に、
特性が良好な光ファイバを製造できる。
In the method for manufacturing an optical fiber glass pipe according to a seventh aspect, the fluctuation rate of the outer diameter of the columnar portion is set to 0.5% or less in the longitudinal direction and 0.5% or less in the circumferential direction. It has a feature. According to such a configuration,
In particular, when manufacturing the optical fiber preform by inserting the glass rod into the hollow of the optical fiber glass pipe and then performing the collapse, it is possible to reliably suppress the occurrence of bubbles on the collapse surface, so it is more reliable. To
An optical fiber having excellent characteristics can be manufactured.

【0017】請求項8に係る光ファイバ用ガラスパイプ
の製造方法は、本発明に係る光ファイバ用ガラスパイプ
の製造方法で得られる光ファイバ用ガラスパイプの外周
面を研削し、光ファイバ用ガラスパイプの断面外周縁に
おける楕円率を0.5%以下とすることを特徴としてい
る。このような構成によれば、この光ファイバ用ガラス
パイプを用いて得られる光ファイバ用母材のコアの断面
における楕円率を、通常1%以下にできるので、より確
実に、特性が良好な光ファイバを製造できる。
According to the eighth aspect of the present invention, there is provided an optical fiber glass pipe manufacturing method, which comprises grinding an outer peripheral surface of an optical fiber glass pipe obtained by the optical fiber glass pipe manufacturing method according to the present invention. It is characterized in that the ellipticity at the outer peripheral edge of the cross section is 0.5% or less. According to such a configuration, the ellipticity in the cross section of the core of the optical fiber preform obtained by using this optical fiber glass pipe can be usually set to 1% or less, so that the light having good characteristics can be more reliably obtained. Fibers can be manufactured.

【0018】請求項9に係る光ファイバ用母材の製造方
法は、本発明に係る光ファイバ用ガラスパイプの製造方
法で得られる光ファイバ用ガラスパイプの中空に、ガラ
スロッドを挿入し、コラプスすることを特徴としてい
る。このような構成によれば、本発明に係る光ファイバ
用ガラスパイプの製造方法で得られる光ファイバ用ガラ
スパイプを使用するので、前記したように、光ファイバ
の製造コストを低減できる。
In the method for producing a base material for an optical fiber according to a ninth aspect, a glass rod is inserted into the hollow of the glass pipe for an optical fiber obtained by the method for producing a glass pipe for an optical fiber according to the present invention, and a collapse is performed. It is characterized by that. According to such a configuration, since the optical fiber glass pipe obtained by the method for manufacturing an optical fiber glass pipe according to the present invention is used, the manufacturing cost of the optical fiber can be reduced as described above.

【0019】請求項10に係る光ファイバ用母材の製造
方法は、本発明に係る光ファイバ用ガラスパイプの製造
方法で得られる光ファイバ用ガラスパイプの内周壁に、
CVD法で、少なくともコア用ガラスを積層させ、コラ
プスして中実とすることを特徴としている。このような
構成によれば、本発明に係る光ファイバ用ガラスパイプ
の製造方法で得られる光ファイバ用ガラスパイプを使用
するので、前記したように、光ファイバの製造コストを
低減できる。
According to a tenth aspect of the present invention, there is provided a method for producing an optical fiber preform, wherein an inner wall of an optical fiber glass pipe obtained by the method for producing an optical fiber glass pipe according to the present invention comprises:
It is characterized in that at least glass for cores is laminated by a CVD method and collapsed to obtain a solid. According to such a configuration, since the optical fiber glass pipe obtained by the method for manufacturing an optical fiber glass pipe according to the present invention is used, the manufacturing cost of the optical fiber can be reduced as described above.

【0020】請求項11に係る光ファイバ用母材の製造
方法は、本発明に係る光ファイバ用ガラスパイプの製造
方法で得られる光ファイバ用ガラスパイプの内周壁に、
CVD法で、ガラスを積層させ、さらに、コア部を含む
ガラスロッドを挿入し、コラプスして中実とする。この
ような構成によれば、本発明に係る光ファイバ用ガラス
パイプの製造方法で得られる光ファイバ用ガラスパイプ
を使用するので、前記したように、光ファイバの製造コ
ストを低減できる。
A method for manufacturing a base material for an optical fiber according to an eleventh aspect is such that the inner peripheral wall of the glass pipe for an optical fiber obtained by the method for manufacturing an optical fiber glass pipe according to the present invention,
Glass is laminated by the CVD method, and further, a glass rod including a core portion is inserted and collapsed to make it solid. According to such a configuration, since the optical fiber glass pipe obtained by the method for manufacturing an optical fiber glass pipe according to the present invention is used, the manufacturing cost of the optical fiber can be reduced as described above.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。図1は、本発明の第一実施
形態に係る光ファイバ用ガラスパイプの製造装置を示す
概略断面図、図2は、本発明に係る光ファイバ用ガラス
パイプの製造方法を説明する図、図3は、本発明の第二
実施形態に係る光ファイバ用ガラスパイプの製造装置を
示す概略断面図、図4は、本発明の第三実施形態に係る
光ファイバ用ガラスパイプの製造装置を示す概略断面
図、図5は、本発明に係る光ファイバ用ガラスパイプの
製造装置の寸法例を説明する図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an apparatus for manufacturing an optical fiber glass pipe according to a first embodiment of the present invention, and FIG. 2 is a view for explaining a method for manufacturing an optical fiber glass pipe according to the present invention. FIG. 4 is a schematic sectional view showing an apparatus for manufacturing an optical fiber glass pipe according to a second embodiment of the present invention, and FIG. 4 is a schematic sectional view showing an apparatus for manufacturing an optical fiber glass pipe according to a third embodiment of the present invention. FIG. 5 and FIG. 5 are views for explaining an example of dimensions of the optical fiber glass pipe manufacturing apparatus according to the present invention.

【0022】図1の概略断面図に示すように、本発明の
第一実施形態に係る光ファイバ用ガラスパイプの製造装
置20は、ガラス素材10を軟化可能な熱源11と、熱
源11によって軟化されたガラス素材10に圧入して中
空Hを設けることが可能な穿孔治具12とを有する光フ
ァイバ用ガラスパイプの製造装置20であって、穿孔治
具12は、ガラス素材10を穿孔する先細り形状の穿孔
部14と、穿孔部14の底面部で接続するとともに底面
部の輪郭線と略合同の断面形状が連続する柱状部15と
を備え、柱状部15は、中空Hを構成するガラス素材1
0が少なくとも“断面形状を自己維持する温度”に到達
するまで、中空を構成するガラス素材の内周壁10Aに
対して摺接可能な長手方向長さLを有している。
As shown in the schematic sectional view of FIG. 1, an optical fiber glass pipe manufacturing apparatus 20 according to a first embodiment of the present invention includes a heat source 11 capable of softening a glass material 10, and a heat source 11 softening the glass material 10. A glass pipe manufacturing apparatus 20 for optical fibers, comprising: a perforating jig 12 capable of press-fitting into the glass material 10 to provide a hollow H, wherein the perforating jig 12 is a tapered shape for perforating the glass material 10. Of the glass material 1 forming the hollow H, and the columnar portion 15 that is connected at the bottom surface portion of the perforation portion 14 and that has a continuous cross-sectional shape that is substantially congruent with the contour line of the bottom surface portion.
It has a length L in the longitudinal direction that can slidably contact the inner peripheral wall 10A of the glass material forming the hollow until 0 reaches at least the "temperature for maintaining the cross-sectional shape".

【0023】このような構成によれば、長尺状のガラス
素材10の長手方向に沿って熱源11を相対移動させる
ことにより、ガラス素材10を加熱・軟化させながら、
穿孔治具12の穿孔部14をガラス素材10の端面から
圧入して、光ファイバ用ガラスパイプを製造できる。穿
孔治具12は、前記したように、先細り形状の穿孔部1
4と、穿孔部の底面部14Aで接続するとともに底面部
14Aの輪郭線と略合同の断面形状が連続する柱状部1
5とを備えるので、穿孔部14により形成された直後の
中空を構成するガラス素材10B’の内周形状は、穿孔
部の底面部14Aの輪郭線形状と対応している(図2
(A)参照)。
According to this structure, the heat source 11 is relatively moved along the longitudinal direction of the elongated glass material 10 to heat and soften the glass material 10,
By punching the punching portion 14 of the punching jig 12 from the end surface of the glass material 10, a glass pipe for optical fiber can be manufactured. As described above, the piercing jig 12 has the tapered piercing portion 1
4 and the columnar portion 1 which is connected by the bottom face portion 14A of the perforated portion and has a continuous cross-sectional shape that is substantially congruent with the contour line of the bottom face portion 14A.
5, the inner peripheral shape of the glass material 10B ′ forming the hollow immediately after being formed by the perforated portion 14 corresponds to the contour line shape of the bottom surface portion 14A of the perforated portion (FIG. 2).
(See (A)).

【0024】そして、柱状部15は、中空を構成するガ
ラス素材10B’が少なくとも“断面形状を自己維持す
る温度”に到達するまでガラス素材10B’の内周壁1
0Bに対して摺接可能な長手方向長さLを有しているの
で、図2(B)に示すように、所定時間後においても軟
化状態にあるガラス素材10B’の内周壁10Bが、表
面張力によって中空の中心軸方向に張り出すのを防止で
き、図2(C)に示すように、中空Hの断面形状が長手
方向に沿って一様の光ファイバ用ガラスパイプ13を確
実に製造できる。
The columnar portion 15 has an inner peripheral wall 1 of the glass material 10B 'at least until the glass material 10B' constituting the hollow reaches at least "the temperature at which the cross-sectional shape is self-maintained".
2B, the inner peripheral wall 10B of the glass material 10B 'that is in a softened state even after a predetermined time has the surface L It is possible to prevent the fiber from protruding in the direction of the central axis of the hollow due to the tension, and as shown in FIG. 2C, it is possible to reliably manufacture the optical fiber glass pipe 13 in which the cross section of the hollow H is uniform along the longitudinal direction. .

【0025】穿孔治具12の素材としては、ガラス素材
10(SiO2等)との反応性がなく、ガラス素材10
の軟化温度で使用可能なものであれば特に限定されない
が、遷移金属の濃度が低い高純度炭素、アルミナや、表
面にジルコニアがコーティングされたニッケル合金など
を例示できる。なお、柱状部15の断面形状が長手方向
に一様でないと、断面形状を自己保持するガラス素材の
内周壁が、柱状部15から過剰な負荷を受けるので、ガ
ラスパイプが割れたり、前記内周壁にツールによるクラ
ックが発生しやすい(ツールによるクラックが発生する
と、後述するように、特性が良好な光ファイバを得るこ
とができない)。
The material of the punching jig 12 is not reactive with the glass material 10 (SiO 2 etc.)
The material is not particularly limited as long as it can be used at the softening temperature, but examples thereof include high-purity carbon having a low transition metal concentration, alumina, and a nickel alloy having a surface coated with zirconia. If the cross-sectional shape of the columnar portion 15 is not uniform in the longitudinal direction, the inner peripheral wall of the glass material that self-holds the cross-sectional shape receives an excessive load from the columnar portion 15, so that the glass pipe may crack or the inner peripheral wall may be damaged. It is easy for cracks to be generated by the tool (when the cracks are generated by the tool, an optical fiber having good characteristics cannot be obtained, as described later).

【0026】また、ガラス素材10としては、円柱状の
もの、又は、内径が穿孔治具12の最大外径より小さく
設定された円筒状のものを好適に使用できる。また、熱
源11及び穿孔治具12とガラス素材10とは相対的に
移動すればよいので、熱源11及び穿孔治具12を移動
させてもよいし、ガラス素材10を移動させてもよい。
更に、両方を移動させてもよい。
Further, as the glass material 10, a cylindrical material or a cylindrical material having an inner diameter smaller than the maximum outer diameter of the perforating jig 12 can be preferably used. Further, since the heat source 11 and the perforating jig 12 and the glass material 10 may be moved relatively, the heat source 11 and the perforating jig 12 may be moved, or the glass material 10 may be moved.
Further, both may be moved.

【0027】このようにして得られる光ファイバ用ガラ
スパイプ13は、その中空Hに、ガラスロッドを挿入し
た後、コラプスすることにより、あるいは、その内周壁
13Bに、MCVD法,PCVD法等のCVD法で、少
なくともコア用ガラスを積層した後、コラプスして中実
とすることにより、好適に、光ファイバ用母材とされ
る。あるいは、光ファイバ用ガラスパイプの内周壁13
Bに、CVD法で、ガラスを積層させ、さらに、コア部
を含むガラスロッドを挿入し、コラプスして中実するこ
とにより、好適に、光ファイバ用母材とされる。
The optical fiber glass pipe 13 thus obtained is obtained by inserting a glass rod into the hollow H and then performing collapsing, or on the inner peripheral wall 13B of the glass pipe 13, such as MCVD or PCVD. By laminating at least the glass for core by the method, it is collapsed to be a solid, and thus it is preferably used as the preform for the optical fiber. Alternatively, the inner peripheral wall 13 of the optical fiber glass pipe
Glass is laminated on B by the CVD method, and further, a glass rod including a core portion is inserted, and the glass rod is collapsed to be solid, whereby a preform for an optical fiber is preferably formed.

【0028】特に、光ファイバ用ガラスパイプ13の中
空Hに、ガラスロッドを挿入した後、コラプスすること
によって光ファイバ用母材を製造する場合においては、
前記穿孔治具12の柱状部15の外径の変動率を、長手
方向において0.5%以下とし、周方向において0.5
%以下とすれば、得られる光ファイバ用ガラスパイプの
内径の長手方向および周方向における変動率を充分小さ
くできるので、光ファイバ用母材のコラプス面において
気泡が発生するのを確実に抑制でき、より確実に、特性
が良好な光ファイバを製造できる。また、周方向におけ
る変動が0.5%以下であれば、光ガラスファイバ用ガ
ラスパイプの中空断面における楕円率も0.5%以下と
なるので、光ガラスファイバ用母材のコア断面における
楕円率を低減でき、この理由によっても、特性が良好な
光ファイバが得られる。
Particularly, in the case of manufacturing the optical fiber preform by inserting the glass rod into the hollow H of the optical fiber glass pipe 13 and then performing the collapse,
The variation rate of the outer diameter of the columnar portion 15 of the punching jig 12 is 0.5% or less in the longitudinal direction and 0.5 in the circumferential direction.
If less than or equal to%, it is possible to sufficiently reduce the variation rate in the longitudinal direction and the circumferential direction of the inner diameter of the obtained optical fiber glass pipe, so that it is possible to reliably suppress the occurrence of bubbles in the collapse surface of the optical fiber preform, An optical fiber having excellent characteristics can be manufactured more reliably. If the variation in the circumferential direction is 0.5% or less, the ellipticity in the hollow cross section of the glass pipe for optical glass fiber is 0.5% or less. Can be reduced, and for this reason also, an optical fiber having excellent characteristics can be obtained.

【0029】柱状部15の外径に関し、周方向および長
手方向の変動率がどちらか一方でも0.5%を超える場
合、断面形状を自己保持するガラス素材の内周壁が、柱
状部15からの負荷を受けることにより、内周壁にツー
ルによるクラックが発生しやすく、内周面の表面粗さR
aが50μm以上の光ファイバ用ガラスパイプが得ら
れ、光ファイバ用母材のコラプス面に気泡が発生しやす
くなる。
With respect to the outer diameter of the columnar portion 15, if the variation rate in either the circumferential direction or the longitudinal direction exceeds 0.5%, the inner peripheral wall of the glass material that self-holds the cross-sectional shape is When receiving a load, cracks are likely to occur on the inner peripheral wall due to tools, and the surface roughness R of the inner peripheral surface
A glass pipe for an optical fiber having a of 50 μm or more is obtained, and air bubbles are easily generated on the collapse surface of the base material for an optical fiber.

【0030】また、内径の変動率が小さい光ファイバ用
ガラスパイプ13は、その外周面13Cを研削して、外
径の変動率を抑えることによって、断面形状が長手方向
で均一となるガラスパイプを製造できる。特に、光ファ
イバ用ガラスパイプ13の断面外周縁における楕円率が
0.5%以下となるように外周面13Cを研削すれば、
このガラスパイプを用いて得られる光ファイバ用母材の
コアの断面における楕円率を、通常1%以下にできるの
で、より確実に、特性が良好な光ファイバを製造でき
る。なお、本明細書において、楕円率とは、楕円近似し
た際の長軸の長さをa,短軸の長さをbとした時、(a
−b)/a×100(%)で定義される。
The optical fiber glass pipe 13 having a small inner diameter variation rate is a glass pipe whose cross-sectional shape is uniform in the longitudinal direction by grinding the outer peripheral surface 13C to suppress the outer diameter variation rate. Can be manufactured. In particular, if the outer peripheral surface 13C is ground so that the ellipticity at the outer peripheral edge of the cross section of the optical fiber glass pipe 13 is 0.5% or less,
Since the ellipticity in the cross section of the core of the optical fiber preform obtained by using this glass pipe can be usually set to 1% or less, an optical fiber having excellent characteristics can be manufactured more reliably. In the present specification, the ellipticity means (a when the length of the major axis in the elliptic approximation is a and the length of the minor axis is b.
-B) / a × 100 (%).

【0031】また、本発明に係る光ファイバ用ガラスパ
イプの製造装置は、穿孔治具の柱状部に対して内周壁が
摺接するガラス素材を冷却可能な冷却手段が、熱源との
相対位置を変えないように設けられても良い。冷却手段
としては、空冷手段または水冷手段を好適に挙げること
ができる。このような構成により、例えば、柱状部の長
手方向長さの短縮や、熱源の加熱設定温度の上昇などが
可能であり、光ファイバ用ガラスパイプの製造装置の仕
様範囲を拡大できる。
Further, in the optical fiber glass pipe manufacturing apparatus according to the present invention, the cooling means capable of cooling the glass material whose inner peripheral wall is in sliding contact with the columnar portion of the perforating jig changes the relative position to the heat source. It may be provided so as not to exist. Suitable cooling means may be air cooling means or water cooling means. With such a configuration, for example, the length of the columnar portion in the longitudinal direction can be shortened, the heating set temperature of the heat source can be increased, and the range of specifications of the optical fiber glass pipe manufacturing apparatus can be expanded.

【0032】すなわち、本発明の第二実施形態に係る光
ファイバ用ガラスパイプの製造装置30には、図3に示
すように、冷却手段として、穿孔治具12の柱状部15
に対して内周壁が摺接するガラス素材10C’を外周面
側から空気を吹付けることによって冷却可能な空冷器1
6が、熱源11との相対位置を変えないように設けられ
ている。
That is, in the optical fiber glass pipe manufacturing apparatus 30 according to the second embodiment of the present invention, as shown in FIG. 3, the columnar portion 15 of the punching jig 12 is used as cooling means.
An air cooler 1 capable of cooling a glass material 10C 'whose inner peripheral wall is in sliding contact with the outer peripheral surface side by blowing air from the outer peripheral surface side
6 is provided so as not to change the relative position to the heat source 11.

【0033】また、本発明の第三実施形態に係る光ファ
イバ用ガラスパイプの製造装置40には、図4に示すよ
うに、穿孔治具22の柱状部25の開放側領域25Aに
おいて、柱状部25の内部に冷媒Sを送り込むことがで
きるように構成されている。この場合、柱状部25に対
して内周壁が摺接するガラス素材10C’を、その内周
壁から直接に冷却できるので、ガラス素材10C’の温
度を、より迅速に、断面形状を自己維持する温度に到達
させることができる。
Further, in the optical fiber glass pipe manufacturing apparatus 40 according to the third embodiment of the present invention, as shown in FIG. 4, in the open side region 25A of the columnar part 25 of the punching jig 22, the columnar part is formed. The refrigerant S can be sent into the inside of 25. In this case, since the glass material 10C 'whose inner peripheral wall is in sliding contact with the columnar portion 25 can be directly cooled from the inner peripheral wall, the temperature of the glass material 10C' can be more quickly increased to a temperature at which the cross-sectional shape is self-maintained. Can be reached.

【0034】以上、本発明の実施形態を詳細に説明した
が、ガラス素材として、純SiO2(軟化点:1700
℃)、あるいは、フッ素を0.1wt%で含有するSi
2(軟化点:1550℃)を、以下の(ガラスパイプ
の製造条件)に順じて、ガラスパイプとする場合、本発
明の第一実施形態に係る光ファイバ用ガラスパイプの製
造装置においては、例えば、以下の(製造装置の寸法
例)とすることによって、柱状部15の開放側端縁15
Dに対して摺接するガラス素材の内周壁10Dにおける
温度を1000℃以下にすることができ、中空の断面形
状が長手方向に沿って一様の光ファイバ用ガラスパイプ
を確実に製造できる。(図5参照)。
The embodiments of the present invention have been described above in detail. As a glass material, pure SiO 2 (softening point: 1700) is used.
℃) or Si containing 0.1 wt% of fluorine
When O 2 (softening point: 1550 ° C.) is made into a glass pipe in accordance with the following (manufacturing conditions for glass pipe), in the optical fiber glass pipe manufacturing apparatus according to the first embodiment of the present invention, For example, by setting the following (dimensional example of the manufacturing apparatus), the open side edge 15 of the columnar portion 15
The temperature of the inner peripheral wall 10D of the glass material that is in sliding contact with D can be set to 1000 ° C. or less, and the optical fiber glass pipe having a hollow cross-sectional shape that is uniform along the longitudinal direction can be reliably manufactured. (See Figure 5).

【0035】(ガラスパイプの製造条件) パイプ状とされる前のガラス素材10の外径P:80m
m 柱状部15の外径Q:40mm パイプ状とされたガラス素材10の外径R:100mm
(Manufacturing conditions for glass pipe) Outer diameter P of glass material 10 before being formed into a pipe shape: 80 m
m Outer diameter Q of columnar section 15: 40 mm Outer diameter R of pipe-shaped glass material 10: 100 mm

【0036】(製造装置の寸法例) ヒートゾーン(ガラス素材が軟化点以上である領域)の
長さH:120mm 軟化点にあるガラス素材の領域と柱状部15の開放側端
縁15Dとの距離M:80mm 穿孔部14の先端14Bと柱状部15の開放側端縁15
Dとの距離N:130mm
(Example of dimensions of manufacturing apparatus) Length H of heat zone (area where glass material is at or above softening point): 120 mm Distance between area of glass material at softening point and open end 15D of columnar portion 15 M: 80 mm Tip 14B of perforated portion 14 and open side edge 15 of columnar portion 15
Distance from D N: 130 mm

【0037】[0037]

【発明の効果】以上に説明したように、本発明によれ
ば、中空の断面形状が長手方向に沿って一様の光ファイ
バ用ガラスパイプを確実に製造できるので、最終的に得
られる光ファイバのコアの径を長手方向で確実に一定と
でき、特性が良好な光ファイバを確実に製造できる。こ
れにより、特性が良好な光ファイバを選別するための検
査や、特性不良の光ファイバの廃却の度合いを低減でき
るので、光ファイバの製造コストを低減できる。
As described above, according to the present invention, a glass pipe for an optical fiber having a hollow cross-sectional shape that is uniform along the longitudinal direction can be reliably manufactured, so that the finally obtained optical fiber can be obtained. The core diameter can be reliably made constant in the longitudinal direction, and an optical fiber with excellent characteristics can be reliably manufactured. As a result, it is possible to reduce an inspection for selecting an optical fiber having a good characteristic and a degree of discarding an optical fiber having a poor characteristic, so that a manufacturing cost of the optical fiber can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施形態に係る光ファイバ用ガラ
スパイプの製造装置を示す概略断面図である。
FIG. 1 is a schematic sectional view showing an apparatus for manufacturing an optical fiber glass pipe according to a first embodiment of the present invention.

【図2】本発明に係る光ファイバ用ガラスパイプの製造
方法を説明する図である。
FIG. 2 is a diagram illustrating a method for manufacturing an optical fiber glass pipe according to the present invention.

【図3】本発明の第二実施形態に係る光ファイバ用ガラ
スパイプの製造装置を示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing an apparatus for manufacturing an optical fiber glass pipe according to a second embodiment of the present invention.

【図4】本発明の第三実施形態に係る光ファイバ用ガラ
スパイプの製造装置を示す概略断面図である。
FIG. 4 is a schematic sectional view showing an apparatus for manufacturing an optical fiber glass pipe according to a third embodiment of the present invention.

【図5】本発明に係る光ファイバ用ガラスパイプの製造
装置の寸法例を説明する図である。
FIG. 5 is a diagram illustrating an example of dimensions of an optical fiber glass pipe manufacturing apparatus according to the present invention.

【図6】従来の光ファイバ用ガラスパイプの製造方法を
説明する図である。
FIG. 6 is a diagram illustrating a conventional method for manufacturing an optical fiber glass pipe.

【符号の説明】[Explanation of symbols]

10,50 ガラス素材 11,51 熱源 12,52 穿孔治具 13,53 光ファイバ用ガラスパイプ 13B 光ファイバ用ガラスパイプの内周壁 13C 光ファイバ用ガラスパイプの外周面 14,52A 穿孔部 14A 穿孔部の底面部 15,25 柱状部 16 空冷器(冷却手段) 20,30,40 光ファイバ用ガラスパイプの製造装
置 H,H’ 中空
10,50 Glass material 11,51 Heat source 12,52 Perforation jig 13,53 Optical fiber glass pipe 13B Optical fiber glass pipe inner peripheral wall 13C Optical fiber glass pipe outer peripheral surface 14,52A Perforated part 14A Perforated part Bottom part 15,25 Columnar part 16 Air cooler (cooling means) 20,30,40 Manufacturing equipment H, H'of glass pipe for optical fiber Hollow

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ガラス素材を軟化可能な熱源と、前記熱
源によって軟化されたガラス素材に圧入して中空を設け
ることが可能な穿孔治具とを有する光ファイバ用ガラス
パイプの製造装置であって、前記穿孔治具は、前記ガラ
ス素材を穿孔する先細り形状の穿孔部と、前記穿孔部の
底面部で接続するとともに前記底面部の輪郭線と略合同
の断面形状が連続する柱状部とを備え、前記柱状部は、
前記中空を構成するガラス素材が少なくとも断面形状を
自己維持する温度に到達するまで、前記中空を構成する
ガラス素材の内周壁に対して摺接可能な長手方向長さを
有する、光ファイバ用ガラスパイプの製造装置。
1. An apparatus for manufacturing an optical fiber glass pipe, comprising: a heat source capable of softening a glass material; and a perforating jig capable of press-fitting into the glass material softened by the heat source to provide a hollow. The punching jig includes a tapered punching portion that punches the glass material, and a columnar portion that is connected at the bottom surface portion of the punching portion and has a continuous cross-sectional shape that is substantially congruent with the contour line of the bottom surface portion. , The columnar portion is
A glass pipe for an optical fiber, having a length in a longitudinal direction capable of sliding contact with an inner peripheral wall of the glass material forming the hollow until the glass material forming the hollow reaches at least a temperature at which the glass material forming the hollow self-maintains. Manufacturing equipment.
【請求項2】 前記柱状部の外径の変動率が、長手方向
において0.5%以下であり、周方向において0.5%
以下である請求項1に記載の光ファイバ用ガラスパイプ
の製造装置。
2. The variation rate of the outer diameter of the columnar portion is 0.5% or less in the longitudinal direction and 0.5% in the circumferential direction.
The apparatus for manufacturing an optical fiber glass pipe according to claim 1, wherein:
【請求項3】 前記柱状部に対して内周壁が摺接するガ
ラス素材を冷却可能な冷却手段が設けられた請求項1ま
たは2に記載の光ファイバ用ガラスパイプの製造装置。
3. The optical fiber glass pipe manufacturing apparatus according to claim 1, further comprising a cooling means capable of cooling the glass material, the inner peripheral wall of which is in sliding contact with the columnar portion.
【請求項4】 前記冷却手段が空冷手段または水冷手段
である請求項3に記載の光ファイバ用ガラスパイプの製
造装置。
4. The apparatus for manufacturing an optical fiber glass pipe according to claim 3, wherein the cooling means is an air cooling means or a water cooling means.
【請求項5】 前記冷却手段が、前記柱状部に設けられ
た請求項3または4に記載の光ファイバ用ガラスパイプ
の製造装置。
5. The apparatus for manufacturing an optical fiber glass pipe according to claim 3, wherein the cooling means is provided on the columnar portion.
【請求項6】 長尺状のガラス素材を前記ガラス素材の
長手方向に沿って相対移動する熱源によって加熱するこ
とにより、前記ガラス素材を軟化させながら穿孔治具を
前記ガラス素材の端面から圧入して中空を設ける光ファ
イバ用ガラスパイプの製造方法であって、 前記穿孔治具を、前記ガラス素材を穿孔する先細り形状
の穿孔部と、前記穿孔部の底面部で接続するとともに前
記底面部の輪郭線と略合同の断面形状が連続する柱状部
とを備える穿孔治具とし、かつ、前記柱状部の長手方向
長さを、前記中空を構成するガラス素材が少なくとも断
面形状を自己維持する温度に到達するまで前記中空の周
壁に対して摺接可能な長さに設定する、光ファイバ用ガ
ラスパイプの製造方法。
6. A long glass material is heated by a heat source that relatively moves in the longitudinal direction of the glass material, thereby softening the glass material and press-fitting a perforation jig from the end surface of the glass material. A method for manufacturing a glass pipe for optical fiber in which a hollow is provided, wherein the perforating jig is connected to a tapered perforated portion for perforating the glass material, and a bottom portion of the perforated portion and an outline of the bottom portion. A drilling jig having a columnar section having a continuous cross-sectional shape that is substantially congruent with a line, and reaches the temperature at which the glass material forming the hollow self-maintains at least the cross-sectional shape of the longitudinal length of the columnar section. Until then, a method for manufacturing an optical fiber glass pipe is set to a length that allows sliding contact with the hollow peripheral wall.
【請求項7】 前記柱状部の外径の変動率を、長手方向
において0.5%以下とし、周方向において0.5%以
下とする請求項6に記載の光ファイバ用ガラスパイプの
製造方法。
7. The method for manufacturing an optical fiber glass pipe according to claim 6, wherein the variation rate of the outer diameter of the columnar portion is 0.5% or less in the longitudinal direction and 0.5% or less in the circumferential direction. .
【請求項8】 請求項6または7に記載の光ファイバ用
ガラスパイプの製造方法で得られる光ファイバ用ガラス
パイプの外周面を研削し、前記光ファイバ用ガラスパイ
プの断面外周縁における楕円率を0.5%以下とする光
ファイバ用ガラスパイプの製造方法。
8. An outer peripheral surface of an optical fiber glass pipe obtained by the method for producing an optical fiber glass pipe according to claim 6 or 7 is ground to obtain an ellipticity at an outer peripheral edge of a cross section of the optical fiber glass pipe. The manufacturing method of the glass pipe for optical fibers which is 0.5% or less.
【請求項9】 請求項6〜8のいずれかに記載の光ファ
イバ用ガラスパイプの製造方法で得られる光ファイバ用
ガラスパイプの中空に、ガラスロッドを挿入し、コラプ
スする光ファイバ用母材の製造方法。
9. A base material for an optical fiber, wherein a glass rod is inserted into a hollow of a glass pipe for an optical fiber obtained by the method for producing a glass pipe for an optical fiber according to claim 6, and a glass rod is collapsed. Production method.
【請求項10】 請求項6〜8のいずれかに記載の光フ
ァイバ用ガラスパイプの製造方法で得られる光ファイバ
用ガラスパイプの内周壁に、CVD法で、少なくともコ
ア用ガラスを積層させ、コラプスして中実とする光ファ
イバ用母材の製造方法。
10. At least a core glass is laminated by a CVD method on the inner peripheral wall of the optical fiber glass pipe obtained by the method for manufacturing an optical fiber glass pipe according to any one of claims 6 to 8 to obtain a collapse. And a method for manufacturing a solid preform for optical fibers.
【請求項11】 請求項6〜8のいずれかに記載の光フ
ァイバ用ガラスパイプの製造方法で得られる光ファイバ
用ガラスパイプの内周壁に、CVD法で、ガラスを積層
させ、さらに、コア部を含むガラスロッドを挿入し、コ
ラプスして中実とする光ファイバ用母材の製造方法。
11. A glass is laminated on an inner peripheral wall of an optical fiber glass pipe obtained by the method for manufacturing an optical fiber glass pipe according to claim 6 by a CVD method, and further, a core portion is formed. A method of manufacturing a preform for optical fibers, in which a glass rod containing the is inserted and collapsed to form a solid.
JP2002022566A 2002-01-17 2002-01-30 Device for manufacturing glass tube for optical fiber, method for manufacturing glass tube for optical fiber, and method for manufacturing preform for optical fiber Pending JP2003221251A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2002022566A JP2003221251A (en) 2002-01-30 2002-01-30 Device for manufacturing glass tube for optical fiber, method for manufacturing glass tube for optical fiber, and method for manufacturing preform for optical fiber
EP03701720A EP1394124A4 (en) 2002-01-17 2003-01-15 Method and device for manufacturing glass tube
PCT/JP2003/000239 WO2003059828A1 (en) 2002-01-17 2003-01-15 Method and device for manufacturing glass tube
KR10-2003-7014404A KR20040077449A (en) 2002-01-17 2003-01-15 Method and device for manufacturing glass tube
CNB038004828A CN1261379C (en) 2002-01-17 2003-01-15 Method and device for manufacturing glass tube
US10/476,787 US20040129030A1 (en) 2002-01-17 2003-01-15 Method and device for manufacturing glass tube
CNA038012340A CN1564789A (en) 2002-01-30 2003-01-29 Method and apparatus for manufacturing glass tube
PCT/JP2003/000841 WO2003064338A1 (en) 2002-01-30 2003-01-29 Method and device for manufacturing glass tube
EP03703074A EP1471040A4 (en) 2002-01-30 2003-01-29 Method and device for manufacturing glass tube
KR10-2004-7004158A KR20040078640A (en) 2002-01-30 2003-01-29 Method and apparatus for manufacturing glass tube
US10/796,052 US6997016B2 (en) 2002-01-30 2004-03-10 Method and apparatus for manufacturing glass tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022566A JP2003221251A (en) 2002-01-30 2002-01-30 Device for manufacturing glass tube for optical fiber, method for manufacturing glass tube for optical fiber, and method for manufacturing preform for optical fiber

Publications (1)

Publication Number Publication Date
JP2003221251A true JP2003221251A (en) 2003-08-05

Family

ID=27745527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022566A Pending JP2003221251A (en) 2002-01-17 2002-01-30 Device for manufacturing glass tube for optical fiber, method for manufacturing glass tube for optical fiber, and method for manufacturing preform for optical fiber

Country Status (1)

Country Link
JP (1) JP2003221251A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014498A1 (en) * 2003-08-11 2005-02-17 Sumitomo Electric Industries, Ltd. Process for producing optical fiber preform, process for producing optical fiber and optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014498A1 (en) * 2003-08-11 2005-02-17 Sumitomo Electric Industries, Ltd. Process for producing optical fiber preform, process for producing optical fiber and optical fiber
US7376316B2 (en) 2003-08-11 2008-05-20 Sumitomo Electric Industries, Ltd. Manufacturing method of optical fiber preform, manufacturing method of optical fiber, and optical fiber

Similar Documents

Publication Publication Date Title
EP0738691A2 (en) Method of forming an elongated glass article
JP4800940B2 (en) Method for producing optical components made of quartz glass
EP0469190A1 (en) Method of making polarization retaining optical fiber
WO2003075058A1 (en) Polarized wave holding optical fiber, and method of producing the same
WO1999040037A1 (en) Method of manufacturing optical fiber base material
EP1156018B1 (en) Process for fabricating optical fiber involving tuning of core diameter profile
WO2003059828A1 (en) Method and device for manufacturing glass tube
JP2002179434A (en) Method for manufacturing optical fiber preform, optical fiber preform and optical fiber
JP2003146681A (en) Optical fiber preform, its manufacturing method and optical fiber
JP2001253726A (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber and optical fiber
JP2003221251A (en) Device for manufacturing glass tube for optical fiber, method for manufacturing glass tube for optical fiber, and method for manufacturing preform for optical fiber
JP4040582B2 (en) Method of joining glass preforms during optical fiber manufacturing
JPH09142863A (en) Production of optical fiber having glass core of low fusing temperature
JP2012126595A (en) Method for producing optical fiber preform and method for producing optical fiber using the same
US6550280B1 (en) Process of sintering a hanging silica tube so as to exhibit a low bow
JP2005263527A (en) Method and apparatus for manufacturing glass pipe
JP2012137615A (en) Optical fiber manufacturing method
JP2004123468A (en) Method of manufacturing optical fiber preform, and optical fiber preform
JP4345974B2 (en) Quartz glass tube having a plurality of linear holes, method for manufacturing the same, and apparatus for manufacturing the same
JP2003226530A (en) Method for producing quartz glass pipe, method for producing optical fiber preform and optical fiber
JP4062409B2 (en) Manufacturing method of glass pipe for optical fiber
JP4340584B2 (en) Glass tube manufacturing method and glass tube manufacturing apparatus
JPH01160841A (en) Production of optical fiber
WO2023162775A1 (en) Optical fiber preform
JP4032226B2 (en) Manufacturing method of optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080326