JP2003212619A - Method of determining quality of fly ash - Google Patents

Method of determining quality of fly ash

Info

Publication number
JP2003212619A
JP2003212619A JP2002011875A JP2002011875A JP2003212619A JP 2003212619 A JP2003212619 A JP 2003212619A JP 2002011875 A JP2002011875 A JP 2002011875A JP 2002011875 A JP2002011875 A JP 2002011875A JP 2003212619 A JP2003212619 A JP 2003212619A
Authority
JP
Japan
Prior art keywords
admixture
fly ash
concrete
aqueous solution
water reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002011875A
Other languages
Japanese (ja)
Other versions
JP4056748B2 (en
Inventor
Tatsuo Izumi
達男 泉
Hirotsugu Ichikawa
裕嗣 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002011875A priority Critical patent/JP4056748B2/en
Publication of JP2003212619A publication Critical patent/JP2003212619A/en
Application granted granted Critical
Publication of JP4056748B2 publication Critical patent/JP4056748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an estimating method by which appropriate use amounts of various fly ashes and admixture can be grasped exactly and easily. <P>SOLUTION: The quality of a fly ash is determined by kneading an aqueous solution of an admixture used for preparing concrete and the fly ash used together with the admixture for preparing the concrete, then measuring the concentration of the admixture in the aqueous solution of the admixture, and comparing the difference between the measured concentration of the admixture and the concentration of the admixture in the aqueous solution before being mixed with the fly ash. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はセメントペースト、
モルタルおよびコンクリートに用いられるフライアッシ
ュの品質を判定する方法に関するものである。
TECHNICAL FIELD The present invention relates to a cement paste,
The present invention relates to a method for determining the quality of fly ash used for mortar and concrete.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】現
在、フライアッシュ、高炉スラグなどの微粉末はコンク
リートの混和材料として用いられている。しかしなが
ら、これらの微粉末は火力発電所や製鉄所で産出される
副成物であるため、品質が大きく変動し、流動性や空気
の安定化等のコンクリート特性に大きく影響を及ぼして
いる。特にフライアッシュは火力発電所で微粉炭を燃焼
する際に副成されるため、微粉炭の品質、ボイラーの運
転状態などによって品質が変動する。また、最近は硫黄
酸化物や窒素酸化物などの排出規制の観点から火力発電
所の燃焼温度は、従来よりも低く抑制されており、フラ
イアッシュ中の未燃焼カーボン量が多くなってきてい
る。このようなフライアッシュをコンクリートに配合す
ると、減水剤やAE剤が未燃焼カーボン等に吸着される
ため、コンクリートの流動性や空気連行性の変動をもた
らす。また、燃料の石炭も国内炭から輸入炭に依存する
比率が増えており、フライアッシュの品質変動の一因に
なっている。
BACKGROUND OF THE INVENTION Fine powders such as fly ash and blast furnace slag are currently used as admixtures for concrete. However, since these fine powders are by-products produced in thermal power plants and steel mills, their quality fluctuates greatly, which greatly affects concrete properties such as fluidity and air stabilization. In particular, fly ash is produced as a by-product when burning pulverized coal in a thermal power plant, so the quality varies depending on the quality of the pulverized coal, the operating condition of the boiler, and the like. Further, recently, from the viewpoint of emission control of sulfur oxides, nitrogen oxides, etc., the combustion temperature of a thermal power plant has been suppressed to be lower than before, and the amount of unburned carbon in fly ash is increasing. When such fly ash is mixed with concrete, the water reducing agent and the AE agent are adsorbed by unburned carbon and the like, which causes fluctuations in the fluidity and air entrainment of the concrete. In addition, the proportion of fuel coal that depends on imported coal from domestic coal is increasing, which is one of the causes of fluctuations in fly ash quality.

【0003】コンクリート用フライアッシュとして市販
されているものは、JIS A 6201の規格に適合し
たものであるが、規格に適合したものであってもコンク
リート特性に及ぼす影響度合いが異なる。すなわち、こ
れまではフライアッシュの粉末度(比表面積)や未燃焼
カーボン量を、品質を判断する指標としていたが、最近
のフライアッシュの製造事情では、例えば、未燃焼カー
ボン量が同じであっても、流動性や空気の安定性に違い
がでることがある。また、これらの数値はあくまでフラ
イアッシュ物性を示しているだけで、コンクリート混和
剤を併用する場合は、この物性値から間接的に混和剤へ
の影響を推察せざるを得なかった。
Commercially available fly ash for concrete conforms to the standard of JIS A 6201, but even if it conforms to the standard, the degree of influence on concrete characteristics is different. In other words, until now, the fineness (specific surface area) of fly ash and the amount of unburned carbon have been used as indicators for determining the quality, but in the recent manufacturing circumstances of fly ash, for example, the amount of unburned carbon is the same. However, there may be differences in fluidity and air stability. Moreover, these values only show the physical properties of fly ash, and when using a concrete admixture together, it was inevitable to indirectly infer the effect on the admixture from these physical property values.

【0004】このような状況から、種々のフライアッシ
ュと混和剤について、適正な使用量を正確且つ簡易に把
握するために有効なフライアッシュ品質の評価方法が存
在すれば、当業界において有用であるといえる。
Under such circumstances, it is useful in the art if there is a method for evaluating fly ash quality which is effective for accurately and easily grasping proper amounts of various fly ash and admixtures. Can be said.

【0005】[0005]

【課題を解決するための手段】本発明は、コンクリート
の調製に用いられる混和剤水溶液と、該混和剤と共に前
記コンクリートの調製に用いられるフライアッシュとを
混合し、該混合物の水溶液部分の混和剤濃度とフライア
ッシュ混合前の混和剤水溶液濃度との差に基づきフライ
アッシュの品質を判定する方法に関する。
SUMMARY OF THE INVENTION The present invention is a mixture of an admixture aqueous solution used for the preparation of concrete and fly ash used for the preparation of the concrete together with the admixture, and an admixture for the aqueous solution portion of the mixture. The present invention relates to a method for determining the quality of fly ash based on the difference between the concentration and the concentration of an admixture aqueous solution before mixing fly ash.

【0006】また、本発明は、混和剤とフライアッシュ
を含有するコンクリートを製造する際に、上記本発明の
判定方法によってフライアッシュの品質を判定し、その
判定結果に基づき混和剤の添加量を決めることを行う、
コンクリートの製造方法に関する。
In addition, the present invention determines the quality of fly ash by the above-mentioned determination method of the present invention when producing concrete containing an admixture and fly ash, and based on the determination result, the addition amount of the admixture is determined. Make decisions,
The present invention relates to a method for manufacturing concrete.

【0007】[0007]

【発明の実施の形態】本発明は、直接的にフライアッシ
ュが混和剤に及ぼす影響を調べることによってより精度
の高い試験方法を提供するものである。本発明では、混
和剤水溶液中の混和剤濃度と、前記混和剤と共にコンク
リートの調製に用いられるフライアッシュに前記水溶液
を混合して得られた混合物の水溶液部分における混和剤
濃度との差に基づいて、フライアッシュの品質を判定す
る。すなわち、本発明では、混和剤水溶液とフライアッ
シュを、一定時間混合した後、混合物の水溶液部分の混
和剤濃度を測定し、フライアッシュ混合前の水溶液中の
混和剤濃度との差を比較することによって、フライアッ
シュの品質を判定する。混和剤の定量はフライアッシュ
ペーストを一定時間混練した後、遠心分離して得られた
上澄み液を分析して混和剤濃度を算出する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a more accurate test method by directly examining the effect of fly ash on an admixture. In the present invention, based on the difference between the admixture concentration in the admixture aqueous solution and the admixture concentration in the aqueous solution portion of the mixture obtained by mixing the aqueous solution with the fly ash used for the preparation of concrete together with the admixture. , Determine the quality of fly ash. That is, in the present invention, after the admixture aqueous solution and fly ash are mixed for a certain period of time, the admixture concentration in the aqueous solution portion of the mixture is measured, and the difference between the admixture concentration in the aqueous solution before fly ash mixing is compared. Determines the quality of fly ash. To quantify the admixture, the fly ash paste is kneaded for a certain period of time, and then the supernatant obtained by centrifugation is analyzed to calculate the admixture concentration.

【0008】上澄み液を抽出するには遠心分離するのが
好ましい。遠心条件としては、例えば、円筒型遠心分離
機を用いた場合の分離効率が良く混練物の温度上昇が少
ないという観点から、0.9〜900000Gが好まし
い。遠心条件は、23〜9000Gがさらに好ましく、
90〜2300Gが最も好ましい。
Centrifugation is preferred to extract the supernatant. The centrifuging condition is preferably 0.9 to 900000 G from the viewpoint of good separation efficiency and a small increase in the temperature of the kneaded product when a cylindrical centrifuge is used. The centrifugal condition is more preferably 23 to 9000G,
Most preferably 90-2300G.

【0009】遠心時間としては、測定誤差が小さく簡便
性がよいことから、30秒〜30分が好ましい。
The centrifuging time is preferably 30 seconds to 30 minutes because of small measurement error and good convenience.

【0010】得られた上澄み液はさらにろ過するのが好
ましい。ろ過条件は、ろ過効率が良く分析誤差が小さい
ことから、0.1〜1.0μmのメンブランフィルター
を用いるのが好ましい。
The supernatant obtained is preferably further filtered. As for the filtration condition, it is preferable to use a membrane filter of 0.1 to 1.0 μm because the filtration efficiency is good and the analysis error is small.

【0011】上澄み液の分析方法としては、高速液体ク
ロマトグラフ法、紫外吸収スペクトル法、赤外吸収スペ
クトル法、ガスクロマトグラフ法および有機炭素量法
(TOC)などが挙げられる。定量精度および簡便性を
考えると紫外吸収スペクトル法および有機炭素量法が好
ましい。
Examples of the method for analyzing the supernatant include high performance liquid chromatography, ultraviolet absorption spectroscopy, infrared absorption spectroscopy, gas chromatography and organic carbon content (TOC). The ultraviolet absorption spectrum method and the organic carbon content method are preferable from the viewpoint of quantification accuracy and simplicity.

【0012】本発明の判定方法において混合するフライ
アッシュ(FA)と混和剤水溶液(S)の重量比は、混
練性が良く測定誤差が少ないことから、FA/S=90
/10〜5/95が好ましい。さらにFA/Sは、80
/20〜30/70が好ましく、70/30〜30/7
0がより好ましく、最も好ましいのは65/35〜40
/60である。
The weight ratio of the fly ash (FA) and the aqueous admixture solution (S) to be mixed in the determination method of the present invention is FA / S = 90 because the kneading property is good and the measurement error is small.
/ 10 to 5/95 is preferable. FA / S is 80
/ 20 to 30/70 is preferable, and 70/30 to 30/7
0 is more preferable, most preferably 65 / 35-40
/ 60.

【0013】本発明の判定方法に使用できる混和剤とし
ては、AE剤、減水剤、減水剤、高性能減水剤、および
高性能AE減水剤から選択されるものが挙げられる。具
体的には、マイテイAE03、AC剤(以上、花王株式
会社製)、ヴィンソール(山宗化学株式会社製)、サン
フローAE−7、パリックAE600、パリックAE1
00(以上、株式会社サンフローパリック製)、マイク
ロエア785、マイクロエア101(以上、株式会社エ
ヌエムビー製)などのAE剤、マイテイ1000、20
00、マイテイ3000(以上、花王株式会社製)、ヤ
マソー90SE、ヤマソー98S(以上、山宗化学株式
会社製)、サンフローK、サンフローHS−100、サ
ンフローHS−700、パリックSX(以上、株式会社
サンフローパリック製)、ポゾリスNo.70、ポゾリ
ス78、レオビルドSP8、レオビルドSP9(以上、
株式会社エヌエムビー製)などの減水剤が挙げられる。
なお、1つのフライアッシュに対して複数の混和剤の判
定を行う場合は、混和剤は1つずつ評価する。すなわち
混和剤水溶液は単一混和剤の水溶液として用いる。
Examples of the admixture that can be used in the determination method of the present invention include those selected from AE agents, water reducing agents, water reducing agents, high-performance water reducing agents, and high-performance AE water reducing agents. Specifically, Mighty AE03, AC agent (above, manufactured by Kao Corporation), Vinsol (manufactured by Yamasou Chemical Co., Ltd.), Sunflow AE-7, Palic AE600, Palic AE1.
AE agents such as 00 (above, manufactured by Sunflow Palic Co., Ltd.), Micro Air 785, Micro Air 101 (above, manufactured by NMB Co., Ltd.), Mighty 1000, 20
00, Mighty 3000 (above, manufactured by Kao Corporation), Yamaso 90SE, Yamaso 98S (above, manufactured by Yamamune Kagaku Co., Ltd.), Sunflow K, Sunflow HS-100, Sunflow HS-700, Palic SX (above, (Made by Sunflow Palic Co., Ltd.), Pozzolis No. 70, Pozzolith 78, Leobuild SP8, Leobuild SP9 (above,
Water reducing agents such as NMB Co., Ltd.).
When a plurality of admixtures are judged for one fly ash, the admixtures are evaluated one by one. That is, the admixture aqueous solution is used as a single admixture aqueous solution.

【0014】フライアッシュと混合する混和剤水溶液の
混和剤濃度としては、適正な吸着量で測定誤差が少ない
ことから、100〜50000ppm(重量基準)が好
ましい。混和剤水溶液の混和剤濃度は500〜1000
0ppmが好ましく、分析精度を考えると1000〜5
000ppmが好ましい。
The admixture concentration of the admixture aqueous solution to be mixed with fly ash is preferably 100 to 50000 ppm (weight basis) because of a proper adsorption amount and little measurement error. The admixture concentration of the admixture aqueous solution is 500 to 1000.
0 ppm is preferable, and 1000 to 5 considering the analysis accuracy.
000 ppm is preferred.

【0015】また、本発明の判定方法に用いた混和剤以
外の混和剤を使用するかどうか、更に使用する場合はそ
の種類や添加量をどのようにするかも、本発明の判定方
法により得られた判定結果に基づき適宜行うことができ
る。
Further, whether or not to use an admixture other than the admixture used in the determination method of the present invention, and in the case of using the admixture, the kind and the addition amount thereof are also obtained by the determination method of the present invention. It can be appropriately performed based on the determination result.

【0016】本発明の判定方法によれば、減水剤の場
合、フライアッシュと混和剤水溶液中の混和剤濃度が高
い(吸着率が低い)ほど、スランプ保持効果は高くなる
傾向がある。また、AE剤の場合、フライアッシュと混
和剤水溶液中の混和剤濃度が高い(吸着率が低い)ほ
ど、空気保持効果は高くなる傾向がある。従って、この
吸着率を指標として、用途に適したフライアッシュおよ
び混和剤を選択することが可能になる。具体的には、フ
ライアッシュ混合前の混和剤水溶液濃度と、フライアッ
シュ混合後の混合物の水溶液部分の混和剤濃度の差によ
って吸着率を算出し、判定を行う。本発明の判定方法に
より、例えば、この判定に用いたフライアッシュと混和
剤の組み合わせでは、スランプ保持率が低下することが
予測される場合、それを補うために当該混和剤の添加量
を増加させたり、他の減水剤を追加したりすることがで
きる。その際、他の減水剤としては、混練直後のスラン
プ値への影響が小さい分散効果の発現が遅い保持タイプ
のものが好ましい。また、追加する他の減水剤の添加量
は、予測されるスランプ低下量、減水剤の種類やその標
準試験の結果などから、経験的に決定できる。
According to the determination method of the present invention, in the case of the water reducing agent, the higher the admixture concentration in the fly ash and the admixture aqueous solution is (the lower the adsorption rate is), the higher the slump holding effect tends to be. Further, in the case of the AE agent, the higher the admixture concentration in the fly ash and the aqueous admixture solution (the lower the adsorption rate), the higher the air retention effect tends to be. Therefore, it becomes possible to select the fly ash and the admixture suitable for the application by using this adsorption rate as an index. Specifically, the adsorption rate is calculated based on the difference between the concentration of the admixture aqueous solution before the fly ash mixing and the concentration of the admixture aqueous solution of the mixture after the fly ash mixing, and the determination is performed. According to the determination method of the present invention, for example, in the combination of fly ash and an admixture used in this determination, if the slump retention rate is predicted to decrease, increase the amount of the admixture added to compensate for it. Or other water reducing agents can be added. At this time, as the other water reducing agent, a holding type that has a small effect on the slump value immediately after kneading and exhibits a dispersion effect slowly is preferable. Further, the amount of the other water reducing agent to be added can be empirically determined from the predicted slump reduction amount, the type of the water reducing agent and the result of the standard test.

【0017】[0017]

【発明の効果】本発明の判定方法の結果に基づいたフラ
イアッシュのグレード分類により、混和剤の添加量を適
正に決定できる。また、本発明の判定方法は、従来の判
定指標に用いられていた強熱減量およびブレーン値と比
較して、フライアッシュと混和剤との量的関係を示す指
標として優れた判定方法である。この判定方法に基づき
混和剤の適正な使用量を正確且つ簡易に把握でき、コン
クリート製造に際して有用な方法が提供される。品質の
劣るフライアッシュにも本発明の判定方法を用いること
で、グレード分類や混和剤の条件を適正に決定でき、品
質の安定したコンクリートが得られる。
According to the grade classification of fly ash based on the result of the judging method of the present invention, the addition amount of the admixture can be properly determined. Further, the determination method of the present invention is an excellent determination method as an index showing the quantitative relationship between fly ash and the admixture, as compared with the loss on ignition and the Blaine value used in the conventional determination index. Based on this determination method, an appropriate amount of the admixture used can be accurately and easily ascertained, and a useful method for concrete production is provided. By using the determination method of the present invention for fly ash of poor quality, grade classification and admixture conditions can be properly determined, and concrete of stable quality can be obtained.

【0018】[0018]

【実施例】実施例1 フライアッシュとして、表1に示す種々のものを用意し
た。それらは、何れもJIS A 6201に適合したも
の(規格:強熱減量5%以下、比表面積2400cm2
/g以上)であり、比重は2.30である。
EXAMPLES Example 1 Various types of fly ash shown in Table 1 were prepared. All of them conform to JIS A 6201 (standard: ignition loss 5% or less, specific surface area 2400 cm 2
/ G or more), and the specific gravity is 2.30.

【0019】[0019]

【表1】 [Table 1]

【0020】これらのフライアッシュと、混和剤水溶液
とを混練し、混合物の水溶液部分の混和剤濃度を以下の
方法により測定し、混和剤吸着率を算出した。ここで、
混和剤として(1)減水剤(花王株式会社製、マイティ
1000)、(2)AE剤(山宗化学株式会社製、ヴィ
ンソール)を用いた。結果を表2に示す。
The fly ash and an aqueous admixture solution were kneaded, and the admixture concentration in the aqueous solution portion of the mixture was measured by the following method to calculate the admixture adsorption rate. here,
As the admixture, (1) water reducing agent (manufactured by Kao Corporation, Mighty 1000) and (2) AE agent (manufactured by Yamamune Chemical Co., Ltd., Vinsol) were used. The results are shown in Table 2.

【0021】(減水剤の吸着量測定)減水剤水溶液(濃
度:3000ppm)20gとフライアッシュ20gを
室温で2分混練した後、遠心分離(HSIANGTAI
MACHINERY INDUSTRY CO.LT
D、CN−10、遠沈管として内径13mm、長さ12
5mmのものを採用、4000rpm、5分)して上澄
み液を抽出する。上澄み液をさらにマイクロフィルター
(0.45μm)でろ過する。ろ液を5倍希釈した後、
TOCにて減水剤濃度(N)を測定し、フライアッシュ
混合前の減水剤濃度(N0)との差分からフライアッシ
ュへの吸着量を求め、吸着率(%)〔(N0−N)/N0
×100〕を算出する。
(Measurement of Adsorbing Amount of Water-Reducing Agent) 20 g of an aqueous solution of a water-reducing agent (concentration: 3000 ppm) and 20 g of fly ash were kneaded at room temperature for 2 minutes and then centrifuged (HSIANGTAI).
MACHINERY INDUSTRY CO. LT
D, CN-10, centrifuge tube with inner diameter 13 mm, length 12
A 5 mm one is adopted, and the supernatant is extracted at 4000 rpm for 5 minutes. The supernatant is filtered with a microfilter (0.45 μm). After diluting the filtrate 5 times,
The water reducing agent concentration (N) was measured by TOC, and the adsorbed amount to the fly ash was obtained from the difference from the water reducing agent concentration (N 0 ) before mixing the fly ash, and the adsorption rate (%) [(N 0 -N) / N 0
X100] is calculated.

【0022】(AE剤の吸着量測定)AE剤水溶液(濃
度:12000ppm)30gとフライアッシュ30g
を室温で2分混練した後、遠心分離(HSIANGTA
I MACHINERY INDUSTRY CO.L
TD、CN−10、遠沈管として内径13mm、長さ1
25mmのものを採用、4000rpm、5分)して上
澄み液を抽出する。上澄み液をさらにマイクロフィルタ
ー(0.45μm)でろ過する。ろ液を5倍希釈した
後、TOCにてAE剤濃度を測定し、フライアッシュ混
合前のAE剤濃度との差分からフライアッシュへの吸着
量を求め、減水剤の場合と同様に、吸着率を算出する。
(Measurement of Adsorption Amount of AE Agent) 30 g of AE agent aqueous solution (concentration: 12000 ppm) and 30 g of fly ash
After kneading at room temperature for 2 minutes, centrifuge (HSIANGTA
I MACHINERY INDUSTRY CO. L
TD, CN-10, centrifuge tube inner diameter 13mm, length 1
A 25 mm one is adopted, and 4000 rpm, 5 minutes) and the supernatant is extracted. The supernatant is filtered with a microfilter (0.45 μm). After the filtrate was diluted 5 times, the concentration of AE agent was measured by TOC, and the amount of adsorption to fly ash was calculated from the difference with the concentration of AE agent before mixing fly ash. To calculate.

【0023】[0023]

【表2】 [Table 2]

【0024】上記において、混和剤吸着率が低いものほ
ど添加した混和剤が有効に利用されるといえるので、表
2の結果に基づき、当該フライアッシュを用いたコンク
リート調製時に添加すべき混和剤の量が容易に設計でき
る。しかし、従来の評価指針である強熱減量や比表面積
と混和剤吸着率には相関がなく、これらからは直ちに混
和剤の有用添加量を設計することはできない。
In the above, it can be said that the admixture added is effectively used as the adsorbent adsorbency is lower. Therefore, based on the results of Table 2, the admixture to be added at the time of concrete preparation using the fly ash is The quantity can be designed easily. However, there is no correlation between the loss on ignition and the specific surface area, which are the conventional evaluation guidelines, and the adsorbing rate of the admixture, and the useful addition amount of the admixture cannot be immediately designed from them.

【0025】実施例2 (I)使用材料 セメント:普通ポルトランドセメント 比重:3.16 フライアッシュ:実施例1の表1のもの 細骨材:山砂(密度2.62g/cm3)/砕砂(密度
2.58g/cm3) 粗骨材:砕石(密度2.72g/cm3
Example 2 (I) Material used Cement: Normal Portland cement Specific gravity: 3.16 Fly ash: As shown in Table 1 of Example 1 Fine aggregate: Mountain sand (density 2.62 g / cm 3 ) / crushed sand ( density 2.58g / cm 3) coarse aggregate: crushed stone (density 2.72g / cm 3)

【0026】(II)コンクリート配合 <配合(1)> W/C=53%(重量比)、細骨材率=42%(体積
比)、セメント/フライアッシュ=85/15(重量
比)、セメント量=360kg/m3、フライアッシュ
量=64kg/m3 <配合(2)> W/C=45%(重量比)、細骨材率=48%(体積
比)、セメント/フライアッシュ=85/15(重量
比)、セメント量=389kg/m3、フライアッシュ
量=69kg/m3
(II) Concrete mix <mix (1)> W / C = 53% (weight ratio), fine aggregate ratio = 42% (volume ratio), cement / fly ash = 85/15 (weight ratio), Cement amount = 360 kg / m 3 , fly ash amount = 64 kg / m 3 <blend (2)> W / C = 45% (weight ratio), fine aggregate ratio = 48% (volume ratio), cement / fly ash = 85/15 (weight ratio), the amount of cement = 389kg / m 3, the fly ash content = 69kg / m 3

【0027】(III)混和剤 <配合(1)に対して> 減水剤:マイテイ1000、AE剤:ヴィンソール セメント重量に対する各添加量は表3の通り。 <配合(2)に対して> 減水剤:マイテイ3000、AE剤:ヴィンソール セメント重量に対する各添加量は表4の通り。(III) Admixture <Comparison (1)> Water reducing agent: Mighty 1000, AE agent: Vinsol Table 3 shows the amount of each addition to the weight of cement. <Comparison (2)> Water reducing agent: Mighty 3000, AE agent: Vinsol Table 4 shows the amount of each addition to the weight of cement.

【0028】(IV)評価方法 上記材料を用いて、配合(1)、(2)でコンクリート
試験を行った。スランプ、空気量の試験は、それぞれJ
IS A 1101、JIS A 1128に準拠して行な
った。得られた結果をもとに、下式によりスランプ保持
率および空気量保持率を算出した。配合(1)に対する
結果を表3に、配合(2)に対する結果を表4に示す。
(IV) Evaluation method Using the above materials, concrete tests were conducted with the formulations (1) and (2). Slump and air amount tests are J
It was performed according to IS A 1101 and JIS A 1128. Based on the obtained results, the slump retention rate and the air content retention rate were calculated by the following formulas. The results for formulation (1) are shown in Table 3 and the results for formulation (2) are shown in Table 4.

【0029】スランプ保持率(%)=(60分後のスラ
ンプ)×100/(混練直後のスランプ) 空気量保持率(%)=(60分後の空気量)×100/
(混練直後の空気量)
Slump retention rate (%) = (slump after 60 minutes) × 100 / (slump immediately after kneading) Air content retention rate (%) = (air volume after 60 minutes) × 100 /
(Amount of air immediately after kneading)

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】表3、4の結果を図1、2にグラフ化し
た。図1中、(1a−1)、(1a−2)、(1a−
3)は、表3の添加量で減水剤を添加した時のスランプ
保持率と、フライアッシュの吸着率又は強熱減量又は比
表面積との関係を示すものであり、(1b−1)、(1
b−2)、(1b−3)は、表3の添加量でAE剤を添
加した時の茎保持率と、フライアッシュの吸着率又は強
熱減量又は比表面積との関係を示すものである。また、
図2中、(2a−1)、(2a−2)、(2a−3)
は、表4の添加量で減水剤を添加した時のスランプ保持
率と、フライアッシュの吸着率又は強熱減量又は比表面
積との関係を示すものであり、(2b−1)、(2b−
2)、(2b−3)は、表4の添加量でAE剤を添加し
た時の茎保持率と、フライアッシュの吸着率又は強熱減
量又は比表面積との関係を示すものである。
The results of Tables 3 and 4 are graphed in FIGS. In FIG. 1, (1a-1), (1a-2), (1a-
3) shows the relationship between the slump retention rate and the adsorption rate of fly ash or the loss on ignition or the specific surface area when the water reducing agent is added at the addition amount shown in Table 3, (1b-1), (1b-1), 1
b-2) and (1b-3) show the relationship between the stem retention rate when the AE agent is added in the addition amount shown in Table 3, and the adsorption rate of fly ash or the ignition loss or specific surface area. . Also,
In FIG. 2, (2a-1), (2a-2), (2a-3)
Shows the relationship between the slump retention rate and the adsorption rate of fly ash or ignition loss or specific surface area when the water reducing agent is added in the addition amount of Table 4, (2b-1), (2b-
2) and (2b-3) show the relationship between the stalk retention rate when the AE agent was added in the addition amount shown in Table 4, the adsorption rate of fly ash, the ignition loss or the specific surface area.

【0033】表3、4および図1、2から明らかなよう
に、本発明の判定方法で採用する混和剤吸着率は、従来
からのフライアッシュ特性を表現する指標である強熱減
量や比表面積に比べて、フライアッシュが混入されたコ
ンクリート特性との相関が高く、フライアッシュの品質
を判断する上で重要な評価方法になり得る。また、品質
のバラツキの大きいフライアッシュを用いる場合でも、
混和剤の吸着率を測定して混和剤の量や種類を調整する
ことで流動性や空気量の安定したコンクリートの製造が
可能となる。
As is clear from Tables 3 and 4 and FIGS. 1 and 2, the admixture adsorption rate used in the determination method of the present invention is an index for expressing conventional fly ash characteristics, such as ignition loss and specific surface area. Compared with, the correlation with the characteristics of the concrete containing fly ash is higher, and it can be an important evaluation method for judging the quality of fly ash. In addition, even when using fly ash with a large variation in quality,
By measuring the adsorption rate of the admixture and adjusting the amount and type of admixture, it becomes possible to produce concrete with stable fluidity and air content.

【0034】実施例3 実施例2のコンクリート配合(組み合わせは表5に記
載)に対して、減水剤(I)(マイティ1000又はマ
イティ3000)と減水剤(II)(ポリカルボン酸系減
水剤:花王株式会社、CAD90SC+KSP−B)
を、表5の添加量で添加してコンクリートを調製し、J
IS A 1101に準拠してスランプの経時的に測定し
た。結果を表5に示す。
Example 3 A water reducing agent (I) (Mighty 1000 or Mighty 3000) and a water reducing agent (II) (polycarboxylic acid type water reducing agent: Kao Corporation, CAD90SC + KSP-B)
Was added in an amount shown in Table 5 to prepare concrete.
The slump was measured over time according to IS A 1101. The results are shown in Table 5.

【0035】[0035]

【表5】 [Table 5]

【図面の簡単な説明】[Brief description of drawings]

【図1】表3の結果に基づき、スランプ保持率又は空気
保持率と吸着率等との関係をグラフ化したものである。
FIG. 1 is a graph showing a relationship between a slump retention rate or an air retention rate and an adsorption rate based on the results of Table 3.

【図2】表4の結果に基づき、スランプ保持率又は空気
保持率と吸着率等との関係をグラフ化したものである。
FIG. 2 is a graph showing a relationship between a slump retention rate or an air retention rate and an adsorption rate based on the results of Table 4.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 コンクリートの調製に用いられる混和剤
の水溶液と、該混和剤と共に前記コンクリートの調製に
用いられるフライアッシュとを混合し、該混合物の水溶
液部分の混和剤濃度とフライアッシュ混合前の混和剤水
溶液濃度との差に基づきフライアッシュの品質を判定す
る方法。
1. An aqueous solution of an admixture used in the preparation of concrete is mixed with fly ash used in the preparation of the concrete together with the admixture, and the admixture concentration in the aqueous solution part of the mixture and the fly ash before mixing A method for determining the quality of fly ash based on the difference from the concentration of the admixture aqueous solution.
【請求項2】 混和剤が、AE剤、減水剤、減水剤、高
性能減水剤、および高性能AE減水剤から選択される請
求項1記載の判定方法。
2. The determination method according to claim 1, wherein the admixture is selected from an AE agent, a water reducing agent, a water reducing agent, a high-performance water reducing agent, and a high-performance AE water reducing agent.
【請求項3】 混和剤とフライアッシュを含有するコン
クリートを製造する際に、請求項1又は2記載の判定方
法によってフライアッシュの品質を判定し、その判定結
果に基づき前記混和剤の添加量を決めることを行う、コ
ンクリートの製造方法。
3. When producing concrete containing an admixture and fly ash, the quality of fly ash is judged by the judgment method according to claim 1 or 2, and the amount of the admixture added is judged based on the judgment result. A concrete manufacturing method that makes decisions.
【請求項4】 前記判定結果に基づき、更に前記混和剤
以外の混和剤の使用の有無を決めることを行う、請求項
3記載のコンクリートの製造方法。
4. The method for producing concrete according to claim 3, further comprising determining whether or not an admixture other than the admixture is used based on the determination result.
【請求項5】 混和剤とフライアッシュを含有するコン
クリートを製造する際に、請求項1又は2記載の判定方
法によってフライアッシュの品質を判定し、その判定結
果に基づき、判定に用いた混和剤を含む全ての混和剤の
添加量を決めることを行う、コンクリートの製造方法。
5. When producing concrete containing an admixture and fly ash, the quality of the fly ash is judged by the judgment method according to claim 1 or 2, and the admixture used for the judgment based on the judgment result. A method for producing concrete, which comprises determining the addition amount of all admixtures including.
JP2002011875A 2002-01-21 2002-01-21 How to determine the quality of fly ash Expired - Fee Related JP4056748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002011875A JP4056748B2 (en) 2002-01-21 2002-01-21 How to determine the quality of fly ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002011875A JP4056748B2 (en) 2002-01-21 2002-01-21 How to determine the quality of fly ash

Publications (2)

Publication Number Publication Date
JP2003212619A true JP2003212619A (en) 2003-07-30
JP4056748B2 JP4056748B2 (en) 2008-03-05

Family

ID=27649249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002011875A Expired - Fee Related JP4056748B2 (en) 2002-01-21 2002-01-21 How to determine the quality of fly ash

Country Status (1)

Country Link
JP (1) JP4056748B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163478A (en) * 2003-12-05 2005-06-23 Kanazawa Univ Spraying concrete
CN1304832C (en) * 2004-07-16 2007-03-14 重庆市建筑科学研究院 Method for detecting content of fly ash in newly stirred concrete
CN100520350C (en) * 2005-12-26 2009-07-29 重庆市节能技术服务中心 Method for detecting content of river sand and fly ash in concrete mixture
JP2010043933A (en) * 2008-08-12 2010-02-25 Shimizu Corp Quality evaluation method of fly ash
JP2011069836A (en) * 2010-12-06 2011-04-07 Mitsubishi Materials Corp Evaluation method of fluidity behavior of concrete
JP2021060210A (en) * 2019-10-03 2021-04-15 太平洋セメント株式会社 Fly ash discrimination method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995336A1 (en) * 2007-05-16 2008-11-26 ArcelorMittal France Low-density steel with good suitability for stamping

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163478A (en) * 2003-12-05 2005-06-23 Kanazawa Univ Spraying concrete
CN1304832C (en) * 2004-07-16 2007-03-14 重庆市建筑科学研究院 Method for detecting content of fly ash in newly stirred concrete
CN100520350C (en) * 2005-12-26 2009-07-29 重庆市节能技术服务中心 Method for detecting content of river sand and fly ash in concrete mixture
JP2010043933A (en) * 2008-08-12 2010-02-25 Shimizu Corp Quality evaluation method of fly ash
JP2011069836A (en) * 2010-12-06 2011-04-07 Mitsubishi Materials Corp Evaluation method of fluidity behavior of concrete
JP2021060210A (en) * 2019-10-03 2021-04-15 太平洋セメント株式会社 Fly ash discrimination method
JP7356205B2 (en) 2019-10-03 2023-10-04 太平洋セメント株式会社 How to sort fly ash

Also Published As

Publication number Publication date
JP4056748B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
Bentz et al. Relating compressive strength to heat release in mortars
RU2530140C2 (en) Concrete with low clinker content
JP5414170B2 (en) Coal ash evaluation method
JP2003212619A (en) Method of determining quality of fly ash
JP6630145B2 (en) Prediction method of methylene blue adsorption on fly ash
WIDIANTO et al. Consistency of fly ash quality for making high volume fly ash concrete
JP4568549B2 (en) Cement composition and method for producing the same
Song et al. Adsorption mechanism of polycarboxylate-based superplasticizer in CFBC ash-Portland cement paste
Braymand et al. Rheological properties of recycled aggregate concrete using superplasticizers
Spörel et al. Investigations on the influence of fly ash on the formation and stability of artificially entrained air voids in concrete
Sutter et al. Assessing ash quality and performance
Ogunbode et al. Turning waste to wealth: Potential of laterized concrete using cassava peels ash (CPA) blended cement
JP6541383B2 (en) Method of determining high fluidity fly ash, and method of producing fly ash mixed cement
Nagaratnam et al. Workability of self-compacting concrete using blended waste materials
JPH10330135A (en) Cement clinker and cement composition
Ezziane et al. Investigation of slag cement quality through the analysis of its efficiency coefficient
JP6666816B2 (en) Method for predicting flow value ratio of fly ash and method for evaluating fly ash quality
JP2018131361A (en) Method for producing cement composition, and method for evaluating the cement composition
Dash et al. Effect of silica fume on engineering properties of fiber reinforced concrete
JP2001281235A (en) Sorting method for coal ashes and construction material
Dey Study of compressive strength of high volume fly ash concrete with varying proportion of fly ash and silica fume
Venkatakrishanaiah et al. Experimental study on strength of high volume high calcium fly ash concrete
Li et al. Wet packing method for blended aggregate and concrete mix
Larrimore et al. Effect of bromine addition on fly ash use in concrete
JP2006275841A (en) Method for quantitating amount of diethylene glycol in cement

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R151 Written notification of patent or utility model registration

Ref document number: 4056748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees