JP2003212555A - Burner for manufacturing porous preform of optical fiber and method of manufacturing porous preform of optical fiber using the same - Google Patents

Burner for manufacturing porous preform of optical fiber and method of manufacturing porous preform of optical fiber using the same

Info

Publication number
JP2003212555A
JP2003212555A JP2002008003A JP2002008003A JP2003212555A JP 2003212555 A JP2003212555 A JP 2003212555A JP 2002008003 A JP2002008003 A JP 2002008003A JP 2002008003 A JP2002008003 A JP 2002008003A JP 2003212555 A JP2003212555 A JP 2003212555A
Authority
JP
Japan
Prior art keywords
nozzle group
gas
optical fiber
glass
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002008003A
Other languages
Japanese (ja)
Other versions
JP3953820B2 (en
Inventor
Manabu Saito
学 齋藤
Hisami Nagata
久美 永田
Masahiro Horikoshi
雅博 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002008003A priority Critical patent/JP3953820B2/en
Publication of JP2003212555A publication Critical patent/JP2003212555A/en
Application granted granted Critical
Publication of JP3953820B2 publication Critical patent/JP3953820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/14Tapered or flared nozzles or ports angled to central burner axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Gas Burners (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a burner for manufacturing a porous preform of an optical fiber, which improves the efficiency of a synthesis reaction of glass particulates and the deposition efficiency of the glass particulates, and a method of manufacturing the porous preform of the optical fiber using the same. <P>SOLUTION: The burner for manufacturing of the porous preform of the optical fiber is provided with the burner with a second combustion supporting gas inflow port 25a in a fifth spout 15 and a third combustion supporting gas at a sixth spout 16. The flow rate of the combustion supporting gas to be ejected out of a row 4a of small-bore nozzles is set higher than the flow velocity of the combustion supporting gas ejected out of a row 4b of the small-bore nozzles in an initial stage during the deposition of the glass particulates and the flow velocity of the combustion supporting gas is set lower than the flow velocity of the combustion supporting gas in the final stage during the deposition of the glass particulates. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ多孔質
母材製造用バーナ装置およびこれを用いた光ファイバ多
孔質母材の製造方法に関し、特に、酸水素炎中でガラス
原料ガスを反応させてガラス微粒子を合成し、これを回
転する出発部材の外周部の径方向に堆積する外付け法に
用いられる光ファイバ多孔質母材製造用バーナ装置およ
びこれを用いた光ファイバ多孔質母材の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a burner device for producing an optical fiber porous preform and a method for producing an optical fiber porous preform using the burner device, and more particularly to reacting a glass raw material gas in an oxyhydrogen flame. Of the optical fiber porous preform used in the external attachment method for synthesizing glass fine particles and depositing them in the radial direction of the outer circumference of the rotating starting member and the optical fiber porous preform using the burner device. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】光ファイバは、光ファイバ母材を溶融線
引きして製造される。また、光ファイバ母材の製造方法
としては、VAD法、OVD法、MCVD法、PCVD
法などの方法がある。なかでも、OVD(Outside Vapo
r Phase Deposition)法は、四塩化ケイ素(SiC
4)、四塩化ゲルマニウム(GeCl4)などのガラス
原料ガスを、酸素、水素とともに火炎中で加水分解反応
または酸化反応させてガラス微粒子を合成し、その軸回
りに回転するコアとなるガラス材を備えた円柱形の出発
部材の外周部の径方向に、ガラス微粒子(スート)を堆
積させて複数層からなる多孔質層を形成して光ファイバ
多孔質母材とし、これを電気炉中で脱水、焼結しながら
透明ガラス化し、光ファイバ母材を製造する方法であ
る。このような光ファイバ母材を溶融線引きして製造さ
れる光ファイバは、純度、その他の品質に優れたものと
なる。
2. Description of the Related Art Optical fibers are manufactured by melting and drawing an optical fiber preform. Further, as a method for manufacturing the optical fiber preform, VAD method, OVD method, MCVD method, PCVD method are used.
There are methods such as law. Among them, OVD (Outside Vapo
r Phase Deposition method is based on silicon tetrachloride (SiC
glass materials such as l 4 ), germanium tetrachloride (GeCl 4 ) and the like, are subjected to a hydrolysis reaction or an oxidation reaction in a flame with oxygen and hydrogen to synthesize glass fine particles, and a glass material serving as a core rotating around its axis. In the radial direction of the outer periphery of the cylindrical starting member provided with, glass fine particles (soot) are deposited to form a porous layer composed of a plurality of layers to form an optical fiber porous preform, which is used in an electric furnace. This is a method of producing an optical fiber preform by forming transparent glass while dehydrating and sintering. An optical fiber manufactured by melting and drawing such an optical fiber preform has excellent purity and other qualities.

【0003】OVD法において用いられるガラス微粒子
を合成するためのバーナは、一般的に、マルチノズルタ
イプのものが用いられており、例えば、図1に示すよう
な構造のガラス合成用バーナが用いられている。この例
のガラス合成用バーナの端面において、その中心にノズ
ル1a、1bからなる第1のノズル群1が設けられ、こ
の第1のノズル群1の周囲に、第1のノズル群1と中心
軸を同じくして、ノズル2a、2bからなる第2のノズ
ル群2が設けられている。また、第1のノズル群1と第
2のノズル群2の間で、第1のノズル群1の同心円上に
は、複数個の内径および外径の等しい小口径ノズル3、
3、…が配列された円環状の小口径ノズルの列4a、4
bからなる小口径ノズル群4が設けられている。また、
ノズル1aが第1の噴出口11をなし、ノズル1aとノ
ズル1bの間の部分が第2の噴出口12をなし、ノズル
1bとノズル2aの間の部分が第3の噴出口13をな
し、ノズル2aとノズル2bの間の部分が第4の噴出口
14をなし、小口径ノズルの列4aが第5の噴出口15
をなし、小口径ノズルの列4bが第6の噴出口16をな
している。
A multi-nozzle type burner is generally used as a burner for synthesizing glass fine particles used in the OVD method. For example, a glass synthesizing burner having a structure as shown in FIG. 1 is used. ing. A first nozzle group 1 including nozzles 1a and 1b is provided at the center of the end face of the glass synthesizing burner of this example, and the first nozzle group 1 and the central axis are provided around the first nozzle group 1. Similarly, a second nozzle group 2 including nozzles 2a and 2b is provided. In addition, between the first nozzle group 1 and the second nozzle group 2, on the concentric circle of the first nozzle group 1, a plurality of small diameter nozzles 3 having the same inner diameter and outer diameter,
Rows 4a and 4 of small-diameter annular nozzles in which 3 ...
A small-diameter nozzle group 4 composed of b is provided. Also,
The nozzle 1a constitutes the first ejection port 11, the portion between the nozzle 1a and the nozzle 1b constitutes the second ejection port 12, and the portion between the nozzle 1b and the nozzle 2a constitutes the third ejection port 13. The portion between the nozzles 2a and 2b forms the fourth ejection port 14, and the row 4a of small diameter nozzles is the fifth ejection port 15.
And the row 4b of small-diameter nozzles constitutes the sixth ejection port 16.

【0004】OVD法において、ガラス微粒子を合成す
るには、一般的に、第1の噴出口11からは、例えばS
iCl4などのガラス原料ガス、および酸素または水素
などの添加ガスを供給し、第3の噴出口13からは水素
などの可燃性ガスを供給し、第5の噴出口15および第
6の噴出口16からは酸素などの支燃性ガスを供給す
る。
In the OVD method, in order to synthesize fine glass particles, generally, for example, S from the first jet port 11 is used.
A glass raw material gas such as iCl 4 and an additive gas such as oxygen or hydrogen are supplied, a combustible gas such as hydrogen is supplied from the third ejection port 13, a fifth ejection port 15 and a sixth ejection port A combustion-supporting gas such as oxygen is supplied from 16.

【0005】[0005]

【発明が解決しようとする課題】ところで、近年、高速
通信の需要の増加に伴って、光ファイバの生産量も年々
増加している。そのため、光ファイバの製造コストを低
減するために、光ファイバの製造に供される光ファイバ
母材が大型化する傾向にある。これに伴なって、使用す
るガラス原料ガスの量も増加し、光ファイバ母材の製造
に要する時間が長くなるから、光ファイバ多孔質母材の
製造におけるガラス微粒子の合成反応の効率や、ガラス
微粒子の出発部材への堆積効率を上げることが、非常に
重要な課題となっている。
By the way, in recent years, as the demand for high-speed communication has increased, the production amount of optical fibers has been increasing year by year. Therefore, in order to reduce the manufacturing cost of the optical fiber, the optical fiber preform used for manufacturing the optical fiber tends to increase in size. Along with this, the amount of glass raw material gas used also increases, and the time required to manufacture the optical fiber preform becomes long, so the efficiency of the synthesis reaction of the glass particles in the production of the optical fiber porous preform and the glass Increasing the deposition efficiency of fine particles on the starting member has become a very important issue.

【0006】光ファイバ母材が大型化すると、光ファイ
バ多孔質母材の製造において、ガラス微粒子を出発部材
の外周部に堆積する初期段階から終了段階までに、ガラ
ス微粒子を堆積中の光ファイバ多孔質母材の外径が大き
く変化していく。光ファイバ多孔質母材が細いときと、
太いときでは、ガラス微粒子を堆積するのに最適な、ガ
ラス合成用バーナの発する火炎の条件が異なる。したが
って、ガラス微粒子の堆積中には、光ファイバ多孔質母
材の外径に応じて流量を変更することが好ましい。
When the optical fiber preform becomes large, in the production of the optical fiber porous preform, from the initial stage of depositing the glass fine particles on the outer peripheral portion of the starting member to the final stage, the optical fiber porous medium in which the glass fine particles are being deposited is deposited. The outer diameter of the base material changes greatly. When the optical fiber porous base material is thin,
When it is thick, the conditions of the flame emitted by the glass synthesizing burner, which are optimal for depositing glass particles, are different. Therefore, it is preferable to change the flow rate according to the outer diameter of the optical fiber porous preform during the deposition of the glass particles.

【0007】ところが、従来のマルチノズルタイプのガ
ラス合成用バーナにあっては、図4に示すように、第5
の噴出口15および第6の噴出口16に支燃性ガスを導
入するための支燃性ガス流入口25が1箇所だけ設けら
れていた。したがって、第5の噴出口15および第6の
噴出口16を構成する複数の小口径ノズル3、3、…そ
れぞれから噴出される支燃性ガスの流量は、第5の噴出
口15および第6の噴出口16から噴出される支燃性ガ
スの全流量によって制御されていた。すなわち、支燃性
ガス流入口25から流入した支燃性ガスの全流量を制御
することにより、第5の噴出口15および第6の噴出口
16から噴出される全ての支燃性ガスの流量を制御して
いた。
However, in the conventional multi-nozzle type glass synthesizing burner, as shown in FIG.
The combustion-supporting gas inflow port 25 for introducing the combustion-supporting gas was provided at only one location at the ejection port 15 and the sixth ejection port 16. Therefore, the flow rate of the combustion-supporting gas ejected from each of the plurality of small diameter nozzles 3, 3, ... Which constitute the fifth ejection port 15 and the sixth ejection port 16 is the same as that of the fifth ejection port 15 and the sixth ejection port 15. It was controlled by the total flow rate of the combustion-supporting gas ejected from the ejection port 16 of. That is, by controlling the total flow rate of the combustion-supporting gas flowing from the combustion-supporting gas inlet 25, the flow rate of all the combustion-supporting gas ejected from the fifth ejection port 15 and the sixth ejection port 16 is controlled. Was in control.

【0008】小口径ノズルの列を2列以上に配列した場
合、図1に示したガラス合成用バーナのように、例え
ば、小口径ノズル群4全体の支燃性ガスの流量を制御し
ても、内側に配列された小口径ノズルの列4aと、外側
に配列された小口径ノズルの列4bとでは、小口径ノズ
ル3、3、…内部と支燃性ガスとの抵抗が異なる。した
がって、支燃性ガスの流量の制御条件によっては、小口
径ノズルの列4aと小口径ノズルの列4bでは、支燃性
ガスが同じように流れないという問題があった。また、
内側に配列された小口径ノズルの列4aと、外側に配列
された小口径ノズルの列4bとでは、これらの先端で発
する火炎の強さや、ガラス原料ガスと支燃性ガスとの反
応の状態が異なる。したがって、出発部材またはガラス
微粒子を堆積中の光ファイバ多孔質母材の外径に応じ
て、各小口径ノズルの列には最適な支燃性ガスの流量が
ある。
When the rows of the small diameter nozzles are arranged in two or more rows, even if the flow rate of the combustion-supporting gas of the entire small diameter nozzle group 4 is controlled as in the glass synthesizing burner shown in FIG. In the row 4a of small diameter nozzles arranged inside and the row 4b of small diameter nozzles arranged outside, the resistances of the small diameter nozzles 3, 3, ... Inside and the combustion-supporting gas are different. Therefore, depending on the control conditions of the flow rate of the combustion-supporting gas, there is a problem that the combustion-supporting gas does not flow equally in the row 4a of small diameter nozzles and the row 4b of small diameter nozzles. Also,
In the row 4a of small diameter nozzles arranged inside and the row 4b of small diameter nozzles arranged outside, the intensity of the flame emitted at these tips and the state of the reaction between the glass raw material gas and the combustion supporting gas Is different. Therefore, depending on the outer diameter of the optical fiber porous preform on which the starting material or glass particles are being deposited, there is an optimum flow rate of the combustion-supporting gas in each row of small-diameter nozzles.

【0009】本発明は、前記事情に鑑みてなされたもの
で、光ファイバ多孔質母材の製造において、ガラス微粒
子の合成反応の効率およびガラス微粒子の堆積効率を向
上する光ファイバ多孔質母材製造用バーナ装置およびこ
れを用いた光ファイバ多孔質母材の製造方法を提供する
ことを課題とする。
The present invention has been made in view of the above circumstances, and in the production of an optical fiber porous preform, the production of an optical fiber porous preform that improves the efficiency of the synthesis reaction of glass fine particles and the deposition efficiency of glass fine particles. An object of the present invention is to provide a burner device for use and a method for manufacturing an optical fiber porous preform using the burner device.

【0010】[0010]

【課題を解決するための手段】前記課題は、中心軸を同
じくして配列された1列または複数列のノズルからなる
第1のノズル群と、該第1のノズル群の周囲に、該第1
のノズル群と中心軸を同じくして配列された1列または
複数列のノズルからなる第2のノズル群と、前記第1の
ノズル群と前記第2のノズル群の間に、前記第1のノズ
ル群の同心円上に、複数個の内径および外径の等しい小
口径ノズルが配列されてなる1列または複数列の小口径
ノズル群とを備えたガラス合成用バーナと、該ガラス合
成用バーナにガラス原料ガス、添加ガス、支燃性ガス、
可燃性ガスおよび不活性ガスを導入するガス供給源と、
これらのガスの流量または流速を制御するガス制御部と
を備えた光ファイバ多孔質母材製造用バーナ装置であっ
て、前記ガラス合成用バーナの後端部には、前記小口径
ノズル群の各列毎に、それぞれ独立したガス流入口が設
けられた光ファイバ多孔質母材製造用バーナ装置によっ
て解決できる。
Means for Solving the Problems The above-mentioned problems are as follows: a first nozzle group consisting of one row or a plurality of rows of nozzles arranged with the same central axis, and the first nozzle group around the first nozzle group. 1
Between the first nozzle group and the second nozzle group, and a second nozzle group composed of one row or a plurality of rows of nozzles arranged with the same central axis as that of the first nozzle group. A glass synthesizing burner having a single row or a plurality of rows of small diameter nozzle groups in which a plurality of small diameter nozzles having the same inner diameter and outer diameter are arranged on a concentric circle of the nozzle group, and the glass synthesizing burner. Glass material gas, additive gas, combustion-supporting gas,
A gas supply source for introducing a flammable gas and an inert gas,
A burner device for producing an optical fiber porous preform, comprising a gas control unit for controlling the flow rate or flow velocity of these gases, wherein each of the small diameter nozzle groups is provided at the rear end of the glass synthesizing burner. This can be solved by a burner device for manufacturing an optical fiber porous preform provided with an independent gas inlet for each row.

【0011】また、前記課題は、中心軸を同じくして配
列された1列または複数列のノズルからなる第1のノズ
ル群と、該第1のノズル群の周囲に、該第1のノズル群
と中心軸を同じくして配列された1列または複数列のノ
ズルからなる第2のノズル群と、前記第1のノズル群と
前記第2のノズル群の間に、前記第1のノズル群の同心
円上に、複数個の内径および外径の等しい小口径ノズル
が配列されてなる1列または複数列の小口径ノズル群と
を備えたガラス合成用バーナと、該ガラス合成用バーナ
の後端部に設けられた複数のガス流入口と、前記ガラス
合成用バーナにガラス原料ガス、添加ガス、支燃性ガ
ス、可燃性ガスおよび不活性ガスを導入するガス供給源
と、これらのガスの流量または流速を制御するガス制御
部とを備えた光ファイバ多孔質母材製造用バーナ装置を
用いて、ガラス原料ガスを火炎中で加水分解反応または
酸化反応させてガラス微粒子を合成し、該ガラス微粒子
を回転する出発部材の外周部の径方向に堆積して光ファ
イバ多孔質母材を得る光ファイバ多孔質母材の製造方法
において、前記小口径ノズル群の各列毎に、前記複数の
ガス流入口からそれぞれ独立にガスを流入する光ファイ
バ多孔質母材の製造方法によって解決できる。前記小口
径ノズル群から同一の支燃性ガスを噴出し、かつ前記小
口径ノズル群の列の少なくとも1列から噴出する支燃性
ガスの流量と、前記小口径ノズル群の他の列から噴出す
る支燃性ガスの流量とは、他のガスの流量などの条件に
もよるが、異なるようにすると、なお好ましい。前記小
口径ノズル群から同一の支燃性ガスを噴出し、かつ前記
小口径ノズル群の列の少なくとも2列から噴出するそれ
ぞれの支燃性ガスの流量の比率を、ガラス微粒子を出発
部材の外周部に堆積する初期段階と終了段階の間に1回
以上変化させると、さらに好ましい。上記光ファイバ多
孔質母材の製造方法において、ガラス微粒子を出発部材
の外周部に堆積する初期段階において、前記小口径ノズ
ル群の内側の列から噴出する支燃性ガスの流量を、前記
小口径ノズル群の外側の列から噴出する支燃性ガスの流
速よりも多くし、ガラス微粒子を出発部材の外周部に堆
積する終了段階において、前記小口径ノズル群の内側の
列から噴出する支燃性ガスの流速を、前記小口径ノズル
群の外側の列から噴出する支燃性ガスの流速よりも少な
くすることが好ましい。
Further, the above-mentioned problem is that a first nozzle group consisting of one or more rows of nozzles arranged with the same central axis and the first nozzle group around the first nozzle group. And a second nozzle group consisting of one or more rows of nozzles arranged with the same central axis, and between the first nozzle group and the second nozzle group, the first nozzle group A glass synthesizing burner having one or more rows of small caliber nozzle groups in which a plurality of small caliber nozzles having the same inner diameter and outer diameter are arranged on a concentric circle, and a rear end portion of the glass synthesizing burner. A plurality of gas inlets provided in, a gas source for introducing a glass raw material gas, an additive gas, a combustion-supporting gas, a combustible gas and an inert gas into the glass synthesis burner, and the flow rate of these gases or An optical fiber equipped with a gas control unit for controlling the flow velocity. (B) Using a burner device for producing a porous base material, glass raw material gas is hydrolyzed or oxidized in a flame to synthesize glass fine particles, and the glass fine particles are deposited in a radial direction on the outer peripheral portion of a rotating starting member. In the method for producing an optical fiber porous base material to obtain an optical fiber porous base material, in each row of the small-diameter nozzle group, an optical fiber porous body for independently introducing gas from the plurality of gas inlets It can be solved by the manufacturing method of the base material. The same combustion-supporting gas is ejected from the small diameter nozzle group, and the flow rate of the combustion-supporting gas ejected from at least one row of the small diameter nozzle group and the ejection from another row of the small diameter nozzle group. The flow rate of the combustion-supporting gas depends on conditions such as the flow rates of other gases, but it is more preferable to make them different. The same combustion-supporting gas is ejected from the small diameter nozzle group, and the flow rate ratio of the respective combustion-supporting gas ejected from at least two rows of the small diameter nozzle group is defined by the glass fine particles on the outer periphery of the starting member. It is more preferable to change it once or more between the initial stage and the final stage of depositing on the part. In the method for producing the optical fiber porous preform, in the initial stage of depositing glass particles on the outer peripheral portion of the starting member, the flow rate of the combustion-supporting gas ejected from the inner row of the small diameter nozzle group is set to the small diameter. The flow velocity of the combustion-supporting gas ejected from the row outside the nozzle group is made higher than the flow velocity of the combustion-supporting gas, and at the end stage of depositing the glass particles on the outer peripheral portion of the starting member, the combustion-supporting gas ejected from the row inside the small-diameter nozzle group. It is preferable that the gas flow velocity is set lower than the flow velocity of the combustion-supporting gas ejected from the row outside the small diameter nozzle group.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳しく説明する。
図1は、光ファイバ多孔質母材の製造に用いられるガラ
ス合成用バーナの一例を示す概略構成図である。本発明
の光ファイバ多孔質母材製造用バーナ装置は、この例の
ガラス合成用バーナと、このガラス合成用バーナにガラ
ス原料ガス、酸素、水素、不活性ガスを導入するガス供
給源(図示略)と、これらのガスの流量または流速を制
御するガス制御部(図示略)とから概略構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
FIG. 1 is a schematic configuration diagram showing an example of a glass synthesizing burner used for manufacturing an optical fiber porous preform. The burner apparatus for producing an optical fiber porous preform of the present invention includes a glass synthesizing burner of this example, and a gas supply source for introducing a glass raw material gas, oxygen, hydrogen, and an inert gas into the glass synthesizing burner (not shown). ) And a gas control unit (not shown) that controls the flow rate or flow velocity of these gases.

【0013】ガス供給源は、SiCl4などのガラス原
料ガス、酸素、水素、不活性ガスなどが充填されたガス
ボンベ(図示略)などからなり、ガラス合成用バーナの
後端部に、ガス供給管路(図示略)を介して接続されて
いる。また、ガス制御部は、電磁バルブ、流量制御装置
などからなり、上述のガス供給管路の中途に設けられて
おり、この流量制御装置により、ガスの流量または流速
を制御するものである
The gas supply source is composed of a gas cylinder (not shown) filled with glass raw material gas such as SiCl 4 , oxygen, hydrogen, and an inert gas. The gas supply pipe is provided at the rear end of the glass synthesizing burner. It is connected via a path (not shown). Further, the gas control unit is composed of an electromagnetic valve, a flow rate control device, etc., and is provided in the middle of the above-mentioned gas supply line, and the flow rate control device controls the flow rate or flow velocity of the gas.

【0014】この例のガラス合成用バーナは、外径40
〜60mm程度の円筒形で、一般的には、石英ガラスで
形成されている。この例のガラス合成用バーナを構成す
る第1のノズル群1のノズル1aの内径は2.5〜6m
m程度、ノズル1bの内径は4〜10mm程度となって
いる。また、第2のノズル群2のノズル2aの内径は2
5〜45mm程度、ノズル2bの内径は35〜55mm
程度となっている。また、小口径ノズル3の内径は1〜
2mm程度となっており、小口径ノズルの列4aの直径
は10〜30mm程度、小口径ノズルの列4bの直径は
15〜40mm程度となっている。
The burner for glass synthesis of this example has an outer diameter of 40.
It has a cylindrical shape of about 60 mm and is generally made of quartz glass. The inner diameter of the nozzle 1a of the first nozzle group 1 constituting the burner for glass synthesis of this example is 2.5 to 6 m.
m, and the inner diameter of the nozzle 1b is about 4 to 10 mm. Further, the inner diameter of the nozzle 2a of the second nozzle group 2 is 2
5 to 45 mm, the inner diameter of the nozzle 2b is 35 to 55 mm
It has become a degree. Further, the inner diameter of the small diameter nozzle 3 is 1 to
The diameter of the row 4a of small diameter nozzles is about 10 to 30 mm, and the diameter of the row 4b of small diameter nozzles is about 15 to 40 mm.

【0015】また、本発明の光ファイバ多孔質母材製造
用バーナ装置に備えられるガラス合成用バーナは、図2
に示すように、その後端部に、複数のガス流入口が設け
られている。符号21は第1の噴出口11に原料ガス
と、酸素または水素の添加ガスとを導入する原料ガス流
入口を示し、符号22は第2の噴出口12にアルゴンな
どの不活性ガスを導入する不活性ガス流入口を示し、符
号23は第3の噴出口13に可燃性ガスを導入する可燃
性ガス流入口を示し、符号24は第4の噴出口14に支
燃性ガスを導入する第1の支燃性ガス流入口を示し、符
号25aは第5の噴出口15に支燃性ガスを導入する第
2の支燃性ガス流入口を示し、符号25bは第6の噴出
口16に支燃性ガスを導入する第3の支燃性ガス流入口
を示している。このように、第5の噴出口15、第6の
噴出口16に、それぞれ独立に第2の支燃性ガス流入口
25a、第3の支燃性ガス流入口25bを設けることに
より、第5の噴出口15、第6の噴出口16から噴出さ
れる支燃性ガスの流量および流速をそれぞれ独立に制御
できるようになっている。
The burner for glass synthesis provided in the burner device for producing an optical fiber porous preform of the present invention is shown in FIG.
As shown in, a plurality of gas inlets are provided at the rear end. Reference numeral 21 denotes a raw material gas inlet for introducing the raw material gas and oxygen or hydrogen added gas into the first jet outlet 11, and reference numeral 22 introduces an inert gas such as argon into the second jet outlet 12. An inert gas inlet is shown, a reference numeral 23 is a combustible gas inlet for introducing a combustible gas into the third jet outlet 13, and a reference numeral 24 is for introducing a combustion supporting gas into the fourth jet outlet 14. 1, reference numeral 25a indicates a second combustion-supporting gas inlet for introducing the combustion-supporting gas into the fifth ejection port 15, and reference numeral 25b indicates a sixth ejection port 16. The 3rd combustion-supporting-gas inlet which introduces combustion-supporting gas is shown. In this way, the fifth jet outlet 15 and the sixth jet outlet 16 are independently provided with the second combustion-supporting gas inlet 25a and the third combustion-supporting gas inlet 25b, respectively. The flow rate and the flow velocity of the combustion-supporting gas ejected from the ejection port 15 and the sixth ejection port 16 can be independently controlled.

【0016】なお、図2には、本発明の光ファイバ多孔
質母材の製造装置に備えられるガラス合成用バーナの一
例を示したが、本発明の光ファイバ多孔質母材の製造装
置に備えられるガラス合成用バーナは、これに限定され
るものではない。本発明の光ファイバ多孔質母材の製造
装置に備えられるガラス合成用バーナは、図2に示した
ガラス合成用バーナと類似の構造を有するものであれば
よい。すなわち、1列または複数列に配列されてなる小
口径ノズル群の各列毎に、それぞれ独立した支燃性ガス
流入口が設けられていればよい。
Although FIG. 2 shows an example of the glass synthesizing burner provided in the optical fiber porous preform manufacturing apparatus of the present invention, it is provided in the optical fiber porous preform manufacturing apparatus of the present invention. The burner for synthesizing glass is not limited to this. The glass synthesizing burner provided in the optical fiber porous preform manufacturing apparatus of the present invention may have a structure similar to that of the glass synthesizing burner shown in FIG. That is, it suffices that an independent combustion-supporting gas inflow port is provided for each row of the small diameter nozzle group arranged in one row or a plurality of rows.

【0017】以下、本発明の光ファイバ多孔質母材の製
造方法について説明する。本発明の光ファイバ多孔質母
材の製造方法では、例えば、その軸回りに回転するコア
となるガラス材を備えた円柱形の出発部材の表面に、図
1および図2に示したガラス合成用バーナの第1の噴出
口11からSiCl4などのガラス原料ガス、および酸
素または水素などの添加ガスを供給し、第3の噴出口1
3から水素などの添加ガスを供給し、第5の噴出口15
および第6の噴出口16から酸素などの支燃性ガスを供
給して、ガラス合成用バーナの酸水素炎中における加水
分解反応により、ガラス微粒子を合成し、このガラス微
粒子を、出発部材の表面に半焼結状態で半径方向に堆積
し、光ファイバ多孔質母材を得る。このとき、第5の噴
出口15、第6の噴出口16にはそれぞれ独立に、第2
の支燃性ガス流入口25aまたは第3の支燃性ガス流入
口25bから支燃性ガスが導入される。すなわち、第5
の噴出口15には第2の支燃性ガス流入口25aから支
燃性ガスが導入され、第6の噴出口16には第3の支燃
性ガス流入口25bから支燃性ガスが導入される。ま
た、第5の噴出口15、第6の噴出口16に導入される
支燃性ガスの流量および流速をそれぞれ独立に制御す
る。これにより、ガラス微粒子を堆積するターゲットと
なる出発部材またはガラス微粒子を堆積中の光ファイバ
多孔質母材の外径に応じて、第5の噴出口15および第
6の噴出口16に最適な支燃性ガスの流量および流速を
設定することができる。
The method for producing the optical fiber porous preform of the present invention will be described below. In the method for producing an optical fiber porous preform of the present invention, for example, the glass synthesizing glass shown in FIGS. 1 and 2 is formed on the surface of a cylindrical starting member provided with a glass material serving as a core rotating about its axis. A glass raw material gas such as SiCl 4 and an additive gas such as oxygen or hydrogen are supplied from the first ejection port 11 of the burner, and the third ejection port 1
An additional gas such as hydrogen is supplied from 3 and the fifth jet port 15
And, a combustion-supporting gas such as oxygen is supplied from the sixth jet port 16 to synthesize glass fine particles by a hydrolysis reaction in an oxyhydrogen flame of a burner for synthesizing glass, and the glass fine particles are attached to the surface of the starting member. Is deposited in the semi-sintered state in the radial direction to obtain an optical fiber porous preform. At this time, the second jet port 15 and the sixth jet port 16 are independently provided with the second
The combustion-supporting gas is introduced from the combustion-supporting gas inlet 25a or the third combustion-supporting gas inlet 25b. That is, the fifth
The combustion-supporting gas is introduced from the second combustion-supporting gas inlet 25a into the jet outlet 15 of the No. 3 and the combustion-supporting gas is introduced from the third combustion-supporting gas inlet 25b into the sixth jet 16 To be done. Further, the flow rate and the flow velocity of the combustion-supporting gas introduced into the fifth ejection port 15 and the sixth ejection port 16 are independently controlled. This makes it possible to optimally support the fifth ejection port 15 and the sixth ejection port 16 depending on the outer diameter of the optical fiber porous base material in which the starting member or the glass particles on which the glass particles are deposited are deposited. The flow rate and flow rate of the flammable gas can be set.

【0018】また、本発明の光ファイバ多孔質母材の製
造方法にあっては、第5の噴出口15および第6の噴出
口16から噴出される支燃性ガスの組成を同一とし、第
5の噴出口15から噴出される支燃性ガスの流量をV
1、第6の噴出口16から噴出される支燃性ガスの流量
をV2とすると、V1≠V2であるとなお好ましい場合
が多く、また、支燃性ガスの流量V1と流量V2の比率
を、ガラス微粒子を出発部材の外周部に堆積する初期段
階と終了段階の間に1回以上変化させると、さらに好ま
しい。すなわち、ガラス微粒子を出発部材の外周部に堆
積する初期段階においては、第5の噴出口15から噴出
される支燃性ガスの流量V1を、第6の噴出口16から
噴出される支燃性ガスの流量V2よりも多くし、ガラス
微粒子を堆積する終了段階においては、第5の噴出口1
5から噴出される支燃性ガスの流量V1を、第6の噴出
口16から噴出される支燃性ガスの流量V2よりも少な
くすることが好ましい。
Further, in the method for producing an optical fiber porous preform of the present invention, the composition of the combustion-supporting gas ejected from the fifth ejection port 15 and the sixth ejection port 16 is the same, 5 is the flow rate of the combustion-supporting gas ejected from the ejection port 15 of V
1. If V2 is the flow rate of the combustion-supporting gas ejected from the sixth ejection port 16, V1 ≠ V2 is often more preferable, and the ratio of the flow rate V1 of the combustion-supporting gas to the flow rate V2 is It is more preferable to change the glass fine particles once or more between the initial stage and the end stage of depositing the glass fine particles on the outer peripheral portion of the starting member. That is, in the initial stage of depositing the glass particles on the outer peripheral portion of the starting member, the flow rate V1 of the combustion-supporting gas ejected from the fifth ejection port 15 is changed to the combustion-supporting gas ejected from the sixth ejection port 16. The flow rate of the gas is made higher than V2, and at the end stage of depositing glass particles, the fifth jet port 1
It is preferable that the flow rate V1 of the combustion-supporting gas ejected from No. 5 is smaller than the flow rate V2 of the combustion-supporting gas ejected from the sixth ejection port 16.

【0019】ガラス微粒子を堆積する初期段階では、ガ
ラス微粒子が堆積されるターゲットとなる出発部材が細
いため、ガラス合成用バーナの発する火炎が出発部材に
あたる面積が小さい。したがって、ガラス合成用バーナ
の中心部近傍に設けられた第5の噴出口15から噴出さ
れる支燃性ガスの流量V1を、第6の噴出口16から噴
出される支燃性ガスの流量V2よりも多くして、ガラス
原料ガスをガラス合成用バーナの中心部近傍に集中させ
ることが好ましい。これにより、ガラス微粒子の慣性力
が大きくなるため、ガラス微粒子の堆積速度を上げるこ
とができる。また、ガラス微粒子を堆積する終了段階で
は、ターゲットとなるガラス微粒子を堆積中の光ファイ
バ多孔質母材が太くなるため、ガラス合成用バーナの発
する火炎が光ファイバ多孔質母材にあたる面積が大きく
なる。したがって、第5の噴出口15から噴出される支
燃性ガスの流量V1を、第6の噴出口16から噴出され
る支燃性ガスの流量V2よりも少なくし、火炎を大きく
することでサーモフォレシス効果により、堆積するガラ
ス微粒子の割合を増やすことが好ましい。このようにす
れば、効果的にガラス微粒子の堆積を行うことができ
る。
At the initial stage of depositing the glass particles, the starting member serving as a target on which the glass particles are deposited is thin, so that the flame emitted by the glass synthesizing burner has a small area of contact with the starting member. Therefore, the flow rate V1 of the combustion-supporting gas ejected from the fifth ejection port 15 provided near the center of the glass synthesizing burner is set to the flow rate V2 of the combustion-supporting gas ejected from the sixth ejection port 16. It is preferable to concentrate the glass raw material gas in the vicinity of the central portion of the glass synthesizing burner by increasing the amount. As a result, the inertial force of the glass particles is increased, so that the deposition rate of the glass particles can be increased. In addition, at the end stage of depositing glass particles, the optical fiber porous base material on which the target glass particles are being deposited becomes thicker, so that the flame emitted by the glass synthesis burner becomes larger in the area of the optical fiber porous base material. . Therefore, the flow rate V1 of the combustion-supporting gas ejected from the fifth ejection port 15 is made smaller than the flow rate V2 of the combustion-supporting gas ejected from the sixth ejection port 16, and the flame is increased to increase the thermostat. It is preferable to increase the ratio of glass particles to be deposited due to the foresis effect. In this way, glass particles can be effectively deposited.

【0020】このように、本発明の光ファイバ多孔質母
材の製造方法によれば、出発部材の表面にガラス微粒子
を堆積する際に、堆積速度を上げることができるから、
製造効率が良くなる。また、出発部材またはガラス微粒
子を堆積中の光ファイバ多孔質母材の外径に応じて、小
口径ノズル群の各列から噴出される支燃性ガスの流量お
よび流速を最適な状態に設定することができる。したが
って、ガラス微粒子の合成反応の効率を向上することが
できるから、結果として、ガラス微粒子の堆積効率を向
上することができる。
As described above, according to the method for producing the optical fiber porous preform of the present invention, the deposition rate can be increased when the glass particles are deposited on the surface of the starting member.
Manufacturing efficiency is improved. Further, the flow rate and the flow velocity of the combustion-supporting gas ejected from each row of the small-diameter nozzle group are set to an optimum state according to the outer diameter of the optical fiber porous preform on which the starting member or glass particles are being deposited. be able to. Therefore, the efficiency of the synthesis reaction of the glass particles can be improved, and as a result, the deposition efficiency of the glass particles can be improved.

【0021】ここで、ガラス微粒子の堆積効率とは、使
用したガラス原料ガスが全て化学反応によってガラス微
粒子に変化したと仮定したときのガラス微粒子の総量に
対する、出発部材の表面に堆積されたガラス微粒子の総
量の割合で定義するものである。また、堆積速度とは、
単位時間当りに出発部材の表面に堆積されたガラス微粒
子の重量で表されるものである。
Here, the deposition efficiency of the glass fine particles means the glass fine particles deposited on the surface of the starting member with respect to the total amount of the glass fine particles when it is assumed that all the glass raw material gases used are changed into the glass fine particles by the chemical reaction. It is defined by the ratio of the total amount of. What is the deposition rate?
It is represented by the weight of the glass particles deposited on the surface of the starting member per unit time.

【0022】以下、図1および図2を用いて具体的な実
施例を示し、本発明の効果を明らかにする。 (実施例)図1および図2に示したガラス合成用バーナ
を備えた光ファイバ多孔質母材製造用バーナ装置を用意
した。次いで、外径30mm、長さ1200mmの石英
系ガラスからなる円柱形の出発部材を用意した。次い
で、この出発部材の両端部を把持具で把持し、出発部材
を水平に配置した。次いで、この出発部材を、その中心
軸を中心にして回転させながら、上記のガラス合成用バ
ーナを用いてガラス微粒子を合成し、ガラス合成用バー
ナを出発部材の長手方向と平行に移動させながら、ガラ
ス微粒子を回転する出発部材の半径方向に堆積して、円
柱形の光ファイバ多孔質母材を得た。このとき、出発部
材の回転速度を30rpmとした。また、第1の噴出口
11からはガラス原料ガスのSiCl4を5l/分と酸
素を2l/分噴出し、第2の噴出口12からはアルゴン
を1l/分噴出し、第3の噴出口13からは水素を噴出
し、第5の噴出口15および第6の噴出口16からは酸
素を合計30l/分噴出し、第4の噴出口14からは酸
素を20l/分噴出した。また、第3の噴出口13から
噴出される水素の流量を、ガラス微粒子を堆積中の光フ
ァイバ多孔質母材表面の温度が、堆積の初期段階から終
了段階まで略一定となるように調整した。さらに、第5
の噴出口15から噴出される酸素の流量と、第6の噴出
口16から噴出される酸素の流量をそれぞれ独立に設定
し、ガラス微粒子を堆積中、光ファイバ多孔質母材の外
径が大きくなるにしたがい、それぞれの噴出口から噴出
される酸素の流量を表1のように変化させた。光ファイ
バ多孔質母材の外径の変化に伴なって、ガラス微粒子の
堆積効率を調べた。結果を図3に示す。
Specific examples will be shown below with reference to FIGS. 1 and 2 to clarify the effects of the present invention. (Example) A burner apparatus for producing an optical fiber porous preform having the glass synthesizing burner shown in FIGS. 1 and 2 was prepared. Next, a cylindrical starting member made of silica glass having an outer diameter of 30 mm and a length of 1200 mm was prepared. Then, both ends of this starting member were gripped by gripping tools, and the starting member was arranged horizontally. Then, while rotating the starting member around its central axis, glass fine particles are synthesized using the above-mentioned glass synthesizing burner, while moving the glass synthesizing burner in parallel with the longitudinal direction of the starting member, Glass fine particles were deposited in the radial direction of the rotating starting member to obtain a cylindrical optical fiber porous preform. At this time, the rotation speed of the starting member was set to 30 rpm. Further, 5 l / min of glass raw material gas SiCl 4 and 2 l / min of oxygen are ejected from the first ejection port 11, 1 l / min of argon is ejected from the second ejection port 12, and the third ejection port is ejected. Hydrogen was ejected from No. 13, oxygen was ejected from the fifth ejection port 15 and sixth ejection port 16 in a total amount of 30 l / min, and oxygen was ejected from the fourth ejection port 14 at 20 l / min. Further, the flow rate of hydrogen ejected from the third ejection port 13 was adjusted so that the temperature of the surface of the optical fiber porous preform during the deposition of glass particles was substantially constant from the initial stage to the final stage of deposition. . Furthermore, the fifth
The flow rate of oxygen ejected from the ejection port 15 and the flow rate of oxygen ejected from the sixth ejection port 16 are set independently to increase the outer diameter of the optical fiber porous base material during the deposition of glass particles. Accordingly, the flow rate of oxygen ejected from each ejection port was changed as shown in Table 1. The deposition efficiency of the glass particles was investigated with the change of the outer diameter of the optical fiber porous preform. The results are shown in Fig. 3.

【0023】[0023]

【表1】 [Table 1]

【0024】(比較例)図1および図4に示したガラス
合成用バーナを備えた光ファイバ多孔質母材製造用バー
ナ装置を用意した。次いで、この出発部材の両端部を把
持具で把持し、出発部材を水平に配置した。次いで、こ
の出発部材を、その中心軸を中心にして回転させなが
ら、上記のガラス合成用バーナを用いてガラス微粒子を
合成し、ガラス合成用バーナを出発部材の長手方向と平
行に移動させながら、ガラス微粒子を回転する出発部材
の半径方向に堆積して、円柱形の光ファイバ多孔質母材
を得た。このとき、出発部材の回転速度を30rpmと
した。また、第1の噴出口11からはガラス原料ガスの
SiCl4を5l/分と酸素を2l/分噴出し、第2の
噴出口12からはアルゴンを1l/分噴出し、第3の噴
出口13からは水素を噴出し、第5の噴出口15および
第6の噴出口16からは酸素を合計30l/分噴出し、
第4の噴出口14からは酸素を20l/分噴出した。ま
た、第3の噴出口13から噴出される水素の流量を、ガ
ラス微粒子を堆積中の光ファイバ多孔質母材表面の温度
が、堆積の初期段階から終了段階まで略一定となるよう
に調整した。さらに、第5の噴出口15から噴出される
酸素の流量と、第6の噴出口16から噴出される酸素の
流量の比率を、ガラス微粒子を堆積中一定とした。光フ
ァイバ多孔質母材の外径の変化に伴なって、ガラス微粒
子の堆積効率を調べた。結果を図3に示す。
(Comparative Example) A burner device for producing an optical fiber porous preform having the glass synthesizing burner shown in FIGS. 1 and 4 was prepared. Then, both ends of this starting member were gripped by gripping tools, and the starting member was arranged horizontally. Then, while rotating the starting member around its central axis, glass fine particles are synthesized using the above-mentioned glass synthesizing burner, while moving the glass synthesizing burner in parallel with the longitudinal direction of the starting member, Glass fine particles were deposited in the radial direction of the rotating starting member to obtain a cylindrical optical fiber porous preform. At this time, the rotation speed of the starting member was set to 30 rpm. Further, 5 l / min of glass raw material gas SiCl 4 and 2 l / min of oxygen are ejected from the first ejection port 11, 1 l / min of argon is ejected from the second ejection port 12, and the third ejection port is ejected. Hydrogen is ejected from 13 and oxygen is ejected from the fifth ejection port 15 and the sixth ejection port 16 in a total amount of 30 l / min.
20 l / min of oxygen was ejected from the fourth ejection port 14. Further, the flow rate of hydrogen ejected from the third ejection port 13 was adjusted so that the temperature of the surface of the optical fiber porous preform during the deposition of glass particles was substantially constant from the initial stage to the final stage of deposition. . Further, the ratio of the flow rate of oxygen ejected from the fifth ejection port 15 to the flow rate of oxygen ejected from the sixth ejection port 16 was kept constant during the deposition of the glass particles. The deposition efficiency of the glass particles was investigated with the change of the outer diameter of the optical fiber porous preform. The results are shown in Fig. 3.

【0025】図3の結果から、実施例で示したように、
第5の噴出口15から噴出される酸素の流量と、第6の
噴出口16から噴出される酸素の流量との比率を、光フ
ァイバ多孔質母材の外径の変化に伴なって変化させるこ
とにより、ガラス微粒子の堆積効率を上昇させることが
できることが確認された。
From the result of FIG. 3, as shown in the embodiment,
The ratio of the flow rate of oxygen ejected from the fifth ejection port 15 to the flow rate of oxygen ejected from the sixth ejection port 16 is changed in accordance with the change in the outer diameter of the optical fiber porous preform. It was thus confirmed that the deposition efficiency of glass particles can be increased.

【0026】[0026]

【発明の効果】以上説明したように、本発明の光ファイ
バ多孔質母材製造用バーナ装置によれば、酸素などの支
燃性ガスを噴出する小口径ノズル群の各列毎に、それぞ
れ独立に支燃性ガスの流量を制御することができる。し
たがって、光ファイバ多孔質母材の製造において、ガラ
ス微粒子の堆積効率を向上することができる。また、本
発明の光ファイバ多孔質母材の製造方法によれば、出発
部材またはガラス微粒子を堆積中の光ファイバ多孔質母
材の外径に応じて、小口径ノズル群の各列から噴出され
る支燃性ガスの流量および流速を最適な状態に設定する
ことができるから、ガラス微粒子の合成反応の効率を向
上することができるため、結果として、ガラス微粒子の
堆積効率を向上することができる。
As described above, according to the burner apparatus for producing an optical fiber porous preform of the present invention, each row of small diameter nozzle groups for ejecting a combustion-supporting gas such as oxygen is independent. It is possible to control the flow rate of the combustion-supporting gas. Therefore, the deposition efficiency of the glass particles can be improved in the production of the optical fiber porous preform. Further, according to the method for producing an optical fiber porous preform of the present invention, the starting member or glass fine particles are jetted from each row of the small diameter nozzle group according to the outer diameter of the optical fiber porous preform being deposited. Since the flow rate and the flow velocity of the combustion-supporting gas can be set to an optimum state, the efficiency of the synthesis reaction of the glass particles can be improved, and as a result, the deposition efficiency of the glass particles can be improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 光ファイバ多孔質母材の製造に用いられるガ
ラス合成用バーナの一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of a glass synthesizing burner used for manufacturing an optical fiber porous preform.

【図2】 本発明の光ファイバ多孔質母材の製造装置に
備えられるガラス合成用バーナの一例を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing an example of a glass synthesizing burner provided in the optical fiber porous preform manufacturing apparatus of the present invention.

【図3】 光ファイバ多孔質母材の外径の変化と、ガラ
ス微粒子の堆積効率との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the change in the outer diameter of the optical fiber porous preform and the deposition efficiency of glass particles.

【図4】 従来の光ファイバ多孔質母材の製造装置に備
えられるガラス合成用バーナの一例を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing an example of a glass synthesizing burner provided in a conventional optical fiber porous preform manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1・・・第1のノズル群、1a,1b,2a,2b・・・ノズ
ル、2・・・第2のノズル群、3・・・小口径ノズル、4・・・
小口径ノズル群、4a,4b・・・小口径ノズルの列、1
1・・・第1の噴出口、12・・・第2の噴出口、13・・・第
3の噴出口、14・・・第4の噴出口、15・・・第5の噴出
口、16・・・第6の噴出口、21・・・原料ガス流入口、2
2・・・不活性ガス流入口、23・・・可燃性ガス流入口、2
4・・・第1の支燃性ガス流入口、25・・・支燃性ガス流入
口、25a・・・第2の支燃性ガス流入口、25b・・・第3
の支燃性ガス流入口
1 ... 1st nozzle group, 1a, 1b, 2a, 2b ... nozzle, 2 ... 2nd nozzle group, 3 ... small diameter nozzle, 4 ...
Small diameter nozzle group, 4a, 4b ... Row of small diameter nozzles, 1
1 ... 1st jet outlet, 12 ... 2nd jet outlet, 13 ... 3rd jet outlet, 14 ... 4th jet outlet, 15 ... 5th jet outlet, 16 ... Sixth jet outlet, 21 ... Raw material gas inlet, 2
2 ... Inert gas inlet, 23 ... Combustible gas inlet, 2
4 ... 1st combustion-supporting gas inlet, 25 ... combustion-supporting gas inlet, 25a ... 2nd combustion-supporting gas inlet, 25b ... 3rd
Inflammable gas inlet

フロントページの続き (72)発明者 堀越 雅博 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉事業所内 Fターム(参考) 3K017 CB02 CD03 CH02 4G014 AH16 Continued front page    (72) Inventor Masahiro Horikoshi             Fuji Co., Ltd. 1440 Rokuzaki, Sakura City, Chiba Prefecture             Kura Sakura Office F-term (reference) 3K017 CB02 CD03 CH02                 4G014 AH16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中心軸を同じくして配列された1列また
は複数列のノズルからなる第1のノズル群と、該第1の
ノズル群の周囲に、該第1のノズル群と中心軸を同じく
して配列された1列または複数列のノズルからなる第2
のノズル群と、前記第1のノズル群と前記第2のノズル
群の間に、前記第1のノズル群の同心円上に、複数個の
内径および外径の等しい小口径ノズルが配列されてなる
1列または複数列の小口径ノズル群とを備えたガラス合
成用バーナと、該ガラス合成用バーナにガラス原料ガ
ス、添加ガス、支燃性ガス、可燃性ガスおよび不活性ガ
スを導入するガス供給源と、これらのガスの流量または
流速を制御するガス制御部とを備えた光ファイバ多孔質
母材製造用バーナ装置であって、 前記ガラス合成用バーナの後端部には、前記小口径ノズ
ル群の各列毎に、それぞれ独立したガス流入口が設けら
れたことを特徴とする光ファイバ多孔質母材製造用バー
ナ装置。
1. A first nozzle group composed of one row or a plurality of rows of nozzles arranged with the same central axis, and the first nozzle group and the central axis around the first nozzle group. A second one consisting of one or more rows of nozzles arranged in the same way
Nozzle group, and between the first nozzle group and the second nozzle group, a plurality of small diameter nozzles having the same inner diameter and outer diameter are arranged on a concentric circle of the first nozzle group. A glass synthesizing burner having one or more rows of small diameter nozzle groups, and a gas supply for introducing a glass raw material gas, an additive gas, a combustion supporting gas, a flammable gas and an inert gas into the glass synthesizing burner. A burner device for producing an optical fiber porous preform, comprising a gas source and a gas control unit for controlling the flow rate or flow velocity of these gases, wherein the small diameter nozzle is provided at the rear end of the glass synthesizing burner. A burner device for manufacturing an optical fiber porous preform, wherein an independent gas inlet is provided for each row of the group.
【請求項2】 中心軸を同じくして配列された1列また
は複数列のノズルからなる第1のノズル群と、該第1の
ノズル群の周囲に、該第1のノズル群と中心軸を同じく
して配列された1列または複数列のノズルからなる第2
のノズル群と、前記第1のノズル群と前記第2のノズル
群の間に、前記第1のノズル群の同心円上に、複数個の
内径および外径の等しい小口径ノズルが配列されてなる
1列または複数列の小口径ノズル群とを備えたガラス合
成用バーナと、該ガラス合成用バーナの後端部に設けら
れた複数のガス流入口と、前記ガラス合成用バーナにガ
ラス原料ガス、添加ガス、支燃性ガス、可燃性ガスおよ
び不活性ガスを導入するガス供給源と、これらのガスの
流量または流速を制御するガス制御部とを備えた光ファ
イバ多孔質母材製造用バーナ装置を用いて、ガラス原料
ガスを火炎中で加水分解反応または酸化反応させてガラ
ス微粒子を合成し、該ガラス微粒子を回転する出発部材
の外周部の径方向に堆積して光ファイバ多孔質母材を得
る光ファイバ多孔質母材の製造方法において、 前記小口径ノズル群の各列毎に、前記複数のガス流入口
からそれぞれ独立にガスを導入することを特徴とする光
ファイバ多孔質母材の製造方法。
2. A first nozzle group consisting of nozzles of one row or a plurality of rows arranged with the same central axis, and the first nozzle group and the central axis around the first nozzle group. A second one consisting of one or more rows of nozzles arranged in the same way
Nozzle group, and between the first nozzle group and the second nozzle group, a plurality of small diameter nozzles having the same inner diameter and outer diameter are arranged on a concentric circle of the first nozzle group. A glass synthesizing burner provided with one row or a plurality of rows of small diameter nozzle groups, a plurality of gas inlets provided at the rear end of the glass synthesizing burner, and a glass raw material gas for the glass synthesizing burner, Burner device for producing optical fiber porous preform, which includes a gas supply source for introducing an additive gas, a combustion-supporting gas, a flammable gas, and an inert gas, and a gas control unit for controlling a flow rate or a flow velocity of these gases By using, the glass raw material gas is subjected to a hydrolysis reaction or an oxidation reaction in a flame to synthesize glass fine particles, and the glass fine particles are deposited in the radial direction of the outer peripheral portion of the rotating starting member to form an optical fiber porous preform. Optical fiber perforated The method of manufacturing a preform, wherein for each column of the small-diameter nozzle group, the method of manufacturing an optical fiber porous preform, which comprises introducing a gas independently from said plurality of gas inlet.
【請求項3】 前記小口径ノズル群から同一の支燃性ガ
スを噴出し、かつ前記小口径ノズル群の列の少なくとも
1列から噴出する支燃性ガスの流量と、前記小口径ノズ
ル群の他の列から噴出する支燃性ガスの流量とを異なる
ようにすることを特徴とする請求項2記載の光ファイバ
多孔質母材の製造方法。
3. The flow rate of the combustion-supporting gas ejected from at least one of the rows of the small-diameter nozzle group and the same combustion-supporting gas ejected from the small-diameter nozzle group, The method for producing an optical fiber porous preform according to claim 2, wherein the flow rate of the combustion-supporting gas ejected from another row is made different.
【請求項4】 前記小口径ノズル群から同一の支燃性ガ
スを噴出し、かつ前記小口径ノズル群の列の少なくとも
2列から噴出するそれぞれの支燃性ガスの流量の比率
を、ガラス微粒子を出発部材の外周部に堆積する初期段
階と終了段階の間に1回以上変化させることを特徴とす
る請求項2または3記載の光ファイバ多孔質母材の製造
方法。
4. A glass microparticle is defined as a ratio of the flow rates of the respective combustion-supporting gases ejected from at least two rows of the small-calibration nozzle group and the same combustion-supporting gas ejected from the small-diameter nozzle group. The method for producing an optical fiber porous preform according to claim 2 or 3, characterized in that it is changed once or more between an initial stage and an end stage in which is deposited on the outer peripheral portion of the starting member.
【請求項5】 請求項4記載の光ファイバ多孔質母材の
製造方法において、ガラス微粒子を出発部材の外周部に
堆積する初期段階において、前記小口径ノズル群の内側
の列から噴出する支燃性ガスの流量を、前記小口径ノズ
ル群の外側の列から噴出する支燃性ガスの流量よりも多
くし、 ガラス微粒子を出発部材の外周部に堆積する終了段階に
おいて、前記小口径ノズル群の内側の列から噴出する支
燃性ガスの流量を、前記小口径ノズル群の外側の列から
噴出する支燃性ガスの流量よりも少なくすることを特徴
とする光ファイバ多孔質母材の製造方法。
5. The method for producing an optical fiber porous preform according to claim 4, wherein at the initial stage of depositing glass particles on the outer peripheral portion of the starting member, the combustion-supporting gas ejected from the inner row of the small diameter nozzle group. The flow rate of the functional gas is set to be larger than the flow rate of the combustion-supporting gas ejected from the outer row of the small diameter nozzle group, and at the end stage of depositing glass fine particles on the outer peripheral portion of the starting member, the small diameter nozzle group A method for producing an optical fiber porous preform, characterized in that the flow rate of the combustion-supporting gas ejected from the inner row is smaller than the flow rate of the combustion-supporting gas ejected from the outer row of the small diameter nozzle group. .
JP2002008003A 2002-01-16 2002-01-16 Method for manufacturing optical fiber porous preform Expired - Fee Related JP3953820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008003A JP3953820B2 (en) 2002-01-16 2002-01-16 Method for manufacturing optical fiber porous preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008003A JP3953820B2 (en) 2002-01-16 2002-01-16 Method for manufacturing optical fiber porous preform

Publications (2)

Publication Number Publication Date
JP2003212555A true JP2003212555A (en) 2003-07-30
JP3953820B2 JP3953820B2 (en) 2007-08-08

Family

ID=27646379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008003A Expired - Fee Related JP3953820B2 (en) 2002-01-16 2002-01-16 Method for manufacturing optical fiber porous preform

Country Status (1)

Country Link
JP (1) JP3953820B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096087A2 (en) 2008-02-27 2009-09-02 Shin-Etsu Chemical Co., Ltd. Burner for fabricating optical fiber preform
WO2009107392A1 (en) 2008-02-27 2009-09-03 信越化学工業株式会社 Burner for manufacturing porous glass base material
EP2128100A1 (en) 2008-05-13 2009-12-02 Shinetsu Chemical Co., Ltd. Porous Glass Base Material Manufacturing Method and Gas Flow Rate Control Apparatus
EP2380856A2 (en) 2010-04-23 2011-10-26 Shin-Etsu Chemical Co., Ltd. Burner for producing porous glass preform
EP2583952A1 (en) 2011-10-18 2013-04-24 Shin-Etsu Chemical Co., Ltd. Method and burner for producing a porous glass preform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323130A (en) * 1990-12-27 1993-12-07 Furukawa Electric Co Ltd:The Multifocus type burner and production of glass particulate deposited body by using this burner
JPH06247722A (en) * 1993-02-24 1994-09-06 Furukawa Electric Co Ltd:The Production of porous glass base material
JPH09100133A (en) * 1995-10-04 1997-04-15 Furukawa Electric Co Ltd:The Production of porous glass preform for optical fiber
JPH09188522A (en) * 1996-01-10 1997-07-22 Sumitomo Electric Ind Ltd Torch for synthesizing glass fine particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323130A (en) * 1990-12-27 1993-12-07 Furukawa Electric Co Ltd:The Multifocus type burner and production of glass particulate deposited body by using this burner
JPH06247722A (en) * 1993-02-24 1994-09-06 Furukawa Electric Co Ltd:The Production of porous glass base material
JPH09100133A (en) * 1995-10-04 1997-04-15 Furukawa Electric Co Ltd:The Production of porous glass preform for optical fiber
JPH09188522A (en) * 1996-01-10 1997-07-22 Sumitomo Electric Ind Ltd Torch for synthesizing glass fine particle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096087A2 (en) 2008-02-27 2009-09-02 Shin-Etsu Chemical Co., Ltd. Burner for fabricating optical fiber preform
WO2009107392A1 (en) 2008-02-27 2009-09-03 信越化学工業株式会社 Burner for manufacturing porous glass base material
US8079233B2 (en) 2008-02-27 2011-12-20 Shin-Etsu Chemical Co., Ltd. Burner for manufacturing porous glass base material
US8517721B2 (en) 2008-02-27 2013-08-27 Shin-Etsu Chemical Co., Ltd. Burner for fabricating optical fiber preform
EP2128100A1 (en) 2008-05-13 2009-12-02 Shinetsu Chemical Co., Ltd. Porous Glass Base Material Manufacturing Method and Gas Flow Rate Control Apparatus
US8919152B2 (en) 2008-05-13 2014-12-30 Shin-Etsu Chemical Co., Ltd. Porous glass base material manufacturing method and gas flow rate control apparatus
EP2380856A2 (en) 2010-04-23 2011-10-26 Shin-Etsu Chemical Co., Ltd. Burner for producing porous glass preform
US8459063B2 (en) 2010-04-23 2013-06-11 Shin-Etsu Chemical Co., Ltd. Burner for producing porous glass preform
EP2583952A1 (en) 2011-10-18 2013-04-24 Shin-Etsu Chemical Co., Ltd. Method and burner for producing a porous glass preform
US9032761B2 (en) 2011-10-18 2015-05-19 Shin-Etsu Chemical Co., Ltd. Porous glass matrix producing burner and porous glass matrix producing method

Also Published As

Publication number Publication date
JP3953820B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP2003226544A (en) Method of manufacturing optical fiber porous preform
JP3543537B2 (en) Method for synthesizing glass fine particles and focus burner therefor
CN1807302B (en) Method for manufacturing glass rod
AU776420B2 (en) Burner for synthesizing glass particles and method for producing porous glass body
US9260339B2 (en) Method of fabricating an optical fiber preform and a burner therefor
JP2003226543A (en) Method of manufacturing optical fiber preform and burner apparatus for manufacturing optical fiber using the same
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
JP3946645B2 (en) Optical glass and manufacturing method thereof
JP2003212555A (en) Burner for manufacturing porous preform of optical fiber and method of manufacturing porous preform of optical fiber using the same
KR20090092686A (en) Burner for deposition of optical fiber preform
JP2003206154A (en) Burner device for manufacturing porous optical fiber preform and method for manufacturing porous optical fiber preform using the same
JPH05323130A (en) Multifocus type burner and production of glass particulate deposited body by using this burner
JPH1095623A (en) Production of porous glass preform and burner for producing the same preform
JP3567574B2 (en) Burner for synthesis of porous glass base material
JPH09100133A (en) Production of porous glass preform for optical fiber
JP4097982B2 (en) Method for producing porous preform for optical fiber
JP4196700B2 (en) Manufacturing method of glass particulate deposits
AU646490B2 (en) Method for producing glass article
JP4053305B2 (en) Method for producing porous preform for optical fiber
JP2020090427A (en) Burner for porous body synthesis and method of manufacturing porous body
US20180044221A1 (en) Method and apparatus for producing optical fiber preform
JPH09188522A (en) Torch for synthesizing glass fine particle
JPH09118537A (en) Production of porous glass preform for optical fiber
JPH09301719A (en) Focusing multiple burner for synthesis of glass fine particle
JP2003277099A (en) Manufacturing apparatus for optical fiber porous preform and method for manufacturing optical fiber porous preform by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R151 Written notification of patent or utility model registration

Ref document number: 3953820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees