JP2003218085A - Cleaning method of semiconductor substrate - Google Patents

Cleaning method of semiconductor substrate

Info

Publication number
JP2003218085A
JP2003218085A JP2002009006A JP2002009006A JP2003218085A JP 2003218085 A JP2003218085 A JP 2003218085A JP 2002009006 A JP2002009006 A JP 2002009006A JP 2002009006 A JP2002009006 A JP 2002009006A JP 2003218085 A JP2003218085 A JP 2003218085A
Authority
JP
Japan
Prior art keywords
cleaning
semiconductor substrate
ozone
hydrofluoric acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002009006A
Other languages
Japanese (ja)
Other versions
JP3957268B2 (en
Inventor
Teruo Shinbara
照男 榛原
Mitsunori Komoda
光徳 薦田
Kenichi Kamimura
賢一 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic Japan Corp
Original Assignee
Wacker NSCE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker NSCE Corp filed Critical Wacker NSCE Corp
Priority to JP2002009006A priority Critical patent/JP3957268B2/en
Publication of JP2003218085A publication Critical patent/JP2003218085A/en
Application granted granted Critical
Publication of JP3957268B2 publication Critical patent/JP3957268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method for a semiconductor substrate for preventing fluorine from remaining on a substrate surface, after the cleaning treatment of the semiconductor substrate and for preventing particles from adhering, even in a cleaning method of the semiconductor substrate using a cleaning liquid of fluorine-ozone water. <P>SOLUTION: Even the cleaning method for cleaning the semiconductor substrate by a chemical liquid comprises a first cleaning process for cleaning the semiconductor substrate by a mixed solution containing fluorine-ozone water in a composition for preventing fluorine from remaining, and a second cleaning process for cleaning the semiconductor substrate by the ozone water in a composition for successively making the surface of the semiconductor substrate hydrophilic. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板の洗浄
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate cleaning method.

【0002】[0002]

【従来の技術】半導体製造工程において、半導体基板表
面に付着したパーティクル(ゴミ)や金属は、それぞれ
配線不良や電気特性劣化を引き起こすことが広く知られ
ている。このため、従来より、これらの汚染物質を除去
するための薬液洗浄が多用されている。
2. Description of the Related Art It is widely known that particles (dust) and metals adhering to the surface of a semiconductor substrate cause wiring failure and electrical characteristic deterioration in the semiconductor manufacturing process. Therefore, conventionally, chemical cleaning for removing these contaminants has been frequently used.

【0003】代表的な薬液としては、アンモニア−過酸
化水素水混合液(APM)、塩酸−過酸化水素水混合液
(HPM)、硫酸−過酸化水素水混合液(SPM)、希
フッ酸溶液(DHF)等が挙げられる。また、最近で
は、フッ酸−過酸化水素水混合液(FPM)、フッ酸
(HF)−オゾン水等の新しい薬液が使用されつつあ
る。
As typical chemicals, ammonia-hydrogen peroxide mixture (APM), hydrochloric acid-hydrogen peroxide mixture (HPM), sulfuric acid-hydrogen peroxide mixture (SPM), dilute hydrofluoric acid solution. (DHF) and the like. Further, recently, new chemical solutions such as hydrofluoric acid-hydrogen peroxide water mixed solution (FPM) and hydrofluoric acid (HF) -ozone water are being used.

【0004】そして、半導体基板表面の有機物、パーテ
ィクル、不純物金属、酸化膜等の除去のため、これらの
薬液を組み合せた洗浄工程により、半導体基板表面を洗
浄して、目標とする清浄度を有する半導体基板を得てい
る。
Then, in order to remove organic substances, particles, impurity metals, oxide films, etc. on the surface of the semiconductor substrate, the semiconductor substrate surface is cleaned by a cleaning step in which these chemicals are combined to obtain a semiconductor having a target cleanliness. Getting the board.

【0005】酸洗浄技術に関わる従来の典型的な方法と
して、例えば、(a)特開昭58−30135号公報
に、フッ酸と硫酸と過酸化水素との混合液、(b)特開
平5−100320号公報に、アンモニアと過酸化水素
の混合水溶液と、塩酸と過酸化水素の混合水溶液との組
み合わせ、(c)特開平3−273629号公報に、塩
酸と過酸化水素混合液、(d)特開平4−177725
号公報に、フッ酸水溶液洗浄後に、過酸化水素水処理す
る組み合わせる方法、(e)特開平4−234008号
公報に、強酸と極少量のフッ素含有化合物を含有する溶
液を利用する方法、(f)0.5%フッ酸と0.1〜1
%過酸化水素水の水溶液により室温で洗浄する方法(例
えば、「トライボロジスト」第37巻、第3号、199
2年、218〜224ページ)が公知である。また、
(g)特開平7−6993号公報に、フッ酸溶液にオゾ
ンガスを供給した洗浄方法、(h)特開平8−4588
6号公報に、フッ酸溶液にオゾンガスを飽和溶解度まで
直接溶解させた洗浄液、(i)特開平10−98018
号公報に、フッ酸−オゾン水を用いた洗浄方法等があ
る。(j)また、特開平8−250460号公報に、フ
ッ酸−オゾン水を用いてシリコンのエッチングレートと
酸化膜のエッチングレートを等しくする処理方法があ
る。
As a typical conventional method relating to the acid cleaning technique, for example, (a) Japanese Patent Application Laid-Open No. 58-30135 discloses a mixed solution of hydrofluoric acid, sulfuric acid and hydrogen peroxide, and (b) Japanese Patent Application Laid-Open No. Hei 5 (1999). -100320, a combination of a mixed aqueous solution of ammonia and hydrogen peroxide and a mixed aqueous solution of hydrochloric acid and hydrogen peroxide, (c) Japanese Patent Laid-Open No. 3-273629 discloses a mixed solution of hydrochloric acid and hydrogen peroxide, (d) ) JP-A-4-177725
JP-A-4-234008, a method of using a solution containing a strong acid and a very small amount of a fluorine-containing compound, and (f) ) 0.5% hydrofluoric acid and 0.1-1
% Aqueous solution of hydrogen peroxide at room temperature (for example, "Tribologist" Vol. 37, No. 3, 199).
2 years, pages 218-224) are known. Also,
(G) A cleaning method in which ozone gas is supplied to a hydrofluoric acid solution described in JP-A-7-6993, and (h) JP-A-8-4588.
JP-A-10-98018 discloses a cleaning liquid in which ozone gas is directly dissolved to a saturated solubility in a hydrofluoric acid solution.
Japanese Patent Laid-Open Publication No. 2003-242242 discloses a cleaning method using hydrofluoric acid-ozone water. (J) Further, Japanese Patent Laid-Open No. 8-250460 discloses a treatment method in which the etching rate of silicon and that of oxide film are made equal by using hydrofluoric acid-ozone water.

【0006】前記(a)の発明の洗浄液は、被処理体で
ある半導体ウエハに脱脂処理、重金属の除去処理および
エッチング(研削層の除去)処理を同時に施すもので、
洗浄中に生ずる微粒子付着の抑制を目的にしていない。
The cleaning solution of the invention of (a) is one for simultaneously performing a degreasing process, a heavy metal removing process, and an etching (removing a grinding layer) process on a semiconductor wafer which is an object to be processed,
It is not intended to suppress the adhesion of fine particles that occur during cleaning.

【0007】前記(e)の発明では、洗浄液の主体が濃
厚な酸であって、実施例の表1にその典型的な洗浄液組
成が示されている。その硫酸濃度は、全て88.9質量
%である。
In the invention (e), the main constituent of the cleaning liquid is a concentrated acid, and the typical cleaning liquid composition is shown in Table 1 of the examples. The sulfuric acid concentrations are all 88.9% by mass.

【0008】前記(g)の発明は、フッ酸水溶液中にオ
ゾンガスを供給して処理することを特徴としているが、
フッ酸濃度やオゾン濃度を共に規定しておらず、明細書
中に自然酸化膜などによって汚染されていないことが述
べられている。また、シリコンよりイオン化傾向の小さ
な金属、特に銅に対して、高い汚染除去能力があること
を特徴としている。
The invention (g) is characterized in that ozone gas is supplied into the hydrofluoric acid aqueous solution for processing.
Neither hydrofluoric acid concentration nor ozone concentration is specified, and it is stated in the specification that the substance is not contaminated by a natural oxide film or the like. Further, it is characterized by having a high decontamination capability for metals having a smaller ionization tendency than silicon, particularly copper.

【0009】前記(h)の発明は、フッ酸溶液にオゾン
ガスを飽和溶解度まで直接溶解させた洗浄液であること
を特徴としている。オゾンを飽和溶解度まで溶解するた
めには、非常に時間がかかることと、コストがかなりか
かる。また、飽和溶解度まで溶解するには、明細書にも
書かれているように、オゾンガス等を直接溶解させなけ
ればならない。
The invention (h) is characterized in that it is a cleaning liquid in which ozone gas is directly dissolved to a saturated solubility in a hydrofluoric acid solution. Dissolving ozone to saturation solubility is very time consuming and costly. Further, in order to dissolve to the saturated solubility, ozone gas or the like must be directly dissolved as described in the specification.

【0010】前記(i)の発明は、処理後のウエハの表
面が親水性になるようにフッ酸−オゾンの組成を規定し
ているが、この組成ではウエハ表面にフッ素が残留す
る。
In the invention of (i) above, the composition of hydrofluoric acid-ozone is specified so that the surface of the wafer after processing becomes hydrophilic, but with this composition, fluorine remains on the surface of the wafer.

【0011】前記(j)の発明の中には、フッ酸−オゾ
ン水処理の後に、同一槽内にオゾン水を導入して置換す
る方法が示されているが、この方法では、ウエハが親水
性になるフッ酸−オゾン組成が必然的に形成され、フッ
素が残留する。
In the invention of (j) above, there is shown a method in which after the hydrofluoric acid-ozone water treatment, ozone water is introduced and replaced in the same tank. In this method, the wafer is made hydrophilic. A hydrofluoric acid-ozone composition that becomes hydrophilic is inevitably formed and fluorine remains.

【0012】これらの薬液の中で、フッ酸は、シリコン
酸化皮膜を溶解除去する能力があり、酸化皮膜中に含ま
れる不純物金属も残さず除去することが可能である。し
かしながら、不純物金属のうち、銅等の酸化還元電位が
高い金属は、フッ酸でいったん除去されても、半導体基
板表面に再付着し易いという問題がある。この問題に対
しては、洗浄液の酸化還元電位を不純物金属の酸化還元
電位よりも高くすることで、不純物金属の半導体基板へ
の再付着を防止できる。洗浄液の酸化還元電位を高くす
るには、水溶性の酸化剤を添加することが有効である。
この酸化剤としては、常温で、少量添加でも、高い添加
効果が得られるオゾンが注目されている。そして、清浄
なオゾン水が製造できるオゾン水製造装置の開発が進む
につれて、フッ酸−オゾン水の洗浄液を半導体基板の洗
浄に用いる検討が、広くなされるようになってきた。
Of these chemicals, hydrofluoric acid has the ability to dissolve and remove the silicon oxide film, and it is possible to completely remove the impurity metal contained in the oxide film. However, among the impurity metals, a metal such as copper having a high redox potential has a problem that even if it is once removed with hydrofluoric acid, it is likely to be redeposited on the surface of the semiconductor substrate. To solve this problem, by making the redox potential of the cleaning liquid higher than the redox potential of the impurity metal, reattachment of the impurity metal to the semiconductor substrate can be prevented. To increase the redox potential of the cleaning liquid, it is effective to add a water-soluble oxidizing agent.
As the oxidizer, ozone is attracting attention because it can provide a high addition effect even at a small amount at room temperature. Then, as the development of an ozone water production apparatus capable of producing clean ozone water progresses, studies using a cleaning solution of hydrofluoric acid-ozone water for cleaning a semiconductor substrate have become widespread.

【0013】このようなフッ酸−オゾン水の洗浄では、
フッ酸の濃度とオゾンの濃度の組み合わせにより、洗浄
処理後の半導体基板の表面状態を親水性または疎水性に
制御することが可能である。具体的には、半導体基板と
してシリコンウエハを用いた場合、フッ酸濃度を低くす
るか、オゾン濃度を高くすれば、洗浄後のシリコンウエ
ハ表面には酸化皮膜が形成され、表面状態は親水性にな
る傾向にある。逆に、フッ酸濃度を高くするか、オゾン
濃度を低くすれば酸化皮膜は除去され易くなり、洗浄後
のシリコンウエハ表面の状態は疎水性になる傾向にあ
る。フッ酸−オゾン水の洗浄処理後のシリコンウエハ表
面が疎水性になると、その後のリンス工程、乾燥工程、
搬送工程、保管工程等で、パーティクルが付着し易い状
態となる。そのため、フッ酸−オゾン水の洗浄液では、
洗浄処理後のシリコンウエハの表面状態が親水性になる
濃度組成が、パーティクル付着防止の観点から、一般的
に使用されている。
In such cleaning with hydrofluoric acid-ozone water,
By combining the concentration of hydrofluoric acid and the concentration of ozone, it is possible to control the surface state of the semiconductor substrate after the cleaning treatment to be hydrophilic or hydrophobic. Specifically, when a silicon wafer is used as a semiconductor substrate, if the hydrofluoric acid concentration is lowered or the ozone concentration is raised, an oxide film is formed on the surface of the silicon wafer after cleaning, and the surface state becomes hydrophilic. Tends to become. On the contrary, when the concentration of hydrofluoric acid is increased or the concentration of ozone is decreased, the oxide film is easily removed, and the state of the surface of the silicon wafer after cleaning tends to be hydrophobic. When the surface of the silicon wafer after the hydrofluoric acid-ozone water cleaning treatment becomes hydrophobic, the subsequent rinsing step, drying step,
Particles are easily attached to the particles during the transportation process and the storage process. Therefore, in the cleaning solution of hydrofluoric acid-ozone water,
The concentration composition that makes the surface state of the silicon wafer after the cleaning treatment hydrophilic is generally used from the viewpoint of preventing particle adhesion.

【0014】[0014]

【発明が解決しようとする課題】このように、フッ酸−
オゾン水の洗浄液では、洗浄処理後の半導体基板の表面
状態が親水性になる濃度組成の洗浄液を使用することが
望ましいが、フッ酸−オゾン水の洗浄液で親水性表面に
仕上げた半導体基板の表面には、フッ素が残留すると言
う問題がある。保管容器内で、残留塩化物イオンが雰囲
気中の残留アンモニウムイオンと反応して、塩化アンモ
ニウムとして半導体基板上に析出する問題と同様に、半
導体基板表面に残留したフッ素は、フッ化アンモニウム
として半導体基板上に析出して、パーティクル発生の原
因となる可能性があるため、半導体基板表面のフッ素の
残留は防止する必要がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
For the cleaning solution of ozone water, it is desirable to use a cleaning solution having a concentration composition in which the surface state of the semiconductor substrate after the cleaning treatment becomes hydrophilic, but the surface of the semiconductor substrate finished to a hydrophilic surface with a cleaning solution of hydrofluoric acid-ozone water. Has a problem that fluorine remains. Similar to the problem that residual chloride ions react with residual ammonium ions in the atmosphere in the storage container to deposit as ammonium chloride on the semiconductor substrate, fluorine remaining on the surface of the semiconductor substrate becomes ammonium fluoride as the semiconductor substrate. Fluorine may be deposited on the surface of the semiconductor substrate and may cause generation of particles. Therefore, it is necessary to prevent fluorine from remaining on the surface of the semiconductor substrate.

【0015】一方、半導体基板表面が疎水性となるフッ
酸−オゾン水の洗浄液組成では、前述したように、パー
ティクルが付着し易くなると言う問題がある。
On the other hand, in the cleaning solution composition of hydrofluoric acid-ozone water in which the surface of the semiconductor substrate is hydrophobic, there is a problem that particles are likely to adhere, as described above.

【0016】そこで、本発明は、フッ酸−オゾン水の洗
浄液を用いた半導体基板の洗浄方法であっても、上述し
た問題点が発生しない、即ち、半導体基板の洗浄処理後
に、基板表面にフッ素が残留せず、しかもパーティクル
付着も防止できる半導体基板の洗浄方法を提供すること
を目的とする。
Therefore, even if the present invention is a method of cleaning a semiconductor substrate using a cleaning solution of hydrofluoric acid-ozone water, the above-mentioned problems do not occur. It is an object of the present invention to provide a method for cleaning a semiconductor substrate, in which particles do not remain and the adhesion of particles can be prevented.

【0017】[0017]

【課題を解決するための手段】本発明者等は、フッ酸濃
度とオゾン濃度を変化させたフッ酸−オゾン水の洗浄液
を用いて半導体基板の洗浄を系統的に鋭意検討し、洗浄
液組成と基板表面の残留フッ素の関係を調査した結果、
半導体基板表面が疎水性となるフッ酸−オゾン水の洗浄
液組成で、半導体基板表面にフッ素が残留しない範囲が
あることを見い出すと共に、残留フッ素の無い該疎水性
表面を引き続き親水性化すれば、パーティクル付着が起
こらず、清浄な表面状態を維持できることを見い出し、
本発明を完成させたものである。
The present inventors systematically studied cleaning of semiconductor substrates using a cleaning solution of hydrofluoric acid-ozone water in which hydrofluoric acid concentration and ozone concentration were changed, and As a result of investigating the relationship of residual fluorine on the substrate surface,
Hydrofluoric acid that makes the semiconductor substrate surface hydrophobic-With a cleaning liquid composition of ozone water, it is found that there is a range where fluorine does not remain on the semiconductor substrate surface, and if the hydrophobic surface without residual fluorine is made hydrophilic, We found that particles could not be attached and a clean surface condition could be maintained,
The present invention has been completed.

【0018】即ち、本発明の要旨は、(1)半導体基板
を薬液で洗浄する洗浄方法であって、半導体基板表面に
フッ素が残留しない組成のフッ酸−オゾン水を含む混合
溶液で該半導体基板を洗浄する第1の洗浄工程と、引き
続き半導体基板表面を親水性化する組成の酸化性溶液で
該半導体基板を洗浄する第2の洗浄工程とを有すること
を特徴とする半導体基板の洗浄方法、(2)前記第2の
洗浄工程が、前記酸化性溶液に前記半導体基板を浸漬し
た後、純水を供給し、該半導体基板を取り出すことな
く、酸化性溶液を純水に置換する工程である(1)に記
載の半導体基板の洗浄方法、(3)前記純水の供給が、
前記半導体基板を酸化性溶液に浸漬後10秒以内に開始
される(2)に記載の半導体基板の洗浄方法、(4)前
記第2の洗浄工程が、純水に前記半導体基板を浸漬した
後、酸化性溶液を供給し、該半導体基板を取り出すこと
なく、純水を酸化性溶液に置換する工程である(1)に
記載の半導体基板の洗浄方法、(5)前記酸化性溶液の
供給が、前記半導体基板を純水に浸漬後10秒以内に開
始される(4)に記載の半導体基板の洗浄方法、(6)
前記第2の洗浄工程における酸化性溶液が、オゾン水と
過酸化水素水のうち少なくとも一方を含む溶液である
(1)〜(5)の何れか一つに記載の半導体基板の洗浄
方法、(7)前記第2の洗浄工程における酸化性溶液が
オゾン水を含む溶液であり、そのオゾン水の濃度が1p
pm以上である(1)〜(5)の何れか一つに記載の半
導体基板の洗浄方法、(8)前記第1の洗浄工程におけ
るフッ酸−オゾン水が、0.1〜1.0質量%のフッ酸
と下記条件式を満足するオゾンを含む組成である(1)
に記載の半導体基板の洗浄方法、
That is, the gist of the present invention is (1) a cleaning method for cleaning a semiconductor substrate with a chemical solution, wherein the semiconductor substrate is a mixed solution containing hydrofluoric acid and ozone water having a composition such that fluorine does not remain on the surface of the semiconductor substrate. A cleaning step for cleaning the semiconductor substrate, and a second cleaning step for cleaning the semiconductor substrate with an oxidizing solution having a composition that makes the surface of the semiconductor substrate hydrophilic. (2) The second cleaning step is a step of immersing the semiconductor substrate in the oxidizing solution, supplying pure water thereto, and replacing the oxidizing solution with pure water without taking out the semiconductor substrate. The method of cleaning a semiconductor substrate according to (1), (3) the supply of pure water is
The method for cleaning a semiconductor substrate according to (2), which is started within 10 seconds after the semiconductor substrate is immersed in an oxidizing solution, and (4) the second cleaning step is after the semiconductor substrate is immersed in pure water. The method for cleaning a semiconductor substrate according to (1), which is a step of supplying an oxidizing solution and replacing pure water with the oxidizing solution without removing the semiconductor substrate, and (5) supplying the oxidizing solution. The method for cleaning a semiconductor substrate according to (4), which is started within 10 seconds after immersing the semiconductor substrate in pure water, (6)
The method for cleaning a semiconductor substrate according to any one of (1) to (5), wherein the oxidizing solution in the second cleaning step is a solution containing at least one of ozone water and hydrogen peroxide water. 7) The oxidizing solution in the second cleaning step is a solution containing ozone water, and the concentration of the ozone water is 1 p
The method for cleaning a semiconductor substrate according to any one of (1) to (5), wherein the hydrofluoric acid-ozone water in the first cleaning step is 0.1 to 1.0 mass. % Of hydrofluoric acid and ozone satisfying the following conditional expression (1)
A method of cleaning a semiconductor substrate according to

【0019】[0019]

【数2】 [Equation 2]

【0020】(9)前記半導体基板がシリコンウエハで
ある(1)〜(8)の何れか一つに記載の半導体基板の
洗浄方法、である。
(9) The method for cleaning a semiconductor substrate according to any one of (1) to (8), wherein the semiconductor substrate is a silicon wafer.

【0021】[0021]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.

【0022】本発明は、半導体基板を薬液で洗浄する洗
浄方法であって、フッ素の残留しない組成のフッ酸−オ
ゾン水で洗浄する第1の処理工程と、引き続き親水性化
するオゾン水で洗浄する第2の処理工程とを有する半導
体基板の洗浄方法である。ここで、第1の処理工程と第
2の処理工程で用いる洗浄槽は、それぞれ独立した洗浄
槽であることが必要である。これは、第1の処理工程の
フッ酸−オゾン水が入っている洗浄槽に、第2の処理工
程で用いるオゾン水を供給して置換した場合、オゾン水
の供給によりフッ酸が希釈されると共にオゾンが濃化し
ていくため、以下に詳述するように、フッ酸−オゾン水
からオゾン水への置換の途中で、親水性表面を形成する
濃度組成のフッ酸−オゾン水となってしまい、液中のフ
ッ素が親水性化した半導体基板表面に付着してしまうた
めである。また、洗浄槽からフッ酸−オゾン水を排水し
てからオゾン水を注水した場合でも、洗浄槽内に不可避
的に残留するフッ酸により、親水性表面を形成する濃度
組成のフッ酸−オゾン水が生成してしまい、半導体基板
へのフッ素の付着を防止できない。
The present invention is a cleaning method for cleaning a semiconductor substrate with a chemical solution, which comprises a first treatment step of cleaning with hydrofluoric acid-ozone water having a composition that does not leave fluorine, and subsequent cleaning with ozone water that becomes hydrophilic. And a second processing step for cleaning the semiconductor substrate. Here, the cleaning tanks used in the first processing step and the second processing step need to be independent cleaning tanks. This is because when the cleaning tank containing the hydrofluoric acid-ozone water in the first treatment step is replaced by supplying the ozone water used in the second treatment step, the supply of ozone water dilutes the hydrofluoric acid. As the ozone becomes thicker with it, as will be described in detail below, during the replacement of hydrofluoric acid-ozone water with ozone water, hydrofluoric acid-ozone water having a concentration composition that forms a hydrophilic surface ends up being formed. This is because the fluorine in the liquid adheres to the surface of the semiconductor substrate which has been made hydrophilic. Further, even when the hydrofluoric acid-ozone water is drained from the cleaning tank and then the ozone water is poured, the hydrofluoric acid unavoidably remains in the cleaning tank to form a hydrophilic surface. Are generated, and the adhesion of fluorine to the semiconductor substrate cannot be prevented.

【0023】例えば、前記(j)特開平8−25046
0号公報においては、ウエハ表面が親水性であるか疎水
性であるかについては全く考慮されておらず、しかも単
一槽内で全て処理しているため、ウエハが親水性になる
液組成が必然的に形成され、フッ素が残留する。
For example, the above (j) JP-A-8-25046.
In JP-A-0, no consideration is given to whether the surface of the wafer is hydrophilic or hydrophobic, and since the wafers are all treated in a single tank, the liquid composition that makes the wafer hydrophilic is Inevitably formed, fluorine remains.

【0024】第1の洗浄工程でのフッ酸は、0.1〜
1.0質量%の濃度範囲であることが必要である。フッ
酸濃度が0.1質量%未満では、酸性溶液の成分が稀薄
すぎるため、半導体基板表面の酸化膜溶解能力や金属除
去能力が低下すると共に、洗浄中や洗浄間の待ち時間
(保持時間)に、フッ酸濃度の変動が大きくなることか
ら、好ましくない。また、1.0質量%超では、フッ酸
による半導体基板表面のエッチング力が強くなり過ぎ
て、半導体基板表面の面荒れ等の不具合が生じるため好
ましくない。
The hydrofluoric acid used in the first cleaning step is 0.1-0.1%.
It is necessary that the concentration range is 1.0% by mass. When the concentration of hydrofluoric acid is less than 0.1% by mass, the components of the acidic solution are too dilute, so the ability to dissolve the oxide film on the surface of the semiconductor substrate and the ability to remove metals are reduced, and the waiting time during and between cleanings (holding time) In addition, the fluctuation of the hydrofluoric acid concentration becomes large, which is not preferable. On the other hand, if it exceeds 1.0 mass%, the etching force of the surface of the semiconductor substrate due to hydrofluoric acid becomes too strong, which causes problems such as surface roughness of the surface of the semiconductor substrate, which is not preferable.

【0025】また、第1の洗浄工程でのオゾンは、下記
の(1)式を満足する濃度範囲であることが必要であ
る。
Further, ozone in the first cleaning step needs to be in a concentration range that satisfies the following expression (1).

【0026】[0026]

【数3】 [Equation 3]

【0027】オゾン濃度が0.1ppm未満では、酸化
膜形成能力が低下することと、金属の付着が増えてくる
ため、好ましくない。特に、酸化膜形成が低下し、洗浄
時間が長くなった場合に、酸化還元電位の高い銅等が半
導体基板表面に再付着する。また、オゾン濃度(pp
m)が900×[フッ酸濃度(質量%)]2超では、半
導体基板表面にフッ素が残留するため、好ましくない。
図1は、シリコンウエハを各種濃度のフッ酸−オゾン水
に浸漬した時に、ウエハ表面へのフッ素の残留状況を調
査した結果の一例である。○印はフッ素の残留が無いウ
エハ表面を、●印はフッ素の残留があるウエハ表面を、
それぞれ示す。この調査に用いたフッ素残留量評価のた
めの洗浄試験方法及びフッ素定量方法に関しては、実施
例において詳細に述べる。図1に示した境界線は、[オ
ゾン濃度(ppm)]=900×[フッ酸濃度(質量
%)]2であり、フッ酸−オゾン水中における半導体基
板表面の状態が、疎水性と親水性に変化する領域に略対
応している。このことから、親水性化する酸化膜形成時
に、溶液中のフッ素が酸化膜中に取り込まれるために、
半導体基板表面にフッ素が残留するものと推定される。
When the ozone concentration is less than 0.1 ppm, the ability to form an oxide film is lowered and the adhesion of metal is increased, which is not preferable. In particular, when the oxide film formation decreases and the cleaning time becomes long, copper or the like having a high redox potential redeposits on the surface of the semiconductor substrate. In addition, ozone concentration (pp
When m) exceeds 900 × [hydrofluoric acid concentration (mass%)] 2 , fluorine remains on the surface of the semiconductor substrate, which is not preferable.
FIG. 1 is an example of the result of investigating the residual state of fluorine on the wafer surface when a silicon wafer was immersed in hydrofluoric acid-ozone water of various concentrations. The circles show the wafer surface with no residual fluorine, and the circles show the wafer surface with no residual fluorine.
Shown respectively. The cleaning test method and the fluorine determination method for evaluating the residual amount of fluorine used in this investigation will be described in detail in Examples. The boundary line shown in FIG. 1 is [ozone concentration (ppm)] = 900 × [hydrofluoric acid concentration (mass%)] 2 , and the state of the semiconductor substrate surface in hydrofluoric acid-ozone water is hydrophobic and hydrophilic. It corresponds to the area that changes to. From this, when the oxide film that becomes hydrophilic is formed, the fluorine in the solution is taken into the oxide film,
It is presumed that fluorine remains on the surface of the semiconductor substrate.

【0028】第1の洗浄工程での洗浄温度は、特に限定
するものでないが、望ましくは10〜30℃である。洗
浄温度を低下させ過ぎると、洗浄効率が低下する可能性
がある。一方、洗浄温度を上げ過ぎると、洗浄効率は向
上するものの、オゾンの溶解濃度が確保できなくなる恐
れがある。
The washing temperature in the first washing step is not particularly limited, but is preferably 10 to 30 ° C. If the cleaning temperature is lowered too much, the cleaning efficiency may decrease. On the other hand, if the cleaning temperature is too high, the cleaning efficiency is improved, but the dissolved concentration of ozone may not be secured.

【0029】第1の洗浄工程での洗浄時間は、特に限定
するものでないが、望ましくは1〜10分である。洗浄
時間が短過ぎると洗浄能力が十分発揮できない可能性が
ある。一方、洗浄時間が長過ぎると、洗浄能力は向上す
るものの、エッチング量が大きくなり過ぎる恐れがあ
る。
The washing time in the first washing step is not particularly limited, but is preferably 1 to 10 minutes. If the cleaning time is too short, there is a possibility that the cleaning ability will not be fully exerted. On the other hand, if the cleaning time is too long, the cleaning ability is improved, but the etching amount may be too large.

【0030】第1の洗浄工程での溶液pHは、特に限定
するものでないが、本発明で規定する濃度範囲ではpH
3〜7程度である。しかしながら、塩酸、硝酸、硫酸な
どの強酸を添加して、pHをさらに下げて、酸性度を高
めることにより、金属除去能力をさらに高めることがで
きる可能性もある。また、燐酸、炭酸等の弱酸や蓚酸、
クエン酸等の有機酸を添加することにより、洗浄能力を
高められる可能性もある。
The solution pH in the first washing step is not particularly limited, but within the concentration range specified in the present invention.
It is about 3 to 7. However, there is a possibility that the metal removing ability can be further enhanced by adding a strong acid such as hydrochloric acid, nitric acid or sulfuric acid to further lower the pH and increase the acidity. In addition, weak acids such as phosphoric acid and carbonic acid, and oxalic acid,
The cleaning ability may be improved by adding an organic acid such as citric acid.

【0031】なお、これらの温度、洗浄時間、pH、添
加剤などの付加的な条件は各種要因で変動するため、一
概に決めることはできない。
Note that these additional conditions such as temperature, washing time, pH, additives, etc. vary due to various factors and cannot be determined unconditionally.

【0032】次に、第2の洗浄工程における洗浄液は、
第1の洗浄工程処理後の半導体基板の疎水性表面を親水
性化することができる酸化性溶液を使用する。酸化性溶
液には、オゾン水、過酸化水素水のうち少なくとも一方
を含むことが好ましく、オゾン水が特に好ましい。
Next, the cleaning liquid in the second cleaning step is
An oxidizing solution that can make the hydrophobic surface of the semiconductor substrate hydrophilic after the first cleaning step is used. The oxidizing solution preferably contains at least one of ozone water and hydrogen peroxide water, and ozone water is particularly preferable.

【0033】以下、第2の洗浄工程にオゾン水を使用し
た場合についてさらに詳細に説明する。
The case where ozone water is used in the second cleaning step will be described in more detail below.

【0034】第2の洗浄工程における溶存オゾン濃度
は、1ppm以上の濃度範囲であることが必要である。
オゾン濃度が1ppm未満では、酸化膜形成能力が不足
するため、半導体基板表面を充分に親水性化できず、半
導体基板表面にパーティクルが付着したり、乾燥時にウ
オーターマークが発生したりして、表面品質を劣化させ
てしまう。溶存オゾン濃度の上限は、特定に限定される
ものではないが、好ましくは50ppm以下である。す
なわち、50ppm超の濃度では、オゾンを多量に溶解
させるために巨大な装置が必要になり、オゾン水の製造
に時間がかかるからである。より好ましいオゾン濃度
は、3〜30ppmで、さらに好ましい濃度は5〜20
ppmである。
The dissolved ozone concentration in the second cleaning step needs to be in the concentration range of 1 ppm or more.
If the ozone concentration is less than 1 ppm, the ability to form an oxide film is insufficient, so that the surface of the semiconductor substrate cannot be made sufficiently hydrophilic, particles adhere to the surface of the semiconductor substrate, or water marks are generated during drying, and the surface is It deteriorates the quality. The upper limit of the dissolved ozone concentration is not particularly limited, but it is preferably 50 ppm or less. That is, when the concentration exceeds 50 ppm, a huge device is required to dissolve a large amount of ozone, and it takes time to produce ozone water. More preferable ozone concentration is 3 to 30 ppm, and further preferable concentration is 5 to 20 ppm.
It is ppm.

【0035】第2の洗浄工程の処理時間は、特に規定す
るものではないが、10秒〜5分が好ましい。10秒未
満では、ウエハ表面に十分な酸化皮膜を形成する能力が
劣る。また、5分より長く続けても、ウエハ表面の親水
性化、フッ素の除去に関する効果が高まることは無いの
で、洗浄工程のスループットを考慮すると、5分以内が
好ましい。
The treatment time of the second cleaning step is not particularly specified, but is preferably 10 seconds to 5 minutes. If it is less than 10 seconds, the ability to form a sufficient oxide film on the wafer surface is poor. Further, even if it is continued for longer than 5 minutes, the effect of making the surface of the wafer hydrophilic and the removal of fluorine are not enhanced, so that it is preferably within 5 minutes in consideration of the throughput of the cleaning step.

【0036】なお、第2の洗浄工程の処理時間に関して
は、第1の洗浄工程の薬液組成、第2の洗浄工程の溶存
オゾン濃度、第2の洗浄工程で供給されるオゾン水や超
純水の流量によって、その最適な処理時間の範囲が変動
するので一概に決められるものではない。
Regarding the processing time of the second cleaning process, the chemical composition of the first cleaning process, the dissolved ozone concentration of the second cleaning process, the ozone water supplied in the second cleaning process, and the ultrapure water. The optimum processing time range fluctuates depending on the flow rate, and therefore cannot be determined unconditionally.

【0037】ところで、この第2の洗浄工程に、第1の
洗浄工程で使われたフッ酸−オゾン水を持ち込み、蓄積
させないことが重要である。即ち、第2の洗浄工程にお
けるフッ酸濃度は、10ppm以下に抑えることが望ま
しい。この濃度を超えてフッ酸が第2の洗浄工程に存在
すると、上述したように、半導体基板表面にオゾンによ
る酸化膜形成時にフッ素として酸化膜中に取り込まれ易
くなるため、好ましくない。
By the way, it is important that the hydrofluoric acid-ozone water used in the first cleaning step is not brought into the second cleaning step and accumulated therein. That is, it is desirable that the concentration of hydrofluoric acid in the second cleaning step be suppressed to 10 ppm or less. If hydrofluoric acid is present in the second cleaning step in excess of this concentration, as described above, it tends to be incorporated into the oxide film as fluorine when the oxide film is formed by ozone on the semiconductor substrate surface, which is not preferable.

【0038】そこで、第1の洗浄工程から第2の洗浄工
程へ薬液を持ち込まないためには、半導体基板を搬送す
るための基板保持具や搬送治具の形状を工夫し、液溜り
ができない構造にすることが肝要である。しかしなが
ら、半導体基板自身に付着した薬液が持ち込まれる等、
前記工夫だけでは薬液持ち込み抑制に限界があるため、
第2の洗浄工程でのフッ酸の蓄積による濃化を防止する
手段を別途講じることが重要である。
Therefore, in order to prevent the chemical solution from being brought into the second cleaning step from the first cleaning step, the shape of the substrate holder or the transfer jig for transferring the semiconductor substrate is devised so that the liquid cannot be accumulated. It is essential to However, such as when the chemical liquid attached to the semiconductor substrate itself is brought in,
Since there is a limit to the carry-in of chemicals only with the above device,
It is important to take additional measures to prevent the concentration due to the accumulation of hydrofluoric acid in the second washing step.

【0039】第2の洗浄工程におけるオゾン水による半
導体基板の親水性化処理には、次の3通りの方法があ
る。(a)オゾン水に半導体基板を浸漬した後、オゾン
水を供給し、半導体基板を取り出すことなく洗浄液を置
換する方法、(b)オゾン水に半導体基板を浸漬した
後、純水を供給し、半導体基板を取り出すことなくオゾ
ン水を純水に置換する方法、(c)純水に半導体基板を
浸漬した後、オゾン水を供給し、半導体基板を取り出す
ことなく純水をオゾン水に置換する方法である。
There are the following three methods for hydrophilicizing a semiconductor substrate with ozone water in the second cleaning step. (A) a method of immersing a semiconductor substrate in ozone water and then supplying the ozone water to replace the cleaning liquid without taking out the semiconductor substrate; (b) immersing the semiconductor substrate in the ozone water and then supplying pure water, A method of replacing ozone water with pure water without taking out the semiconductor substrate, (c) A method of immersing the semiconductor substrate in pure water, supplying ozone water, and replacing pure water with ozone water without taking out the semiconductor substrate Is.

【0040】(a)のオゾン水に半導体基板を浸漬した
後オゾン水を供給する方法は、半導体基板表面の親水性
化、即ち、酸化皮膜の形成を十分に行うためには最も有
効であるが、第1の洗浄工程からの薬液の持込が多くな
った場合に、フッ素の残留が生じる場合がある。
The method (a) of immersing the semiconductor substrate in the ozone water and then supplying the ozone water is most effective for making the surface of the semiconductor substrate hydrophilic, that is, sufficiently forming an oxide film. When the amount of chemical liquid brought in from the first cleaning step increases, fluorine may remain.

【0041】(a)の方法でフッ素の残留が生じる場合
には、(b)のオゾン水に半導体基板を浸漬した後、純
水を供給する方法を採用することが望ましい。これは、
オゾン水に触れる時間を短縮することにより、フッ素の
付着を抑えることができるためである。純水供給までの
時間には、オゾン水を供給しておくことが望ましいが、
特に限定するものではない。半導体基板をオゾン水に浸
漬してから純水の供給を開始するまでの時間は10秒以
内が望ましい。純水供給を開始するまでの時間が長すぎ
ると、フッ素の付着を十分に抑制することができなくな
る可能性があるからである。しかしながら、第1の洗浄
工程からの薬液の持ち込み量や浸漬するオゾン水の濃度
によって、最適な純水供給開始の最適時間は異なるの
で、一概に最適値を決定することはできない。
When fluorine remains by the method (a), it is desirable to adopt the method (b) of immersing the semiconductor substrate in the ozone water and then supplying pure water. this is,
This is because the adhesion of fluorine can be suppressed by shortening the time of contact with ozone water. It is desirable to supply ozone water before the pure water is supplied.
It is not particularly limited. The time from the immersion of the semiconductor substrate in ozone water to the start of the supply of pure water is preferably 10 seconds or less. This is because if the time to start the supply of pure water is too long, it may not be possible to sufficiently suppress the adhesion of fluorine. However, the optimum time for starting the supply of pure water differs depending on the carry-in amount of the chemical solution from the first cleaning step and the concentration of the ozone water to be immersed, and therefore the optimum value cannot be unconditionally determined.

【0042】(c)の純水に半導体基板を浸漬した後、
オゾン水を供給する方法では、さらに残留フッ素量を低
減することが可能である。半導体基板を純水に浸漬して
からオゾン水の供給を開始するまでの時間は10秒以内
が望ましい。オゾン水供給開始を遅くすれば、フッ素の
残留量を低く押さえられるが、半導体基板表面が疎水性
の状態で、純水中に長時間浸漬しておくと、パーティク
ル付着が起こる可能性が高くなる。オゾン水供給までの
時間には、純水を供給してもしなくても良い。オゾン水
供給までの時間に純水を供給した場合は、フッ素残留量
はより低くなるが、パーティクル付着の可能性も高くな
る。逆に、オゾン水供給までの時間に純水を供給しない
場合は、パーティクル付着の可能性は低くなるが、フッ
素残留に関しては多少不利になる。
After immersing the semiconductor substrate in pure water (c),
The method of supplying ozone water can further reduce the amount of residual fluorine. The time from the immersion of the semiconductor substrate in pure water to the start of the supply of ozone water is preferably within 10 seconds. By delaying the start of ozone water supply, the residual amount of fluorine can be suppressed to a low level, but if the semiconductor substrate surface is hydrophobic and immersed in pure water for a long time, particle adhesion will increase. . Pure water may or may not be supplied before the supply of ozone water. When pure water is supplied during the time until ozone water is supplied, the residual amount of fluorine becomes lower, but the possibility of particle adhesion also increases. On the other hand, if pure water is not supplied before the supply of ozone water, the possibility of particles adhering decreases, but there is a slight disadvantage with respect to residual fluorine.

【0043】第2の洗浄工程の槽内の液の置換方法に関
しては、フッ素残留量を極限まで下げるか、パーティク
ル付着量を極限まで下げるか、両者のバランスを取った
条件を採用するか、洗浄の目的により決定すれば良い。
Regarding the method of replacing the liquid in the tank in the second cleaning step, the residual amount of fluorine is reduced to the utmost limit, the amount of adhering particles is reduced to the utmost limit, or a condition that balances the two is adopted, It may be determined according to the purpose of.

【0044】本発明の洗浄工程の前段に、他の洗浄プロ
セス(APM、HPM、SPM、DHF、FPM等)を
組み込んでも良い。特に、パーティクル除去能力の高い
プロセスを入れると、本発明の洗浄方法でのパーティク
ルに対する作業負荷が低減でき、効果的である。また、
後段にリンス工程を組み込んでも良い。
Other cleaning processes (APM, HPM, SPM, DHF, FPM, etc.) may be incorporated before the cleaning step of the present invention. In particular, the inclusion of a process having a high particle removal capability is effective because the work load on particles in the cleaning method of the present invention can be reduced. Also,
A rinse step may be incorporated in the latter stage.

【0045】本プロセスは、半導体基板全般に適用でき
るが、特にシリコンウエハに対して、その作用効果が優
れている。
The present process can be applied to all semiconductor substrates, but its action and effect are excellent especially for silicon wafers.

【0046】[0046]

【実施例】(実施例1) フッ素残留しないHF/オゾ
ン組成範囲 洗浄によるウエハ表面へのフッ素付着性の評価方法につ
いて述べる。各種組成に調製したフッ酸−オゾン洗浄液
を入れた第1洗浄槽に、清浄なシリコンウエハを5分間
浸漬した後、第2槽に調製した5ppmのオゾン水に浸
漬し、直ちに5分間の超純水オーバーフローリンスを行
った。リンス後のウエハは、スピンドライヤーで乾燥さ
せた。この処理後のウエハを50mlの超純水と共にバ
ッグに封入し、95〜100℃のウオーターバス中で3
0分間保持し、ウエハに残留するフッ素を抽出した。こ
の方法では、シリコンウエハの両面(ミラー面と裏面)
に付着残留するフッ素を抽出することになる。この抽出
液に含まれるフッ素の濃度をイオンクロマトアナライザ
ーにより分析した。この方法のフッ素定量下限値は、1
×1012atoms/cm2である。
EXAMPLES (Example 1) A method for evaluating the fluorine adhesion to the wafer surface by cleaning with an HF / ozone composition range in which no fluorine remains will be described. After immersing a clean silicon wafer in the first cleaning tank containing the hydrofluoric acid-ozone cleaning solution prepared in various compositions for 5 minutes, it was immersed in the 5 ppm ozone water prepared in the second tank, and immediately immersed in ultrapure water for 5 minutes. A water overflow rinse was performed. The rinsed wafer was dried with a spin dryer. The wafer after this treatment was sealed in a bag together with 50 ml of ultrapure water, and was placed in a water bath at 95 to 100 ° C. for 3 days.
The wafer was kept for 0 minute to extract the fluorine remaining on the wafer. With this method, both sides of the silicon wafer (mirror side and back side)
Fluorine remaining on the surface will be extracted. The concentration of fluorine contained in this extract was analyzed by an ion chromatograph analyzer. The lower limit of fluorine determination for this method is 1
× 10 12 atoms / cm 2 .

【0047】フッ酸濃度0.01〜0.5質量%、オゾ
ン濃度2.5〜30ppmの範囲で、組成の異なるフッ
酸−オゾン洗浄液を調製して前記第1洗浄槽に配し、前
記した処理および評価を行った。その結果を図1に示
す。
A hydrofluoric acid-ozone cleaning solution having a different composition was prepared in the range of hydrofluoric acid concentration of 0.01 to 0.5 mass% and ozone concentration of 2.5 to 30 ppm, and the solution was placed in the first cleaning tank and the above-mentioned solution was prepared. Treated and evaluated. The result is shown in FIG.

【0048】本発明のフッ酸−オゾン洗浄液で規定し
た、
Specified with the hydrofluoric acid-ozone cleaning solution of the present invention,

【0049】[0049]

【数4】 [Equation 4]

【0050】の条件式を満たす範囲では、残留フッ素濃
度が2×1012atoms/cm2以下であった(図1
で示される○印)。一方、この条件式を満たさない領域
では、残留フッ素濃度が50×1012atoms/cm
2以上になった(図1で示される●印)。
In the range satisfying the conditional expression of, the residual fluorine concentration was 2 × 10 12 atoms / cm 2 or less (FIG. 1).
(○ mark). On the other hand, in the region where this conditional expression is not satisfied, the residual fluorine concentration is 50 × 10 12 atoms / cm 3.
It became 2 or more (marked with ● in Fig. 1).

【0051】フッ素が残留するフッ酸−オゾン組成の洗
浄液で処理した場合と、フッ素が残留しないフッ酸−オ
ゾン組成の洗浄液で処理した場合とを比較した際の、ウ
エハ表面性状の違いを次のような方法で検証した。各組
成のフッ酸−オゾン洗浄液で処理した後、オゾンを含ま
ない超純水だけで5分間オーバーフローリンスし、スピ
ンドライヤーで乾燥させたウエハのミラー面と水滴の接
触角を測定した。その結果、本発明のフッ酸−オゾン洗
浄液で規定した、
Differences in wafer surface properties between the case of treatment with a cleaning solution of hydrofluoric acid-ozone composition in which fluorine remains and the case of treatment with a cleaning solution of hydrofluoric acid-ozone composition in which fluorine does not remain are as follows. I verified it by such a method. After treating with a hydrofluoric acid-ozone cleaning solution of each composition, overflow rinse was performed for 5 minutes only with ultrapure water containing no ozone, and the contact angle between the mirror surface of the wafer dried by a spin dryer and the water droplet was measured. As a result, the hydrofluoric acid-ozone cleaning solution of the present invention was defined,

【0052】[0052]

【数5】 [Equation 5]

【0053】の条件式を満たす範囲では、接触角が20
〜30°であった。一方、この条件式を満たさない範囲
では、接触角は0〜4°であった。この結果から、フッ
素の残留は、ウエハ表面と水の接触角、すなわちウエハ
表面の酸化皮膜の状態、例えば、酸化皮膜の厚さ、密度
等と関連があると推察できる。
In the range satisfying the conditional expression of, the contact angle is 20
Was ~ 30 °. On the other hand, in the range where this conditional expression was not satisfied, the contact angle was 0 to 4 °. From this result, it can be inferred that the residual fluorine is related to the contact angle between the wafer surface and water, that is, the state of the oxide film on the wafer surface, such as the thickness and density of the oxide film.

【0054】また、上記の各種組成のフッ酸−オゾン洗
浄液でウエハを第1の洗浄処理して、引き続き、第2の
洗浄槽に10ppm濃度のオゾン水を入れ、オゾン水に
ウエハを浸漬した直後に超純水を導入して、3分間オー
バーフローリンスをした後、超純水リンスを行って、ス
ピンドライヤーで乾燥させた。その結果、オゾン水によ
る洗浄の前後で、ウエハ表面の残留フッ素濃度に変化は
認められなかった。
Immediately after the wafer was subjected to the first cleaning treatment with the hydrofluoric acid-ozone cleaning solution having the various compositions described above, and subsequently, ozone water having a concentration of 10 ppm was put in the second cleaning tank and the wafer was immersed in the ozone water. Ultrapure water was introduced into the above, and after performing an overflow rinse for 3 minutes, an ultrapure water rinse was performed and the product was dried with a spin dryer. As a result, no change was found in the residual fluorine concentration on the wafer surface before and after cleaning with ozone water.

【0055】(実施例2) 不純物金属除去能力 表面の汚染金属除去性の評価方法について述べる。濃度
29%のアンモニア水、濃度31%の過酸化水素水、お
よび純水を容量比が1:1:5になるようにしたAPM
洗浄液に、さらに、不純物として鉄、銅を混合した後、
清浄なシリコンウエハを80℃で5分間浸漬した。次い
で、純水中で5分間リンスし、表面の親水性を確認した
後、スピンドライヤーで乾燥させた。以後、この方法を
IAP汚染と称する。IAP汚染により、ウエハ表面に
は洗浄液中の不純物重金属が付着し、表面が汚染され
る。表面汚染金属量評価には、フレームレス原子吸光分
析法を用いた。フッ酸と硝酸との混酸によりウエハ表面
の汚染金属を回収し、その回収液中の金属濃度をフレー
ムレス原子吸光分析により定量して、表面汚染濃度に換
算した。
(Example 2) A method for evaluating the ability to remove contaminant metals on the surface of impurities metal removal ability will be described. APM in which the volume ratio of ammonia water with a concentration of 29%, hydrogen peroxide water with a concentration of 31%, and pure water is set to 1: 1: 5.
After further mixing iron and copper as impurities in the cleaning liquid,
The clean silicon wafer was immersed at 80 ° C. for 5 minutes. Then, after rinsing in pure water for 5 minutes to confirm the hydrophilicity of the surface, it was dried with a spin dryer. Hereinafter, this method is referred to as IAP contamination. Due to the IAP contamination, heavy metal impurities in the cleaning liquid adhere to the surface of the wafer to contaminate the surface. Flameless atomic absorption spectrometry was used for the evaluation of the amount of metal polluting the surface. Contaminant metals on the wafer surface were recovered with a mixed acid of hydrofluoric acid and nitric acid, and the metal concentration in the recovered liquid was quantified by flameless atomic absorption spectrometry and converted into the surface contaminant concentration.

【0056】IAP汚染処理によりウエハ表面に付着し
た金属濃度は、Feが3×1011atoms/cm2
Cuが6×1011atoms/cm2レベルであった。
The metal concentration adhered to the wafer surface by the IAP contamination treatment was 3 × 10 11 atoms / cm 2 of Fe,
Cu was at a level of 6 × 10 11 atoms / cm 2 .

【0057】このようにして作製したIAP汚染ウエハ
を、フッ酸濃度、オゾン濃度を変えて調製したフッ酸−
オゾン洗浄液で洗浄して、ウエハ表面に残留する金属の
量を比較した。ウエハ表面に残留している金属の量は、
上述のフレームレス原子吸光分析法で分析した。なお、
この方法での金属の定量下限値は、Feが2×108
toms/cm2、Cuが1×109atoms/cm2
である。
The IAP-contaminated wafers thus produced were prepared using different hydrofluoric acid concentrations and ozone concentrations.
After cleaning with the ozone cleaning liquid, the amount of metal remaining on the wafer surface was compared. The amount of metal remaining on the wafer surface is
It was analyzed by the frameless atomic absorption spectrometry method described above. In addition,
The lower limit of quantification of metals by this method is that Fe is 2 × 10 8 a
toms / cm 2 , Cu is 1 × 10 9 atoms / cm 2.
Is.

【0058】具体的には、第1槽に調製したフッ酸−オ
ゾン洗浄液に5分間浸漬した後、第2槽に調製した5p
pmのオゾン水に浸漬し、直ちに5分間の超純水オーバ
ーフローリンスを行った。リンス後のウエハは、スピン
ドライヤーで乾燥させた。
Specifically, after immersing in the hydrofluoric acid-ozone cleaning solution prepared in the first tank for 5 minutes, 5 p prepared in the second tank
Immersed in pm ozone water and immediately subjected to ultrapure water overflow rinse for 5 minutes. The rinsed wafer was dried with a spin dryer.

【0059】洗浄試験を行ったフッ酸−オゾンの組成
は、フッ酸濃度0.05〜1質量%、オゾン濃度0〜3
0ppmの範囲である。各組成のフッ酸−オゾン洗浄液
でIAP汚染ウエハを洗浄した後、ウエハ表面に付着し
ている金属の量をフレームレス原子吸光分析装置で分析
した結果を図2および3に示す。
The composition of hydrofluoric acid-ozone subjected to the cleaning test is as follows: hydrofluoric acid concentration of 0.05 to 1% by mass, ozone concentration of 0 to 3
It is in the range of 0 ppm. After cleaning the IAP-contaminated wafer with a hydrofluoric acid-ozone cleaning solution of each composition, the results of analyzing the amount of metal adhering to the wafer surface with a flameless atomic absorption spectrometer are shown in FIGS. 2 and 3.

【0060】図2に示すように、オゾン濃度が0ppm
の希フッ酸では、フッ酸濃度によらず1011atoms
/cm2レベルのCuが残留しているが、オゾン濃度1
0ppm以上では、0.1質量%以上のフッ酸濃度であ
れば、分析装置の検出下限値である1×109atom
s/cm2以下まで除去されていることがわかる。
As shown in FIG. 2, the ozone concentration is 0 ppm.
Dilute hydrofluoric acid of 10 11 atoms irrespective of the hydrofluoric acid concentration
/ Cm 2 level Cu remains, but ozone concentration is 1
At 0 ppm or more, if the hydrofluoric acid concentration is 0.1% by mass or more, the detection limit of the analyzer is 1 × 10 9 atom.
It can be seen that s / cm 2 or less is removed.

【0061】また、図3に示すように、Feに関して
も、オゾン0ppmの希フッ酸では、フッ酸濃度によら
ず1010atoms/cm2レベルのFeが残留してい
るが、オゾン濃度10ppm以上では、0.1質量%以
上のフッ酸濃度であれば109atoms/cm2レベル
まで除去されており、本発明で規定するフッ酸−オゾン
組成範囲では、特に除去能力が高く、汚染金属の残留濃
度は109atoms/cm2レベル以下にできることが
わかった。
As shown in FIG. 3, with respect to Fe as well, in the case of dilute hydrofluoric acid having 0 ppm ozone, 10 10 atoms / cm 2 level of Fe remains regardless of the hydrofluoric acid concentration, but the ozone concentration is 10 ppm or more. In the case of a hydrofluoric acid concentration of 0.1 mass% or more, it is removed up to a level of 10 9 atoms / cm 2 , and in the hydrofluoric acid-ozone composition range defined by the present invention, the removal ability is particularly high and the contamination metal It was found that the residual concentration can be set to 10 9 atoms / cm 2 level or less.

【0062】さらに、上記のIAP汚染ウエハを各種組
成のフッ酸−オゾン洗浄液で第1の洗浄処理して、引き
続き、第2の洗浄槽に10ppm濃度のオゾン水を入
れ、オゾン水にウエハを浸漬した直後に超純水を導入し
て、3分間オーバーフローリンスをした後、超純水リン
スを行って、スピンドライヤーで乾燥させた。その結
果、オゾン水による洗浄の前後で、ウエハ表面の残留金
属濃度に変化は認められなかった。
Further, the above IAP-contaminated wafer was subjected to a first cleaning treatment with a hydrofluoric acid-ozone cleaning solution having various compositions, and subsequently, ozone water having a concentration of 10 ppm was put into a second cleaning tank, and the wafer was immersed in the ozone water. Immediately after that, ultrapure water was introduced, overflow rinse was performed for 3 minutes, ultrapure water rinse was performed, and the product was dried with a spin dryer. As a result, no change was found in the residual metal concentration on the wafer surface before and after cleaning with ozone water.

【0063】(実施例3) リンス工程のオゾン濃度の
影響(パーティクル除去能力) 洗浄試験には、清浄なp型8インチ(200mm)ウエ
ハを使用した。APM洗浄と超純水リンスを行い、引き
続き、第1の洗浄工程のフッ酸−オゾン洗浄、第2の洗
浄工程のオゾン水洗浄を行い、その後、超純水リンスを
行って、スピン乾燥した。第1の洗浄工程のフッ酸−オ
ゾン洗浄液は、本発明で規定したフッ酸−オゾン組成範
囲から選択し、フッ酸濃度0.3〜1.0質量%、オゾ
ン濃度10〜20ppmの範囲のものを使用した。第2
の洗浄工程のオゾン水の濃度は0〜20ppmの間で変
化させ、各濃度のオゾン水に浸漬した直後に超純水を導
入して、3分間オーバーフローさせた。ウエハ表面に付
着するパーティクル数の測定には、表面異物計(レーザ
ー光散乱法)を使用した。第2洗浄工程のオゾン濃度に
よるパーティクル増加数の違いを図4に示す。
Example 3 Effect of Ozone Concentration in Rinse Step (Particle Removal Ability) A clean p-type 8 inch (200 mm) wafer was used in the cleaning test. APM cleaning and ultrapure water rinsing were performed, followed by hydrofluoric acid-ozone cleaning in the first cleaning step, ozone water cleaning in the second cleaning step, and then ultrapure water rinsing and spin drying. The hydrofluoric acid-ozone cleaning liquid in the first cleaning step is selected from the hydrofluoric acid-ozone composition range specified in the present invention, and has a hydrofluoric acid concentration of 0.3 to 1.0 mass% and an ozone concentration of 10 to 20 ppm. It was used. Second
The concentration of the ozone water in the cleaning step was changed from 0 to 20 ppm, and ultrapure water was introduced immediately after being immersed in the ozone water of each concentration and overflowed for 3 minutes. A surface foreign matter meter (laser light scattering method) was used to measure the number of particles adhering to the wafer surface. FIG. 4 shows the difference in the number of particles increased depending on the ozone concentration in the second cleaning step.

【0064】第2の洗浄工程のオゾン水濃度1ppm未
満では、0.28μmφ以上のパーティクルが数百個レ
ベル増加した。オゾン水洗浄によるウエハ表面の親水性
化(即ち、酸化皮膜の成長)が不十分であるため、後の
乾燥工程、搬送工程等で大量のパーティクルが付着した
ものと考えられる。それに対して、オゾン水濃度を1p
pm以上にすれば、0.28μmφ以上のパーティクル
数増加をウエハ当り3個以下、増加数平均で1.7個/
ウエハに抑えることができる。これにより、オゾン水濃
度を高くすればウエハ表面の親水性化、即ち、酸化皮膜
が十分に成長するため、その後の工程におけるパーティ
クル付着が防止できたものと考えられる。因みに、AP
M洗浄のみを実施したウエハでは、0.28μmφ以上
のパーティクル数増加を3個以下、増加数平均1.7個
に抑えることができるが、金属汚染を防止できない。
When the ozone water concentration in the second cleaning step was less than 1 ppm, the number of particles of 0.28 μmφ or more increased by several hundreds. Since the hydrophilicity of the wafer surface (that is, the growth of the oxide film) due to the cleaning with ozone water is insufficient, it is considered that a large amount of particles adhered in the subsequent drying process, transporting process and the like. In contrast, ozone water concentration is 1p
If it is set to pm or more, increase in the number of particles of 0.28 μmφ or more is 3 or less per wafer, and the average number of increase is 1.7 /
It can be suppressed to a wafer. It is considered that, by increasing the concentration of ozone water, the surface of the wafer was made hydrophilic, that is, the oxide film was sufficiently grown, so that particle adhesion could be prevented in the subsequent steps. By the way, AP
In the wafer subjected to only M cleaning, the increase in the number of particles of 0.28 μmφ or more can be suppressed to 3 or less, and the average increase in number is 1.7, but metal contamination cannot be prevented.

【0065】また、本発明の第1の洗浄工程を経た後で
は、何れの濃度のオゾン水洗浄でも残留フッ素濃度が2
×1012atoms/cm2以下であった。これによ
り、オゾン水濃度は、残留フッ化物に影響を及ぼさない
ことがわかった。
After the first cleaning step of the present invention, the residual fluorine concentration is 2% in any concentration of ozone water cleaning.
It was less than or equal to × 10 12 atoms / cm 2 . From this, it was found that the concentration of ozone water did not affect the residual fluoride.

【0066】[0066]

【発明の効果】本発明の洗浄方法を用いれば、半導体基
板、特にシリコンウエハの製造において、金属汚染を除
去でき、パーティクル付着も防止でき、かつ表面の親水
性を確保できる洗浄が可能であり、半導体産業の発展に
寄与できる。
According to the cleaning method of the present invention, in the production of semiconductor substrates, particularly silicon wafers, it is possible to remove metal contamination, prevent particles from adhering, and ensure the hydrophilicity of the surface. It can contribute to the development of the semiconductor industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の洗浄工程における洗浄液のフ
ッ酸濃度、オゾン濃度と処理後のウエハ表面のフッ素の
残留状態を示す図である。
FIG. 1 is a diagram showing a hydrofluoric acid concentration and an ozone concentration of a cleaning liquid in a first cleaning step of the present invention and a residual state of fluorine on a wafer surface after processing.

【図2】 本発明の第1の洗浄工程における洗浄液のフ
ッ酸濃度、オゾン濃度と処理後のウエハ表面に残留する
Cuの分析値を示す図である。
FIG. 2 is a diagram showing a hydrofluoric acid concentration and an ozone concentration of a cleaning liquid and an analysis value of Cu remaining on a wafer surface after processing in a first cleaning step of the present invention.

【図3】 本発明の第1の洗浄工程における洗浄液のフ
ッ酸濃度、オゾン濃度と処理後のウエハ表面に残留する
Feの分析値を示す図である。
FIG. 3 is a diagram showing a hydrofluoric acid concentration and an ozone concentration of a cleaning liquid and an analysis value of Fe remaining on a wafer surface after processing in a first cleaning step of the present invention.

【図4】 本発明の第1の洗浄工程を経たウエハでの第
2の洗浄工程のオゾン濃度と処理前後のパーティクルの
増減との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the ozone concentration in the second cleaning step and the increase / decrease of particles before and after the processing in the wafer which has undergone the first cleaning step of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上村 賢一 山口県光市大字島田3434番地 ワッカー・ エヌエスシーイー株式会社内 Fターム(参考) 4H003 BA12 DA15 DB01 EA05 EA20 ED02 EE04 FA21    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenichi Uemura             3434 Shimada, Waka, Hikari City, Yamaguchi Prefecture             NSC Co., Ltd. F-term (reference) 4H003 BA12 DA15 DB01 EA05 EA20                       ED02 EE04 FA21

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板を薬液で洗浄する洗浄方法で
あって、半導体基板表面にフッ素が残留しない組成のフ
ッ酸−オゾン水を含む混合溶液で該半導体基板を洗浄す
る第1の洗浄工程と、引き続き半導体基板表面を親水性
化する組成の酸化性溶液で該半導体基板を洗浄する第2
の洗浄工程とを有することを特徴とする半導体基板の洗
浄方法。
1. A cleaning method for cleaning a semiconductor substrate with a chemical solution, comprising a first cleaning step of cleaning the semiconductor substrate with a mixed solution containing hydrofluoric acid-ozone water having a composition in which fluorine does not remain on the surface of the semiconductor substrate. A second step of subsequently cleaning the semiconductor substrate with an oxidizing solution having a composition that makes the surface of the semiconductor substrate hydrophilic
And a cleaning step for cleaning the semiconductor substrate.
【請求項2】 前記第2の洗浄工程が、前記酸化性溶液
に前記半導体基板を浸漬した後、純水を供給し、該半導
体基板を取り出すことなく、酸化性溶液を純水に置換す
る工程である請求項1に記載の半導体基板の洗浄方法。
2. The second cleaning step is a step of immersing the semiconductor substrate in the oxidizing solution, supplying pure water, and replacing the oxidizing solution with pure water without taking out the semiconductor substrate. The method for cleaning a semiconductor substrate according to claim 1, wherein
【請求項3】 前記純水の供給が、前記半導体基板を酸
化性溶液に浸漬後10秒以内に開始される請求項2に記
載の半導体基板の洗浄方法。
3. The method for cleaning a semiconductor substrate according to claim 2, wherein the supply of the pure water is started within 10 seconds after the semiconductor substrate is immersed in the oxidizing solution.
【請求項4】 前記第2の洗浄工程が、純水に前記半導
体基板を浸漬した後、酸化性溶液を供給し、該半導体基
板を取り出すことなく、純水を酸化性溶液に置換する工
程である請求項1に記載の半導体基板の洗浄方法。
4. The second cleaning step is a step of immersing the semiconductor substrate in pure water, supplying an oxidizing solution, and replacing the pure water with the oxidizing solution without taking out the semiconductor substrate. The method of cleaning a semiconductor substrate according to claim 1.
【請求項5】 前記酸化性溶液の供給が、前記半導体基
板を純水に浸漬後10秒以内に開始される請求項4に記
載の半導体基板の洗浄方法。
5. The method for cleaning a semiconductor substrate according to claim 4, wherein the supply of the oxidizing solution is started within 10 seconds after the semiconductor substrate is immersed in pure water.
【請求項6】 前記第2の洗浄工程における酸化性溶液
が、オゾン水と過酸化水素水のうち少なくとも一方を含
む溶液である請求項1〜5の何れか一つに記載の半導体
基板の洗浄方法。
6. The cleaning of a semiconductor substrate according to claim 1, wherein the oxidizing solution in the second cleaning step is a solution containing at least one of ozone water and hydrogen peroxide water. Method.
【請求項7】 前記第2の洗浄工程における酸化性溶液
がオゾン水を含む溶液であり、そのオゾン水の濃度が1
ppm以上である請求項1〜5の何れか一つに記載の半
導体基板の洗浄方法。
7. The oxidizing solution in the second cleaning step is a solution containing ozone water, and the concentration of the ozone water is 1
The method for cleaning a semiconductor substrate according to any one of claims 1 to 5, which has a ppm or more.
【請求項8】 前記第1の洗浄工程におけるフッ酸−オ
ゾン水が、0.1〜1.0質量%のフッ酸と下記条件式
を満足するオゾンを含む組成である請求項1に記載の半
導体基板の洗浄方法。 【数1】
8. The composition according to claim 1, wherein the hydrofluoric acid-ozone water in the first cleaning step contains 0.1 to 1.0% by mass of hydrofluoric acid and ozone satisfying the following conditional expression. Semiconductor substrate cleaning method. [Equation 1]
【請求項9】 前記半導体基板がシリコンウエハである
請求項1〜8の何れか一つに記載の半導体基板の洗浄方
法。
9. The method of cleaning a semiconductor substrate according to claim 1, wherein the semiconductor substrate is a silicon wafer.
JP2002009006A 2002-01-17 2002-01-17 Semiconductor substrate cleaning method Expired - Lifetime JP3957268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009006A JP3957268B2 (en) 2002-01-17 2002-01-17 Semiconductor substrate cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009006A JP3957268B2 (en) 2002-01-17 2002-01-17 Semiconductor substrate cleaning method

Publications (2)

Publication Number Publication Date
JP2003218085A true JP2003218085A (en) 2003-07-31
JP3957268B2 JP3957268B2 (en) 2007-08-15

Family

ID=27647118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009006A Expired - Lifetime JP3957268B2 (en) 2002-01-17 2002-01-17 Semiconductor substrate cleaning method

Country Status (1)

Country Link
JP (1) JP3957268B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041283A1 (en) * 2003-10-27 2005-05-06 Sumitomo Electric Industries, Ltd. Gallium nitride semiconductor substrate and process for producing the same
US7365012B2 (en) 2004-08-13 2008-04-29 Seiko Epson Corporation Etching method, a method of forming a trench isolation structure, a semiconductor substrate and a semiconductor apparatus
KR100866128B1 (en) * 2002-12-21 2008-10-31 주식회사 하이닉스반도체 method for eliminating photoresist and slurry in storage node contact
WO2017164186A1 (en) * 2016-03-25 2017-09-28 株式会社Screenホールディングス Substrate processing method and substrate processing device
WO2017164185A1 (en) * 2016-03-25 2017-09-28 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2017183711A (en) * 2016-03-25 2017-10-05 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2018170523A (en) * 2018-07-04 2018-11-01 株式会社Sumco Method for manufacturing silicon wafer
JP2019201118A (en) * 2018-05-17 2019-11-21 信越半導体株式会社 Evaluation method for semiconductor substrate
CN112289682A (en) * 2020-10-30 2021-01-29 上海华力微电子有限公司 Method for forming grid oxide layer
JP7193026B1 (en) 2022-05-13 2022-12-20 信越半導体株式会社 Cleaning liquid and wafer cleaning method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866128B1 (en) * 2002-12-21 2008-10-31 주식회사 하이닉스반도체 method for eliminating photoresist and slurry in storage node contact
WO2005041283A1 (en) * 2003-10-27 2005-05-06 Sumitomo Electric Industries, Ltd. Gallium nitride semiconductor substrate and process for producing the same
US7365012B2 (en) 2004-08-13 2008-04-29 Seiko Epson Corporation Etching method, a method of forming a trench isolation structure, a semiconductor substrate and a semiconductor apparatus
US20190035649A1 (en) * 2016-03-25 2019-01-31 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing device
CN108701609B (en) * 2016-03-25 2023-03-24 株式会社斯库林集团 Substrate processing method and substrate processing apparatus
JP2017175062A (en) * 2016-03-25 2017-09-28 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP2017183711A (en) * 2016-03-25 2017-10-05 株式会社Screenホールディングス Substrate processing method and substrate processing device
TWI631610B (en) * 2016-03-25 2018-08-01 斯庫林集團股份有限公司 Substrate processing method and substrate processing device
KR20180109973A (en) * 2016-03-25 2018-10-08 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus
KR20180109972A (en) * 2016-03-25 2018-10-08 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus
CN108701606A (en) * 2016-03-25 2018-10-23 株式会社斯库林集团 Substrate processing method using same and substrate board treatment
CN108701609A (en) * 2016-03-25 2018-10-23 株式会社斯库林集团 Substrate processing method using same and substrate board treatment
CN108701606B (en) * 2016-03-25 2024-01-05 株式会社斯库林集团 Substrate processing method and substrate processing apparatus
US20190035622A1 (en) * 2016-03-25 2019-01-31 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing device
WO2017164186A1 (en) * 2016-03-25 2017-09-28 株式会社Screenホールディングス Substrate processing method and substrate processing device
TWI671140B (en) * 2016-03-25 2019-09-11 斯庫林集團股份有限公司 Substrate processing method and substrate processing device
US11764055B2 (en) 2016-03-25 2023-09-19 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing device
KR102167465B1 (en) * 2016-03-25 2020-10-19 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus
KR102168058B1 (en) * 2016-03-25 2020-10-20 가부시키가이샤 스크린 홀딩스 Substrate processing method and substrate processing apparatus
US10854479B2 (en) 2016-03-25 2020-12-01 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing device
WO2017164185A1 (en) * 2016-03-25 2017-09-28 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2019201118A (en) * 2018-05-17 2019-11-21 信越半導体株式会社 Evaluation method for semiconductor substrate
JP2018170523A (en) * 2018-07-04 2018-11-01 株式会社Sumco Method for manufacturing silicon wafer
CN112289682A (en) * 2020-10-30 2021-01-29 上海华力微电子有限公司 Method for forming grid oxide layer
CN112289682B (en) * 2020-10-30 2023-11-17 上海华力微电子有限公司 Method for forming gate oxide layer
JP7193026B1 (en) 2022-05-13 2022-12-20 信越半導体株式会社 Cleaning liquid and wafer cleaning method
WO2023218828A1 (en) * 2022-05-13 2023-11-16 信越半導体株式会社 Cleaning solution and wafer cleaning method
JP2023168146A (en) * 2022-05-13 2023-11-24 信越半導体株式会社 Cleaning liquid, and cleaning method of wafer

Also Published As

Publication number Publication date
JP3957268B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US6513538B2 (en) Method of removing contaminants from integrated circuit substrates using cleaning solutions
JP2857042B2 (en) Cleaning liquid for silicon semiconductor and silicon oxide
Ohmi et al. Native Oxide Growth and Organic Impurity Removal on Si Surface with Ozone‐Injected Ultrapure Water
KR101140970B1 (en) Improved acidic chemistry for post-cmp cleaning
JP3046208B2 (en) Cleaning liquid for silicon wafer and silicon oxide
Hattori et al. Contamination Removal by Single‐Wafer Spin Cleaning with Repetitive Use of Ozonized Water and Dilute HF
JP4498726B2 (en) Washing soap
JP3957268B2 (en) Semiconductor substrate cleaning method
EP0718872B1 (en) Semiconductor substrate cleaning method
JP3957264B2 (en) Semiconductor substrate cleaning method
KR19980047233A (en) How to dry wafers directly from chemical containers without rinsing with extremely clean water
US8288291B2 (en) Method for removal of bulk metal contamination from III-V semiconductor substrates
JP4817887B2 (en) Semiconductor substrate cleaning method
KR101643124B1 (en) Cleaning water for wafer and method for cleaning wafer
JP3325739B2 (en) Silicon wafer cleaning method
JPH03208900A (en) Washing method for silicon wafer
JPH03208899A (en) Washing method for silicon wafer
JPH1017533A (en) High-purity ethylenediamine di-ortho-hydroxyphenylacetic acid and surface-treating composition containing the acid
JP2001326209A (en) Method for treating surface of silicon substrate
JP3649534B2 (en) Silicon wafer and silicon oxide cleaning solution
JP4179098B2 (en) Semiconductor wafer cleaning method
CN115989192B (en) Broken polysilicon block and its manufacturing method
JP3397117B2 (en) Cleaning water and cleaning method for electronic materials
JPH0750281A (en) Cleaning method for silicon wafer
JP2003316028A (en) Resist residue remover and cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Ref document number: 3957268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term