JP2003218335A - Solid state detector - Google Patents

Solid state detector

Info

Publication number
JP2003218335A
JP2003218335A JP2002015656A JP2002015656A JP2003218335A JP 2003218335 A JP2003218335 A JP 2003218335A JP 2002015656 A JP2002015656 A JP 2002015656A JP 2002015656 A JP2002015656 A JP 2002015656A JP 2003218335 A JP2003218335 A JP 2003218335A
Authority
JP
Japan
Prior art keywords
light
reading
generating electrode
charge
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002015656A
Other languages
Japanese (ja)
Inventor
Masaharu Ogawa
正春 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002015656A priority Critical patent/JP2003218335A/en
Publication of JP2003218335A publication Critical patent/JP2003218335A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate remaining charge by extinction light in a solid state detector provided with an optical charge pair non-generating electrode. <P>SOLUTION: In the solid state detector 20 which comprises a second conductive layer 25, etc., equipped with an optical charge pair generating electrode 26 composed of a first conductive layer 21, a recording optical conductive layer 22, a charge transporting layer 23, a reading optical conductive layer 24 and a number of liner electrodes 26a and with the optical charge pair non-generating electrode 27 composed of a number of linear electrodes 27a, at least extinction light permeates the optical charge pair non-generating electrode 27, a reading optical blocking layer 40, which has permeability for the extinction light L3 and a light blocking effect for reading light L2 on a lower surface of each linear electrode 27a in the optical charge pair non-generating electrode 27, is provided so that the extinction light L3 can enter an area corresponding to the optical charge pair non-generating electrode 27 of the reading optical conductive layer 24. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、照射された放射線
の線量あるいは該放射線の励起により発せられる光の光
量に応じた量の電荷を潜像電荷として蓄積する蓄電部を
有する固体検出器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state detector having a power storage unit for accumulating, as a latent image charge, an amount of electric charge corresponding to a dose of irradiated radiation or an amount of light emitted by excitation of the radiation. Is.

【0002】[0002]

【従来の技術】今日、医療診断等を目的とする放射線撮
影において、放射線を検出して得た電荷を潜像電荷とし
て蓄電部に一旦蓄積し、該蓄積した潜像電荷を放射線画
像情報を表す電気信号に変換して出力する固体検出器を
使用する画像情報記録読取装置が各種提案されている。
この装置において使用される固体検出器としては、種々
のタイプのものが提案されているが、蓄積された電荷を
外部に読み出す電荷読出プロセスの面から、検出器に読
取光(読取用の電磁波)を照射して読み出す光読出方式
のものがある。
2. Description of the Related Art Today, in radiography for the purpose of medical diagnosis and the like, charges obtained by detecting radiation are temporarily accumulated in a power storage unit as latent image charges, and the accumulated latent image charges represent radiation image information. Various image information recording / reading devices have been proposed that use a solid-state detector that converts and outputs an electric signal.
Although various types of solid-state detectors have been proposed for use in this device, reading light (reading electromagnetic wave) is applied to the detector from the viewpoint of the charge reading process of reading the accumulated charges to the outside. There is a light reading method of irradiating and reading.

【0003】本出願人は、読出しの高速応答性と効率的
な信号電荷の取り出しの両立を図ることができる光読出
方式の固体検出器として、特開2000−105297
号公報、特開2000−284056号公報、特開20
00−284057号公報において、記録用の放射線あ
るいは該放射線の励起により発せられる光(以下記録光
という)に対して透過性を有する第1導電層、記録光を
受けることにより導電性を呈する記録用光導電層、第1
導電層に帯電される電荷と同極性の電荷に対しては略絶
縁体として作用し、かつ、該同極性の電荷と逆極性の電
荷に対しては略導電体として作用する電荷輸送層、読取
光(読取用の電磁波)の照射を受けることにより導電性
を呈する読取用光導電層、読取光に対して透過性を有す
る第2導電層を、この順に積層して成り、記録用光導電
層と電荷輸送層との界面に形成される蓄電部に、画像情
報を担持する潜像電荷(静電潜像)を蓄積する固体検出
器を提案している。
The applicant of the present invention has disclosed, as a solid-state detector of an optical readout system, capable of achieving both high-speed response of readout and efficient extraction of signal charges, as disclosed in Japanese Patent Application Laid-Open No. 2000-105297.
JP-A-2000-284056, JP-A-20
JP-A-00-284057, a first conductive layer having transparency for recording radiation or light emitted by excitation of the radiation (hereinafter referred to as recording light), and recording for exhibiting conductivity by receiving recording light Photoconductive layer, first
A charge transport layer that acts as a substantially insulator for a charge having the same polarity as the charge charged in the conductive layer and as a substantially conductor for a charge having the opposite polarity as the charge of the same polarity. A recording photoconductive layer, which is formed by laminating a reading photoconductive layer that exhibits conductivity by being irradiated with light (reading electromagnetic wave) and a second conductive layer that is transparent to the reading light in this order. It proposes a solid-state detector that accumulates latent image charges (electrostatic latent image) carrying image information in a power storage unit formed at the interface between the charge transport layer and the charge transport layer.

【0004】この固体検出器は、静電潜像が読み取られ
た後には、基本的には固体検出器内に潜像電荷が蓄積さ
れておらず、そのまま再記録できるものである。しかし
ながら、場合によっては潜像電荷を完全に読み取ること
ができず固体検出器に残留電荷として読み残すことがあ
る。また、固体検出器に静電潜像を記録するとき、記録
光の照射の前に固体検出器に高圧を印加するが、この印
加の際に暗電流が発生し、それによる電荷(暗電流電
荷)も固体検出器に蓄積される。さらに、これら以外の
原因によっても固体検出器に種々な電荷が記録光の照射
の前に蓄積されることが知られている。これら残留電
荷、暗電流電荷等の記録光の照射の前に蓄積される不要
電荷は、記録光を照射することにより蓄積される画像情
報を担持する潜像電荷に加算されることになるから、結
局固体検出器から静電潜像を読み取ったとき、出力され
る信号には画像情報を担持する潜像電荷に基づく信号以
外に不要電荷による信号成分が含まれることになり、残
像現象やS/N劣化等の問題を生じる。
In this solid-state detector, basically, after the electrostatic latent image is read, the latent-image charge is not accumulated in the solid-state detector, and the solid-state detector can be re-recorded as it is. However, in some cases, the latent image charge may not be completely read and may be left as a residual charge on the solid-state detector. Moreover, when an electrostatic latent image is recorded on a solid-state detector, a high voltage is applied to the solid-state detector before irradiation of recording light, but a dark current is generated during this application, and the resulting charge (dark current charge ) Is also stored in the solid state detector. Furthermore, it is known that various charges are accumulated in the solid-state detector before the irradiation of the recording light due to other causes. Unnecessary charges such as these residual charges and dark current charges accumulated before the irradiation of the recording light are added to the latent image charges carrying the image information accumulated by the irradiation of the recording light. Eventually, when the electrostatic latent image is read from the solid-state detector, the output signal contains a signal component due to unnecessary charges in addition to the signal based on the latent image charge that carries image information, resulting in an afterimage phenomenon and S / S. A problem such as N deterioration occurs.

【0005】そのため、本願出願人は、上記特開200
0−105297号公報において、電圧印加中において
記録光を照射する前に消去光を読取用光導電層に照射
し、予め蓄電部に蓄積された残留電荷や不要電荷を消去
する方法を提案している。
Therefore, the applicant of the present application has filed the above-mentioned Japanese Patent Application Laid-Open No. 200
In Japanese Patent Application Laid-Open No. 0-105297, a method is proposed in which erasing light is applied to a reading photoconductive layer before irradiating recording light during voltage application to erase residual charges and unnecessary charges accumulated in a power storage unit in advance. There is.

【0006】[0006]

【発明が解決しようとする課題】ところで、本出願人
は、上記特開2000−284056号および特開20
00−284057号において、さらに、第2導電層の
電極を読取光に対して透過性を有する多数の線状電極か
らなるストライプ電極(光電荷対発生電極)とすると共
に、蓄電部に蓄積された潜像電荷の量に応じたレベルの
電気信号を出力させるための、読取光に対して遮光性を
有する多数の線状電極からなるサブストライプ電極(光
電荷対非発生電極)を、ストライプ電極の線状電極とサ
ブストライプ電極の線状電極とが交互にかつ互いに平行
となるように、第2導電層内に設けた固体検出器を提案
している。
By the way, the applicant of the present invention discloses the above-mentioned Japanese Patent Application Laid-Open Nos. 2000-284056 and 20.
In No. 00-284057, the electrode of the second conductive layer is further formed as a stripe electrode (photoelectric charge pair generating electrode) including a large number of linear electrodes having transparency to the reading light, and stored in the power storage unit. A sub-stripe electrode (photocharge pair non-generating electrode), which is composed of a large number of linear electrodes having a light-shielding property against reading light, for outputting an electric signal of a level corresponding to the amount of latent image charge There is proposed a solid-state detector provided in the second conductive layer such that the linear electrodes and the linear electrodes of the sub-stripe electrodes are alternately and parallel to each other.

【0007】このように、多数の線状電極からなるサブ
ストライプ電極を第2導電層内に設けることにより、蓄
電部とサブストライプ電極との間に新たなコンデンサが
形成され、記録光によって蓄電部に蓄積された潜像電荷
と逆極性の輸送電荷を、読取りの際の電荷再配列によっ
てこのサブストライプ電極にも帯電させることが可能と
なる。これにより、読取用光導電層を介してストライプ
電極と蓄電部との間で形成されるコンデンサに配分され
る前記輸送電荷の量を、このサブストライプ電極を設け
ない場合よりも相対的に少なくすることができ、結果と
して固体検出器から外部に取り出し得る信号電荷の量を
多くして読取効率を向上させると共に、読出しの高速応
答性と効率的な信号電荷の取り出しの両立をも図ること
ができるようになっている。
As described above, by providing the sub-stripe electrode composed of a large number of linear electrodes in the second conductive layer, a new capacitor is formed between the power storage unit and the sub-stripe electrode, and the storage light is generated by the recording light. It is possible to charge the sub-stripe electrodes with the charge reversing during the reading, which is the reverse charge of the latent image charges accumulated in the sub-stripe electrodes. As a result, the amount of the transport charge distributed to the capacitor formed between the stripe electrode and the power storage unit via the reading photoconductive layer is made relatively smaller than in the case where the sub-stripe electrode is not provided. As a result, it is possible to increase the amount of signal charges that can be taken out from the solid state detector to improve the reading efficiency, and to achieve both high-speed read response and efficient signal charge taking-out. It is like this.

【0008】しかしながら、このようなストライプ電極
およびサブストライプ電極を備えた固体検出器において
は、読取光が読取用光導電層の読取光入射面上のサブス
トライプ電極を構成する線状電極に対応する領域に到達
すると、そこで放電が生じて信号検出効率が低下して読
取画像の画質が低下するため、サブストライプ電極は遮
光性を備えている必要があるが、このような固体検出器
に対して上述の消去光を照射した場合、サブストライプ
電極が遮光性を備えているため読取光のみならず消去光
をも遮光してしまうので、サブストライプ電極上部に蓄
積された残留電荷を消去することができない。
However, in the solid-state detector having such stripe electrodes and sub-stripe electrodes, the reading light corresponds to the linear electrodes which form the sub-stripe electrodes on the reading light incident surface of the reading photoconductive layer. When the area is reached, a discharge is generated there and the signal detection efficiency is reduced, so that the image quality of the read image is degraded. Therefore, the sub-stripe electrode needs to have a light shielding property. When the above-mentioned erasing light is irradiated, since the sub-stripe electrode has a light-shielding property, it blocks not only the reading light but also the erasing light. Therefore, it is possible to erase the residual charges accumulated on the sub-stripe electrode. Can not.

【0009】本発明は、上記事情に鑑みてなされたもの
であり、サブストライプ電極を設けた固体検出器におい
て、消去光により残留電荷を消去することができる固体
検出器を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a solid-state detector provided with a sub-stripe electrode, which can erase residual charges by erasing light. To do.

【0010】[0010]

【課題を解決するための手段】本発明による固体検出器
は、記録光に対して透過性を有する第1の導電層と、記
録光の照射を受けることにより光導電性を呈する記録用
光導電層と、記録光の光量に応じた量の電荷を潜像電荷
として蓄積する蓄電部と、読取光の照射を受けることに
より光導電性を呈する読取用光導電層と、読取光に対し
て透過性を有する多数の線状電極からなる光電荷対発生
電極と、多数の線状電極からなる光電荷対非発生電極と
を備え、光電荷対発生電極の線状電極と光電荷対非発生
電極の線状電極とが交互に配置された第2の導電層とを
この順に積層してなる固体検出器において、光電荷対発
生電極が、読取光と共にこの読取光と異なる波長の消去
光に対しても透過性を有するものであり、光電荷対非発
生電極が、消去光に対して透過性を有するものであり、
読取用光導電層の読取光入射面から第2の導電層側の、
固体検出器の積層方向において光電荷対非発生電極に対
応する領域に、消去光に対しては透過性を有し、読取光
に対しては遮光性を有する読取光遮光手段を備えている
ことを特徴とするものである。
A solid-state detector according to the present invention comprises a first conductive layer which is transparent to recording light, and a recording photoconductive layer which exhibits photoconductivity when exposed to the recording light. A layer, a power storage unit that accumulates an amount of electric charge corresponding to the amount of recording light as latent image charge, a reading photoconductive layer that exhibits photoconductivity when irradiated with reading light, and a layer that transmits the reading light. And a photocharge pair non-generating electrode comprising a plurality of linear electrodes and a photocharge pair non-generating electrode comprising a plurality of linear electrodes. In the solid-state detector in which the linear electrodes and the second conductive layers alternately arranged are stacked in this order, the photocharge pair generating electrode is provided for the reading light and the erasing light having a wavelength different from the reading light. Even if it is transparent, the photocharge pair non-generating electrode is Those having a permeability for,
From the reading light incident surface of the reading photoconductive layer to the second conductive layer side,
In the stacking direction of the solid-state detector, a region corresponding to the photocharge pair non-generating electrode is provided with a reading light shielding unit that is transparent to the erasing light and shields the reading light. It is characterized by.

【0011】本発明において、「固体検出器」は、第1
の導電層、記録用光導電層、読取用光導電層および第2
の導電層をこの順に有すると共に、記録用光導電層と読
取用光導電層との間に蓄電部が形成されて成るものであ
って、さらに他の層や微小導電部材(マイクロプレー
ト)等を積層して成るものであってもかまわない。
In the present invention, the "solid state detector" is the first
Conductive layer, recording photoconductive layer, reading photoconductive layer and second
And a conductive layer are formed in this order, and a power storage unit is formed between the recording photoconductive layer and the reading photoconductive layer, and further other layers and micro conductive members (microplates) are provided. It may be formed by stacking layers.

【0012】なお、上記蓄電部を形成する方法として
は、電荷輸送層を設けてこの電荷輸送層と記録用光導電
層との界面に蓄電部を形成する方法(本出願人による特
開2000−105297号公報、特開2000−28
4056号公報参照)、トラップ層を設けこのトラップ
層内若しくはトラップ層と記録用光導電層との界面に蓄
電部を形成する方法(例えば、米国特許第453546
8号参照)、あるいは潜像電荷を集中させて蓄電する微
小導電部材等を設ける方法(本出願人による特開200
0−284057号公報参照)等を用いるとよい。
As a method of forming the above-mentioned power storage unit, a method of providing a charge transport layer and forming the power storage unit at the interface between this charge transport layer and the recording photoconductive layer (Japanese Patent Application Laid-Open No. 2000- 105297, JP 2000-28
No. 4056), a method of forming a storage layer in the trap layer or at the interface between the trap layer and the recording photoconductive layer (for example, US Pat. No. 4,535,546).
No. 8), or a method of providing a minute conductive member or the like for concentrating and storing latent image charges for storage (Japanese Patent Application Laid-open No. 200
0-284057) and the like.

【0013】また、「読取光に対して透過性を有する多
数の線状電極からなる光電荷対発生電極」とは、読取光
を透過させ読取用光導電層に電荷対を発生せしめる電極
である。また、「光電荷対非発生電極」とは、蓄電部に
蓄積された潜像電荷の量に応じたレベルの電気信号を出
力させるための電極であり、読取光に対して遮光性を有
することが望ましいが、本発明において設けられる読取
光遮光手段が読取光に対して遮光性を有しているため、
光電荷対非発生電極は必ずしも遮光性を有する必要はな
い。
Further, the "photoelectric charge pair generating electrode composed of a large number of linear electrodes having transparency to the reading light" is an electrode which transmits the reading light and generates a charge pair in the reading photoconductive layer. . The "photoelectric charge pair non-generating electrode" is an electrode for outputting an electric signal of a level corresponding to the amount of latent image charge accumulated in the electricity storage unit, and has a light shielding property against the reading light. However, since the reading light shielding means provided in the present invention has a shielding property against the reading light,
The photocharge pair non-generating electrode does not necessarily have a light shielding property.

【0014】また、「読取光」は、固体検出器における
電荷の移動を可能として、電気的に静電潜像を読み取る
ことを可能とするものであればよく、具体的には光や放
射線等である。
The "reading light" may be any light that can move an electric charge in the solid-state detector and can electrically read an electrostatic latent image. Is.

【0015】また、本発明における「消去光」は、固体
検出器における電荷の移動を可能として、電気的に静電
潜像を読み取る(消去する)ことを可能とするものであ
って、さらに読取光とは波長が異なるものであればよ
く、具体的には上記読取光と波長の異なる光や放射線等
である。
The "erasing light" in the present invention enables movement of charges in the solid-state detector to electrically read (erase) an electrostatic latent image, and further read. The light may have a wavelength different from that of the reading light, and specifically, it may be light having a different wavelength from the reading light or radiation.

【0016】また、「光電荷対非発生電極に対応する領
域」とは、光電荷対非発生電極と完全に重なる領域に限
らず、光電荷対非発生電極および光電荷対発生電極と光
電荷対非発生電極との間に対応する領域や、光電荷対非
発生電極よりも狭い領域であっても光電荷対非発生電極
に対応する領域に入射する読取光の光量を低減させるこ
とができる領域も含むものとする。
Further, the "region corresponding to the photocharge pair non-generating electrode" is not limited to the region which completely overlaps the photocharge pair non-generating electrode, and is not limited to the photocharge pair non-generating electrode and the photocharge pair generating electrode and the photocharge. It is possible to reduce the amount of read light that is incident on the region corresponding to the non-generation electrode for the photocharge or for the region corresponding to the non-generation electrode for the photocharge even if the region is narrower than the non-generation electrode for the photocharge. Area shall be included.

【0017】さらに、「消去光に対しては透過性を有
し、読取光に対しては遮光性を有する読取光遮光手段」
とは、読取光は遮光して読取用光導電層の光電荷対非発
生電極に対応する領域に読取光が入射できないようにす
るが、消去光は透過させて読取用光導電層の光電荷対非
発生電極に対応する領域に消去光を入射できるようにす
るものである。
Further, "reading light shielding means having transparency to erasing light and shielding to reading light"
Means that the reading light is blocked so that the reading light cannot enter the region corresponding to the photocharge pair non-generating electrode of the reading photoconductive layer, but the erasing light is transmitted and the photoelectric charge of the reading photoconductive layer is transmitted. The erasing light is allowed to enter the region corresponding to the non-generation electrode.

【0018】なお、本発明において「遮光性(または遮
光)」とは、読取光を完全に遮断して全く電荷対を発生
させないものに限らず、その読取光に対する多少の透過
性は有していてもそれにより発生する電荷対が実質的に
問題とならない程度のものも含むものとする。従って、
読取用光導電層に発生する電荷対は全て光電荷対発生電
極を透過した読取光のみによるものとは限らず、光電荷
対非発生電極を僅かに透過した読取光によっても読取用
光導電層において電荷対が発生しうるものとする。
In the present invention, the "light-shielding property (or light-shielding property)" is not limited to the one that completely blocks the reading light and does not generate the charge pair at all, and it has some transparency to the reading light. However, the charge pairs generated thereby are included to the extent that they do not pose a problem. Therefore,
The charge pairs generated in the reading photoconductive layer are not limited to the reading light transmitted through the photocharge pair generating electrodes, and the reading photoconductive layer may be read by the reading light slightly passing through the photocharge pair non-generating electrodes. It is assumed that charge pairs can be generated at.

【0019】本発明による固体検出器において、読取光
遮光手段は、固体検出器の製作の工程を簡便化するため
に、光電荷対非発生電極に密着させて積層されているこ
とが望ましい。
In the solid-state detector according to the present invention, it is desirable that the reading light shielding means is laminated in close contact with the photocharge pair non-generating electrode in order to simplify the manufacturing process of the solid-state detector.

【0020】なお、本発明による固体検出器を使用して
放射線画像の記録や読取りを行うに際しては、例えば、
特開2000−284056号公報に記載されたよう
な、本発明を適用しない従来の固体検出器を用いた記録
方法および読取方法並びにその装置(画像情報記録読取
装置)において、読取光の波長と消去光の波長とを異な
るものと変更する点を除いて、そのまま利用することが
できる。
When recording or reading a radiation image using the solid-state detector according to the present invention, for example,
In a recording method and a reading method using a conventional solid-state detector to which the present invention is not applied and an apparatus (image information recording / reading apparatus) as described in JP-A-2000-284056, the wavelength of read light and erasing are performed. It can be used as it is, except that the wavelength of light is changed to a different wavelength.

【0021】[0021]

【発明の効果】本発明による固体検出器においては、消
去光として読取光とは波長の異なる光を用いることを前
提として、光電荷対非発生電極を少なくとも消去光に対
して透過性を有するものとし、固体検出器の積層方向に
おいて光電荷対非発生電極に対応する領域に、消去光に
対しては透過性を有し、読取光に対しては遮光性を有す
る読取光遮光手段を設けたので、固体検出器に蓄積され
た潜像電荷を読み出す際に照射される読取光は遮光しな
がらも、固体検出器に残留している不要電荷を消去する
際に照射される消去光は読取用光導電層の読取光入射面
上の光電荷対非発生電極に対応する領域に入射させるこ
とが可能であるため、光電荷対非発生電極を設けた固体
検出器においても、消去光により残留電荷を良好に消去
することができる。
In the solid-state detector according to the present invention, the photocharge pair non-generating electrode is transparent to at least the erasing light on the assumption that the erasing light has a wavelength different from that of the reading light. In the stacking direction of the solid-state detector, a reading light blocking unit having a transparency to the erasing light and a blocking property to the reading light is provided in the region corresponding to the photocharge pair non-generating electrode. Therefore, the reading light emitted when reading the latent image charges accumulated in the solid-state detector is blocked, but the erasing light emitted when erasing the unnecessary charges remaining in the solid-state detector is for reading. Since it is possible to make the light incident on the area of the photoconductive layer corresponding to the photocharge pair non-generating electrode on the reading light incident surface, even in the solid-state detector provided with the photocharge pair non-generating electrode, the residual charge due to the erasing light Can be erased well

【0022】[0022]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。図1は本発明の固体検出器
の第1の実施の形態の概略構成を示す図であり、図1
(A)は固体検出器20aの斜視図、図1(B)は固体
検出器20aのQ矢指部のXZ断面図、図1(C)は固
体検出器20aのP矢指部のXY断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a first embodiment of a solid-state detector of the present invention.
1A is a perspective view of the solid-state detector 20a, FIG. 1B is an XZ cross-sectional view of the Q arrow finger portion of the solid-state detector 20a, and FIG. 1C is an XY cross-sectional view of the P arrow finger portion of the solid-state detector 20a. is there.

【0023】この固体検出器20aは、記録光に対して
透過性を有する第1導電層21、この第1導電層21を
透過した記録光の照射を受けることにより電荷対を発生
し導電性を呈する記録用光導電層22、前記電荷対の内
の潜像極性電荷(例えば負電荷)に対しては略絶縁体と
して作用し、かつ該潜像極性電荷と逆極性の輸送極性電
荷(上述の例においては正電荷)に対しては略導電体と
して作用する電荷輸送層23、読取光の照射を受けるこ
とにより電荷対を発生して導電性を呈する読取用光導電
層24、光電荷対発生電極26および光電荷対非発生電
極27を備えた第2導電層25、読取光および消去光に
対して透過性を有する支持体18をこの順に配してなる
ものである。記録用光導電層22と電荷輸送層23との
界面に、記録用光導電層22内で発生した画像情報を担
持する潜像極性電荷を蓄積する2次元状に分布した蓄電
部29が形成される。
The solid-state detector 20a generates a charge pair by being irradiated with the first conductive layer 21 that is transparent to the recording light and the recording light that has transmitted through the first conductive layer 21. The recording photoconductive layer 22 which is present, acts substantially as an insulator against the latent image polar charge (for example, negative charge) in the charge pair, and has a transport polar charge (above-mentioned polarity opposite to the latent image polar charge). (For example, positive charge), the charge transport layer 23 acts substantially as a conductor, the reading photoconductive layer 24 that exhibits conductivity by generating a charge pair when irradiated with reading light, and a photocharge pair generation The second conductive layer 25 including the electrode 26 and the photocharge pair non-generating electrode 27, and the support 18 having transparency to the reading light and the erasing light are arranged in this order. At the interface between the recording photoconductive layer 22 and the charge transport layer 23, a two-dimensionally distributed power storage unit 29 for accumulating the latent image polar charge carrying the image information generated in the recording photoconductive layer 22 is formed. It

【0024】支持体18としては、読取光および消去光
に対して透明なガラス基板等を用いることができる。ま
た、読取光および消去光に対して透明であることに加え
て、その熱膨張率が読取用光導電層24の物質の熱膨張
率と比較的近い物質を使用するとより望ましい。例え
ば、読取用光導電層24としてa−Se(アモルファス
セレン)を使用する場合であれば、Seの熱膨張率が
3.68×10−5/K@40℃であることを考慮し
て、熱膨張率が1.0〜10.0×10−5/K@40
℃、より好ましくは、4.0〜8.0×10−5/K@
40℃である物質を使用する。熱膨張率がこの範囲の物
質としては、ポリカーボネートやポリメチルメタクリレ
ート(PMMA)等の有機ポリマー材料を使用すること
ができる。これによって、基板としての支持体18と読
取用光導電層24(Se膜)との熱膨張のマッチングが
とれ、特別な環境下、例えば寒冷気候条件下での船舶輸
送中等において、大きな温度サイクルを受けても、支持
体18と読取用光導電層24との界面で熱ストレスが生
じ、両者が物理的に剥離する、読取用光導電層24が破
れる、あるいは支持体18が割れる等、熱膨張差による
破壊の問題が生じることがない。さらに、ガラス基板に
比べて有機ポリマー材料は衝撃に強いというメリットが
ある。
As the support 18, a glass substrate or the like which is transparent to the reading light and the erasing light can be used. Further, in addition to being transparent to the reading light and the erasing light, it is more preferable to use a material whose thermal expansion coefficient is relatively close to that of the material of the reading photoconductive layer 24. For example, when a-Se (amorphous selenium) is used as the reading photoconductive layer 24, considering that the coefficient of thermal expansion of Se is 3.68 × 10 −5 / K @ 40 ° C., Coefficient of thermal expansion is 1.0 to 10.0 × 10 −5 / K @ 40
C., more preferably 4.0-8.0 × 10 −5 / K @.
Use material that is 40 ° C. As a substance having a coefficient of thermal expansion within this range, an organic polymer material such as polycarbonate or polymethylmethacrylate (PMMA) can be used. As a result, the thermal expansion of the support 18 as a substrate and the photoconductive layer for reading 24 (Se film) can be matched, and a large temperature cycle can be performed in a special environment, for example, during ship transportation under cold weather conditions. Even if received, thermal stress occurs at the interface between the support 18 and the reading photoconductive layer 24, and the two physically separate, the reading photoconductive layer 24 breaks, the support 18 cracks, and the like, and thermal expansion occurs. The problem of destruction due to the difference does not occur. Furthermore, organic polymer materials have the advantage of being more resistant to impacts than glass substrates.

【0025】記録用光導電層22の物質としては、a−
Se(アモルファスセレン)、PbO、PbI 等の
酸化鉛(II)やヨウ化鉛(II)、Bi12(Ge,S
i)O 20、Bi/有機ポリマーナノコンポジッ
ト等のうち少なくとも1つを主成分とする光導電性物質
が適当である。
The material of the recording photoconductive layer 22 is a-
Se (amorphous selenium), PbO, PbITwo  Etc.
Lead (II) oxide, lead (II) iodide, Bi12(Ge, S
i) O 20, BiTwoIThree/ Organic polymer nanocomposite
Photoconductive material containing at least one of
Is appropriate.

【0026】電荷輸送層23の物質としては、例えば第
1導電層21に帯電される負電荷の移動度と、その逆極
性となる正電荷の移動度の差が大きい程良く(例えば1
以上、望ましくは10以上)ポリN−ビニルカル
バゾール(PVK)、N,N'−ジフェニル−N,N'−ビス
(3−メチルフェニル)−〔1,1'−ビフェニル〕−4,4'
−ジアミン(TPD)やディスコティック液晶等の有機
系化合物、あるいはTPDのポリマー(ポリカーボネー
ト、ポリスチレン、PUK)分散物、Clを10〜20
0ppmドープしたa−Se等の半導体物質が適当であ
る。特に、有機系化合物(PVK,TPD、ディスコテ
ィック液晶等)は光不感性を有するため好ましく、ま
た、誘電率が一般に小さいため電荷輸送層23と読取用
光導電層24の容量が小さくなり読取時の信号取り出し
効率を大きくすることができる。なお、「光不感性を有
する」とは、記録光や読取光の照射を受けても殆ど導電
性を呈するものでないことを意味する。
As the material of the charge transport layer 23, it is better that the difference between the mobility of the negative charge charged in the first conductive layer 21 and the mobility of the positive charge having the opposite polarity is large (for example, 1
0 2 or more, preferably 10 3 or higher) poly N- vinylcarbazole (PVK), N, N'-diphenyl -N, N'-bis (3-methylphenyl) - [1,1'-biphenyl] -4, Four'
An organic compound such as diamine (TPD) or discotic liquid crystal, a polymer (polycarbonate, polystyrene, PUK) dispersion of TPD, and Cl of 10 to 20
A semiconductor material such as 0 ppm doped a-Se is suitable. In particular, organic compounds (PVK, TPD, discotic liquid crystal, etc.) are preferable because they have light insensitivity. Further, since the permittivity is generally small, the charge transport layer 23 and the reading photoconductive layer 24 have small capacities, and at the time of reading. The signal extraction efficiency of can be increased. It should be noted that "having light insensitivity" means that it exhibits almost no conductivity even when irradiated with recording light or reading light.

【0027】読取用光導電層24の物質としては、a−
Se,Se−Te,Se−As−Te,無金属フタロシ
アニン,金属フタロシアニン,MgPc(Magnesium ph
talocyanine),VoPc(phaseII of Vanadyl phthal
ocyanine),CuPc(Cupper phtalocyanine)等のう
ち少なくとも1つを主成分とする光導電性物質が好適で
ある。
The material of the reading photoconductive layer 24 is a-
Se, Se-Te, Se-As-Te, metal-free phthalocyanine, metal phthalocyanine, MgPc (Magnesium ph)
talocyanine), VoPc (phaseII of Vanadyl phthal
Cyanine), CuPc (Cupper phtalocyanine), and the like, and a photoconductive substance containing at least one as a main component is suitable.

【0028】記録用光導電層22の厚さは、記録光を十
分に吸収できるようにするには、50μm以上1000
μm以下であるのが好ましい。
The thickness of the recording photoconductive layer 22 is 50 μm or more and 1000 in order to sufficiently absorb the recording light.
It is preferably not more than μm.

【0029】また電荷輸送層23と読取用光導電層24
との厚さの合計は記録用光導電層22の厚さの1/2以
下であることが望ましく、また薄ければ薄いほど読取時
の応答性が向上するので、例えば1/10以下、さらに
は1/100以下等にするのが好ましい。
The charge transport layer 23 and the reading photoconductive layer 24 are also provided.
It is desirable that the sum of the thicknesses of and is less than or equal to 1/2 of the thickness of the recording photoconductive layer 22, and the thinner the thickness, the better the response at the time of reading. Is preferably 1/100 or less.

【0030】なお、上記各層の材料は、第1導電層21
に負電荷を、第2導電層25に正電荷を帯電させて、記
録用光導電層22と電荷輸送層23との界面に形成され
る蓄電部29に潜像極性電荷としての負電荷を蓄積せし
めるとともに、電荷輸送層23を、潜像極性電荷として
の負電荷の移動度よりも、その逆極性となる輸送極性電
荷としての正電荷の移動度の方が大きい、いわゆる正孔
輸送層として機能させるものとして好適なものの一例で
あるが、これらは、それぞれが逆極性の電荷であっても
良く、このように極性を逆転させる際には、正孔輸送層
として機能する電荷輸送層を電子輸送層として機能する
電荷輸送層に変更する等の若干の変更を行なうだけでよ
い。
The materials of the above layers are the same as those of the first conductive layer 21.
Is charged with a negative charge, and the second conductive layer 25 is charged with a positive charge, and a negative charge as a latent image polar charge is accumulated in the electricity storage unit 29 formed at the interface between the recording photoconductive layer 22 and the charge transport layer 23. At the same time, the charge transport layer 23 functions as a so-called hole transport layer in which the mobility of the positive charge as the transport polarity charge having the opposite polarity is larger than the mobility of the negative charge as the latent image polarity charge. However, they may have opposite polarities, and when reversing the polarities as described above, the charge transporting layer that functions as a hole transporting layer may be used as an electron transporting layer. Only minor changes, such as changing to a charge transport layer that functions as a layer, are required.

【0031】例えば、記録用光導電層22として上述の
アモルファスセレンa−Se、酸化鉛(II)、ヨウ化鉛
(II)等の光導電性物質が同様に使用でき、電荷輸送層
23としてN−トリニトロフルオレニリデン・アニリン
(TNFA)誘電体、トリニトロフルオレノン( TNF)/ポ
リエステル分散系、非対称ジフェノキノン誘導体が適当
であり、読取用光導電層24として上述の無金属フタロ
シアニン、金属フタロシアニンが同様に使用できる。
For example, as the recording photoconductive layer 22, a photoconductive substance such as the above-mentioned amorphous selenium a-Se, lead (II) oxide, and lead (II) iodide can be used in the same manner, and the charge transport layer 23 can be made of N. -Trinitrofluorenylidene-aniline (TNFA) dielectrics, trinitrofluorenone (TNF) / polyester dispersions, asymmetric diphenoquinone derivatives are suitable, and the above-mentioned metal-free phthalocyanine and metal phthalocyanine are the same as the reading photoconductive layer 24. Can be used for

【0032】また、上記検出器20aでは、蓄電部29
を記録用光導電層22と電荷輸送層23との界面に形成
していたが、これに限らず、例えば米国特許第4535
468号明細書に記載のように、潜像極性電荷をトラッ
プとして蓄積するトラップ層により蓄電部を形成しても
よい。
In the detector 20a, the power storage unit 29
Was formed at the interface between the recording photoconductive layer 22 and the charge transport layer 23, but the present invention is not limited to this. For example, US Pat.
As described in Japanese Patent No. 468, the electricity storage unit may be formed by a trap layer that accumulates latent image polar charges as traps.

【0033】第1導電層21としては、記録光に対して
透過性を有するものであればよく、例えば記録光が可視
光である場合には、光透過性金属薄膜として周知のネサ
皮膜(SnO)、ITO(Indium Tin Oxide)、ある
いはエッチングのし易いアモルファス状光透過性酸化金
属であるIDIXO(Idemitsu Indium X-metal Oxide
;出光興産(株))等の酸化金属を50〜200nm
厚程度、好ましくは100nm以上にして用いることが
できる。また、アルミニウムAl、金Au、モリブデン
Mo、クロムCr等の純金属を、例えば20nm以下
(好ましくは10nm程度)の厚さにすることによって
可視光に対して透過性を持たせることもできる。なお、
記録光としてX線を使用し、第1導電層21側から該X
線を照射して画像を記録する場合には、第1導電層21
としては可視光に対する透過性が不要であるから、該第
1導電層21は、例えば100nm厚のAlやAu等の
純金属を用いることもできる。
Any material may be used as the first conductive layer 21 as long as it is transparent to recording light. For example, when the recording light is visible light, a Nesa film (SnO) known as a light-transmissive metal thin film is used. 2 ), ITO (Indium Tin Oxide), or IDIXO (Idemitsu Indium X-metal Oxide) which is an amorphous light-transmissive metal oxide that is easily etched.
50-200 nm of metal oxide such as Idemitsu Kosan Co., Ltd.
It can be used with a thickness of about 100 nm or more. Further, it is possible to make visible light transmissive by using a pure metal such as aluminum Al, gold Au, molybdenum Mo, or chromium Cr to have a thickness of 20 nm or less (preferably about 10 nm). In addition,
X-rays are used as recording light, and the X-rays are applied from the first conductive layer 21 side.
When an image is recorded by irradiating a line, the first conductive layer 21
However, since the first conductive layer 21 does not need to transmit visible light, a pure metal such as Al or Au having a thickness of 100 nm can be used.

【0034】第2導電層25は、読取光および消去光に
対して透過性を有する多数の線状電極26aを有する光
電荷対発生電極26と、読取光および消去光に対して透
過性を有する多数の線状電極27aを有する光電荷対非
発生電極27とを備えている。光電荷対発生電極26の
線状電極26aと光電荷対非発生電極27の線状電極2
7aとは交互にかつ互いに平行に配置されるように配列
されている。
The second conductive layer 25 has a photo-charge pair generating electrode 26 having a large number of linear electrodes 26a that are transparent to the reading light and the erasing light, and is transparent to the reading light and the erasing light. It is provided with a photocharge pair non-generating electrode 27 having a large number of linear electrodes 27a. The linear electrode 26a of the photocharge pair generating electrode 26 and the linear electrode 2 of the photocharge pair non-generating electrode 27
7a are arranged alternately and in parallel with each other.

【0035】上記光電荷対発生電極26と光電荷対非発
生電極27とは、上記各層の積層方向に離間して設けら
れ、さらに、光電荷対発生電極26と光電荷対非発生電
極27との間に絶縁層28が設けられている。
The photocharge pair generating electrode 26 and the photocharge pair non-generating electrode 27 are provided so as to be separated from each other in the stacking direction of the respective layers, and further, the photocharge pair generating electrode 26 and the photocharge pair non-generating electrode 27 are provided. An insulating layer 28 is provided between them.

【0036】光電荷対非発生電極27は、記録用光導電
層22と電荷輸送層23との略界面に形成される蓄電部
29に蓄積された潜像電荷の量に応じたレベルの電気信
号を出力させるための導電部材である。
The photocharge pair non-generating electrode 27 is an electric signal having a level corresponding to the amount of latent image charge accumulated in the electricity storage unit 29 formed at the substantially interface between the recording photoconductive layer 22 and the charge transport layer 23. Is a conductive member for outputting.

【0037】図2(A)に、固体検出器20aの断面図
を示す。光電荷対発生電極26の線状電極26a間は読
取用光導電層24の一部が介在しており、光電荷対発生
電極26と光電荷対非発生電極27とは絶縁層28によ
り電気的に絶縁されている。また、光電荷対非発生電極
27の下面には、消去光L3に対しては透過性を有し、
読取光L2に対しては遮光性を有する読取光遮光層40
が設けられている。
FIG. 2A shows a sectional view of the solid-state detector 20a. A part of the reading photoconductive layer 24 is interposed between the linear electrodes 26a of the photocharge pair generating electrode 26, and the photocharge pair generating electrode 26 and the photocharge pair non-generating electrode 27 are electrically connected by the insulating layer 28. Insulated. Further, the lower surface of the photocharge pair non-generating electrode 27 is transparent to the erasing light L3,
Reading light shielding layer 40 having a light shielding property against the reading light L2
Is provided.

【0038】本発明の固体検出器を用いる画像撮像装置
では、この装置で使用する読取光L2の波長と消去光L
3の波長を異なるものとする必要がある。例えば、読取
光L2の波長を約470nm(青光)とし、消去光L3
の波長を約650〜1000nm(赤光〜赤外光)とし
た場合、この画像撮像装置に用いるための固体検出器の
読取光遮光層は、例えば、赤光〜赤外光は透過し青光は
吸収するフィルタを用いればよい。
In the image pickup apparatus using the solid-state detector of the present invention, the wavelength of the reading light L2 and the erasing light L used in this apparatus are used.
The three wavelengths need to be different. For example, the wavelength of the reading light L2 is about 470 nm (blue light), and the erasing light L3 is
When the wavelength is about 650 to 1000 nm (red light to infrared light), the read light shielding layer of the solid-state detector for use in this image pickup device, for example, transmits red light to infrared light and transmits blue light. May use a filter that absorbs.

【0039】光電荷対非発生電極27の下面に読取光遮
光層40を設けることにより、固体検出器20aに蓄積
された潜像電荷を読み出す際に照射される読取光L2は
遮光しながらも、固体検出器20aに残留している不要
電荷を消去する際に照射される消去光L3は読取用光導
電層の読取光入射面上の光電荷対非発生電極に対応する
領域に入射させることが可能であるため、この消去光L
3により残留電荷を消去することができる。
By providing the reading light shielding layer 40 on the lower surface of the photocharge pair non-generating electrode 27, the reading light L2 emitted when the latent image charge accumulated in the solid-state detector 20a is read out is shielded. The erasing light L3 emitted when erasing the unnecessary charges remaining in the solid-state detector 20a can be made incident on the region corresponding to the photocharge pair non-generating electrode on the reading light incident surface of the reading photoconductive layer. Since it is possible, this erase light L
The residual charge can be erased by 3.

【0040】また、図2(B)に示すように、光電荷対
発生電極26と光電荷対非発生電極27との間に絶縁層
28を設けない場合においても、光電荷対非発生電極2
7の下面に読取光遮光層40を設けることにより、上記
と同様の効果を得ることができる。なお、読取光遮光層
40は光電荷対非発生電極27の上面または上面および
下面に設けてもよい。
Further, as shown in FIG. 2B, even when the insulating layer 28 is not provided between the photocharge pair generating electrode 26 and the photocharge pair non-generating electrode 27, the photocharge pair non-generating electrode 2 is not provided.
By providing the reading light shielding layer 40 on the lower surface of 7, it is possible to obtain the same effect as described above. The read light shielding layer 40 may be provided on the upper surface or the upper and lower surfaces of the photocharge pair non-generating electrode 27.

【0041】読取光遮光層40を光電荷対非発生電極2
7の上面および/または下面に密着させて積層すること
により、固体検出器20aを製作する際に絶縁層等の新
たな層を設ける必要がなくなり、固体検出器20aの製
作の工程を簡便化することができる。
The reading light shielding layer 40 is formed as the photocharge pair non-generating electrode 2
By stacking the layers in close contact with the upper surface and / or the lower surface of 7, it is not necessary to provide a new layer such as an insulating layer when manufacturing the solid-state detector 20a, and the manufacturing process of the solid-state detector 20a is simplified. be able to.

【0042】ここで、光電荷対発生電極26の各線状電
極26aおよび光電荷対非発生電極27の各線状電極2
7aを形成する電極材の材質としては、ITO(Indium
TinOxide)、IDIXO(Idemitsu Indium X-metal O
xide ;出光興産(株))、アルミニウムまたはモリブ
デン等を用いることができる。
Here, each linear electrode 26a of the photocharge pair generating electrode 26 and each linear electrode 2 of the photocharge pair non-generating electrode 27.
The material of the electrode material forming 7a is ITO (Indium
TinOxide), IDIXO (Idemitsu Indium X-metal O
xide; Idemitsu Kosan Co., Ltd., aluminum, molybdenum, or the like can be used.

【0043】この検出器20aにおいては、記録用光導
電層22を挟んで第1導電層21と蓄電部29との間に
コンデンサC*aが形成され、電荷輸送層23および読
取用光導電層24を挟んで蓄電部29と光電荷対発生電
極26(線状電極26a)との間にコンデンサC*b
形成され、読取用光導電層24および電荷輸送層23を
介して蓄電部29と光電荷対非発生電極27(線状電極
27a)との間にコンデンサC*cが形成される。読取
時における電荷再配列の際に、各コンデンサC *a、C
*b、C*cに配分される正電荷の量Q+a、Q+b
+cは、総計Qが潜像極性電荷の量Qと同じで、
各コンデンサの容量C、C、Cに比例した量とな
る。これを式で示すと下記のように表すことができる。
In this detector 20a, the recording light guide is used.
Between the first conductive layer 21 and the power storage unit 29 with the electric layer 22 interposed therebetween.
Capacitor C* AAre formed, the charge transport layer 23 and the read
The photoconductive layer 24 is sandwiched between the power storage unit 29 and the photocharge pair generating power.
Capacitor C between the pole 26 (the linear electrode 26a)* BBut
And the read photoconductive layer 24 and the charge transport layer 23 are formed.
Through the storage unit 29 and the photocharge pair non-generating electrode 27 (the linear electrode
27a) and a capacitor C* CIs formed. Read
Each capacitor C during charge rearrangement * A, C
* B, C* CAmount Q of positive charge distributed to+ A, Q+ B,
Q+ CIs the total Q+Is the amount Q of latent image polar chargeSame as
Capacitance C of each capacitora, Cb, CcIs proportional to
It This can be expressed by the following formula.

【0044】 Q =Q =Q+a+Q+b+Q+c+a =Q ×C /(C +C +C ) Q+b =Q ×C /(C +C +C ) Q+c =Q ×C /(C +C +C ) そして、検出器20aから取り出し得る信号電荷量はコ
ンデンサC*a、C に配分された正電荷の量
+a、Q+cの合計(Q+a+Q+c)と同じくな
り、コンデンサC*bに配分された正電荷は信号電荷と
して取り出せない(詳細は特開2000−284056
号公報参照)。
Q = Q + = Q + a + Q + b + Q + c Q + a = Q + × C a / (C a + C b + C c ) Q + b = Q + × C b / (C a + C b + C c ) Q + c = Q + × C c / (C a + C b + C c) Then, the signal charge amount may retrieve from the detector 20a is a capacitor C * a, the amount of apportioned positive charge C * c Q + a, the Q + c It becomes the same as the total (Q + a + Q + c ), and the positive charge distributed to the capacitor C * b cannot be taken out as a signal charge (see JP 2000-284056 A for details).
(See the official gazette).

【0045】ここで、光電荷対発生電極26および光電
荷対非発生電極27によるコンデンサC*b、C*c
容量について考えてみると、容量比C:Cは、各エ
レメント26a、27aの幅の比Wb:Wcとなる。一
方、コンデンサC*aの容量CとコンデンサC*b
容量Cは、光電荷対非発生電極27を設けても実質的
に大きな影響は現れない。
Considering the capacities of the capacitors C * b and C * c formed by the photocharge pair generating electrode 26 and the photocharge pair non-generating electrode 27, the capacitance ratio C b : C c is as follows : The width ratio Wb: Wc of 27a is obtained. On the other hand, the capacitance C b of the capacitor C a and the capacitor C * b in the capacitor C * a do not appear substantially greater influence provided photocharge to non generation electrode 27.

【0046】この結果、読取時における電荷再配列の際
に、コンデンサC*bに配分される正電荷の量Q+b
光電荷対非発生電極27を設けない場合よりも相対的に
少なくすることができ、その分だけ、光電荷対非発生電
極27を介して検出器20aから取り出し得る信号電荷
量を光電荷対非発生電極27を設けない場合よりも相対
的に大きくすることができる。
As a result, at the time of charge rearrangement at the time of reading, the amount of positive charge Q + b distributed to the capacitor C * b should be made relatively smaller than in the case where the photocharge pair non-generating electrode 27 is not provided. Therefore, the amount of signal charge that can be taken out from the detector 20a via the photocharge pair non-generating electrode 27 can be made relatively larger than that in the case where the photocharge pair non-generating electrode 27 is not provided.

【0047】次に、本発明による放射線固体検出器の第
2の実施の形態について図3を参照して説明する。図3
は本発明の固体検出器の第2の実施の形態の概略構成を
示す図であり、図3(A)は固体検出器20bの斜視
図、図3(B)は固体検出器20bのQ矢指部のXZ断
面図、図3(C)は固体検出器20bのP矢指部のXY
断面図である。また、図3においては、図1に示す第1
の実施の形態による検出器20aの要素と同等の要素に
は同番号を付し、それらについての説明は特に必要のな
い限り省略する。
Next, a second embodiment of the solid-state radiation detector according to the present invention will be described with reference to FIG. Figure 3
FIG. 4 is a diagram showing a schematic configuration of a second embodiment of the solid-state detector of the present invention, FIG. 3 (A) is a perspective view of the solid-state detector 20b, and FIG. 3 (B) is a Q arrow finger of the solid-state detector 20b. 3 is a cross-sectional view taken along the line XZ of FIG. 3C, and FIG.
FIG. In addition, in FIG. 3, the first shown in FIG.
The same elements as those of the detector 20a according to the embodiment of the present invention are designated by the same reference numerals, and the description thereof will be omitted unless particularly necessary.

【0048】なお、本実施の形態の固体検出器20b
は、読取光遮光層41を第2導電層25と支持体18と
の間に設けた点が、第1の実施の形態の固体検出器20
aと異なる。
Incidentally, the solid-state detector 20b of the present embodiment.
Is that the reading light shielding layer 41 is provided between the second conductive layer 25 and the support 18, and the solid-state detector 20 of the first embodiment is different.
Different from a.

【0049】以下、図面を参照して本発明の実施の形態
について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0050】この固体検出器20bは、記録光に対して
透過性を有する第1導電層21、この第1導電層21を
透過した記録光の照射を受けることにより電荷対を発生
し導電性を呈する記録用光導電層22、前記電荷対の内
の潜像極性電荷(例えば負電荷)に対しては略絶縁体と
して作用し、かつ該潜像極性電荷と逆極性の輸送極性電
荷(上述の例においては正電荷)に対しては略導電体と
して作用する電荷輸送層23、読取光の照射を受けるこ
とにより電荷対を発生して導電性を呈する読取用光導電
層24、光電荷対発生電極26および光電荷対非発生電
極27を備えた第2導電層25、読取光および消去光に
対して透過性を有する絶縁層30、読取光および消去光
に対して透過性を有する支持体18をこの順に配してな
るものである。記録用光導電層22と電荷輸送層23と
の界面に、記録用光導電層22内で発生した画像情報を
担持する潜像極性電荷を蓄積する2次元状に分布した蓄
電部29が形成される。
This solid-state detector 20b generates a charge pair by receiving the irradiation of the first conductive layer 21 which is transparent to the recording light and the recording light which has passed through the first conductive layer 21 and becomes conductive. The recording photoconductive layer 22 which is present, acts substantially as an insulator against the latent image polar charge (for example, negative charge) in the charge pair, and has a transport polar charge (above-mentioned polarity opposite to the latent image polar charge). (For example, positive charge), the charge transport layer 23 acts substantially as a conductor, the reading photoconductive layer 24 that exhibits conductivity by generating a charge pair when irradiated with reading light, and a photocharge pair generation A second conductive layer 25 having an electrode 26 and a photocharge pair non-generating electrode 27, an insulating layer 30 transparent to reading light and erasing light, a support 18 transparent to reading light and erasing light. Are arranged in this order. At the interface between the recording photoconductive layer 22 and the charge transport layer 23, a two-dimensionally distributed power storage unit 29 for accumulating the latent image polar charge carrying the image information generated in the recording photoconductive layer 22 is formed. It

【0051】図4に固体検出器20bの断面図を示す。
支持体18上の各線状電極27aに対応する部分に、消
去光L3に対しては透過性を有し、読取光L2に対して
は遮光性を有する読取光遮光層41が設けられている。
また、読取光遮光層41と第2導電層25との間に絶縁
層30が設けられている。なお、読取光遮光層41が導
電性を有さない場合は、必ずしも導電層30を設ける必
要はない。
FIG. 4 shows a sectional view of the solid-state detector 20b.
A reading light blocking layer 41 that is transparent to the erasing light L3 and has a light blocking property to the reading light L2 is provided on the portion of the support 18 corresponding to each linear electrode 27a.
Further, the insulating layer 30 is provided between the reading light shielding layer 41 and the second conductive layer 25. If the reading light shielding layer 41 does not have conductivity, the conductive layer 30 does not necessarily have to be provided.

【0052】以上、本発明による固体検出器の好ましい
実施の形態について説明したが、本発明は上記実施の形
態に限定されるものではなく、発明の要旨を変更しない
限りにおいて、種々変更することが可能である。
Although the preferred embodiments of the solid-state detector according to the present invention have been described above, the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without changing the gist of the invention. It is possible.

【0053】例えば、上記実施の形態による検出器は、
何れも、記録用光導電層が、記録用の放射線の照射によ
って導電性を呈するものであるが、本発明による検出器
の記録用光導電層は必ずしもこれに限定されるものでは
なく、記録用光導電層は、記録用の放射線の励起により
発せられる光の照射によって導電性を呈するものとして
もよい(特開2000−105297号公報参照)。こ
の場合、第1導電層の表面に記録用の放射線を、例えば
青色光等、他の波長領域の光に波長変換するいわゆるX
線シンチレータといわれる波長変換層を積層したものと
するとよい。この波長変換層としては、例えばヨウ化セ
シウム(CsI)等を用いるのが好適である。また、第1
導電層は、記録用の放射線の励起により波長変換層で発
せられた光に対して透過性を有するものとする。
For example, the detector according to the above embodiment is
In either case, the recording photoconductive layer exhibits conductivity by irradiation with recording radiation, but the recording photoconductive layer of the detector according to the present invention is not necessarily limited to this. The photoconductive layer may be made conductive by irradiation with light emitted by excitation of recording radiation (see JP-A-2000-105297). In this case, the so-called X that converts the wavelength of the recording radiation on the surface of the first conductive layer into light in another wavelength range, such as blue light, is used.
It is preferable that a wavelength conversion layer called a line scintillator is laminated. As the wavelength conversion layer, it is preferable to use, for example, cesium iodide (CsI) or the like. Also, the first
The conductive layer is transparent to the light emitted from the wavelength conversion layer when excited by the recording radiation.

【0054】また、上記実施の形態による検出器は、記
録用光導電層と読取用光導電層との間に電荷輸送層を設
け、記録用光導電層と電荷輸送層との界面に蓄電部を形
成するようにしたものであるが、電荷輸送層をトラップ
層に置き換えたものとしてもよい。トラップ層とした場
合には、潜像電荷は、該トラップ層に捕捉され、該トラ
ップ層内またはトラップ層と記録用光導電層の界面に潜
像電荷が蓄積される。また、このトラップ層と記録用光
導電層の界面に、画素毎に、格別に、マイクロプレート
を設けるようにしてもよい。
Further, in the detector according to the above-mentioned embodiment, the charge transport layer is provided between the recording photoconductive layer and the reading photoconductive layer, and the electricity storage unit is provided at the interface between the recording photoconductive layer and the charge transport layer. However, the charge transport layer may be replaced with a trap layer. When the trap layer is used, the latent image charge is captured by the trap layer, and the latent image charge is accumulated in the trap layer or at the interface between the trap layer and the recording photoconductive layer. Further, a microplate may be provided at the interface between the trap layer and the recording photoconductive layer for each pixel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態による固体検出器の
斜視図(A)、Q矢指部のXZ断面図(B)、P矢指部
のXY断面図(C)
FIG. 1 is a perspective view of a solid-state detector according to a first embodiment of the present invention (A), an XZ sectional view of a Q arrow finger portion (B), an XY sectional view of a P arrow finger portion (C).

【図2】本発明の第1の実施の形態による固体検出器の
断面図
FIG. 2 is a sectional view of the solid-state detector according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態による固体検出器の
斜視図(A)、Q矢指部のXZ断面図(B)、P矢指部
のXY断面図(C)
FIG. 3 is a perspective view of a solid-state detector according to a second embodiment of the present invention (A), an XZ sectional view of a Q arrow finger portion (B), an XY sectional view of a P arrow finger portion (C).

【図4】本発明の第2の実施の形態による固体検出器の
断面図
FIG. 4 is a sectional view of a solid-state detector according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20a、b 固体検出器 21 第1導電層 22 記録用光導電層 23 電荷輸送層 24 読取用光導電層 25 第2導電層 26 光電荷対発生電極 26a 線状電極 27 光電荷対非発生電極 27a 線状電極 28 絶縁層 29 蓄電部 30 絶縁層 40、41 読取光遮光層 20a, b solid state detector 21 First conductive layer 22 Photoconductive layer for recording 23 Charge transport layer 24 Photoconductive layer for reading 25 Second conductive layer 26 Photocharge pair generating electrode 26a linear electrode 27 Photoelectric charge pair non-generating electrode 27a linear electrode 28 Insulation layer 29 power storage unit 30 insulating layer 40, 41 Read light shielding layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G088 EE01 FF02 GG21 JJ05 JJ09 JJ31 JJ37 LL11 LL12 LL17 4M118 BA05 CB05 CB11 FB03 FB09 5C024 AX11 AX17 CX17 EX23 GX07 GX08 GZ36 5F088 AA11 AB01 AB02 BA01 BA02 BA03 BB03 BB07 FA09 FA11 FA20 LA07 LA08    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G088 EE01 FF02 GG21 JJ05 JJ09                       JJ31 JJ37 LL11 LL12 LL17                 4M118 BA05 CB05 CB11 FB03 FB09                 5C024 AX11 AX17 CX17 EX23 GX07                       GX08 GZ36                 5F088 AA11 AB01 AB02 BA01 BA02                       BA03 BB03 BB07 FA09 FA11                       FA20 LA07 LA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 記録光に対して透過性を有する第1の導
電層と、 前記記録光の照射を受けることにより光導電性を呈する
記録用光導電層と、 前記記録光の光量に応じた量の電荷を潜像電荷として蓄
積する蓄電部と、 読取光の照射を受けることにより光導電性を呈する読取
用光導電層と、 前記読取光に対して透過性を有する多数の線状電極から
なる光電荷対発生電極と、多数の線状電極からなる光電
荷対非発生電極とを備え、前記光電荷対発生電極の線状
電極と前記光電荷対非発生電極の線状電極とが交互に配
置された第2の導電層とをこの順に積層してなる固体検
出器において、 前記光電荷対発生電極が、前記読取光と共に該読取光と
異なる波長の消去光に対しても透過性を有するものであ
り、 前記光電荷対非発生電極が、前記消去光に対して透過性
を有するものであり、 前記読取用光導電層の前記読取光入射面から前記第2の
導電層側の、前記積層方向において前記光電荷対非発生
電極に対応する領域に、前記消去光に対しては透過性を
有し、前記読取光に対しては遮光性を有する読取光遮光
手段を備えていることを特徴とする固体検出器。
1. A first conductive layer having transmissivity for recording light, a recording photoconductive layer exhibiting photoconductivity by being irradiated with the recording light, and a recording conductive layer according to a light amount of the recording light. From a power storage unit that stores a certain amount of charge as latent image charge, a reading photoconductive layer that exhibits photoconductivity by being irradiated with reading light, and a large number of linear electrodes that are transparent to the reading light. And a photocharge pair non-generating electrode composed of a large number of linear electrodes, wherein the photocharge pair generating electrode linear electrodes and the photocharge pair non-generating electrode linear electrodes alternate with each other. In the solid-state detector including the second conductive layer arranged in this order, the photocharge pair generating electrode is transparent to the reading light and the erasing light having a wavelength different from the reading light. Wherein the photocharge pair non-generating electrode is opposed to the erasing light. And has transparency, and in the region corresponding to the photocharge pair non-generating electrode in the stacking direction on the second conductive layer side from the reading light incident surface of the reading photoconductive layer, A solid-state detector comprising: a reading light blocking unit that is transparent to erasing light and has a light blocking property to the reading light.
【請求項2】 前記読取光遮光手段が、前記光電荷対非
発生電極に密着させて積層されていることを特徴とする
請求項1記載の固体検出器。
2. The solid-state detector according to claim 1, wherein the reading light shielding unit is laminated in close contact with the photocharge pair non-generating electrode.
JP2002015656A 2002-01-24 2002-01-24 Solid state detector Withdrawn JP2003218335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015656A JP2003218335A (en) 2002-01-24 2002-01-24 Solid state detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015656A JP2003218335A (en) 2002-01-24 2002-01-24 Solid state detector

Publications (1)

Publication Number Publication Date
JP2003218335A true JP2003218335A (en) 2003-07-31

Family

ID=27651984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015656A Withdrawn JP2003218335A (en) 2002-01-24 2002-01-24 Solid state detector

Country Status (1)

Country Link
JP (1) JP2003218335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1768191A2 (en) 2005-09-27 2007-03-28 FUJIFILM Corporation Radiation image detector with optically controlled charge readout
US7365353B2 (en) 2005-05-23 2008-04-29 Fujifilm Corporation Radiation image detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365353B2 (en) 2005-05-23 2008-04-29 Fujifilm Corporation Radiation image detector
EP1768191A2 (en) 2005-09-27 2007-03-28 FUJIFILM Corporation Radiation image detector with optically controlled charge readout
JP2007095721A (en) * 2005-09-27 2007-04-12 Fujifilm Corp Radiation picture detector
EP1768191A3 (en) * 2005-09-27 2007-10-03 FUJIFILM Corporation Radiation image detector with optically controlled charge readout
US7482614B2 (en) 2005-09-27 2009-01-27 Fujifilm Corporation Radiation image detector

Similar Documents

Publication Publication Date Title
JP2000105297A (en) Electrostatic recording body, electrostatic latent image recording apparatus and electrostatic latent image reader
JP4356854B2 (en) Image signal reading system and image detector
JP2007324470A (en) Radiation image detector
US6724006B2 (en) Solid state radiation detector
US7294847B2 (en) Radiographic image detector
US6940084B2 (en) Solid state radiation detector
JP2003218335A (en) Solid state detector
JP3785571B2 (en) Solid state detector
JP5235119B2 (en) Radiation image detector
JP3970668B2 (en) Radiation solid state detector
JP2003031836A (en) Radiation solid detector
JP2007095721A (en) Radiation picture detector
JP2006242827A (en) Radiation solid state detector and method for testing same
JP2003197884A (en) Solid-state detector
JP2003035800A (en) Radiation solid-state detector
JP2007080927A (en) Radiation image detector
JP2003086781A (en) Solid-state radiation detector
US7345294B2 (en) Solid state radiation detector having variable width linear electrodes
JP2005183670A (en) Radiation image detector
JP2005294752A (en) Solid-state radiation detector
JP2005294751A (en) Solid-state radiation detector
JP2004179370A (en) Solid-state radiation detector
JP2004186388A (en) Solid-state radiation detector
JP2006332111A (en) Radiation image detector
JP2008128725A (en) Radiographic image reading method and radiographic image detector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405