JP2003213084A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2003213084A
JP2003213084A JP2002017895A JP2002017895A JP2003213084A JP 2003213084 A JP2003213084 A JP 2003213084A JP 2002017895 A JP2002017895 A JP 2002017895A JP 2002017895 A JP2002017895 A JP 2002017895A JP 2003213084 A JP2003213084 A JP 2003213084A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
formula
represented
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002017895A
Other languages
Japanese (ja)
Inventor
Tatsu Suzuki
達 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002017895A priority Critical patent/JP2003213084A/en
Publication of JP2003213084A publication Critical patent/JP2003213084A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition having characteristics of excellent fluidity and resistance to solder crack. <P>SOLUTION: This epoxy resin composition for sealing a semiconductor comprises (A) an epoxy resin, (B) a phenol resin, (C) an inorganic filler and (D) a curing accelerator as essential components. The epoxy resin (A) comprises a mixture of a phenol-aralkyl type epoxy resin having a biphenylene skeleton in which the content of the bicyclic body is 10-60%, with diglycidyl ether of 4,4'-biphenol, and is regulated so that the content of the diglycidyl ether of the 4,4'-biphenol is 1-50%. The phenol resin (B) has a biphenylene skeleton and is regulated so that the content of the bicyclic body is 20-75%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流動性、耐半田ク
ラック性に優れた特性を有する半導体封止用エポキシ樹
脂組成物及び半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor encapsulating epoxy resin composition and a semiconductor device having excellent fluidity and solder crack resistance.

【0002】[0002]

【従来の技術】IC、LSI等の半導体素子の封止方法
としてエポキシ樹脂組成物のトランスファー成形による
方法が低コスト、大量生産に適した方法として採用され
て久しく、信頼性もエポキシ樹脂や硬化剤であるフェノ
ール樹脂の改良により向上が図られてきた。しかし、近
年の電子機器の小型化、軽量化、高性能化の市場動向に
おいて、半導体の高集積化も年々進み、又半導体装置の
表面実装化が促進されるなかで、半導体封止用エポキシ
樹脂組成物への要求は益々厳しいものとなってきてい
る。このため、従来からのエポキシ樹脂組成物では解決
できない問題点も出てきている。特に半導体装置の表面
実装化が一般的になっている現状では、吸湿した半導体
装置が半田リフロー処理時に高温さらされ、半導体素子
やリードフレームとエポキシ樹脂組成物の硬化物との界
面に剥離が発生し、ひいては硬化物にクラックを生じる
など、半導体装置の信頼性を大きく損なう不良が生じ、
これらの不良の防止、即ち耐半田クラック性の向上が大
きな課題となっている。
2. Description of the Related Art As a method for encapsulating semiconductor elements such as ICs and LSIs, transfer molding of an epoxy resin composition has been adopted as a method suitable for mass production at low cost for a long time, and the reliability of epoxy resin and curing agent is high. The improvement has been made by improving the phenol resin. However, in recent market trends of miniaturization, weight reduction, and high performance of electronic devices, semiconductor integration has advanced year by year, and surface mounting of semiconductor devices has been promoted. The demands on the composition are becoming more and more stringent. Therefore, there are some problems that cannot be solved by conventional epoxy resin compositions. Especially in the current situation where surface mounting of semiconductor devices is becoming common, moisture-absorbed semiconductor devices are exposed to high temperatures during solder reflow processing, causing peeling at the interface between the semiconductor element or lead frame and the cured product of the epoxy resin composition. However, a defect that greatly deteriorates the reliability of the semiconductor device occurs, such as cracks in the cured product,
The prevention of these defects, that is, the improvement of solder crack resistance is a major issue.

【0003】更に環境負荷物質の撤廃の一環として、鉛
を含まない半田への代替が進められている。鉛を含まな
い半田では、従来の半田に比べ融点が高いため表面実装
時の半田リフロー温度は、従来より20℃程度高く、2
60℃が必要とされる。鉛を含まない半田対応のための
半田リフロー温度の変更によりエポキシ樹脂組成物の硬
化物と半導体素子、リードフレーム、インナーリード上
の各種メッキされた接合部分との各界面での剥離に起因
する半導体装置のクラックの問題が生じてきた。これら
半田クラックや剥離は、半田リフロー処理前に半導体装
置自身が吸湿し、半田リフロー処理時の高温下でその水
分が水蒸気爆発を起こすことによって生じると考えられ
ており、それを防ぐためにエポキシ樹脂組成物に低吸湿
性を付与するなどの手法がよく用いられ、その低吸湿化
の手法の一つとして、例えば低吸湿性のビフェニレン骨
格を有するフェノールアラルキル型エポキシ樹脂とビフ
ェニレン骨格を有するフェノールアラルキル樹脂を用い
て、エポキシ樹脂組成物の硬化物の低吸湿化を図る方法
がある。しかしながら低吸湿性の前記のエポキシ樹脂と
前記のフェノール樹脂を用いたエポキシ樹脂組成物とい
えども、鉛を含まない耐半田クラック性対応樹脂として
は不十分であった。このため260℃での表面実装時の
耐半田クラック性向上を目的として様々な改良が進めら
れてきたが、そのいずれにおいても完全なる解決策とは
ならず、更なる改良が望まれている。
Further, as part of the elimination of environmentally hazardous substances, substitution of lead-free solder is being promoted. Solder that does not contain lead has a higher melting point than conventional solder, so the solder reflow temperature during surface mounting is about 20 ° C higher than that of conventional solder.
60 ° C is required. A semiconductor caused by peeling at each interface between a cured product of an epoxy resin composition and various plated joints on a semiconductor element, a lead frame, and an inner lead due to a change in the solder reflow temperature for handling solder that does not contain lead. The problem of device cracking has arisen. These solder cracks and peeling are considered to be caused by the semiconductor device itself absorbing moisture before the solder reflow treatment, and the water vapor explosion at high temperature during the solder reflow treatment, and the epoxy resin composition is used to prevent it. Techniques such as imparting low hygroscopicity to objects are often used, and as one of the methods for lowering hygroscopicity, for example, phenol aralkyl type epoxy resin having a biphenylene skeleton having low hygroscopicity and phenol aralkyl resin having a biphenylene skeleton are used. There is a method of using the epoxy resin composition to lower the moisture absorption of the cured product. However, even an epoxy resin composition using the low hygroscopic epoxy resin and the phenol resin is insufficient as a lead crack-free resin for solder crack resistance. For this reason, various improvements have been made for the purpose of improving the solder crack resistance during surface mounting at 260 ° C. However, none of them is a complete solution and further improvement is desired.

【0004】更に、近年半導体装置の薄型化に伴い、半
導体装置中に占めるエポキシ樹脂組成物の硬化物の厚み
が一段と薄くなってきており、64M、256MDRA
M用の半導体装置は、1mm厚のTSOPが主流となり
つつある。これらの薄型半導体装置には、エポキシ樹脂
組成物の成形時の充填性が良好で、金線変形が少なく、
半導体素子やリードフレームの変形(半導体素子のシフ
トやダイパッドシフトと呼ぶ)がないことが要求され、
そのためエポキシ樹脂組成物には、成形時の流動性に優
れることが必要である。
Further, as the thickness of semiconductor devices has been reduced in recent years, the thickness of the cured product of the epoxy resin composition in the semiconductor devices has been further reduced.
As for the semiconductor device for M, 1 mm thick TSOP is becoming mainstream. In these thin semiconductor devices, the filling property of the epoxy resin composition at the time of molding is good, the gold wire deformation is small,
It is required that there is no deformation of the semiconductor element or lead frame (referred to as semiconductor element shift or die pad shift),
Therefore, the epoxy resin composition needs to have excellent fluidity during molding.

【0005】一方エポキシ樹脂組成物には難燃剤成分と
して臭素原子含有難燃剤及び三酸化、四酸化、五酸化ア
ンチモンなどのアンチモン化合物が配合されている。し
かしながら、世界的環境保護の意識の高まりのなか、臭
素原子含有有機化合物やアンチモン化合物を使用しない
で難燃性を有するエポキシ樹脂組成物の要求が大きくな
ってきている。更に半導体装置を150〜200℃での
高温で長時間保管すると、難燃剤である臭素原子やアン
チモン化合物は半導体素子の抵抗値増加や金線の断線を
引き起こすことが知られている。この観点からも臭素原
子含有有機化合物やアンチモン化合物を使用しないで高
温保管特性に優れる半導体封止用エポキシ樹脂組成物の
開発が求められている。
On the other hand, the epoxy resin composition contains a bromine atom-containing flame retardant as a flame retardant component and an antimony compound such as trioxide, tetraoxide or antimony pentoxide. However, with increasing awareness of global environmental protection, there is an increasing demand for an epoxy resin composition having flame retardancy without using a bromine atom-containing organic compound or an antimony compound. Further, it is known that when a semiconductor device is stored at a high temperature of 150 to 200 ° C. for a long time, a bromine atom or an antimony compound, which is a flame retardant, causes an increase in the resistance value of a semiconductor element and a disconnection of a gold wire. From this viewpoint as well, there is a demand for the development of an epoxy resin composition for semiconductor encapsulation which is excellent in high-temperature storage characteristics without using a bromine atom-containing organic compound or an antimony compound.

【0006】[0006]

【発明が解決しようとする課題】本発明は、流動性に優
れ、半導体素子、リードフレームなどの各種部材との接
着性の向上、低弾性率化による低応力化により、260
℃での基板実装時における半導体装置の耐半田クラック
性を著しく向上させ、更に臭素原子含有有機化合物、ア
ンチモン化合物を使用せずに難燃性を維持できる特性を
有する半導体封止用エポキシ樹脂組成物及びこれを用い
た半導体装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has excellent fluidity, has improved adhesiveness to various members such as semiconductor elements and lead frames, and has a low elastic modulus to reduce stress.
Epoxy resin composition for semiconductor encapsulation having characteristics of significantly improving solder crack resistance of a semiconductor device when mounted on a substrate at ℃, and capable of maintaining flame retardancy without using a bromine atom-containing organic compound or antimony compound And a semiconductor device using the same.

【0007】[0007]

【課題を解決するための手段】本発明は、[1](A)
二核体含有量が10〜60%の一般式(1)で示される
エポキシ樹脂と、式(2)で示される4,4’−ビフェ
ノールのジグリシジルエーテルの混合物を含み、4,
4’−ビフェノールのジグリシジルエーテルの含有量が
1〜50重量%であるエポキシ樹脂、(B)一般式
(3)で示されるフェノール樹脂の二核体含有量が20
〜75%であるフェノール樹脂、(C)無機充填材及び
(D)硬化促進剤を必須成分とすることを特徴とする半
導体封止用エポキシ樹脂組成物、
The present invention provides [1] (A)
A mixture of an epoxy resin represented by the general formula (1) having a binuclear content of 10 to 60% and a diglycidyl ether of 4,4′-biphenol represented by the formula (2),
An epoxy resin having a diglycidyl ether content of 4'-biphenol of 1 to 50% by weight, and a binuclear content of (B) a phenol resin represented by the general formula (3) being 20.
To 75% of phenol resin, (C) inorganic filler and (D) curing accelerator as essential components, epoxy resin composition for semiconductor encapsulation,

【0008】[0008]

【化6】 (R1は炭素数1〜4のアルキル基、R2は炭素数1〜
4のアルキル基で、aは0〜3の整数、bは0〜4の整
数で、互いに同一でも異なってもよい、mは、平均値
で、0〜10の数)
[Chemical 6] (R1 is an alkyl group having 1 to 4 carbon atoms, R2 is 1 to 4 carbon atoms
In the alkyl group of 4, a is an integer of 0 to 3, b is an integer of 0 to 4 and may be the same or different from each other, m is an average value, and is a number of 0 to 10).

【0009】[0009]

【化7】 [Chemical 7]

【0010】[0010]

【化8】 (R3は炭素数1〜4のアルキル基、R4は炭素数1〜
4のアルキル基で、cは0〜3の整数、dは0〜4の整
数で、互いに同一でも異なってもよい、nは、平均値
で、0〜10の数)
[Chemical 8] (R3 is an alkyl group having 1 to 4 carbon atoms, R4 is 1 to 4 carbon atoms
4 is an alkyl group, c is an integer of 0 to 3, d is an integer of 0 to 4 and may be the same or different, and n is an average value and is a number of 0 to 10).

【0011】[2]一般式(1)で示されるエポキシ樹
脂が式(4)で、一般式(3)で示されるフェノール樹
脂が式(5)である第[1]項記載の半導体封止用エポ
キシ樹脂組成物、
[2] The semiconductor encapsulation according to the item [1], wherein the epoxy resin represented by the general formula (1) is represented by the formula (4), and the phenol resin represented by the general formula (3) is represented by the formula (5). Epoxy resin composition for

【0012】[0012]

【化9】 (mは平均値で0〜10の数)[Chemical 9] (M is an average value of 0 to 10)

【0013】[0013]

【化10】 (nは、平均値で0〜10の数)[Chemical 10] (N is a number from 0 to 10 on average)

【0014】[3]第[1]項又は[2]項記載のエポ
キシ樹脂組成物を用いて半導体素子を封止してなること
を特徴とする半導体装置、である。
[3] A semiconductor device characterized in that a semiconductor element is encapsulated with the epoxy resin composition according to the item [1] or [2].

【0015】[0015]

【発明の実施の形態】本発明で用いられる一般式(1)
で示されるエポキシ樹脂を用いた樹脂組成物の硬化物
は、ガラス転移温度を越えた高温域での弾性率が低く、
低吸湿性であり、表面実装の半田付け時における熱スト
レスを低減させることができ、樹脂組成物の硬化物と半
導体素子或いはリードフレーム(42アロイ、銅合金)
との接着性に優れており、剥離や樹脂組成物の硬化物の
クラックの発生を抑えることができ、優れたエポキシ樹
脂組成物を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION General formula (1) used in the present invention
The cured product of the resin composition using the epoxy resin represented by has a low elastic modulus in a high temperature range exceeding the glass transition temperature,
It has low hygroscopicity and can reduce thermal stress during surface mounting soldering, and cured product of resin composition and semiconductor element or lead frame (42 alloy, copper alloy).
It has excellent adhesiveness with, and can suppress the occurrence of peeling and cracking of the cured product of the resin composition, and an excellent epoxy resin composition can be obtained.

【0016】本発明では一般式(1)の二核体含有量が
10〜60%のエポキシ樹脂を用いるが、二核体とは一
般式(1)においてm=0の構造をいう。二核体量はG
PC(Gel Permeation Chromat
ography)法によりポリスチレン換算して求めた
値である。即ち、東ソー(株)製GPCカラム(G10
00H×L:1本、G2000H×L:2本、G300
0H×L:1本)を用い、流量1.0cm3/60秒、
溶出溶媒としてテトラヒドロフラン、カラム温度40℃
の条件で示差屈折計を検出器に用いて測定しポリスチレ
ン換算して求めた値である。二核体含有量が下限値を下
回るとエポキシ樹脂の粘度が高くなりすぎ、成形時の樹
脂組成物の流動性が劣り、より一層の低吸湿化のための
無機充填材の高充填化が困難となる。二核体含有量が上
限値を越えるとエポキシ樹脂の軟化点や粘度が低くなり
すぎ、樹脂の取扱いの点で問題がある。又架橋密度の低
下により熱時強度が低下し、耐半田クラック性が低下す
るという問題がある。
In the present invention, an epoxy resin having a binuclear body content of the general formula (1) of 10 to 60% is used, and the binuclear body means a structure of m = 0 in the general formula (1). The binuclear amount is G
PC (Gel Permeation Chromat
It is a value obtained by converting it into polystyrene by the Ography method. That is, Tosoh Corp. GPC column (G10
00H x L: 1 line, G2000H x L: 2 lines, G300
0H × L: 1 present) using a flow rate of 1.0 cm 3/60 sec,
Tetrahydrofuran as elution solvent, column temperature 40 ° C
It is a value obtained by measuring with a differential refractometer as a detector under the conditions of, and converting into polystyrene. If the binuclear content is below the lower limit, the viscosity of the epoxy resin will be too high, and the fluidity of the resin composition during molding will be inferior, and it will be difficult to make the inorganic filler highly filled for further lowering moisture absorption. Becomes If the binuclear content exceeds the upper limit, the softening point and viscosity of the epoxy resin will be too low, and there will be a problem in handling the resin. Further, there is a problem that the strength at heat is lowered due to the decrease of the crosslink density, and the solder crack resistance is deteriorated.

【0017】一般式(1)のR1は炭素数1〜4のアル
キル基、R2は炭素数1〜4のアルキル基、aは0〜3
の整数、bは0〜4の整数で、mは平均値で0〜10の
数であるが、これらの内では硬化性の点から式(4)の
樹脂がより好ましい。またmの値が上限値を越えると樹
脂の粘度が増大し、成形時の樹脂組成物の流動性が劣
り、より一層の低吸湿化のための無機充填材の高充填化
が不可能となるので好ましくない。
In the general formula (1), R1 is an alkyl group having 1 to 4 carbon atoms, R2 is an alkyl group having 1 to 4 carbon atoms, and a is 0 to 3
Is an integer of 0 to 4 and m is an average value of a number of 0 to 10. Of these, the resin of formula (4) is more preferable from the viewpoint of curability. Further, when the value of m exceeds the upper limit value, the viscosity of the resin increases, the fluidity of the resin composition at the time of molding becomes poor, and it becomes impossible to increase the filling of the inorganic filler for further lowering the moisture absorption. It is not preferable.

【0018】成形時の樹脂組成物の流動性を維持したま
ま無機充填材を高充填化するには、樹脂の低粘度化が必
要である。然し、低粘度化のために一般式(1)のエポ
キシ樹脂の二核体含有量を高くした場合、60%を越え
るとエポキシ樹脂の軟化点や粘度が低くなりすぎ、樹脂
の取扱いの点で問題がある。また架橋密度の低下により
熱時強度が低下し、耐半田クラック性が低下するという
問題がある。そこで、本発明では式(2)で示される
4,4’−ビフェノールのジグリシジルエーテルを併用
する。一般式(1)のエポキシ樹脂と4,4‘−ビフェ
ノールのジグリシジルエーテルとを併用することで、軟
化点を下げることなく低粘度化が可能となり、また樹脂
の取扱いの点においても問題ない。
In order to make the inorganic filler highly filled while maintaining the fluidity of the resin composition at the time of molding, it is necessary to reduce the viscosity of the resin. However, when the binuclear content of the epoxy resin of the general formula (1) is increased to lower the viscosity, when the content exceeds 60%, the softening point and viscosity of the epoxy resin become too low, and the handling of the resin becomes difficult. There's a problem. Further, there is a problem that the strength at the time of heat is lowered due to the decrease of the crosslink density, and the solder crack resistance is also decreased. Therefore, in the present invention, a diglycidyl ether of 4,4′-biphenol represented by the formula (2) is used in combination. By using the epoxy resin of the general formula (1) in combination with the diglycidyl ether of 4,4′-biphenol, it is possible to reduce the viscosity without lowering the softening point, and there is no problem in handling the resin.

【0019】本発明で用いるエポキシ樹脂中の4,4’
−ビフェノールのジグリシジルエーテルの含有量は1〜
50重量%が好ましい。下限値を下回ると流動性の向上
が十分に得られない。上限値を越えると架橋密度の低下
により熱時強度が低下し、耐半田クラック性が低下する
という問題がある。
4,4 'in the epoxy resin used in the present invention
-The content of diglycidyl ether of biphenol is 1 to
50% by weight is preferred. Below the lower limit, the fluidity cannot be sufficiently improved. If the upper limit is exceeded, there is a problem that the cross-link density is lowered and the strength during heating is lowered, and the solder crack resistance is lowered.

【0020】本発明で用いるエポキシ樹脂は、一般式
(1)のエポキシ樹脂と、式(2)の4,4’−ビフェ
ノールのジグリシジルエーテルの混合物を用いても良い
が、均一分散性の点から、一般式(1)のエポキシ樹脂
の前駆体であるフェノール樹脂と式(2)の前駆体であ
る4,4’−ビフェノールの混合物を、エピクロロヒド
リン等のエピハロヒドリンと反応させエポキシ化したも
のを用いるのがより好ましい。このエポキシ化の反応は
定法に従って行わせることが出来、特に制限するもので
はない。また、この反応で共重合はほとんど起こらな
い。
As the epoxy resin used in the present invention, a mixture of the epoxy resin of the general formula (1) and the diglycidyl ether of 4,4'-biphenol of the formula (2) may be used. From the above, a mixture of a phenol resin which is a precursor of the epoxy resin of the general formula (1) and 4,4′-biphenol which is a precursor of the formula (2) is reacted with an epihalohydrin such as epichlorohydrin to be epoxidized. It is more preferable to use one. This epoxidation reaction can be carried out according to a conventional method and is not particularly limited. Moreover, copolymerization hardly occurs in this reaction.

【0021】本発明で用いるエポキシ樹脂は、その特性
が損なわれない範囲で他のエポキシ樹脂と併用してもか
まわないが、このエポキシ樹脂の配合量を調節すること
により、耐半田クラック性と難燃性を最大限に引き出す
ことができる。これらの効果を引き出すためには、本発
明で用いるエポキシ樹脂を全エポキシ樹脂量に対して3
0重量%以上の使用が好ましく、50重量%以上の使用
が更に好ましい。下限値を下回ると高温時の強度や低吸
湿性が十分に得られず、耐半田クラック性が不十分とな
るおそれがあり、又難燃性も低下する傾向にあるからで
ある。
The epoxy resin used in the present invention may be used in combination with another epoxy resin as long as its characteristics are not impaired. However, by adjusting the compounding amount of this epoxy resin, resistance to solder cracking and difficulty in solder cracking can be improved. You can maximize the flammability. In order to bring out these effects, the epoxy resin used in the present invention is used in an amount of 3 relative to the total amount of epoxy resin.
The use of 0% by weight or more is preferable, and the use of 50% by weight or more is more preferable. If it is less than the lower limit, strength at high temperature and low hygroscopicity may not be sufficiently obtained, solder crack resistance may be insufficient, and flame retardancy tends to be lowered.

【0022】併用するエポキシ樹脂としては、分子内に
エポキシ基を有するモノマー、オリゴマー、ポリマー全
般を指す。例えばビスフェノールA型エポキシ樹脂、フ
ェノールノボラック型エポキシ樹脂、オルソクレゾール
ノボラック型エポキシ樹脂、トリフェノールメタン型エ
ポキシ樹脂、ジシクロペンタジエン変性フェノール型エ
ポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型
エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェ
ノールアラルキル(フェニレン骨格を有する)型エポキ
シ樹脂、ナフトール型エポキシ樹脂などが挙げられる。
又これらは単独でも混合して用いてもよい。
The epoxy resin used in combination refers to all monomers, oligomers and polymers having an epoxy group in the molecule. For example, bisphenol A type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol F type epoxy resin. Examples thereof include resins, phenol aralkyl (having a phenylene skeleton) type epoxy resin, and naphthol type epoxy resin.
These may be used alone or in combination.

【0023】一般式(3)で示されるフェノール樹脂
は、低吸湿性で、特に半田処理後の耐湿性、半田耐熱性
に優れ、樹脂組成物の硬化物と半導体素子或いはリード
フレーム(42アロイ、銅合金)との接着性に優れてお
り、剥離や樹脂組成物の硬化物のクラックの発生を抑え
ることができ、優れたエポキシ樹脂組成物を得ることが
できる。
The phenolic resin represented by the general formula (3) has low hygroscopicity, particularly excellent moisture resistance and solder heat resistance after soldering treatment, and a cured product of the resin composition and a semiconductor element or lead frame (42 alloy, 42 alloy, It has excellent adhesiveness to a copper alloy), can suppress peeling and cracking of a cured product of the resin composition, and can obtain an excellent epoxy resin composition.

【0024】本発明では二核体含有量が20〜75%の
フェノール樹脂を用いる。二核体とは一般式(3)にお
いてn=0の構造をいう。二核体含有量が下限値を下回
るとフェノール樹脂の粘度が高くなりすぎ、成形時の樹
脂組成物の流動性が劣り、より一層の低吸湿化のための
無機充填材の高充填化が困難となる。二核体含有量は前
記したGPC法により測定した。二核体含有量が上限値
を越えるとフェノール樹脂の粘度が低くなりすぎ、樹脂
の取扱いの点で問題となる。又架橋密度の低下により熱
時強度が低下し、耐半田クラック性が低下するという問
題がある。
In the present invention, a phenol resin having a binuclear content of 20 to 75% is used. The binuclear body means a structure in which n = 0 in the general formula (3). If the binuclear content is below the lower limit, the viscosity of the phenol resin will be too high, and the fluidity of the resin composition during molding will be inferior, and it will be difficult to make the inorganic filler highly filled for further lowering moisture absorption. Becomes The binuclear body content was measured by the above-mentioned GPC method. If the binuclear content exceeds the upper limit, the viscosity of the phenolic resin becomes too low, which causes a problem in handling the resin. Further, there is a problem that the strength at heat is lowered due to the decrease of the crosslink density, and the solder crack resistance is deteriorated.

【0025】一般式(3)のR3は炭素数1〜4のアル
キル基、R4は炭素数1〜4のアルキル基、cは0〜3
の整数、dは0〜4の整数で、nは平均値で0〜10の
数であるが、これらの内では硬化性の点から式(5)の
樹脂がより好ましい。またnの値が上限値を越えると樹
脂の粘度が増大し、成形時の樹脂組成物の流動性が劣
り、より一層の低吸湿化のための無機充填材の高充填化
が不可能となるので好ましくない。
In the general formula (3), R3 is an alkyl group having 1 to 4 carbon atoms, R4 is an alkyl group having 1 to 4 carbon atoms, and c is 0 to 3
Is an integer of 0 to 4, and n is an average value of a number of 0 to 10. Of these, the resin of formula (5) is more preferable from the viewpoint of curability. Further, when the value of n exceeds the upper limit value, the viscosity of the resin increases, the fluidity of the resin composition at the time of molding becomes poor, and it becomes impossible to increase the filling of the inorganic filler for further lowering the moisture absorption. It is not preferable.

【0026】一般式(3)で示されるフェノール樹脂
は、その特性が損なわれない範囲で他のフェノール樹脂
と併用してもかまわないが、このフェノール樹脂の配合
量を調節することにより、耐半田クラック性を最大限に
引き出すことができる。耐半田クラック性の効果を引き
出すためには、一般式(3)で示されるフェノール樹脂
を全フェノール樹脂量に対して30重量%以上の使用が
好ましく、50重量%以上の使用が更に好ましい。下限
値を下回ると高温時の低弾性化や低吸湿化及び接着性が
十分に得られず、耐半田クラック性が不十分となるおそ
れがあり、又難燃性が低下する。併用するフェノール樹
脂としては、分子内にフェノール性水酸基を有するモノ
マー、オリゴマー、ポリマー全般を指し、例えばフェノ
ールノボラック樹脂、クレゾールノボラック樹脂、テル
ペン変性フェノール樹脂、ジシクロペンタジエン変性フ
ェノール樹脂、トリフェノールメタン型樹脂、フェノー
ルアラルキル(フェニレン骨格を有する)樹脂、ナフト
ールアラルキル樹脂などが挙げられる。又これらは単独
でも混合して用いてもよい。
The phenol resin represented by the general formula (3) may be used in combination with other phenol resins within the range in which the characteristics are not impaired. However, by adjusting the compounding amount of this phenol resin, solder resistance can be improved. The cracking property can be maximized. In order to bring out the effect of solder crack resistance, it is preferable to use the phenol resin represented by the general formula (3) in an amount of 30% by weight or more, more preferably 50% by weight or more, based on the total amount of the phenol resin. If the amount is less than the lower limit, elasticity at low temperature, moisture absorption and adhesiveness may not be sufficiently obtained, solder crack resistance may be insufficient, and flame retardancy may be deteriorated. The phenol resin used in combination refers to all monomers, oligomers and polymers having a phenolic hydroxyl group in the molecule, for example, phenol novolac resin, cresol novolac resin, terpene modified phenol resin, dicyclopentadiene modified phenol resin, triphenol methane type resin. , A phenol aralkyl (having a phenylene skeleton) resin, a naphthol aralkyl resin, and the like. These may be used alone or in combination.

【0027】本発明に用いられる全エポキシ樹脂のエポ
キシ基と全フェノール樹脂のフェノール性水酸基の当量
比としては、好ましくは0.5〜2であり、特に0.7
〜1.5がより好ましい。下限値を下回るか、上限値を
超えると、耐湿性、硬化性などが低下するので好ましく
ない。
The equivalent ratio of the epoxy groups of all epoxy resins used in the present invention to the phenolic hydroxyl groups of all phenol resins is preferably 0.5 to 2, and particularly 0.7.
~ 1.5 is more preferable. Below the lower limit or above the upper limit, moisture resistance, curability, etc. are reduced, which is not preferable.

【0028】本発明に用いる無機充填材としては、特に
制限はなく、一般に封止材料に使用されているものを使
用することができる。例えば溶融シリカ、結晶シリカ、
2次凝集シリカ、アルミナ、チタンホワイト、窒化珪素
などが挙げられ、これらは単独でも混合して用いてもよ
い。これらの内では、球形度の高い溶融シリカを全量或
いは一部破砕シリカと併用することが望ましい。特に限
定するものではないが、無機充填材の平均粒径としては
5〜30μm、最大粒径としては150μm以下が好ま
しく、特に平均粒径5〜20μm、最大粒径74μm以
下がより好ましい。又粒子の大きさの異なるものを混合
することにより充填量を多くすることができる。無機充
填材は、予めシランカップリング剤などで表面処理され
ているものを用いてもよい。
The inorganic filler used in the present invention is not particularly limited, and those generally used as sealing materials can be used. For example, fused silica, crystalline silica,
Secondary agglomerated silica, alumina, titanium white, silicon nitride, etc. may be mentioned, and these may be used alone or in combination. Among these, it is desirable to use fused silica having a high sphericity together with the total amount or partially crushed silica. Although not particularly limited, the average particle size of the inorganic filler is preferably 5 to 30 μm and the maximum particle size is preferably 150 μm or less, more preferably the average particle size is 5 to 20 μm and the maximum particle size is 74 μm or less. Also, the filling amount can be increased by mixing particles having different sizes. As the inorganic filler, one that has been surface-treated with a silane coupling agent or the like in advance may be used.

【0029】無機充填材の含有量としては、特に限定す
るものではないが、全エポキシ樹脂組成物中70〜94
重量%が好ましい。加熱されても燃焼しない無機充填材
は、炎に曝されたときに熱エネルギーを奪い、エポキシ
樹脂組成物の硬化物の難燃性を向上させる作用がある。
下限値を下回ると、熱容量が小さなエポキシ樹脂組成物
の硬化物となり、難燃試験において燃焼し易くなるので
好ましくない。上限値を越えると、成形時の流動性が劣
るので好ましくない。
The content of the inorganic filler is not particularly limited, but is 70 to 94 in the total epoxy resin composition.
Weight percent is preferred. The inorganic filler, which does not burn even when heated, has a function of absorbing heat energy when exposed to a flame and improving flame retardancy of a cured product of the epoxy resin composition.
If it is less than the lower limit, it becomes a cured product of an epoxy resin composition having a small heat capacity, and it becomes easy to burn in a flame retardant test, which is not preferable. If it exceeds the upper limit, the fluidity at the time of molding becomes poor, which is not preferable.

【0030】本発明に用いる硬化促進剤は、エポキシ樹
脂とフェノール樹脂の反応を促進できるものであれば特
に限定しないが、例えば1,8−ジアザビシクロ(5,
4,0)ウンデセン−7、トリブチルアミン等のアミン
化合物、トリフェニルホスフィン、テトラフェニルホス
フォニウム・テトラフェニルボレート塩などの有機リン
系化合物、2−メチルイミダゾールなどのイミダゾール
化合物などが挙げられ、これらは単独でも混合して用い
てもよい。
The curing accelerator used in the present invention is not particularly limited as long as it can accelerate the reaction between the epoxy resin and the phenol resin. For example, 1,8-diazabicyclo (5,5)
4,0) amine compounds such as undecene-7 and tributylamine, organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole. These may be used alone or in combination.

【0031】本発明のエポキシ樹脂組成物は、(A)〜
(D)成分の他、必要に応じてエポキシシランなどのシ
ランカップリング剤、カーボンブラックなどの着色剤、
シリコーンオイル、シリコーンゴムなどの低応力成分、
天然ワックス、合成ワックス、高級脂肪酸及びその金属
塩類もしくはパラフィンなどの離型剤、酸化防止剤など
の各種添加剤を配合することができる。本発明のエポキ
シ樹脂組成物は、(A)〜(D)成分及びその他の添加
剤などをミキサーを用いて常温混合し、ロール、押出機
等の混練機で混練し、冷却後粉砕して得られる。本発明
のエポキシ樹脂組成物を用いて、半導体素子等の電子部
品を封止し、半導体装置を製造するには、トランスファ
ーモールド、コンプレッションモールド、インジェクシ
ョンモールドなどの従来からの成形方法で硬化成形すれ
ばよい。本発明のエポキシ樹脂組成物が適用される半導
体装置としては、QFP、SOP、TSOP、BGA、
その他特に限定はしない。
The epoxy resin composition of the present invention comprises (A)-
In addition to the component (D), if necessary, a silane coupling agent such as epoxysilane, a coloring agent such as carbon black,
Low stress components such as silicone oil and silicone rubber,
Various additives such as a natural wax, a synthetic wax, a higher fatty acid and a metal salt thereof or a releasing agent such as paraffin, and an antioxidant can be blended. The epoxy resin composition of the present invention is obtained by mixing components (A) to (D) and other additives at room temperature with a mixer, kneading with a kneader such as a roll or an extruder, cooling and pulverizing. To be By using the epoxy resin composition of the present invention to seal electronic components such as semiconductor elements and to manufacture semiconductor devices, transfer molding, compression molding, injection molding, etc. Good. Semiconductor devices to which the epoxy resin composition of the present invention is applied include QFP, SOP, TSOP, BGA,
Others are not particularly limited.

【0032】[0032]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れらに限定されるものではない。配合割合は重量部とす
る。尚、実施例、及び比較例で用いたエポキシ樹脂、及
びフェノール樹脂の内容について、以下に示す。 エポキシ樹脂1:式(6)で示されるエポキシ樹脂(軟
化点60℃、溶融粘度0.1Pa・s/150℃、二核
体含有量29%)と式(2)で示される4,4’−ビフ
ェノールのジグリシジルエーテルの混合物で、4,4’
−ビフェノールのジグリシジルエーテルの含有量が20
%であるエポキシ樹脂(軟化点97℃、溶融粘度0.0
6Pa・s/150℃) 式(7)で示されるフェノール樹脂(軟化点65℃、溶
融粘度0.07Pa・s/150℃、二核体含有量51
%) エポキシ樹脂2:式(8)で示されるエポキシ樹脂(軟
化点51℃、溶融粘度0.05Pa・s/150℃、二
核体含有量67%)と式(2)で示される4,4’−ビ
フェノールのジグリシジルエーテルの混合物で、4,
4’−ビフェノールのジグリシジルエーテルの含有量が
20%であるエポキシ樹脂(軟化点89℃、溶融粘度
0.03Pa・s/150℃) エポキシ樹脂3:式(9)で示されるエポキシ樹脂(軟
化点78℃、溶融粘度0.6Pa・s/150℃、二核
体含有量6%)と式(2)で示される4,4’−ビフェ
ノールのジグリシジルエーテルの混合物で、4,4’−
ビフェノールのジグリシジルエーテルの含有量が20%
であるエポキシ樹脂(軟化点112℃、溶融粘度0.3
6Pa・s/150℃) エポキシ樹脂4:式(6)で示されるエポキシ樹脂(軟
化点60℃、溶融粘度0.1Pa・s/150℃、二核
体含有量29%)と式(2)で示される4,4’−ビフ
ェノールのジグリシジルエーテルの混合物で、4,4’
−ビフェノールのジグリシジルエーテルの含有量が0.
5%であるエポキシ樹脂(軟化点61℃、溶融粘度0.
09Pa・s/150℃) エポキシ樹脂5:式(6)で示されるエポキシ樹脂(軟
化点60℃、溶融粘度0.1Pa・s/150℃、二核
体含有量29%) エポキシ樹脂6:式(12)で示されるエポキシ樹脂
(軟化点58℃、溶融粘度0.09Pa・s/150
℃、二核体含有量39%)と式(2)で示される4,
4’−ビフェノールのジグリシジルエーテルの混合物
で、4,4’−ビフェノールのジグリシジルエーテルの
含有量が20%であるエポキシ樹脂(軟化点95℃、溶
融粘度0.05Pa・s/150℃) エポキシ樹脂7:式(13)で示されるエポキシ樹脂
(軟化点63℃、溶融粘度0.22Pa・s/150
℃、二核体含有量19%)と式(2)で示される4,
4’−ビフェノールのジグリシジルエーテルの混合物
で、4,4’−ビフェノールのジグリシジルエーテルの
含有量が20%であるエポキシ樹脂(軟化点100℃、
溶融粘度0.18Pa・s/150℃) エポキシ樹脂8:式(6)で示されるエポキシ樹脂(軟
化点60℃、溶融粘度0.1Pa・s/150℃、二核
体含有量29%)と式(2)で示される4,4’−ビフ
ェノールのジグリシジルエーテルの混合物で、4,4’
−ビフェノールのジグリシジルエーテルの含有量が30
%であるエポキシ樹脂(軟化点109℃、溶融粘度0.
04Pa・s/150℃) エポキシ樹脂9:式(6)で示されるエポキシ樹脂(軟
化点60℃、溶融粘度0.1Pa・s/150℃、二核
体含有量29%)と式(2)で示される4,4’−ビフ
ェノールのジグリシジルエーテルの混合物で、4,4’
−ビフェノールのジグリシジルエーテルの含有量が15
%であるエポキシ樹脂(軟化点81℃、溶融粘度0.0
7Pa・s/150℃) 式(10)で示されるフェノール樹脂(軟化点44℃、
溶融粘度0.03Pa・s/150℃、二核体含有量8
2%) 式(11)で示されるフェノール樹脂(軟化点84℃、
溶融粘度0.14Pa・s/150℃、二核体含有量1
6%) 式(14)で示されるフェノール樹脂(軟化点63℃、
溶融粘度0.06Pa・s/150℃、二核体含有量6
2%) 式(15)で示されるフェノール樹脂(軟化点69℃、
溶融粘度0.09Pa・s/150℃、二核体含有量3
9%) ビフェニル型エポキシ樹脂(油化シェルエポキシ(株)
製、YX−4000HK、融点105、エポキシ当量1
91) フェノールアラルキル樹脂(三井化学(株)製、XL−
225、軟化点75℃、水酸基当量174)
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. The mixing ratio is parts by weight. The contents of the epoxy resin and the phenol resin used in Examples and Comparative Examples are shown below. Epoxy resin 1: Epoxy resin represented by the formula (6) (softening point 60 ° C., melt viscosity 0.1 Pa · s / 150 ° C., binuclear content 29%) and 4,4 ′ represented by the formula (2) -A mixture of diglycidyl ethers of biphenols, 4,4 '
The content of diglycidyl ether of biphenol is 20
% Epoxy resin (softening point 97 ° C., melt viscosity 0.0
6 Pa · s / 150 ° C.) Phenolic resin represented by the formula (7) (softening point 65 ° C., melt viscosity 0.07 Pa · s / 150 ° C., binuclear content 51
%) Epoxy resin 2: Epoxy resin represented by the formula (8) (softening point 51 ° C., melt viscosity 0.05 Pa · s / 150 ° C., binuclear content 67%) and formula (2) 4, A mixture of diglycidyl ethers of 4'-biphenol, 4,
Epoxy resin containing 20% of 4'-biphenol diglycidyl ether (softening point 89 ° C, melt viscosity 0.03 Pa · s / 150 ° C) Epoxy resin 3: epoxy resin represented by the formula (9) (softening Point 78 ° C., melt viscosity 0.6 Pa · s / 150 ° C., binuclear content 6%) and a mixture of 4,4′-biphenol diglycidyl ether represented by the formula (2), 4,4′-
The content of diglycidyl ether of biphenol is 20%
Epoxy resin (softening point 112 ° C., melt viscosity 0.3
6 Pa · s / 150 ° C.) Epoxy resin 4: Epoxy resin represented by formula (6) (softening point 60 ° C., melt viscosity 0.1 Pa · s / 150 ° C., binuclear content 29%) and formula (2) A mixture of diglycidyl ethers of 4,4'-biphenol represented by
The content of diglycidyl ether of biphenol is 0.
5% epoxy resin (softening point 61 ° C., melt viscosity 0.
09 Pa · s / 150 ° C.) Epoxy resin 5: Epoxy resin represented by the formula (6) (softening point 60 ° C., melt viscosity 0.1 Pa · s / 150 ° C., binuclear content 29%) Epoxy resin 6: formula Epoxy resin represented by (12) (softening point 58 ° C., melt viscosity 0.09 Pa · s / 150
℃, binuclear content 39%) and the formula (2) 4,
An epoxy resin (softening point 95 ° C., melt viscosity 0.05 Pa · s / 150 ° C.) that is a mixture of 4′-biphenol diglycidyl ether and has a content of 4,4′-biphenol diglycidyl ether of 20%. Resin 7: Epoxy resin represented by the formula (13) (softening point 63 ° C., melt viscosity 0.22 Pa · s / 150
° C, binuclear content 19%) and formula (2)
An epoxy resin (softening point 100 ° C., softening point 100 ° C., which is a mixture of 4′-biphenol diglycidyl ethers and has a content of 4,4′-biphenol diglycidyl ethers of 20%.
Melt viscosity 0.18 Pa · s / 150 ° C.) Epoxy resin 8: Epoxy resin represented by formula (6) (softening point 60 ° C., melt viscosity 0.1 Pa · s / 150 ° C., binuclear content 29%) A mixture of 4,4′-biphenol diglycidyl ether represented by the formula (2),
The content of diglycidyl ether of biphenol is 30
% Epoxy resin (softening point: 109 ° C., melt viscosity: 0.
04 Pa · s / 150 ° C.) Epoxy resin 9: Epoxy resin represented by formula (6) (softening point 60 ° C., melt viscosity 0.1 Pa · s / 150 ° C., binuclear content 29%) and formula (2) A mixture of diglycidyl ethers of 4,4'-biphenol represented by
-The content of diglycidyl ether of biphenol is 15
% Epoxy resin (softening point 81 ° C., melt viscosity 0.0
7 Pa · s / 150 ° C.) Phenolic resin represented by the formula (10) (softening point 44 ° C.,
Melt viscosity 0.03 Pa · s / 150 ° C, binuclear body content 8
2%) Phenolic resin represented by the formula (11) (softening point 84 ° C.,
Melt viscosity 0.14 Pa · s / 150 ° C, binuclear body content 1
6%) Phenolic resin represented by the formula (14) (softening point 63 ° C.,
Melt viscosity 0.06 Pa · s / 150 ° C, binuclear body content 6
2%) Phenolic resin represented by the formula (15) (softening point 69 ° C.,
Melt viscosity 0.09 Pa · s / 150 ° C, binuclear body content 3
9%) Biphenyl type epoxy resin (Okaka Shell Epoxy Co., Ltd.)
Made, YX-4000HK, melting point 105, epoxy equivalent 1
91) Phenol aralkyl resin (Mitsui Chemicals, Inc., XL-
225, softening point 75 ° C, hydroxyl equivalent 174)

【0033】[0033]

【化11】 [Chemical 11]

【0034】[0034]

【化12】 [Chemical 12]

【0035】[0035]

【化13】 [Chemical 13]

【0036】[0036]

【化14】 [Chemical 14]

【0037】[0037]

【化15】 [Chemical 15]

【0038】[0038]

【化16】 [Chemical 16]

【0039】[0039]

【化17】 [Chemical 17]

【0040】[0040]

【化18】 [Chemical 18]

【0041】[0041]

【化19】 [Chemical 19]

【0042】[0042]

【化20】 [Chemical 20]

【0043】[0043]

【化21】 [Chemical 21]

【0044】 実施例1 エポキシ樹脂1 7.8重量部 式(7)で示されるフェノール樹脂 6.5重量部 溶融球状シリカ(平均粒径15μm) 85.0重量部 1、8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 0.2重量部 カーボンブラック 0.2重量部 カルナバワックス 0.3重量部 0.4重量部 を常温でミキサーを用いて混合した後、二軸ロールを用
いて混練し、冷却後粉砕し、エポキシ樹脂組成物を得
た。得られたエポキシ樹脂組成物を以下の方法で評価し
た。結果を表1に示す。
Example 1 Epoxy resin 1 7.8 parts by weight Phenolic resin represented by the formula (7) 6.5 parts by weight fused spherical silica (average particle size 15 μm) 85.0 parts by weight 1,8-diazabicyclo (5,5) 4,0) Undecene-7 (hereinafter referred to as DBU) 0.2 part by weight carbon black 0.2 part by weight Carnauba wax 0.3 part by weight 0.4 part by weight is mixed with a mixer at room temperature and then biaxial. The mixture was kneaded using a roll, cooled, and then pulverized to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.

【0045】評価方法 スパイラルフロー:EMMI−1−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力7MPa、硬化時間120秒で測定した。単位
はcm。 熱時曲げ強度・熱時曲げ弾性率:240℃での曲げ強度
・弾性率をJIS K6911に準じて測定した。単位
はN/mm2。 硬化性:エポキシ樹脂組成物を金型温度175℃、硬化
時間120秒で成形し、型開き10秒後のバコール硬度
(硬度計:No.935)を測定した値。バコール硬度
は硬化性の指標であり、数値が大きい方が硬化性が良好
である。 吸湿率:低圧トランスファー成形機を用いて、金型温度
175℃、注入圧力7.5MPa、硬化時間120秒で
直径50mm、厚さ3mmの円板を成形し、175℃、
8時間で後硬化し、85℃、相対湿度85%の環境下で
168時間放置し、重量変化を測定して吸湿率を求め
た。単位は重量%。 耐半田性:100ピンTQFPパッケージ(パッケージ
サイズは14×14mm、厚み1.4mm、シリコンチ
ップのサイズは、8.0×8.0mm、リードフレーム
は42アロイ製)を金型温度175℃、注入圧力7.5
MPaで120秒間トランスファー成形を行い、175
℃で8時間の後硬化をした。成形品パッケージを85
℃、相対湿度85%の環境下で168時間放置し、その
後成形品パッケージを別々に240℃と260℃の半田
槽に10秒間浸漬した。顕微鏡でパッケージを観察し、
外部クラック率[(クラック発生パッケージ数)/(全
パッケージ数)×100]を%で表示した。又チップと
エポキシ樹脂組成物の硬化物との剥離面積の割合を超音
波探傷装置を用いて測定し、剥離率[(剥離面積)/
(チップ面積)×100]を%で表示した。 難燃性:トランスファー成形機を用いて、金型温度17
5℃、注入圧力7MPa、硬化時間120秒で、長さ1
27mm、幅12.7mm、厚さ3.2mmと1.6m
mの成形品を成形し、UL−94に準じて、ΣF、Fm
axを測定し、難燃性を判定した。 高温保管特性:模擬素子を25μm径の金線で配線した
16ピンSOPを185℃の高温槽で処理し、一定時間
ごとピン間の抵抗値を測定した。初期値の抵抗値から2
0%抵抗値が増大したパッケージ数が15個中8個以上
になった高温槽処理時間を高温保管特性として表示し
た。この時間が長いと、高温安定性に優れていることを
示す。
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, mold temperature 175 ° C.
It was measured at an injection pressure of 7 MPa and a curing time of 120 seconds. The unit is cm. Bending strength during heating / Bending elastic modulus during heating: The bending strength / elastic modulus at 240 ° C. was measured according to JIS K6911. The unit is N / mm 2 . Curability: A value obtained by molding the epoxy resin composition at a mold temperature of 175 ° C. for a curing time of 120 seconds and measuring the Bacol hardness (hardness meter: No. 935) after 10 seconds from mold opening. The Bacol hardness is an index of curability, and the larger the value, the better the curability. Moisture absorption rate: A low pressure transfer molding machine was used to mold a disk having a diameter of 50 mm and a thickness of 3 mm with a mold temperature of 175 ° C., an injection pressure of 7.5 MPa and a curing time of 120 seconds, and then 175 ° C.
It was post-cured in 8 hours, left for 168 hours in an environment of 85 ° C. and 85% relative humidity, and the weight change was measured to obtain the moisture absorption rate. The unit is% by weight. Solder resistance: 100-pin TQFP package (package size 14 x 14 mm, thickness 1.4 mm, silicon chip size 8.0 x 8.0 mm, lead frame made of 42 alloy) is injected at a mold temperature of 175 ° C. Pressure 7.5
Transfer molding at 120 MPa for 120 seconds and then 175
It was post-cured at 8 ° C. for 8 hours. Molded product package 85
It was left for 168 hours in an environment of ℃ and 85% relative humidity, and then the molded product package was separately immersed in a solder bath at 240 ℃ and 260 ℃ for 10 seconds. Observe the package with a microscope,
The external crack ratio [(the number of cracked packages) / (total number of packages) × 100] is expressed in%. Further, the ratio of the peeling area between the chip and the cured product of the epoxy resin composition was measured using an ultrasonic flaw detector, and the peeling rate [(peeling area) /
(Chip area) × 100] is expressed in%. Flame retardance: Using a transfer molding machine, mold temperature 17
5 ° C, injection pressure 7MPa, curing time 120 seconds, length 1
27 mm, width 12.7 mm, thickness 3.2 mm and 1.6 m
m, molded product, ΣF, Fm according to UL-94
The flame retardancy was determined by measuring ax. High-temperature storage characteristics: A 16-pin SOP in which a simulated element was wired with a gold wire having a diameter of 25 μm was treated in a high-temperature tank at 185 ° C., and the resistance value between pins was measured at regular intervals. 2 from the initial resistance value
The treatment time in the high temperature tank in which the number of packages in which the 0% resistance value increased was 8 or more out of 15 was indicated as the high temperature storage property. When this time is long, it shows that the high temperature stability is excellent.

【0046】実施例2〜10、比較例1〜7 表1の処方に従って配合し、実施例1と同様にしてエポ
キシ樹脂組成物を得、実施例1と同様にして評価した。
結果を表1に示す。
Examples 2 to 10 and Comparative Examples 1 to 7 The epoxy resin compositions were prepared in the same manner as in Example 1 by blending according to the formulation shown in Table 1, and evaluated in the same manner as in Example 1.
The results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】本発明のエポキシ樹脂組成物は、流動性
に優れ、半導体素子、リードフレームなどの各種部材と
の接着性の向上、硬化物の高温時における低弾性率化に
よる低応力化により、260℃での基板実装時における
半導体装置の耐半田クラック性を著しく向上させ、更に
臭素原子含有有機化合物、アンチモン化合物を使用せず
にUL−94でのV−0を維持し、 V−0判定基準と
なるΣF、Fmaxの値も小さく、より難燃性の優れた
特性を有している。
The epoxy resin composition of the present invention has excellent fluidity, improved adhesion to various members such as semiconductor elements and lead frames, and low stress due to low elastic modulus at high temperature. The solder crack resistance of the semiconductor device when mounted on a substrate at 260 ° C. is significantly improved, and V-0 in UL-94 is maintained without using a bromine atom-containing organic compound or an antimony compound. The values of ΣF and Fmax, which are the criteria for judgment, are also small, and the characteristic is that flame retardancy is superior.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CD05X CD06W CE00Y DE136 DE146 DJ006 DJ016 EN047 EU117 EU137 EW017 EW177 FB096 FD016 FD157 GQ05 4J036 AD07 AE05 DC05 DC46 DD07 FA05 FA06 FB06 GA23 JA07 4M109 AA01 BA01 CA21 EA03 EA04 EB03 EB04 EB12 EC03 EC20   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4J002 CD05X CD06W CE00Y DE136                       DE146 DJ006 DJ016 EN047                       EU117 EU137 EW017 EW177                       FB096 FD016 FD157 GQ05                 4J036 AD07 AE05 DC05 DC46 DD07                       FA05 FA06 FB06 GA23 JA07                 4M109 AA01 BA01 CA21 EA03 EA04                       EB03 EB04 EB12 EC03 EC20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (A)二核体含有量が10〜60%の一
般式(1)で示されるエポキシ樹脂と、式(2)で示さ
れる4,4’−ビフェノールのジグリシジルエーテルの
混合物を含み、4,4’−ビフェノールのジグリシジル
エーテルの含有量が1〜50重量%であるエポキシ樹
脂、(B)一般式(3)で示されるフェノール樹脂の二
核体含有量が20〜75%であるフェノール樹脂、
(C)無機充填材及び(D)硬化促進剤を必須成分とす
ることを特徴とする半導体封止用エポキシ樹脂組成物。 【化1】 (R1は炭素数1〜4のアルキル基、R2は炭素数1〜
4のアルキル基で、aは0〜3の整数、bは0〜4の整
数で、互いに同一でも異なってもよい、mは平均値で0
〜10の数) 【化2】 【化3】 (R3は炭素数1〜4のアルキル基、R4は炭素数1〜
4のアルキル基で、cは0〜3の整数、dは0〜4の整
数で、互いに同一でも異なってもよい、nは平均値で0
〜10の数)
1. A mixture of (A) an epoxy resin represented by the general formula (1) having a binuclear content of 10 to 60% and a diglycidyl ether of 4,4′-biphenol represented by the formula (2). And an epoxy resin containing 4,4'-biphenol diglycidyl ether in an amount of 1 to 50% by weight, (B) a phenol resin represented by the general formula (3) having a binuclear content of 20 to 75. % Phenolic resin,
An epoxy resin composition for semiconductor encapsulation, which comprises (C) an inorganic filler and (D) a curing accelerator as essential components. [Chemical 1] (R1 is an alkyl group having 1 to 4 carbon atoms, R2 is 1 to 4 carbon atoms
4 is an alkyl group, a is an integer of 0 to 3, b is an integer of 0 to 4 and may be the same or different, and m is 0 on average.
Number of -10) [Chemical 3] (R3 is an alkyl group having 1 to 4 carbon atoms, R4 is 1 to 4 carbon atoms
4 is an alkyl group, c is an integer of 0 to 3, d is an integer of 0 to 4 and may be the same or different, and n is 0 on average.
Number of -10)
【請求項2】 一般式(1)で示されるエポキシ樹脂が
式(4)で、一般式(3)で示されるフェノール樹脂が
式(5)である請求項1記載の半導体封止用エポキシ樹
脂組成物。 【化4】 (mは平均値で0〜10の数) 【化5】 (nは平均値で0〜10の数)
2. The epoxy resin for semiconductor encapsulation according to claim 1, wherein the epoxy resin represented by the general formula (1) is the formula (4) and the phenol resin represented by the general formula (3) is the formula (5). Composition. [Chemical 4] (M is an average value of 0 to 10) (N is an average value and is a number from 0 to 10)
【請求項3】 請求項1又は2記載のエポキシ樹脂組成
物を用いて半導体素子を封止してなることを特徴とする
半導体装置。
3. A semiconductor device obtained by encapsulating a semiconductor element with the epoxy resin composition according to claim 1.
JP2002017895A 2002-01-28 2002-01-28 Epoxy resin composition and semiconductor device Pending JP2003213084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017895A JP2003213084A (en) 2002-01-28 2002-01-28 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017895A JP2003213084A (en) 2002-01-28 2002-01-28 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2003213084A true JP2003213084A (en) 2003-07-30

Family

ID=27653432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017895A Pending JP2003213084A (en) 2002-01-28 2002-01-28 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2003213084A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element
JP2005281581A (en) * 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device given by using the same
WO2007105357A1 (en) * 2006-03-07 2007-09-20 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for sealing of semiconductor and semiconductor device
JP2007308570A (en) * 2006-05-17 2007-11-29 Nippon Kayaku Co Ltd Epoxy resin composition and cured product thereof
WO2013162232A1 (en) * 2012-04-25 2013-10-31 주식회사 국도화학 Self-extinguishing epoxy resin for use in epoxy molding compound and method for manufacturing same, and epoxy resin composition for use in epoxy molding compound
WO2015060306A1 (en) * 2013-10-23 2015-04-30 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured article thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element
JP2005281581A (en) * 2004-03-30 2005-10-13 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device given by using the same
WO2007105357A1 (en) * 2006-03-07 2007-09-20 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for sealing of semiconductor and semiconductor device
US7671146B2 (en) 2006-03-07 2010-03-02 Sumitomo Bakelite Company, Ltd Epoxy resin composition for encapsulating semiconductor and semiconductor device
KR101076077B1 (en) 2006-03-07 2011-10-21 스미토모 베이클리트 컴퍼니 리미티드 Epoxy resin composition for encapsulating semiconductor and semiconductor device
TWI403529B (en) * 2006-03-07 2013-08-01 Sumitomo Bakelite Co Epoxy resin composition for encapsulating semiconductor and semiconductor device
JP5458573B2 (en) * 2006-03-07 2014-04-02 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP2007308570A (en) * 2006-05-17 2007-11-29 Nippon Kayaku Co Ltd Epoxy resin composition and cured product thereof
WO2013162232A1 (en) * 2012-04-25 2013-10-31 주식회사 국도화학 Self-extinguishing epoxy resin for use in epoxy molding compound and method for manufacturing same, and epoxy resin composition for use in epoxy molding compound
KR101385005B1 (en) 2012-04-25 2014-04-16 국도화학 주식회사 EMC and epoxy composition
WO2015060306A1 (en) * 2013-10-23 2015-04-30 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured article thereof

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP2004002574A (en) Epoxy resin composition and semiconductor device
JP2003213084A (en) Epoxy resin composition and semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP4696372B2 (en) Epoxy resin composition and semiconductor device
JPH10158360A (en) Epoxy resin composition
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2003238660A (en) Epoxy resin composition and semiconductor device
JP2593503B2 (en) Epoxy resin composition and resin-sealed semiconductor device using the same
JP2003212962A (en) Epoxy resin composition and semiconductor device
JPH08337634A (en) Epoxy resin composition and semiconductor device sealed therewith
JP4145438B2 (en) Epoxy resin composition and semiconductor device
JP2006104393A (en) Epoxy resin composition and semiconductor device
JP2003171445A (en) Epoxy resin composition and semiconductor device
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
JPH11181244A (en) Epoxy resin composition and semiconductor device
JP4040370B2 (en) Epoxy resin composition and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003171444A (en) Epoxy resin composition and semiconductor device
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP2003096159A (en) Epoxy resin composition and semiconductor device
JP2001240724A (en) Epoxy resin composition and semiconductor device
JP5673613B2 (en) Epoxy resin composition and semiconductor device
JP4660973B2 (en) Epoxy resin composition and semiconductor device
JP2006282818A (en) Epoxy resin composition and semiconductor device