JP2003218379A - Solar battery - Google Patents

Solar battery

Info

Publication number
JP2003218379A
JP2003218379A JP2002015259A JP2002015259A JP2003218379A JP 2003218379 A JP2003218379 A JP 2003218379A JP 2002015259 A JP2002015259 A JP 2002015259A JP 2002015259 A JP2002015259 A JP 2002015259A JP 2003218379 A JP2003218379 A JP 2003218379A
Authority
JP
Japan
Prior art keywords
solar cell
oxide phosphor
cell according
solar battery
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002015259A
Other languages
Japanese (ja)
Inventor
Shingo Yoshida
真吾 吉田
Toshio Nakao
俊夫 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002015259A priority Critical patent/JP2003218379A/en
Publication of JP2003218379A publication Critical patent/JP2003218379A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery which has high photoelectric conversion efficiency and superior durability by providing a solar battery having a material which has a wavelength converting function and is excellently transparent and homogeneous in an optical path where light runs before reaching a solar battery element. <P>SOLUTION: The material which has a dispersed oxide phosphor, e.g. an aluminate of alkali earth metal is installed in the path where the light runs before reaching the solar battery element. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、波長変換機能を有
する材料を用いた太陽電池に関するものである。
TECHNICAL FIELD The present invention relates to a solar cell using a material having a wavelength converting function.

【0002】[0002]

【従来の技術】太陽電池は一般に紫外域の光に対し吸光
感度が低く、紫外域の光を可視域又は近赤外域の波長に
変換することにより吸光感度の高い波長領域の光を増加
させて光電変換効率を高めることができる。従来から太
陽電池の受光面上に波長変換膜を配設することにより光
電変換効率を増大する方法が知られている。具体的に
は、特開2001−7377に見られるように蛍光着色
剤を受光面に配置する方法、特開2000−32771
5に見られるようにTb(bpy)2Cl3と3−(トリ
メトキシシリル)プロピルアクリレートとテトラエトキ
シシランの混合溶液から得た希土類錯体含有ORMOS
IL(Organically Modified S
ilicate)複合体を受光面に配置する方法などを
挙げることができる。しかしながら、上記の蛍光着色剤
や希土類錯体は耐久性が不十分なため、長期間にわたる
光電変換効率の保持が困難である。また、無機系マトリ
ックスと複合化しても屋外使用に耐える十分な耐久性を
持たない。また、有機系の蛍光体以外では、ZnS:A
gやZnS:Cuに代表される無機系の硫化物蛍光体が
良く知られているが、耐候性が悪い・湿気により輝度が
低下する等の問題があり、実用化には至っていない。
2. Description of the Related Art Solar cells generally have low absorption sensitivity to light in the ultraviolet region, and by converting light in the ultraviolet region into wavelengths in the visible or near infrared region, light in the wavelength region having high absorption sensitivity is increased. The photoelectric conversion efficiency can be increased. Conventionally, there is known a method of increasing the photoelectric conversion efficiency by disposing a wavelength conversion film on the light receiving surface of a solar cell. Specifically, as disclosed in JP 2001-7377 A, a method of disposing a fluorescent colorant on the light receiving surface, JP 2000-32771 A,
ORMOS containing a rare earth complex obtained from a mixed solution of Tb (bpy) 2 Cl 3 , 3- (trimethoxysilyl) propyl acrylate and tetraethoxysilane as shown in FIG.
IL (Organically Modified S)
and a method of arranging the (ilicate) complex on the light receiving surface. However, it is difficult to maintain the photoelectric conversion efficiency for a long period of time because the above-mentioned fluorescent colorant and rare earth complex have insufficient durability. Further, even if it is compounded with an inorganic matrix, it does not have sufficient durability to withstand outdoor use. In addition to organic phosphors, ZnS: A
Inorganic sulfide phosphors typified by g and ZnS: Cu are well known, but they have not been put to practical use because of problems such as poor weather resistance and reduced brightness due to moisture.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記事情に鑑
みてなされたもので、光が太陽電池素子に到達するまで
の経路中に、波長変換機能を有するとともに透明性・均
質性に優れた材料を備え、光電変換効率が高く耐久性の
優れた太陽電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and has a wavelength conversion function and excellent transparency and homogeneity in the path until light reaches a solar cell element. It is an object of the present invention to provide a solar cell that includes a material and has high photoelectric conversion efficiency and excellent durability.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、鋭意検討した結果、酸化物蛍光体、特にアルカリ土
類金属のアルミン酸塩を利用することで、耐久性に優れ
た波長変換機能を有する材料が得られることを見出し、
本発明に至った。すなわち本発明は、 (1)光が太陽電池素子に到達するまでの経路中に、酸
化物蛍光体を含む材料を配設したことを特徴とする太陽
電池。 (2)酸化物蛍光体が200〜400nmの波長範囲に
ある紫外線を400〜1000nmの波長範囲に変換で
きることを特徴とする(1)の太陽電池。 (3)酸化物蛍光体がアルカリ土類金属の塩を主成分と
し、賦活剤及び共賦活剤を含むものである(1)、
(2)の太陽電池。 (4)酸化物蛍光体の平均粒子径が1nm〜1μmであ
る(1)〜(3)の太陽電池。 (5)酸化物蛍光体が媒質中に分散されている表面コー
ティング材を保護板にコーティングさせた(1)〜
(4)の太陽電池。 (6)酸化物蛍光体が保護板に含まれる(1)〜(4)
の太陽電池。 (7)酸化物蛍光体が封止材に含まれる(1)〜(4)
の太陽電池。 (8)酸化物蛍光体が透明電極に含まれる(1)〜
(4)の太陽電池。 である。
[Means for Solving the Problems] In order to achieve the above object, as a result of extensive studies, as a result of utilizing an oxide phosphor, particularly an aluminate of an alkaline earth metal, a wavelength conversion function excellent in durability is obtained. Found that the material having
The present invention has been completed. That is, the present invention is: (1) A solar cell in which a material containing an oxide phosphor is disposed in the path through which light reaches a solar cell element. (2) The solar cell according to (1), wherein the oxide phosphor can convert ultraviolet rays in the wavelength range of 200 to 400 nm into the wavelength range of 400 to 1000 nm. (3) The oxide phosphor has a salt of an alkaline earth metal as a main component and contains an activator and a coactivator (1),
The solar cell of (2). (4) The solar cell according to (1) to (3), wherein the oxide phosphor has an average particle diameter of 1 nm to 1 μm. (5) A protective plate is coated with a surface coating material in which an oxide phosphor is dispersed in a medium (1) to
The solar cell of (4). (6) An oxide phosphor is included in the protective plate (1) to (4).
Solar cells. (7) An oxide phosphor is included in the encapsulant (1) to (4).
Solar cells. (8) Oxide phosphor is included in the transparent electrode (1) to
The solar cell of (4). Is.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明に用いられる酸化物蛍光体としてはアルカリ土類
金属のアルミン酸塩が好ましい。これは、MAl24
表される化合物で、Mはマグネシウム、カルシウム、ス
トロンチウム、バリウムからなる群から選ばれる少なく
とも1つ以上の化合物を母結晶とする。さらに、賦活剤
としてユウロピウムを、共賦活剤としてセリウム、プラ
セオジム、ネオジム、サマリウム、テルビウム、ジスプ
ロシウム、ホルミウム、エルビウム、ツリウム、イッテ
ルビウム、ルテチウムからなる群の少なくとも1つ以上
の元素を添加するのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The oxide phosphor used in the present invention is preferably an alkaline earth metal aluminate. This is a compound represented by MAl 2 O 4 , and M has at least one compound selected from the group consisting of magnesium, calcium, strontium, and barium as a mother crystal. Further, it is preferable to add europium as an activator and at least one or more element selected from the group consisting of cerium, praseodymium, neodymium, samarium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium as a coactivator.

【0006】本発明に用いられる酸化物蛍光体は200
〜400nmの波長範囲にある紫外線を400〜100
0nmの波長範囲に変換できることを特徴とする。した
がって、本発明で使用可能な太陽電池の種類は特に制限
されることはなく、結晶シリコン太陽電池・アモルファ
スシリコン太陽電池等のシリコン系太陽電池、GaAs
・CdS/CdTeなどの化合物半導体系の太陽電池、
色素増感太陽電池・有機薄膜太陽電池等の有機太陽電池
等、すべての太陽電池に適用することができる。また、
紫外域の光を長波長側に変換することで、太陽電池に用
いられる有機材料の劣化を抑制することができ、寿命の
向上も期待できる。
The oxide phosphor used in the present invention is 200
UV light in the wavelength range of ~ 400 nm is 400 ~ 100
It is characterized in that it can be converted into a wavelength range of 0 nm. Therefore, the type of solar cell that can be used in the present invention is not particularly limited, and includes silicon-based solar cells such as crystalline silicon solar cells and amorphous silicon solar cells, and GaAs.
・ Compound semiconductor solar cells such as CdS / CdTe,
It can be applied to all solar cells such as dye-sensitized solar cells and organic solar cells such as organic thin film solar cells. Also,
By converting the light in the ultraviolet region to the long wavelength side, the deterioration of the organic material used for the solar cell can be suppressed, and the life can be expected to be improved.

【0007】本発明に用いられる酸化物蛍光体の平均粒
子径は1nm〜1μmであることが好ましく、さらに好
ましくは5nm〜500nmである。平均粒子径が大き
いと前方散乱の程度が大きくなるため、太陽電池素子に
到達する光量が少なくなり、結果として光電変換効率は
減少する恐れがある。また、平均粒子径が小さいと均一
分散させることが困難となり、粒子が凝集を起こすため
前方散乱の程度が大きくなり、光電変換効率は減少する
恐れがある。本発明の酸化物蛍光体は、光が太陽電池素
子に到達するまでの経路中のいずれかに配設されていれ
ばよく、太陽電池の構造上、保護板の表面コーティング
材、保護板、封止材、透明電極のいずれかひとつ以上に
含有されているのが好ましい。表面コーティングの場
合、媒質に酸化物蛍光体を分散させ、デッピング法、ス
プレー法、バーコート法、スピンコート法、スパッタリ
ング法、真空蒸着法、プラズマ蒸着法等、公知のコーテ
ィング方法を利用することができる。保護板や封止材に
利用する場合、媒質と酸化物蛍光体を溶融混練する法、
媒質をワニス化し酸化物蛍光体を添加した後に溶媒を除
去する方法等、公知の技術を利用することができる。透
明電極に利用する場合、ITOなどの透明電極材料ととも
に酸化物蛍光体をスパッタリング法、真空蒸着法、プラ
ズマ蒸着法等で蒸着させることができる。
The average particle diameter of the oxide phosphor used in the present invention is preferably 1 nm to 1 μm, more preferably 5 nm to 500 nm. If the average particle size is large, the degree of forward scattering increases, so that the amount of light reaching the solar cell element decreases, and as a result, the photoelectric conversion efficiency may decrease. Further, if the average particle size is small, it becomes difficult to disperse the particles uniformly, and the particles agglomerate to increase the degree of forward scattering, which may reduce the photoelectric conversion efficiency. The oxide phosphor of the present invention may be arranged in any of the paths through which light reaches the solar cell element, and due to the structure of the solar cell, the surface coating material of the protective plate, the protective plate, the seal. It is preferably contained in one or more of the stopping material and the transparent electrode. In the case of surface coating, it is possible to disperse an oxide phosphor in a medium and use a known coating method such as a depping method, a spray method, a bar coating method, a spin coating method, a sputtering method, a vacuum deposition method or a plasma deposition method. it can. When used as a protective plate or encapsulant, a method of melting and kneading the medium and the oxide phosphor,
Known techniques such as a method in which the medium is varnished and the solvent is removed after the oxide phosphor is added can be used. When used for a transparent electrode, an oxide phosphor can be deposited by a sputtering method, a vacuum deposition method, a plasma deposition method or the like together with a transparent electrode material such as ITO.

【0008】ここでいう媒質とは、樹脂、有機系塗料等
の有機系媒質、ガラス、無機系塗料、セラミックス等の
無機系媒質を挙げることができる。また、これらの2種
以上の混合物であってもよい。有機系媒質の具体的な例
としては、ポリメタクリル酸メチル等のアクリル系樹
脂、ポリカーボネート、ポリスチレン、ポリエチレン、
ポリプロピレン、エチレンビニルアセテート等のポリオ
レフィン系樹脂、エポキシ樹脂、シリコーン樹脂、フッ
素樹脂等が挙げられる。また、無機系媒質の具体的な例
としては、水ガラス、ケイ酸ガラス、リン酸系ガラス、
酸化ケイ素、酸化アルミ、酸化チタン、酸化スズ、酸化
亜鉛、酸化インジウム、ITO等が挙げられる。また、酸
化物蛍光体を媒質中に分散する場合、酸化物蛍光体の濃
度は0.01〜20重量%が好ましい。0.01重量%
未満だと波長変換による効果が不十分となり、20重量
%よりも大きいと濃度消光により太陽電池素子に到達す
る光量が少なくなる。さらに媒質中には、上記のほか、
必要に応じてカップリング剤、光重合開始剤、紫外線吸
収剤、酸化防止剤、光安定剤、防錆剤、加工助剤、着色
剤等を含むことができる。
Examples of the medium here include resins, organic media such as organic paints, and inorganic media such as glass, inorganic paints and ceramics. Also, a mixture of two or more of these may be used. Specific examples of the organic medium include acrylic resins such as polymethylmethacrylate, polycarbonate, polystyrene, polyethylene,
Examples include polyolefin resins such as polypropylene and ethylene vinyl acetate, epoxy resins, silicone resins, and fluororesins. Further, as specific examples of the inorganic medium, water glass, silicate glass, phosphoric acid glass,
Examples thereof include silicon oxide, aluminum oxide, titanium oxide, tin oxide, zinc oxide, indium oxide and ITO. When the oxide phosphor is dispersed in the medium, the concentration of the oxide phosphor is preferably 0.01 to 20% by weight. 0.01% by weight
If it is less than the above range, the effect of wavelength conversion becomes insufficient, and if it exceeds 20% by weight, the amount of light reaching the solar cell element due to concentration quenching becomes small. In addition to the above in the medium,
If necessary, a coupling agent, a photopolymerization initiator, an ultraviolet absorber, an antioxidant, a light stabilizer, a rust preventive, a processing aid, a colorant and the like can be contained.

【0009】[0009]

【実施例】以下、実施例に基づき本発明を詳細に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 (実施例1)波長変換物質としてユウロピウムとジスプ
ロシウムで賦活した平均粒子径100nmのストロンチ
ウムアルミン酸塩を使用した。このアルミン酸塩とポリ
メタクリル酸メチルを重量比で1:9の割合で配合した
ものをN,N−ジメチルホルムアミドに添加し10wt
%溶液を作製した。市販のアモルファス太陽電池表面に
上記溶液をバーコート法により塗布し、常温で乾燥させ
ることにより波長変換機能を有する薄膜を備えた太陽電
池を得た。光源としては100mW/cm2のキセノン
ランプを使用し、ポテンショスタットを用いて太陽電池
の光電変換効率を求めた。また、作製した太陽電池を屋
外で1年間暴露した後の光電変換効率も測定した。初期
効率は市販のアモルファス太陽電池よりも高かった。ま
た、蛍光着色剤を塗布したときに見られるような、暴露
試験後の効率低下も認められなかった。
EXAMPLES The present invention will be described in detail below based on examples, but the present invention is not limited to these examples. Example 1 Strontium aluminate activated by europium and dysprosium and having an average particle size of 100 nm was used as a wavelength conversion substance. A mixture of this aluminate and polymethylmethacrylate in a weight ratio of 1: 9 was added to N, N-dimethylformamide to obtain 10 wt.
% Solution was made. The surface of a commercially available amorphous solar cell was coated with the above solution by a bar coating method and dried at room temperature to obtain a solar cell provided with a thin film having a wavelength conversion function. A 100 mW / cm 2 xenon lamp was used as a light source, and the photoelectric conversion efficiency of the solar cell was determined using a potentiostat. Moreover, the photoelectric conversion efficiency after exposing the produced solar cell to outdoors for 1 year was also measured. The initial efficiency was higher than that of commercially available amorphous solar cells. Moreover, the decrease in efficiency after the exposure test, which was observed when the fluorescent colorant was applied, was not observed.

【0010】(実施例2)波長変換物質としてユウロピ
ウムとジネオジムで賦活した平均粒子径200nmのカ
ルシウムアルミン酸塩を使用した。このアルミン酸塩を
ポリカーボネートと重量比で1:19の割合で溶融混練
し、プレスにより板状に加工した。このアルミン酸塩が
含まれたポリカーボネートを保護板に設置した結晶シリ
コン太陽電池に対し、実施例1と同様の評価を行なっ
た。初期効率は、保護板にアルミン酸塩を添加していな
いポリカーボネートを用いた結晶シリコン太陽電池より
も高く、暴露試験後も変化はなかった。
Example 2 Calcium aluminate activated by europium and dinodymium and having an average particle diameter of 200 nm was used as a wavelength conversion substance. This aluminate was melt-kneaded with polycarbonate at a weight ratio of 1:19, and processed into a plate shape by pressing. The same evaluation as in Example 1 was performed on the crystalline silicon solar cell in which the polycarbonate containing the aluminate was placed on the protective plate. The initial efficiency was higher than that of the crystalline silicon solar cell using the polycarbonate in which the aluminate was not added to the protective plate, and there was no change after the exposure test.

【0011】(実施例3)波長変換物質としては実施例
1と同様のものを用い、このアルミン酸塩を封止材中に
重量比で1:19の割合で混練した。作製した封止材を
結晶シリコン太陽電池に適用したところ、初期効率はア
ルミン酸塩を添加していない封止材を用いたときよりも
高く、暴露試験後の効率低下も認められなかった。
(Example 3) The same wavelength conversion substance as in Example 1 was used, and this aluminate was kneaded in the encapsulating material at a weight ratio of 1:19. When the produced encapsulant was applied to a crystalline silicon solar cell, the initial efficiency was higher than that when an encapsulant containing no aluminate was used, and no decrease in efficiency was observed after the exposure test.

【0012】(実施例4)波長変換物質としては実施例
1と同様のものを用い、このアルミン酸塩とITOとを共
蒸着させた。このアルミン酸塩が含まれたITOを電極と
したアモルファス太陽電池に対し、実施例1と同様の評
価を行なった。初期効率は市販のアモルファス太陽電池
よりも高く、暴露試験後も変化はなかった。以上より、
実施例記載の波長変換機能を有する薄膜を配設した太陽
電池は、光電変換効率が高く耐候性に優れていることが
わかった。
(Example 4) The same wavelength conversion material as in Example 1 was used, and the aluminate and ITO were co-evaporated. The same evaluation as in Example 1 was performed on the amorphous solar cell using ITO containing an aluminate as an electrode. The initial efficiency was higher than that of commercially available amorphous solar cells, and there was no change after the exposure test. From the above,
It was found that the solar cell provided with the thin film having the wavelength conversion function described in the example has high photoelectric conversion efficiency and excellent weather resistance.

【0013】[0013]

【発明の効果】本発明は、波長変換機能により光電変換
効率を向上させ、しかも従来にない優れた耐久性を示し
た。
INDUSTRIAL APPLICABILITY The present invention improves the photoelectric conversion efficiency by the wavelength conversion function, and exhibits excellent durability which has never been obtained.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光が太陽電池素子に到達するまでの経路
中に、酸化物蛍光体を含む材料を配設したことを特徴と
する太陽電池。
1. A solar cell in which a material containing an oxide phosphor is disposed in a path through which light reaches a solar cell element.
【請求項2】 酸化物蛍光体が200〜400nmの波
長範囲にある紫外線を400〜1000nmの波長範囲
に変換できることを特徴とする請求項1記載の太陽電
池。
2. The solar cell according to claim 1, wherein the oxide phosphor can convert ultraviolet rays in the wavelength range of 200 to 400 nm into the wavelength range of 400 to 1000 nm.
【請求項3】 酸化物蛍光体がアルカリ土類金属の塩を
主成分とし、賦活剤及び共賦活剤を含むものである請求
項1または2記載の太陽電池。
3. The solar cell according to claim 1, wherein the oxide phosphor has a salt of an alkaline earth metal as a main component and contains an activator and a coactivator.
【請求項4】 酸化物蛍光体の平均粒子径が1nm〜1
μmである請求項1〜3何れか一項記載の太陽電池。
4. The average particle diameter of the oxide phosphor is 1 nm to 1
The solar cell according to claim 1, wherein the solar cell has a thickness of μm.
【請求項5】 酸化物蛍光体が媒質中に分散されている
表面コーティング材を保護板にコーティングさせた請求
項1〜4何れか一項記載の太陽電池。
5. The solar cell according to claim 1, wherein the protective plate is coated with a surface coating material in which an oxide phosphor is dispersed in a medium.
【請求項6】 酸化物蛍光体が保護板に含まれる請求項
1〜4何れか一項記載の太陽電池。
6. The solar cell according to claim 1, wherein the oxide phosphor is included in the protective plate.
【請求項7】 酸化物蛍光体が封止材に含まれる請求項
1〜4何れか一項記載の太陽電池。
7. The solar cell according to claim 1, wherein an oxide phosphor is included in the encapsulating material.
【請求項8】 酸化物蛍光体が透明電極に含まれる請求
項1〜4何れか一項記載の太陽電池。
8. The solar cell according to claim 1, wherein the oxide phosphor is included in the transparent electrode.
JP2002015259A 2002-01-24 2002-01-24 Solar battery Pending JP2003218379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015259A JP2003218379A (en) 2002-01-24 2002-01-24 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015259A JP2003218379A (en) 2002-01-24 2002-01-24 Solar battery

Publications (1)

Publication Number Publication Date
JP2003218379A true JP2003218379A (en) 2003-07-31

Family

ID=27651709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015259A Pending JP2003218379A (en) 2002-01-24 2002-01-24 Solar battery

Country Status (1)

Country Link
JP (1) JP2003218379A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096711A1 (en) 2007-02-06 2008-08-14 Hitachi Chemical Co., Ltd. Solar cell module and wavelength conversion type light collecting film for solar cell module
WO2009148131A1 (en) * 2008-06-06 2009-12-10 住友ベークライト株式会社 Wavelength converting composition and photovoltaic device comprising layer composed of wavelength converting composition
JP2010186845A (en) * 2009-02-12 2010-08-26 Sumitomo Bakelite Co Ltd Resin composition, wavelength conversion composition, wavelength conversion layer, and photovoltaic device including the same
WO2011040391A1 (en) 2009-09-29 2011-04-07 日立化成工業株式会社 Fluorescent material for converting wavelengths, resin composition for converting wavelengths containing the fluorescent material, solar cell module produced using the fluorescent material or the resin composition, process for producing resin composition for converting wavelengths, and process for producing solar cell module
JP2011119685A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element and organic photoelectric conversion module
JP2011119683A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
WO2011122591A1 (en) 2010-03-29 2011-10-06 日立化成工業株式会社 Wavelength-converting solar cell sealing sheet, and solar cell module
JP2012041465A (en) * 2010-08-20 2012-03-01 Hitachi Chem Co Ltd Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module and method for producing same
WO2012032880A1 (en) * 2010-09-10 2012-03-15 株式会社日立製作所 Wavelength-converting resin composition, sealing material for wavelength-conversion-type solar cell and process for production thereof, and solar cell module and process for production thereof
JP2012082324A (en) * 2010-10-12 2012-04-26 Hitachi Chemical Co Ltd Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module, and method for producing them
JP2012129391A (en) * 2010-12-16 2012-07-05 Lintec Corp Solar cell module and backside protective sheet for the same
US20120204952A1 (en) * 2011-02-10 2012-08-16 Lg Chem, Ltd. Front sheet of solar cell, method of manufacturing the same and photovoltaic module comprising the same
JP5234210B1 (en) * 2012-07-20 2013-07-10 東洋インキScホールディングス株式会社 Resin composition for solar cell encapsulant
WO2013141048A1 (en) 2012-03-21 2013-09-26 日立化成株式会社 Inorganic phosphor-containing polymer particles, method for producing inorganic phosphor-containing polymer particles, and solar cell module
WO2015119124A1 (en) * 2014-02-07 2015-08-13 独立行政法人産業技術総合研究所 Phosphor microparticles, production method for phosphor microparticles, phosphor thin film, wavelength conversion film, wavelength conversion device, and solar cell
WO2016121792A1 (en) * 2015-01-28 2016-08-04 日本碍子株式会社 Fine fluorescent particles, process for producing fine fluorescent particles, thin fluorescent film, wavelength conversion film, wavelength conversion device, and solar cell
WO2017022344A1 (en) * 2015-08-04 2017-02-09 日本碍子株式会社 Fine fluorescent-material particles, process for producing fine fluorescent-material particles, thin fluorescent-material film, wavelength conversion film, wavelength conversion device, and solar cell

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096711A1 (en) 2007-02-06 2008-08-14 Hitachi Chemical Co., Ltd. Solar cell module and wavelength conversion type light collecting film for solar cell module
WO2009148131A1 (en) * 2008-06-06 2009-12-10 住友ベークライト株式会社 Wavelength converting composition and photovoltaic device comprising layer composed of wavelength converting composition
JP2010219551A (en) * 2008-06-06 2010-09-30 Sumitomo Bakelite Co Ltd Wavelength converting composition and photovoltaic device having layer composed of wavelength converting composition
JP2010186845A (en) * 2009-02-12 2010-08-26 Sumitomo Bakelite Co Ltd Resin composition, wavelength conversion composition, wavelength conversion layer, and photovoltaic device including the same
WO2011040391A1 (en) 2009-09-29 2011-04-07 日立化成工業株式会社 Fluorescent material for converting wavelengths, resin composition for converting wavelengths containing the fluorescent material, solar cell module produced using the fluorescent material or the resin composition, process for producing resin composition for converting wavelengths, and process for producing solar cell module
CN102598340A (en) * 2009-10-30 2012-07-18 住友化学株式会社 Organic photoelectric conversion element and organic photoelectric conversion module
JP2011119683A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
JP2011119685A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element and organic photoelectric conversion module
WO2011122591A1 (en) 2010-03-29 2011-10-06 日立化成工業株式会社 Wavelength-converting solar cell sealing sheet, and solar cell module
JP2012041465A (en) * 2010-08-20 2012-03-01 Hitachi Chem Co Ltd Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module and method for producing same
WO2012032880A1 (en) * 2010-09-10 2012-03-15 株式会社日立製作所 Wavelength-converting resin composition, sealing material for wavelength-conversion-type solar cell and process for production thereof, and solar cell module and process for production thereof
JP2012082324A (en) * 2010-10-12 2012-04-26 Hitachi Chemical Co Ltd Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module, and method for producing them
JP2012129391A (en) * 2010-12-16 2012-07-05 Lintec Corp Solar cell module and backside protective sheet for the same
US20120204952A1 (en) * 2011-02-10 2012-08-16 Lg Chem, Ltd. Front sheet of solar cell, method of manufacturing the same and photovoltaic module comprising the same
US9117952B2 (en) * 2011-02-10 2015-08-25 Lg Chem, Ltd. Front sheet of solar cell, method of manufacturing the same and photovoltaic module comprising the same
KR20140136454A (en) 2012-03-21 2014-11-28 히타치가세이가부시끼가이샤 Inorganic phosphor-containing polymer particles, method for producing inorganic phosphor-containing polymer particles, and solar cell module
WO2013141048A1 (en) 2012-03-21 2013-09-26 日立化成株式会社 Inorganic phosphor-containing polymer particles, method for producing inorganic phosphor-containing polymer particles, and solar cell module
JP5234210B1 (en) * 2012-07-20 2013-07-10 東洋インキScホールディングス株式会社 Resin composition for solar cell encapsulant
WO2015119124A1 (en) * 2014-02-07 2015-08-13 独立行政法人産業技術総合研究所 Phosphor microparticles, production method for phosphor microparticles, phosphor thin film, wavelength conversion film, wavelength conversion device, and solar cell
WO2016121792A1 (en) * 2015-01-28 2016-08-04 日本碍子株式会社 Fine fluorescent particles, process for producing fine fluorescent particles, thin fluorescent film, wavelength conversion film, wavelength conversion device, and solar cell
JP2017088895A (en) * 2015-01-28 2017-05-25 日本碍子株式会社 Fluorescent fine particle, manufacturing method of fluorescent fine particle, fluorescent thin film, wavelength conversion film, wavelength conversion device and solar cell
JPWO2016121792A1 (en) * 2015-01-28 2017-11-02 日本碍子株式会社 Phosphor fine particles, method for producing phosphor fine particles, phosphor thin film, wavelength conversion film, wavelength conversion device, and solar cell
US10344210B2 (en) 2015-01-28 2019-07-09 Ngk Insulators, Ltd. Luminescent substance particle having perovskite-type structure
WO2017022344A1 (en) * 2015-08-04 2017-02-09 日本碍子株式会社 Fine fluorescent-material particles, process for producing fine fluorescent-material particles, thin fluorescent-material film, wavelength conversion film, wavelength conversion device, and solar cell
JP6122560B1 (en) * 2015-08-04 2017-04-26 日本碍子株式会社 Phosphor fine particles, method for producing phosphor fine particles, phosphor thin film, wavelength conversion film, wavelength conversion device, and solar cell
US10934483B2 (en) 2015-08-04 2021-03-02 Ngk Insulators, Ltd. Fine fluorescent-material particles, process for producing fine fluorescent-material particles, thin fluorescent-material film, wavelength conversion film, wavelength conversion device, and solar cell

Similar Documents

Publication Publication Date Title
JP2003218379A (en) Solar battery
EP3408348B1 (en) Use of color converting sheet
Kim et al. Salt-embedded carbon nanodots as a UV and thermal stable fluorophore for light-emitting diodes
US20120266942A1 (en) Seal sheet and solar cell module
KR20090069894A (en) Solar cell containing phosphor and method for manufacturing the same
KR102141645B1 (en) Wavelength conversion polymer film
US20180190848A1 (en) Wavelength conversion filter, manufacturing method thereof, and solar cell module
US20090151786A1 (en) Solar cell and its transparent light conversion film
JP2015195397A (en) Solar battery module
JP2015053368A (en) Wavelength conversion material for solar batteries, and solar battery module
CN111187610A (en) Composite quantum dot material, preparation method and display device thereof
JP2012069865A (en) Solar cell sealant and solar cell module using the same
CN110857889A (en) Temperature-sensing intelligent composite optical glass
JP2019215451A (en) Wavelength conversion material and solar cell module using the same
JP2001228254A (en) Flat x-ray detector with alkali halogenide scintillator
JP2003218367A (en) Solar battery unit
CN102905785A (en) Absorbent and passivation layer for optical element comprising the same
JP6196061B2 (en) Cover glass for solar cell whose surface is covered with transparent protective film, solar cell module provided with the cover glass, coating liquid for forming transparent protective film, and method for forming transparent protective film
CN102985360A (en) Improvements to phosphors
US20100108136A1 (en) Solar cell
CN209428440U (en) A kind of quantum dot film of water resistant oxygen
EP3260895A1 (en) Wavelength conversion member and photovoltaic device using same
JP2000327715A (en) New polymer-rare earth complex, film obtained from the new polymer-rare earth complex, their production and optical material using the film
JP2014034588A (en) Polymer particle including inorganic phosphor for solar cell wavelength conversion, and production method thereof
JP2013194160A (en) Granular wavelength conversion material for solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104