JP2003214655A - Desiccant air conditioner - Google Patents

Desiccant air conditioner

Info

Publication number
JP2003214655A
JP2003214655A JP2002012591A JP2002012591A JP2003214655A JP 2003214655 A JP2003214655 A JP 2003214655A JP 2002012591 A JP2002012591 A JP 2002012591A JP 2002012591 A JP2002012591 A JP 2002012591A JP 2003214655 A JP2003214655 A JP 2003214655A
Authority
JP
Japan
Prior art keywords
air
temperature
sensible heat
heater
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002012591A
Other languages
Japanese (ja)
Inventor
Akio Kodama
昭雄 児玉
Tsutomu Hirose
勉 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2002012591A priority Critical patent/JP2003214655A/en
Publication of JP2003214655A publication Critical patent/JP2003214655A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1076Rotary wheel comprising three rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desiccant air conditioner which produces air having extremely low humidity by using an adsorption type dehumidifying means, provides low-temperature supply air when a vaporizing-cooling means is combined with it, and then provides high-quality air even if the humidity of the outside air rises. <P>SOLUTION: The outside air is dehumidified by a first dehumidifying rotor 1. The temperature of the outside air A is lowered by carrying out sensible heat exchange between the air with temperature lowered by an evaporating cooler 17 and the dried air B with temperature raised by the dehumidification. The dried air C with temperature lowered is further dehumidified by a second dehumidifying rotor 10. The dried air D with temperature raised by the dehumidification is cooled by carrying out sensible heat exchange with the air in a room, and supplied into the room. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、除湿した空気を水
の気化冷却により温度を下げて供給するデシカント空調
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desiccant air conditioner for supplying dehumidified air at a reduced temperature by evaporative cooling of water.

【0002】[0002]

【従来の技術】デシカント空調装置はフロンを使用しな
い冷房装置であり、また除湿運転を行っても供給空気の
温度が下がらないため梅雨時期でも快適な空気を供給可
能にすることができるということで最近注目を集めてい
る。また駆動エネルギー源として100℃以下の比較的
温度の低い廃熱を使うことができ、省エネルギー効果の
高い空調装置として切望されている。
2. Description of the Related Art A desiccant air conditioner is a cooling device that does not use CFCs, and since the temperature of the supplied air does not drop even after dehumidifying operation, it is possible to supply comfortable air even during the rainy season. It has been attracting attention recently. Further, since waste heat having a relatively low temperature of 100 ° C. or lower can be used as a driving energy source, it is earnestly desired as an air conditioner having a high energy saving effect.

【0003】図3に一般的なオープンサイクルデシカン
ト空調装置の概要を示す。図3において1は除湿ロータ
ーであり、セラミック繊維紙やガラス繊維紙を段加工
(コルゲート加工)して平らな紙とともに巻回し、蜂の
巣状(ハニカム状)に形成し、その上にシリカゲルを合
成担持させたり、ゼオライトを担持させたものである。
FIG. 3 shows an outline of a general open cycle desiccant air conditioner. In FIG. 3, reference numeral 1 is a dehumidifying rotor, which is formed by corrugating ceramic fiber paper or glass fiber paper and winding it together with flat paper to form a honeycomb (honeycomb) shape, and synthesizing silica gel thereon. Or carrying zeolite.

【0004】また除湿ローター1は吸着ゾーン2と脱着
ゾーン3とに分割され、連続的に吸着・脱着が行われる
ように回転可能に設けられている。
The dehumidifying rotor 1 is divided into an adsorption zone 2 and a desorption zone 3 and is rotatably provided so that adsorption / desorption can be continuously performed.

【0005】4は顕熱交換ローターで、アルミニウムや
ステンレス鋼あるいは銅などの金属シートあるいはポリ
プロピレンやポリエステルなどの合成樹脂シートをコル
ゲート加工して平らなシートとともに巻回し、ハニカム
状に形成したものである。
Reference numeral 4 denotes a sensible heat exchange rotor, which is formed by corrugating a metal sheet of aluminum, stainless steel, copper or the like or a synthetic resin sheet of polypropylene, polyester or the like, and winding the sheet together with a flat sheet to form a honeycomb shape. .

【0006】また顕熱交換ローター4は相互に熱交換を
行う第1流路5および第2流路6に分割され、第1流路
5と第2流路6との間で連続的に熱交換が行われるよう
に回転可能に設けられている。
Further, the sensible heat exchange rotor 4 is divided into a first flow path 5 and a second flow path 6 which exchange heat with each other, and heat is continuously generated between the first flow path 5 and the second flow path 6. It is rotatably mounted so that it can be replaced.

【0007】7および8は蒸発冷却器であり、9は加熱
器である。加熱器9には太陽熱温水器やボイラーからの
蒸気あるいは廃熱源からの湯などが供給され、ここを通
過する空気を加熱する。
Reference numerals 7 and 8 are evaporative coolers, and 9 is a heater. The heater 9 is supplied with steam from a solar water heater or a boiler or hot water from a waste heat source, and heats the air passing therethrough.

【0008】そして除湿ローター1の吸着ゾーン2を出
た高温低湿空気が顕熱交換器4の第1流路5に入って冷
却され、第1流路5を出た空気を蒸発冷却器7でさらに
冷却して室内へ供給するよう構成されている。
The high-temperature low-humidity air that has exited the adsorption zone 2 of the dehumidifying rotor 1 enters the first flow path 5 of the sensible heat exchanger 4 and is cooled, and the air that exits the first flow path 5 is evaporated and cooled by the evaporative cooler 7. Further, it is configured to be cooled and supplied to the room.

【0009】また室内の空気は蒸発冷却器8で冷却され
て顕熱交換器4の第2流路6に入り、顕熱交換ローター
4を冷却し、第2流路を出て温度が高くなった空気を加
熱器9でさらに温め、除湿ローター1の脱着ゾーン3に
通して除湿ローター1に吸着した湿気を脱着する。
Further, the air in the room is cooled by the evaporative cooler 8 and enters the second flow passage 6 of the sensible heat exchanger 4, cools the sensible heat exchange rotor 4, and exits the second flow passage to rise in temperature. The heated air is further heated by the heater 9 and passed through the desorption zone 3 of the dehumidifying rotor 1 to desorb the moisture adsorbed on the dehumidifying rotor 1.

【0010】このようにして従来のデシカント空調装置
はフロンなどの環境に悪影響を及ぼすガスを使用するこ
となく、加熱器9に投入される熱エネルギーで冷房を行
うことができる。
In this way, the conventional desiccant air conditioner can perform cooling with the heat energy input to the heater 9 without using a gas such as CFCs which adversely affects the environment.

【0011】ここで図4に上記の図3の従来のデシカン
ト空調装置の特性を示す。ここでは加熱器9を通過した
空気の温度をT=60℃とT=80℃にして実測し
た。またここで外気温度T=35.0℃、室内からの
還気温度T=26.7℃であった。図4の横軸は外気
の絶対湿度である。つまり外気の絶対湿度が高くなるに
つれて、成績係数(COP)や冷却効果(CE)が激減
しているのがわかる。
FIG. 4 shows the characteristics of the conventional desiccant air conditioner shown in FIG. Here, the temperature of the air passing through the heater 9 was measured with T Y = 60 ° C. and T 8 = 80 ° C. Further, here, the outside air temperature T 1 was 35.0 ° C., and the return air temperature T 5 from the room was T 2 = 26.7 ° C. The horizontal axis of FIG. 4 is the absolute humidity of the outside air. That is, it can be seen that the coefficient of performance (COP) and the cooling effect (CE) are drastically reduced as the absolute humidity of the outside air increases.

【0012】これに対し発明者等は特開2001−27
2055号公報に記載のものを提案した。つまり図5に
示すように図3に示された従来例のものに、もう一段除
湿と顕熱交換を行うようにしたものを発明した。
On the other hand, the inventor et al.
The one described in Japanese Patent No. 2055 was proposed. That is, as shown in FIG. 5, the inventor of the prior art shown in FIG. 3 is provided with another stage of dehumidification and sensible heat exchange.

【0013】以下この例について説明する。上記図3を
使って説明した従来のデシカント空調装置と同一の構成
部分については同一の番号を付与し、重複説明を避け
る。
This example will be described below. The same components as those in the conventional desiccant air conditioner described with reference to FIG. 3 are designated by the same reference numerals to avoid redundant description.

【0014】図5において1は除湿ローターであり、吸
着ゾーン2と脱着ゾーン3とに分割され、連続的に吸着
・脱着が行われるように回転可能に設けられている。
In FIG. 5, reference numeral 1 denotes a dehumidifying rotor, which is divided into an adsorption zone 2 and a desorption zone 3 and is rotatably provided so that adsorption / desorption can be continuously performed.

【0015】4は顕熱交換ローターで、相互に熱交換を
行う第1流路5および第2流路6に分割され、第1流路
5と第2流路6との間で連続的に熱交換が行われるよう
に回転可能に設けられている。
Reference numeral 4 denotes a sensible heat exchange rotor, which is divided into a first flow path 5 and a second flow path 6 for exchanging heat with each other, and is continuously provided between the first flow path 5 and the second flow path 6. It is rotatably mounted for heat exchange.

【0016】7および8は蒸発冷却器であり、9は加熱
器である。加熱器9には太陽熱温水器やボイラーからの
蒸気が供給され、ここを通過する空気を加熱する。
Reference numerals 7 and 8 are evaporative coolers, and 9 is a heater. The heater 9 is supplied with steam from a solar water heater or a boiler to heat the air passing therethrough.

【0017】10は除湿ローターであり、除湿ローター
1と同じものである。また除湿ローター10は吸着ゾー
ン11と脱着ゾーン12とに分割され、連続的に吸着・
脱着が行われるように回転可能に設けられている。
Dehumidifying rotor 10 is the same as dehumidifying rotor 1. Further, the dehumidifying rotor 10 is divided into an adsorption zone 11 and a desorption zone 12 to continuously adsorb and
It is rotatably mounted so as to be detached.

【0018】13は顕熱交換ローターであり、顕熱交換
ローター4と同じものである。また顕熱交換ローター1
3は相互に熱交換を行う第1流路14および第2流路1
5に分割され、第1流路14と第2流路15との間で連
続的に熱交換が行われるように回転可能に設けられてい
る。
A sensible heat exchange rotor 13 is the same as the sensible heat exchange rotor 4. Also sensible heat exchange rotor 1
3 is a first flow path 14 and a second flow path 1 which exchange heat with each other.
It is divided into five and is rotatably provided so that heat is continuously exchanged between the first flow passage 14 and the second flow passage 15.

【0019】16は加熱器であり、加熱器9と同じもの
である。加熱器16には加熱器9と同様太陽熱温水器や
ボイラーからの蒸気あるいは廃熱源からの湯などが供給
され、ここを通過する空気を加熱する。
Reference numeral 16 denotes a heater, which is the same as the heater 9. Like the heater 9, the heater 16 is supplied with steam from a solar water heater or a boiler or hot water from a waste heat source to heat the air passing therethrough.

【0020】そして除湿ローター1の吸着ゾーン2を出
た高温低湿空気が顕熱交換器4の第1流路5に入って冷
却され、第1流路5を出た空気を除湿ローター10の吸
着ゾーン11に入れて除湿し、吸着ゾーン11を出た空
気を顕熱交換ローター13の第1流路14を通して冷却
した後、蒸発冷却器7でさらに冷却して室内へ供給する
よう構成されている。
The high-temperature low-humidity air that has left the adsorption zone 2 of the dehumidifying rotor 1 enters the first flow path 5 of the sensible heat exchanger 4 and is cooled, and the air that has flowed out of the first flow path 5 is adsorbed by the dehumidifying rotor 10. It is configured such that it is put in the zone 11 to be dehumidified, and the air that has left the adsorption zone 11 is cooled through the first flow path 14 of the sensible heat exchange rotor 13 and then further cooled by the evaporative cooler 7 and supplied to the room. .

【0021】また室内の空気は蒸発冷却器8で冷却され
て顕熱交換器13の第2流路15に入り、加熱器16を
通って除湿ローター10の脱着ゾーン12に入った後、
大気へ放出される。
The air in the room is cooled by the evaporative cooler 8 and enters the second flow path 15 of the sensible heat exchanger 13. After passing through the heater 16 and entering the desorption zone 12 of the dehumidifying rotor 10,
Released into the atmosphere.

【0022】顕熱交換器4の第2流路6には大気が通さ
れ、第2流路6を出た後に加熱器9を通って、除湿ロー
ター1の脱着ゾーン3を出て大気へ放出される。
Atmosphere is passed through the second flow path 6 of the sensible heat exchanger 4, and after passing through the second flow path 6, passes through the heater 9 and exits the desorption zone 3 of the dehumidifying rotor 1 and is released to the atmosphere. To be done.

【0023】ここで図6に上記の図5の従来のデシカン
ト空調装置の特性を示す。ここでも加熱器9を通過した
空気の温度を60℃と80℃にして実測した。図6の横
軸は外気の絶対湿度である。これによって判るように外
気の絶対湿度が高くなるにつれて、成績係数(COP)
や冷却効果(CE)が減少するのが、図4の特性ほど大
きくないのがわかる。つまり外気の絶対湿度の増加に対
する特性が改善されている。
FIG. 6 shows the characteristics of the conventional desiccant air conditioner shown in FIG. Also in this case, the temperature of the air passing through the heater 9 was measured at 60 ° C. and 80 ° C. The horizontal axis of FIG. 6 is the absolute humidity of the outside air. As can be seen, the coefficient of performance (COP) increases as the absolute humidity of the outside air increases.
It can be seen that the decrease in the cooling effect (CE) and the cooling effect (CE) are not so large as the characteristics of FIG. In other words, the characteristics with respect to the increase in the absolute humidity of the outside air are improved.

【0024】[0024]

【発明が解決しようとする課題】従来のデシカント空調
装置は以上のように駆動エネルギー源として太陽熱温水
器からの湯や廃熱源からの湯を用いることができ、さら
にフロンを使用しないので環境に対して悪影響を及ぼす
ことが小さく好ましいのではあるが、供給空気の湿度は
外気の空気条件によって決まる要素が大きく、外気の湿
度が高いと供給空気の湿度をあまり下げることができな
いという問題がある。
As described above, the conventional desiccant air conditioner can use hot water from a solar water heater or hot water from a waste heat source as a driving energy source, and does not use CFCs. However, there is a problem that the humidity of the supply air cannot be lowered so much when the humidity of the outside air is high, because the humidity of the supply air largely depends on the air condition of the outside air.

【0025】つまり吸着式の除湿手段は被処理空気と脱
着空気との相対湿度の差を利用して被処理空気の除湿を
行っているのであるが、被処理空気中の湿気を吸着した
時に吸着熱を発生し、ある値以上空気の乾燥度を上げる
ことができず、このため乾燥空気内で水を気化して温度
を下げるのにも限度があった。
That is, the adsorption type dehumidifying means dehumidifies the air to be treated by utilizing the difference in relative humidity between the air to be treated and the desorbed air. Since heat was generated and the dryness of the air could not be increased beyond a certain value, there was a limit in lowering the temperature by vaporizing water in the dry air.

【0026】本発明は以上の点に着目し、吸着熱の影響
を減少し、外気の湿度が高くても十分に湿度の低い空気
をつくり、これに気化冷却手段を組合せた場合には低温
の供給空気を得ることの可能なデシカント空調装置を提
供しようとするものである。
The present invention pays attention to the above points, reduces the influence of heat of adsorption, and creates air of sufficiently low humidity even when the humidity of the outside air is high. An object of the present invention is to provide a desiccant air conditioner capable of obtaining supply air.

【0027】[0027]

【課題を解決するための手段】本件発明は以上のような
課題を解決するため、外気を第1の除湿手段で除湿し、
除湿によって温度の上がった乾燥空気を外気を気化冷却
した空気と顕熱交換することによって温度を下げ、温度
の下がった乾燥空気をさらに第2の除湿手段で除湿し、
除湿によって温度の上がった乾燥空気を室内空気と顕熱
交換することによって温度を下げ、室内へ供給するよう
にした。
In order to solve the above problems, the present invention dehumidifies the outside air by the first dehumidifying means,
The dry air whose temperature has risen due to dehumidification is sensible heat-exchanged with the air obtained by evaporating and cooling the outside air to lower the temperature, and the dry air whose temperature has dropped is further dehumidified by the second dehumidifying means,
The dry air whose temperature has risen due to dehumidification is sensible heat exchanged with indoor air to lower the temperature and supply it to the room.

【0028】[0028]

【発明の実施の形態】本発明の請求項1に記載の発明
は、外気を第1の除湿手段で除湿し、外気を蒸発冷却し
た空気と除湿によって温度の上がった乾燥空気とを顕熱
交換することによって乾燥空気の温度を下げ、温度の下
がった乾燥空気をさらに第2の除湿手段で除湿し、除湿
によって温度の上がった乾燥空気を室内空気と顕熱交換
することによって温度を下げ、室内へ供給するようにし
たものであり、第1の除湿手段で温度が上昇した空気を
一旦冷却して第2の除湿手段に入れているため極めて高
い乾燥度の空気を供給可能であるという作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is that the outside air is dehumidified by the first dehumidifying means, and the outside air is evaporatively cooled and the dry air whose temperature is raised by dehumidification is sensible heat exchanged. To lower the temperature of the dry air, to further dehumidify the lowered dry air by the second dehumidifying means, and to lower the temperature by sensible heat exchanging the dry air whose temperature has risen due to dehumidification with the room air. Since the air whose temperature has risen by the first dehumidifying means is once cooled and put into the second dehumidifying means, it is possible to supply air of extremely high dryness. Have.

【0029】[0029]

【実施例】以下本発明のデシカント空調装置の実施例を
図に沿って詳細に説明する。また上記に説明の図3及び
図5に示した従来のデシカント空調装置と同一の構成部
分については同一の番号を付与し、重複説明を避ける。
Embodiments of the desiccant air conditioner of the present invention will be described in detail below with reference to the drawings. Further, the same components as those of the conventional desiccant air conditioner shown in FIGS. 3 and 5 described above are designated by the same reference numerals to avoid redundant description.

【0030】図1において1は除湿ローターであり、吸
着ゾーン2と脱着ゾーン3とに分割され、連続的に吸着
・脱着が行われるように回転可能に設けられている。
In FIG. 1, reference numeral 1 denotes a dehumidifying rotor, which is divided into an adsorption zone 2 and a desorption zone 3 and is rotatably provided so that adsorption / desorption can be continuously performed.

【0031】4は顕熱交換ローターで、相互に熱交換を
行う第1流路5および第2流路6に分割され、第1流路
5と第2流路6との間で連続的に熱交換が行われるよう
に回転可能に設けられている。
Reference numeral 4 denotes a sensible heat exchange rotor, which is divided into a first flow passage 5 and a second flow passage 6 for exchanging heat with each other, and is continuously provided between the first flow passage 5 and the second flow passage 6. It is rotatably mounted for heat exchange.

【0032】7および8は蒸発冷却器であり、9は加熱
器である。加熱器9には太陽熱温水器やボイラーからの
蒸気が供給され、ここを通過する空気を加熱する。
Reference numerals 7 and 8 are evaporative coolers, and 9 is a heater. The heater 9 is supplied with steam from a solar water heater or a boiler to heat the air passing therethrough.

【0033】10は除湿ローターであり、除湿ローター
1と同じものである。また除湿ローター10は吸着ゾー
ン11と脱着ゾーン12とに分割され、連続的に吸着・
脱着が行われるように回転可能に設けられている。
Reference numeral 10 denotes a dehumidifying rotor, which is the same as the dehumidifying rotor 1. Further, the dehumidifying rotor 10 is divided into an adsorption zone 11 and a desorption zone 12 to continuously adsorb and
It is rotatably mounted so as to be detached.

【0034】13は顕熱交換ローターであり、顕熱交換
ローター4と同じものである。また顕熱交換ローター1
3は相互に熱交換を行う第1流路14および第2流路1
5に分割され、第1流路14および第2流路15間で連
続的に熱交換が行われるように回転可能に設けられてい
る。
A sensible heat exchange rotor 13 is the same as the sensible heat exchange rotor 4. Also sensible heat exchange rotor 1
3 is a first flow path 14 and a second flow path 1 which exchange heat with each other.
It is divided into five parts and is rotatably provided so that heat is continuously exchanged between the first flow path 14 and the second flow path 15.

【0035】16は加熱器であり、加熱器9と同じもの
である。加熱器16には加熱器9と同様太陽熱温水器や
ボイラーからの蒸気あるいは廃熱源からの湯が供給さ
れ、ここを通過する空気を加熱する。
Reference numeral 16 is a heater, which is the same as the heater 9. Like the heater 9, the heater 16 is supplied with steam from a solar water heater or a boiler or hot water from a waste heat source to heat the air passing therethrough.

【0036】そして除湿ローター1の吸着ゾーン2を出
た高温低湿空気が顕熱交換器4の第1流路5に入って冷
却され、第1流路5を出た空気を除湿ローター10の吸
着ゾーン11に入れて除湿し、吸着ゾーン11を出た空
気を顕熱交換ローター13の第1流路14を通して冷却
した後、蒸発冷却器7でさらに冷却して室内へ供給する
よう構成されている。
The high-temperature low-humidity air that has left the adsorption zone 2 of the dehumidifying rotor 1 enters the first flow path 5 of the sensible heat exchanger 4 and is cooled, and the air that has flowed out of the first flow path 5 is adsorbed by the dehumidifying rotor 10. It is configured such that it is put in the zone 11 to be dehumidified, and the air that has left the adsorption zone 11 is cooled through the first flow path 14 of the sensible heat exchange rotor 13 and then further cooled by the evaporative cooler 7 and supplied to the room. .

【0037】また室内の空気は蒸発冷却器8で冷却され
て顕熱交換器13の第2流路15に入り、加熱器16を
通って除湿ローター10の脱着ゾーン12に入った後、
大気へ放出される。
Further, the air in the room is cooled by the evaporative cooler 8 and enters the second flow path 15 of the sensible heat exchanger 13, and after passing through the heater 16 and entering the desorption zone 12 of the dehumidifying rotor 10,
Released into the atmosphere.

【0038】顕熱交換器4の第2流路6には大気が通さ
れ、第2流路6を出た後に加熱器9を通って、除湿ロー
ター1の脱着ゾーン3を出て大気へ放出される。17は
蒸発冷却器であり、外気に水を噴霧し水の気化熱によっ
て外気の温度を下げるものである。
Atmosphere is passed through the second flow path 6 of the sensible heat exchanger 4, and after passing through the second flow path 6, passes through the heater 9 and exits the desorption zone 3 of the dehumidifying rotor 1 and is released to the atmosphere. To be done. An evaporative cooler 17 sprays water to the outside air and lowers the temperature of the outside air by the heat of vaporization of the water.

【0039】本発明のデシカント空調は以上のように構
成され、次にその動作について説明する。
The desiccant air conditioner of the present invention is constructed as described above, and its operation will be described below.

【0040】先ず外気Aを除湿ローター1の吸着ゾーン
2へ通し、吸着熱で温度の上がった乾燥空気Bを顕熱交
換ローター4の第1流路5に通して温度を下げ空気Cと
する。例えば温度35℃、相対湿度60%程度の空気A
(外気)が温度68℃、相対湿度8%程度まで乾燥した
空気Bとなる。顕熱交換ローター4では顕熱のみ下がる
ので、空気線図上では空気Bから空気Cへ水平に移動す
る。
First, the outside air A is passed through the adsorption zone 2 of the dehumidifying rotor 1, and the dry air B whose temperature has been raised by the heat of adsorption is passed through the first flow path 5 of the sensible heat exchange rotor 4 to reduce the temperature to air C. For example, air A at a temperature of 35 ° C and a relative humidity of about 60%
(Outside air) becomes the air B dried to a temperature of 68 ° C. and a relative humidity of about 8%. In the sensible heat exchange rotor 4, only the sensible heat decreases, so that the air moves horizontally from the air B to the air C on the psychrometric chart.

【0041】温度の下がった乾燥空気を除湿ローター1
0の吸着ゾーン11に通し、さらに乾燥度を上げる。吸
着ゾーン11で吸着熱によって温度64℃程度まで温度
が上がり、相対湿度5%程度まで乾燥した乾燥空気Dを
顕熱交換ローター13の第1流路14に通し、温度37
℃程度まで温度を下げ空気Eとする。
The dehumidified rotor 1 is used for dehumidifying dry air whose temperature has dropped.
It is passed through the adsorption zone 11 of 0 to further increase the dryness. In the adsorption zone 11, the temperature rises to about 64 ° C. due to the heat of adsorption and the dry air D dried to about 5% relative humidity is passed through the first flow path 14 of the sensible heat exchange rotor 13 to set the temperature to 37
The temperature is lowered to about 0 ° C. and air E is used.

【0042】温度の下がって、極めて乾燥度の高い空気
Eを蒸発冷却器7に通して水の気化熱による冷却を行
い、温度17℃、相対湿度90%の空気Fとして室内へ
供給する。
When the temperature is lowered, the air E having an extremely high degree of dryness is passed through the evaporative cooler 7 to be cooled by the heat of vaporization of water, and is supplied indoors as air F having a temperature of 17 ° C. and a relative humidity of 90%.

【0043】室内で温度28℃まで温度の上昇した空気
Gは絶対湿度は殆ど上昇せず、よって相対湿度は50%
近くまで下がる。この空気Gを蒸発冷却器8に通し、相
対湿度がほぼ100%になるようにすると温度は20℃
まで下がり空気Hとなる。
The absolute humidity of the air G whose temperature has risen up to 28 ° C. indoors hardly rises, so that the relative humidity is 50%.
Go down to near. When this air G is passed through the evaporative cooler 8 so that the relative humidity is almost 100%, the temperature is 20 ° C.
Down to air H.

【0044】この空気Hを顕熱交換ローター13の第2
流路15に通し、空気Hによって顕熱交換ローター13
を冷却すると、空気Hは反対に温度が57℃まで上昇し
て空気Iとなる。この空気Iは除湿ローター10の脱着
に必用な風量に応じて一部大気へ放出してもよい。つま
り加熱器16を通過する風量を下げた方が加熱器16に
供給される熱量の低減が期待でき、冷房成績係数(以下
COPと書く)及び冷却効果(以下CEと書く)が上が
る。
This air H is supplied to the second side of the sensible heat exchange rotor 13.
The sensible heat exchange rotor 13 is passed by the air H through the flow path 15.
When H is cooled, the temperature of the air H, on the contrary, rises to 57 ° C. and becomes the air I. This air I may be partly released to the atmosphere according to the amount of air required for desorption of the dehumidifying rotor 10. That is, lowering the amount of air passing through the heater 16 can be expected to reduce the amount of heat supplied to the heater 16, and the cooling performance coefficient (hereinafter COP) and the cooling effect (hereinafter CE) are increased.

【0045】空気Iは加熱器16を通過して温度が80
℃まで上昇し、空気Jとなる。この空気Jを除湿ロータ
ー10の脱着ゾーン12に通して、除湿ローター10に
吸着した湿気を脱着する。脱着後の空気は温度が50℃
まで下がり、相対湿度が27%まで上昇して空気Kとな
る。この空気Kは大気へ放出される。
The air I passes through the heater 16 and has a temperature of 80
The temperature rises to ℃ and becomes air J. This air J is passed through the desorption zone 12 of the dehumidifying rotor 10 to desorb the moisture adsorbed on the dehumidifying rotor 10. Air after desorption has a temperature of 50 ° C
And the relative humidity rises to 27% to become air K. This air K is released to the atmosphere.

【0046】また大気Aは蒸発冷却器17で冷却されて
顕熱交換ローター4の第2流路6を通り、顕熱交換ロー
ター4を冷却する。逆に大気Aは顕熱交換ローター4よ
り熱せられて温度が62℃まで上昇し、空気Lとなる。
この空気Lは加熱器9の能力に応じて一部大気へ放出し
てもよい。つまり加熱器9の能力が低い場合には加熱器
9を通過する風量を下げた方が加熱器9による温度上昇
を期待でき、脱着特性が上がる。
The atmosphere A is cooled by the evaporative cooler 17 and passes through the second passage 6 of the sensible heat exchange rotor 4 to cool the sensible heat exchange rotor 4. On the contrary, the atmosphere A is heated by the sensible heat exchange rotor 4 and its temperature rises to 62 ° C., and becomes the air L.
The air L may be partially released to the atmosphere depending on the capacity of the heater 9. That is, when the capacity of the heater 9 is low, lowering the amount of air passing through the heater 9 can be expected to increase the temperature of the heater 9, and the desorption characteristic is improved.

【0047】空気Lは加熱器9を通過して温度が80℃
まで上昇し、空気Mとなる。この空気Mを除湿ローター
1の脱着ゾーン3に通して、除湿ローター1に吸着した
湿気を脱着する。脱着後の空気は温度が40℃まで下が
り、相対湿度が60%まで上昇して空気Nとなる。この
空気Nは大気へ放出される。
The air L passes through the heater 9 and has a temperature of 80 ° C.
To become air M. The air M is passed through the desorption zone 3 of the dehumidifying rotor 1 to desorb the moisture adsorbed on the dehumidifying rotor 1. The temperature of the desorbed air drops to 40 ° C. and the relative humidity rises to 60% to become air N. This air N is released to the atmosphere.

【0048】このように本発明のデシカント空調装置は
除湿ローター1を通って乾燥した空気を大気を蒸発冷却
器17によって冷却した空気によって十分に冷却した後
にさらに除湿するようにしているため、極めて乾燥度の
高い空気を発生することができ、この乾燥空気を用いる
と蒸発冷却器7の効果が高くなって温度の低い空気を供
給することができる。
As described above, in the desiccant air conditioner of the present invention, the air dried through the dehumidifying rotor 1 is sufficiently cooled by the air cooled by the evaporative cooler 17 and then further dehumidified. It is possible to generate a high degree of air, and by using this dry air, the effect of the evaporative cooler 7 is enhanced, and air of a low temperature can be supplied.

【0049】次に本発明のデシカント空調装置の実験装
置を作成して実測したデータを図2に示す。この図2で
=80℃あるいは60℃というのは加熱器9の出口
空気Mの温度が80℃あるいは60℃という意味であ
り、T=80℃あるいは60℃というのは加熱器15
の出口空気Mの温度が80℃あるいは60℃という意味
である。さらにTは外気温度、Tは室内還気温度、
は室内還気の絶対湿度を示している。
Next, FIG. 2 shows data obtained by actually making an experimental device for the desiccant air conditioner of the present invention. In this FIG. 2, T Y = 80 ° C. or 60 ° C. means that the temperature of the outlet air M of the heater 9 is 80 ° C. or 60 ° C., and T 8 = 80 ° C. or 60 ° C. means the heater 15
It means that the temperature of the outlet air M is 80 ° C. or 60 ° C. Furthermore, T 1 is the outside air temperature, T 5 is the indoor return air temperature,
H 5 indicates the absolute humidity of the indoor return air.

【0050】また図2も横軸は外気の絶対湿度であり、
縦軸はCOPとCEである。外気の絶対湿度が高い場合
には除湿ローター1,10の吸着熱が大きく、乾燥空気
の温度が高くなるが本発明のデシカント空調装置の場合
は除湿ローター1の吸着熱が外気Aを蒸発冷却器17に
よって冷却した空気によって冷却するため、除湿ロータ
ー1によってできた乾燥空気Bの温度が十分に下げら
れ、除湿ローター10の吸着効果が高くなる。
Also in FIG. 2, the horizontal axis is the absolute humidity of the outside air,
The vertical axis represents COP and CE. When the absolute humidity of the outside air is high, the heat of adsorption of the dehumidifying rotors 1 and 10 is large, and the temperature of the dry air becomes high. However, in the case of the desiccant air conditioner of the present invention, the heat of adsorption of the dehumidifying rotor 1 evaporates the outside air A to evaporative cooler. Since it is cooled by the air cooled by 17, the temperature of the dry air B formed by the dehumidifying rotor 1 is sufficiently lowered, and the adsorption effect of the dehumidifying rotor 10 is enhanced.

【0051】よって図2で示されたとおり、従来のデシ
カント空調装置と比較して外気の絶対湿度が上昇しても
COPやCEが大幅に低下することがない。
Therefore, as shown in FIG. 2, COP and CE do not significantly decrease even if the absolute humidity of the outside air rises as compared with the conventional desiccant air conditioner.

【0052】[0052]

【発明の効果】本発明のデシカント空調装置は上記の如
く構成したので、外気の絶対湿度が高くなっても冷房能
力が著しく低下することなく、供給空気の質を改善する
ことができるものである。この特性は夏場において高温
・多湿になる我が国には適した特性である。
Since the desiccant air conditioner of the present invention is constructed as described above, it is possible to improve the quality of the supplied air without significantly reducing the cooling capacity even if the absolute humidity of the outside air becomes high. . This characteristic is suitable for Japan, which is hot and humid in summer.

【0053】さらに本発明のデシカント空調装置は加熱
器に太陽熱ヒーターや排熱源から供給される熱水を用い
ることによって、冷房時の実質的な消費電力を極めて小
さなものにすることができる。
Further, in the desiccant air conditioner of the present invention, by using hot water supplied from a solar heater or an exhaust heat source for the heater, the substantial power consumption during cooling can be made extremely small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のデシカント空調装置の実施例を示す説
明図である。
FIG. 1 is an explanatory view showing an embodiment of a desiccant air conditioner of the present invention.

【図2】本発明のデシカント空調装置の特性を示す効率
線図である。
FIG. 2 is an efficiency diagram showing characteristics of the desiccant air conditioner of the present invention.

【図3】第1従来例のデシカント空調装置を示す説明図
である。
FIG. 3 is an explanatory diagram showing a desiccant air conditioner of a first conventional example.

【図4】第1従来例のデシカント空調装置の特性を示す
効率線図である。
FIG. 4 is an efficiency diagram showing characteristics of the desiccant air conditioner of the first conventional example.

【図5】第2従来例のデシカント空調装置を示す説明図
である。
FIG. 5 is an explanatory diagram showing a desiccant air conditioner of a second conventional example.

【図6】第2従来例のデシカント空調装置の特性を示す
効率線図である。
FIG. 6 is an efficiency diagram showing characteristics of a desiccant air conditioner of a second conventional example.

【符号の説明】[Explanation of symbols]

1、10 除湿ローター 2、11 吸着ゾーン 3、12 脱着ゾーン 4、13 顕熱交換ローター 5、14 第1流路 6、15 第2流路 7、8、17 蒸発冷却器 9、16 加熱器 1, 10 dehumidifying rotor 2, 11 adsorption zone 3, 12 Desorption zone 4, 13 Sensible heat exchange rotor 5, 14 First channel 6, 15 Second channel 7,8,17 Evaporative cooler 9, 16 heater

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】外気を第1の除湿手段で除湿し、外気を水
の気化熱で冷却した空気と除湿によって温度の上がった
乾燥空気とを顕熱交換することによって温度を下げ、温
度の下がった乾燥空気をさらに第2の除湿手段で除湿
し、除湿によって温度の上がった乾燥空気を室内空気と
顕熱交換することによって温度を下げ、室内へ供給する
ようにしたことを特徴とするデシカント空調装置。
1. The outside air is dehumidified by the first dehumidifying means, and the outside air is cooled by the heat of vaporization of water and the dry air whose temperature is raised by dehumidification is sensible heat-exchanged to lower and lower the temperature. Desiccant air conditioning, characterized in that the dried air is further dehumidified by the second dehumidifying means, and the temperature of the dried air whose temperature has risen due to dehumidification is exchanged with sensible heat of the indoor air to lower the temperature and supply the indoor air. apparatus.
【請求項2】乾燥空気を室内に供給する前に蒸発冷却手
段で冷却するようにした請求項1記載のデシカント空調
装置。
2. The desiccant air conditioner according to claim 1, wherein the evaporative cooling means cools the dry air before supplying it to the room.
JP2002012591A 2002-01-22 2002-01-22 Desiccant air conditioner Pending JP2003214655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002012591A JP2003214655A (en) 2002-01-22 2002-01-22 Desiccant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012591A JP2003214655A (en) 2002-01-22 2002-01-22 Desiccant air conditioner

Publications (1)

Publication Number Publication Date
JP2003214655A true JP2003214655A (en) 2003-07-30

Family

ID=27649759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012591A Pending JP2003214655A (en) 2002-01-22 2002-01-22 Desiccant air conditioner

Country Status (1)

Country Link
JP (1) JP2003214655A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087906A (en) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd Dehumidification element and its production method, and dehumidification apparatus and apparatus operation method
JP2012057874A (en) * 2010-09-09 2012-03-22 Osaka Gas Co Ltd Air-conditioning system
CN110486913A (en) * 2019-08-26 2019-11-22 珠海格力电器股份有限公司 Control method, device, equipment, air-conditioning and the storage medium of air-conditioning
US20220235950A1 (en) * 2021-01-25 2022-07-28 Broan-Nutone Llc Energy recovery wheel assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087906A (en) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd Dehumidification element and its production method, and dehumidification apparatus and apparatus operation method
JP4715082B2 (en) * 2003-09-18 2011-07-06 パナソニック株式会社 Dehumidifying element, method for manufacturing the same, dehumidifying device and method for operating the device
JP2012057874A (en) * 2010-09-09 2012-03-22 Osaka Gas Co Ltd Air-conditioning system
CN110486913A (en) * 2019-08-26 2019-11-22 珠海格力电器股份有限公司 Control method, device, equipment, air-conditioning and the storage medium of air-conditioning
US20220235950A1 (en) * 2021-01-25 2022-07-28 Broan-Nutone Llc Energy recovery wheel assembly

Similar Documents

Publication Publication Date Title
EP1188024B1 (en) A method for heat and humidity exchange between two air streams and apparatus therefor
CA2966046C (en) Dehumidification system and method
JP2005525528A (en) Sorptive heat exchanger and associated cooling sorption method
JP2009275955A (en) Desiccant air-conditioning device
US20080083232A1 (en) Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same
JP4340756B2 (en) Dehumidifying air conditioner
CN102721133B (en) Self-cooling type solid desiccant cooling dehumidification air-conditioning system
CN103140273A (en) A dehumidifier and a method of dehumidification
JP2002054838A (en) Dehumidifying air conditioning apparatus
JP2003214655A (en) Desiccant air conditioner
JP4436900B2 (en) Desiccant air conditioner
JP4414110B2 (en) Dehumidifying air conditioner
JP2002276998A (en) Desiccant dehumidifier
JP5917787B2 (en) Air conditioning system
JP2001330273A (en) Cooling system using solid absorbent
JP2002333161A (en) Dehumidifying air conditioning system
JP2002224529A (en) Dehumidification air conditioner
US11815286B1 (en) Dual-wheel HVAC system and method having improved dew point control
JP2003214654A (en) Desiccant air conditioner
JP2010054184A5 (en)
US11333371B1 (en) Dual-wheel HVAC system and method having improved dew point control
JP5266141B2 (en) Humidity conditioning air conditioner and air conditioning system
JP5258619B2 (en) Air conditioner
JP4339149B2 (en) Dehumidifying air conditioner
Rafique et al. Renewable and Sustainable Air Conditioning