JP2003207223A - Exhaust heat recovery-type refrigerating device - Google Patents

Exhaust heat recovery-type refrigerating device

Info

Publication number
JP2003207223A
JP2003207223A JP2002007050A JP2002007050A JP2003207223A JP 2003207223 A JP2003207223 A JP 2003207223A JP 2002007050 A JP2002007050 A JP 2002007050A JP 2002007050 A JP2002007050 A JP 2002007050A JP 2003207223 A JP2003207223 A JP 2003207223A
Authority
JP
Japan
Prior art keywords
evaporator
compressor
refrigerating
absorption
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002007050A
Other languages
Japanese (ja)
Inventor
Osayuki Inoue
修行 井上
Izumi Hashimoto
泉 橋本
Kiichi Irie
毅一 入江
Tetsuya Endo
哲也 遠藤
Atsushi Aoyama
淳 青山
Tomoyuki Uchimura
知行 内村
Yukihiro Fukuzumi
幸大 福住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002007050A priority Critical patent/JP2003207223A/en
Publication of JP2003207223A publication Critical patent/JP2003207223A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating device capable of adjusting the operating condition of a compression refrigerator in accordance with the condition of a cooling load and absorption refrigerating effect, and being economically and efficiently operated. <P>SOLUTION: In this refrigerating device manufactured by combining an absorption refrigerating machine having an evaporator E exercising the refrigerating effect by using exhaust heat as a heat source, a compressor Mc, a first condenser Cc1 cooling with the outside air or the cooling water, and a compression refrigerating machine having a first condenser Cc2 connected to the evaporator E of the absorption refrigerating machine with heat exchange relationship and an evaporator Ec exercising the refrigerating effect, and the compressor Mc is provided with a control means operated when the load to the evaporator Ec can not be coped only by the refrigerating effect of the absorption refrigerating machine. A plurality of compression refrigerating machines can be connected to one absorption refrigerating machine, and the control means operates the compressor Mc on the basis of the difference between a target temperature of a cooled medium and an actual temperature, the evaporation pressure of a refrigerant in the evaporator Ec, and the like. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置に用
いることができる冷凍装置に係り、特に、エンジン、タ
ービン、燃料電池各種プラント等からの排熱を熱源とす
る吸収冷凍機からの冷凍効果を、圧縮冷凍機と組合せて
有効利用する冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus that can be used in an air conditioner, and more particularly, to a refrigerating effect from an absorption refrigerating machine that uses exhaust heat from an engine, a turbine, various fuel cell plants, etc. as a heat source. The present invention relates to a refrigerating apparatus for effectively using the above in combination with a compression refrigerator.

【0002】[0002]

【従来の技術】コージェネレーションシステムでは、電
気と共に、比較的温度の低い温水が供給される。この温
水は、温度があまり高くなく、低ポテンシャルエネルギ
に分類され、給湯又は暖房に利用されることが多く、ま
た最近は、吸収冷凍機の熱源として冷房に利用されるこ
とも多くなってきている。コージェネレーションシステ
ムの中で、この温水は、エンジンの冷却(ジャケット温
水)あるいはエンジン排ガスからの熱回収、あるいはガ
スタービンの排ガスからの熱回収で得られる。なお、排
ガスを温水に変換せず、直接吸収冷凍機の熱源とするこ
ともある。しかし、コージェネレーションシステムで、
排熱だけで吸収冷凍機を運転して、システムが必要とす
る冷凍負荷が賄えることはあまりなく、通常は、なんら
かの方法でバックアップしている。例えば、低ポテンシ
ャルエネルギ(温水)で、吸収冷凍機を運転する場合、
温水をバーナーで加熱し、熱量を増して冷凍容量を大き
くすることもあれば、排熱吸収冷凍機とは別に、直火式
の二重効用吸収冷凍機を設置し、冷凍負荷を賄えるよう
にしている。
2. Description of the Related Art In a cogeneration system, hot water having a relatively low temperature is supplied together with electricity. This hot water is not so high in temperature, is classified into low potential energy, and is often used for hot water supply or heating. Recently, it has also been often used for cooling as a heat source of an absorption refrigerator. . In a cogeneration system, this hot water is obtained by cooling the engine (jacket hot water), recovering heat from the engine exhaust gas, or recovering heat from the exhaust gas of the gas turbine. The exhaust gas may be directly used as a heat source for the absorption refrigerator without being converted into hot water. But with the cogeneration system,
It is not possible to operate the absorption chiller with only the exhaust heat to cover the refrigeration load required by the system, and usually, some kind of backup is used. For example, when operating the absorption refrigerator with low potential energy (hot water),
In some cases, hot water is heated with a burner to increase the amount of heat to increase the refrigeration capacity.In addition to the exhaust heat absorption refrigerator, a direct-fire double-effect absorption refrigerator is installed to cover the refrigeration load. ing.

【0003】また、排熱による冷凍効果だけでは負荷を
賄いきれないことを前提に、低ポテンシャルエネルギを
高ポテンシャルエネルギと共に用い、必要とする高ポテ
ンシャルエネルギ(燃料:ガス、油)の量を減らそうと
いう複合冷房装置も提案され採用されている。これらは
いずれも排熱の他に、さらに熱を加え、熱によるバック
アップを行うものである。一方、バックアップに用いる
高ポテンシャルエネルギを電気とし、必要とする電気の
量を減らす方法もある。即ち、吸収冷凍機の冷熱で、圧
縮冷凍機の循環冷媒を過冷却する冷凍装置(特開平11
−223412号公報)である。しかし、この冷凍装置
においては、圧縮冷凍機の熱源側熱交換器が空気による
冷却と吸収冷凍機による冷却を直列に設けており、圧縮
冷凍機の圧縮機を運転しないかぎり、吸収冷凍機の冷凍
効果を利用することができなかった。また、冷媒液を冷
却しているだけであるので、負荷が軽く冷媒液量が少な
いと、吸収冷凍機の冷凍効果を使い切れないこともあ
り、排熱供給や冷房負荷の増減に対しての対応が不充分
であった。
Further, on the assumption that the load cannot be covered only by the refrigerating effect by the exhaust heat, the low potential energy is used together with the high potential energy to reduce the required high potential energy (fuel: gas, oil). The combined air conditioner has been proposed and adopted. In addition to the exhaust heat, all of these apply heat to perform backup by heat. On the other hand, there is also a method in which the high potential energy used for backup is electricity and the amount of required electricity is reduced. That is, a refrigerating apparatus that supercools the circulating refrigerant of the compression refrigerator by the cold heat of the absorption refrigerator (Japanese Patent Laid-Open No. H11 (1999) -111945)
No. 223412). However, in this refrigeration system, the heat source side heat exchanger of the compression refrigerator is provided with cooling by air and cooling by the absorption refrigerator in series, and unless the compressor of the compression refrigerator is operated, refrigeration of the absorption refrigerator is performed. The effect could not be used. Also, since the refrigerant liquid is only being cooled, if the load is light and the amount of refrigerant liquid is small, the refrigeration effect of the absorption refrigerator may not be used up, so measures to deal with the increase or decrease in exhaust heat supply and cooling load Was insufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、冷房負荷及び吸収冷凍効果の状態
に応じて圧縮冷凍機の運転状態を調節でき、より具体的
には、排熱による吸収効果だけで冷凍負荷を賄えない
時、高ポテンシャルエネルギを電気としてバックアップ
できる経済的で効率のよい運転ができる空気調和装置と
して用いることのできる冷凍装置を提供することを課題
とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and can adjust the operating state of the compression refrigerator according to the cooling load and the state of the absorption refrigeration effect, and more specifically, An object of the present invention is to provide a refrigeration system that can be used as an air conditioner that can economically and efficiently operate by backing up high potential energy as electricity when the refrigeration load cannot be covered only by the absorption effect of exhaust heat. .

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、排熱を熱源として冷凍効果を発揮する
蒸発器Eを有する吸収冷凍機と、圧縮機、外気又は冷却
水で冷却する第一凝縮器、前記吸収冷凍機の蒸発器Eと
熱交換関係に接続した第二凝縮器及び冷凍効果を発揮す
る蒸発器Ecを有する圧縮冷凍機とを組合せた冷凍装置
であって、前記圧縮機には、前記吸収冷凍機の冷凍効果
だけでば蒸発器Ecへの負荷を賄いきれない時に運転す
る制御手段を備えていることを特徴とする冷凍装置とし
たものである。前記冷凍装置において、圧縮冷凍機は、
1台の吸収冷凍機に、複数台を接続することができ、ま
た、前記圧縮機を運転する制御手段は、前記蒸発器Ec
における被冷却媒体の目標温度と実際の温度(検出温
度)との差を基に(検出温度>目標温度+αのとき圧縮
機運転)行うか、又は、前記蒸発機Ecにおける冷媒の
蒸発圧力を基に(蒸発圧力>所定の圧力又は目標圧力+
αのとき圧縮機運転)行うか、又は、前記吸収冷凍機の
蒸発温度又は蒸発温度に関連する物理量(例えば、吸収
冷凍機の冷熱搬送媒温度)を基に(蒸発温度>所定温度
のとき圧縮機運転)行うことができる。
In order to solve the above-mentioned problems, in the present invention, an absorption refrigerator having an evaporator E that exerts a refrigerating effect by using exhaust heat as a heat source, and a compressor, outside air or cooling water is used for cooling. Which is a combination of a first condenser, an evaporator E of the absorption refrigerator, a second condenser connected in a heat exchange relationship, and a compression refrigerator having an evaporator Ec exhibiting a refrigerating effect. The compressor is provided with a control means which is operated when the load on the evaporator Ec cannot be covered only by the refrigerating effect of the absorption refrigerating machine. In the refrigeration system, the compression refrigerator is
A plurality of units can be connected to one absorption refrigerator, and the control means for operating the compressor is the evaporator Ec.
Is performed based on the difference between the target temperature of the medium to be cooled and the actual temperature (detected temperature) (compressor operation when detected temperature> target temperature + α), or based on the evaporation pressure of the refrigerant in the evaporator Ec. (Evaporation pressure> predetermined pressure or target pressure +
Compressor operation when α), or based on the evaporation temperature of the absorption refrigerator or a physical quantity related to the evaporation temperature (for example, cold heat carrier medium temperature of the absorption refrigerator) (compression when evaporation temperature> predetermined temperature) Machine operation) can be performed.

【0006】[0006]

【発明の実施の形態】本発明は、コジェネシステムにて
冷凍あるいは冷房を行うものであって、吸収冷凍機の出
力(冷凍効果)だけで負荷を賄いきれない時に圧縮冷凍
機でバックアップしようとするものである。また、本発
明は、自然循環吸収冷凍機を基にすれば、エンジン、タ
ービン、燃料電池等からの排熱を熱源とする吸収冷凍機
の冷凍効果にて、吸収冷凍機の作動媒体として吸収冷凍
機機器間を循環する冷媒とは別の冷媒Rc(冷凍効果搬
送冷媒)を凝縮器Cc2で凝縮させ、該凝縮冷媒を吸収
冷凍機とは別の場所にある蒸発器Ecにて蒸発させて冷
凍効果を発揮させ、該蒸発冷媒は前記凝縮器Cc2に戻
すようにした冷凍装置(空気調和装置)であって、前記
冷凍効果搬送冷媒回路に、少なくとも冷媒蒸気を圧縮す
る圧縮機と外気あるいは冷却水で冷却する凝縮器Cc1
とを備え、吸収冷凍機の冷凍効果だけでは、蒸発器Ec
への負荷を賄いきれない時に、圧縮機を運転する制御手
段を備えている冷凍装置である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is for refrigerating or cooling in a cogeneration system, and tries to back up with a compression refrigerator when the load cannot be covered only by the output (refrigeration effect) of the absorption refrigerator. It is a thing. Further, according to the present invention, based on a natural circulation absorption refrigerator, absorption refrigeration as a working medium of the absorption refrigerator is achieved by the refrigeration effect of the absorption refrigerator that uses exhaust heat from an engine, a turbine, a fuel cell, etc. as a heat source. Refrigerant Rc (refrigerant effect carrier refrigerant) different from the refrigerant circulated between the machines and devices is condensed in the condenser Cc2, and the condensed refrigerant is evaporated in an evaporator Ec in a different place from the absorption refrigerator to be frozen. A refrigerating device (air conditioner) that exerts an effect and returns the evaporated refrigerant to the condenser Cc2, wherein a compressor for compressing at least refrigerant vapor and outside air or cooling water is provided in the refrigerating effect carrier refrigerant circuit. Condenser Cc1 cooled by
And the refrigerating effect of the absorption chiller alone is sufficient for the evaporator Ec.
The refrigeration system is equipped with a control means for operating the compressor when the load on the compressor cannot be covered.

【0007】次に、本発明を図面を用いて詳細に説明す
る。図1〜図4は、本発明の冷凍装置の圧縮冷凍機側の
構成機器の接続例を示すフロー構成図であり、図5と図
6は、本発明の冷凍装置の吸収冷凍機と圧縮冷凍機とを
組合せた接続例を示すフロー構成図である。図におい
て、Mcは圧縮機、Ecは蒸発器、Cc1は第一凝縮
器、Cc2は第二凝縮器、TA、TR、TSは温度セン
サー、Scは過冷却器を示す。図1において、(a)は
全体構成図、(b)はEc部詳細図であり、蒸発器Ec
からの冷媒蒸気は、圧縮機Mc停止中は、第二凝縮器C
c2に吸引され、圧縮機Mc運転中は、圧縮機Mc又は
圧縮機Mcと第二凝縮器Cc2に吸引される。吸収式か
らの熱搬送媒体の温度が低く、第二凝縮器Cc2で冷媒
蒸気が凝縮可能であれば、第二凝縮器Cc2に吸引さ
れ、第二凝縮器Cc2にて凝縮する。
Next, the present invention will be described in detail with reference to the drawings. 1 to 4 are flow configuration diagrams showing connection examples of components on the compression refrigerator side of the refrigeration apparatus of the present invention, and FIGS. 5 and 6 are absorption refrigeration apparatus and compression refrigeration apparatus of the refrigeration apparatus of the present invention. It is a flow block diagram which shows the example of connection which combined with the machine. In the figure, Mc is a compressor, Ec is an evaporator, Cc1 is a first condenser, Cc2 is a second condenser, TA, TR, and TS are temperature sensors, and Sc is a supercooler. In FIG. 1, (a) is an overall configuration diagram, (b) is a detailed view of the Ec portion, and the evaporator Ec
The refrigerant vapor from the second condenser C while the compressor Mc is stopped.
It is sucked by c2 and is sucked by the compressor Mc or the compressor Mc and the second condenser Cc2 while the compressor Mc is operating. If the temperature of the heat transfer medium from the absorption type is low and the refrigerant vapor can be condensed in the second condenser Cc2, it is sucked into the second condenser Cc2 and condensed in the second condenser Cc2.

【0008】吸収式からの熱搬送媒体の温度が高く、第
二凝縮器Cc2で冷媒蒸気が凝縮不能であれば、冷媒蒸
気の形で第二凝縮器Cc2に存在し、伝熱は殆ど生じな
い。圧縮冷凍機蒸発器Ecの要求能力は、例えば、蒸発
器Ecで冷却される媒体の温度を測る温度センサーと被
冷却媒体の目標温度との差とする。圧縮冷凍機を停止し
ていても、目標温度≧検出温度であれば、圧縮機Mcを
運転する必要はない。目標温度≦検出温度のとき、圧縮
機Mcを運転する必要が出てきたと判断する。あるディ
ファレンシャルを持たせて圧縮機Mcを運転する。ま
た、インバータ付であれば、最小回転数で運転開始し、
停止時は、最小回転の後、温度比較をして判断する、図
中、過冷却器Scは、なくても差支えない。圧縮機Mc
を、複数台で構成してもよい。圧縮機複数台の場合、1
台をインバータ制御、他を台数制御(発停)としてもよ
い。
If the temperature of the heat transfer medium from the absorption type is high and the refrigerant vapor cannot be condensed in the second condenser Cc2, it exists in the second condenser Cc2 in the form of refrigerant vapor, and heat transfer hardly occurs. . The required capacity of the compression refrigerator evaporator Ec is, for example, the difference between the temperature sensor measuring the temperature of the medium cooled by the evaporator Ec and the target temperature of the medium to be cooled. Even if the compression refrigerator is stopped, if the target temperature ≧ the detected temperature, it is not necessary to operate the compressor Mc. When the target temperature ≦ the detected temperature, it is determined that it is necessary to operate the compressor Mc. The compressor Mc is operated with a certain differential. Also, with an inverter, start operation at the minimum speed,
When stopped, the temperature is compared after the minimum rotation for determination. In the figure, the supercooler Sc may be omitted. Compressor Mc
May be composed of a plurality of units. For multiple compressors, 1
The table may be controlled by an inverter, and the others may be controlled by the number of vehicles (starting and stopping).

【0009】図2(a)では、蒸発器Ecからの冷媒蒸
気は、圧縮機Mc停止中は、第二凝縮器Cc2に吸引さ
れ、圧縮機Mc運転中は、圧縮機Mc又は圧縮機Mcと
第二凝縮器Cc2に吸引される。吸収式からの熱搬送媒
体の温度が低く、第二凝縮器Cc2で冷媒蒸気が凝縮可
能であれば、第二凝縮器Cc2に吸引され、第二凝縮器
Cc2で凝縮する。吸収式からの熱搬送媒体の温度が高
く、第二凝縮器Cc2で冷媒蒸気が凝縮不能であれば、
冷媒蒸気の形で第二凝縮器Cc2には吸引されない。C
c1で凝縮した冷媒液は、Cc2で過冷却される。制御
は、吸込み圧力を基に、吸込み圧が所定値より低い場合
は、圧縮機を停止し、越えた場合は運転とし、さらに目
標値になるように圧縮機の回転速度を調整するような制
御をしてもよい。図2(b)のようにして、冷媒液の流
れ方向の切換えで、Cc2での過冷却の有無を制御し、
吸収冷凍機への負荷を調整しても差支えなく、また、図
1と同様に温度で制御しても差支えない。また、図2に
おいて、蒸発器Ecは、図1(b)と同様である。
In FIG. 2 (a), the refrigerant vapor from the evaporator Ec is sucked into the second condenser Cc2 while the compressor Mc is stopped, and is discharged to the compressor Mc or the compressor Mc while the compressor Mc is operating. It is sucked into the second condenser Cc2. If the temperature of the heat transfer medium from the absorption type is low and the refrigerant vapor can be condensed in the second condenser Cc2, it is sucked into the second condenser Cc2 and condensed in the second condenser Cc2. If the temperature of the heat transfer medium from the absorption type is high and the refrigerant vapor cannot be condensed in the second condenser Cc2,
It is not sucked into the second condenser Cc2 in the form of refrigerant vapor. C
The refrigerant liquid condensed in c1 is supercooled in Cc2. The control is based on the suction pressure, when the suction pressure is lower than a predetermined value, the compressor is stopped, and when it exceeds, it is operated, and the rotation speed of the compressor is adjusted to reach the target value. You may As shown in FIG. 2 (b), the presence or absence of supercooling in Cc2 is controlled by switching the flow direction of the refrigerant liquid,
It does not matter if the load on the absorption refrigerator is adjusted, or if it is controlled by temperature as in FIG. Further, in FIG. 2, the evaporator Ec is the same as that in FIG. 1 (b).

【0010】図3は、圧縮機Mc1と第一凝縮器Cc1
の系統と、圧縮機Mc2と第二凝縮器Cc2の系統とを
持った構成を示す。第二凝縮器Cc2の系統の圧縮機M
c2を停止している状態の動作は、図1と同様の動きを
する。圧縮冷凍機蒸発器Ecの要求能力は、例えば、蒸
発器Ecで冷却される媒体の温度を測る温度センサーと
被冷却媒体の目標温度との差とする。圧縮冷凍機を停止
していても、目標温度≧検出温度であれば、圧縮機を運
転する必要はない。目標温度≦検出温度のとき、Cc2
の凝縮温度あるいは吸収冷凍効果搬送媒体の温度を判断
して、所定の値より高ければ、低ヘッド圧縮機Mc2を
運転し、低ければ、高ヘッド圧縮機Mc1を運転する。
一方の圧縮機を運転しても要求能力を満足できない時
は、両方とも運転する。簡易的には、吸収冷凍効果搬送
媒体の温度を基にして、低ヘッド圧縮機Mc2の運転、
高ヘッド圧縮機Mc1の運転を制御しても差支えない。
FIG. 3 shows a compressor Mc1 and a first condenser Cc1.
And a system of the compressor Mc2 and the second condenser Cc2. Compressor M of the system of the second condenser Cc2
The operation when c2 is stopped operates in the same manner as in FIG. The required capacity of the compression refrigerator evaporator Ec is, for example, the difference between the temperature sensor measuring the temperature of the medium cooled by the evaporator Ec and the target temperature of the medium to be cooled. Even if the compression refrigerator is stopped, if the target temperature ≧ the detected temperature, it is not necessary to operate the compressor. Cc2 when target temperature ≤ detected temperature
If the temperature is higher than the predetermined value, the low head compressor Mc2 is operated, and if it is lower than the predetermined value, the high head compressor Mc1 is operated.
If one compressor does not meet the required capacity even if it is operated, both compressors are operated. Briefly, the operation of the low head compressor Mc2 is based on the temperature of the absorption / refrigeration effect carrier medium,
It does not matter if the operation of the high head compressor Mc1 is controlled.

【0011】図4(a)は、圧縮機Mc1と第一凝縮器
Cc1の系統と、圧縮機Mc2と第二凝縮器Cc2系統
とを持った構成を示す。第二凝縮器Cc2の系統の圧縮
機Mc2を停止している状態の動作は、図2と同様の動
きをする。圧縮冷凍機蒸発器Ecの要求能力は、例え
ば、蒸発器Ecで冷却される媒体の温度を測る温度セン
サーと被冷却媒体の目標温度との差とする。圧縮冷凍機
を停止していても、目標温度≧検出温度であれば、圧縮
機を運転する必要はない。目標温度≦検出温度のとき、
Cc2の凝縮温度を判断して所定の値より、高ければ、
低ヘッド圧縮機Mc2を運転し、低ければ、高ヘッド圧
縮機Mc1を運転する。一方の圧縮機を運転しても要求
能力を満足できない時は、両方とも運転する。Cc1で
凝縮した冷媒液は、Cc2で過冷却される。図4(b)
のようにして、Cc2での過冷却の有無を制御しても差
支えない。
FIG. 4A shows a configuration having a compressor Mc1 and a first condenser Cc1 system, and a compressor Mc2 and a second condenser Cc2 system. The operation in the state in which the compressor Mc2 of the system of the second condenser Cc2 is stopped operates in the same manner as in FIG. The required capacity of the compression refrigerator evaporator Ec is, for example, the difference between the temperature sensor measuring the temperature of the medium cooled by the evaporator Ec and the target temperature of the medium to be cooled. Even if the compression refrigerator is stopped, if the target temperature ≧ the detected temperature, it is not necessary to operate the compressor. When target temperature ≤ detected temperature,
If the condensation temperature of Cc2 is judged and is higher than a predetermined value,
The low head compressor Mc2 is operated, and if it is low, the high head compressor Mc1 is operated. If one compressor does not meet the required capacity even if it is operated, both compressors are operated. The refrigerant liquid condensed in Cc1 is supercooled in Cc2. Figure 4 (b)
As described above, the presence or absence of supercooling in Cc2 may be controlled.

【0012】図5と図6は、吸収冷凍機と圧縮冷凍機と
を組合せたフロー構成図であり、図5と図6において、
Aは吸収器、Eは蒸発器、Gは再生器、Cは凝縮器、S
Pは吸収溶液ポンプ、RPは冷媒ポンプ、1は吸収冷凍
機、10は熱交換器、11〜14、16は溶液管路、1
5、17、18は冷媒管路、19は冷水循環路、20は
冷却水循環路、21は排熱源流路である。図5、図6に
おいて、吸収冷凍機では、冷媒を吸収した溶液は、吸収
器Aから吸収溶液ポンプSPにより熱交換器10の被加
熱側を通り、管路12から再生器Gへと導かれる。再生
器Gでは、溶液は、外部ガスタービン等からの排ガスを
熱源21として加熱されて冷媒を蒸発して濃縮され、管
路13から熱交換器10の加熱側を通り、吸収器Aへ導
入される。一方、再生器Gで発生した冷媒蒸気は、凝縮
器Cにおいて冷却水により凝縮した後蒸発器Eへと導か
れ、蒸発器Eでは、冷水循環路19から潜熱を奪うこと
で冷水の取り出しが可能となる。
FIGS. 5 and 6 are flow configuration diagrams in which an absorption refrigerator and a compression refrigerator are combined. In FIGS. 5 and 6,
A is an absorber, E is an evaporator, G is a regenerator, C is a condenser, S
P is an absorption solution pump, RP is a refrigerant pump, 1 is an absorption refrigerator, 10 is a heat exchanger, 11 to 14 and 16 are solution lines, 1
5, 17 and 18 are refrigerant pipes, 19 is a cold water circulation path, 20 is a cooling water circulation path, and 21 is an exhaust heat source flow path. 5 and 6, in the absorption refrigerator, the solution that has absorbed the refrigerant passes from the absorber A to the heated side of the heat exchanger 10 by the absorption solution pump SP, and is guided from the pipe line 12 to the regenerator G. . In the regenerator G, the solution is heated by using the exhaust gas from the external gas turbine or the like as the heat source 21 to evaporate the refrigerant to be concentrated, and then is introduced from the pipe line 13 into the absorber A through the heating side of the heat exchanger 10. It On the other hand, the refrigerant vapor generated in the regenerator G is guided to the evaporator E after being condensed by the cooling water in the condenser C, and in the evaporator E, the latent heat is taken from the cold water circulation path 19 so that the cold water can be taken out. Becomes

【0013】図5では、圧縮冷凍機サイクルは図1の過
冷却器なしの構成であり、前記の蒸発器Eの吸収冷凍効
果を搬送媒体(例えば、冷水循環路19)を各凝縮器C
c2に直列に分配している。図6は、冷水分配を並列に
した例であり、圧縮冷凍機サイクルは図2の例である。
各Cc2への分配量を制御し、吸収冷凍機への負荷を調
整してもよい。吸収冷凍機側の制御は、排熱を総て生か
しきるように運転して、蒸発器冷媒凍結回避及び吸収溶
液結晶回避のときは、熱源からの入熱量を制限する。圧
縮式とは無関係に、吸収式側だけで制御をしてもよい。
In FIG. 5, the compression refrigerator cycle is the structure without the supercooler of FIG. 1, and the absorption refrigeration effect of the evaporator E is transferred to the carrier medium (for example, the cold water circulation path 19) to each condenser C.
It is distributed in series to c2. FIG. 6 is an example in which cold water distribution is performed in parallel, and the compression refrigerator cycle is the example in FIG. 2.
The load on the absorption refrigerator may be adjusted by controlling the distribution amount to each Cc2. The control on the absorption refrigerating machine side is operated so as to make full use of the exhaust heat, and limits the heat input amount from the heat source at the time of avoiding the freezing of the evaporator refrigerant and avoiding the absorption solution crystal. Regardless of the compression type, control may be performed only on the absorption type side.

【0014】吸収冷凍機への負荷が多すぎて、あるいは
吸収式への熱源熱量による能力よりも多すぎて、吸収式
の蒸発温度あるいは冷凍出力温度が高くなり過ぎる場
合、過冷却器への熱媒流量等を減少、あるいは第二凝縮
器Cc2への熱媒流量等を減少させる。これらの制御
は、吸収式側から一方的に行っても差支えない。複数台
の圧縮冷凍機と1台の吸収冷凍機を組合せる場合、熱媒
体循環量を全体として制御してもよいし、個別に制御し
てもよい。圧縮冷凍機側は、利用できる吸収冷凍機出力
を用い、その範囲内で制御している。また、圧縮機側と
吸収式側とを関連付けて制御しても差支えないが、制御
系が複雑になり過ぎる欠点がでる。
If the absorption refrigerating machine has too much load, or is too much in capacity as the heat quantity of the heat source to the absorption type, and the evaporation temperature or the refrigerating output temperature of the absorption type becomes too high, the heat to the subcooler is increased. The medium flow rate or the like is reduced, or the heat medium flow rate or the like to the second condenser Cc2 is reduced. These controls may be performed unilaterally from the absorption side. When a plurality of compression refrigerators and one absorption refrigerator are combined, the heat medium circulation amount may be controlled as a whole or individually. The compression refrigerator side uses available absorption refrigerator output and controls within that range. Further, although it does not matter if the compressor side and the absorption type side are associated and controlled, there is a drawback that the control system becomes too complicated.

【0015】本発明において、吸収冷凍機は、単効用、
二重効用、一二重効用等、特に限定はなく、また吸収冷
凍機の作動媒体による限定もない。熱源の形態も、温
水、水蒸気、燃料あるいは排ガスなど、特に限定はな
い。また、排熱に限定せず、安価な燃料などを熱源とす
る吸収冷凍機であってもよい。また、本発明では、1台
の圧縮冷凍機を構成する各機器は複数器であっても差支
えない。圧縮冷凍機として、説明しているが、配管切換
でヒートポンプによる暖房運転とする形態をとってもよ
い。そのとき、吸収冷凍機を冷温水機として温熱をヒー
トポンプに与え、あるいは、排熱源を直接ヒートポンプ
に与えても良い。
In the present invention, the absorption refrigerator is a single-effect type,
There is no particular limitation such as double effect or single effect, and there is no limitation due to the working medium of the absorption refrigerator. The form of the heat source is not particularly limited, such as hot water, steam, fuel or exhaust gas. Further, it is not limited to exhaust heat, and may be an absorption refrigerator that uses an inexpensive fuel or the like as a heat source. Further, in the present invention, each device constituting one compression refrigerator may be a plurality of devices. Although described as a compression refrigerator, a mode of performing heating operation by a heat pump by switching pipes may be adopted. At that time, the absorption refrigerator may be used as a cold / hot water machine to supply heat to the heat pump, or the exhaust heat source may be directly supplied to the heat pump.

【0016】[0016]

【発明の効果】本発明は、圧縮冷凍機の圧縮機を運転せ
ず、吸収冷凍効果単独でも冷媒回路の冷凍能力(圧縮冷
凍機の冷凍能力)を出すことができ、また、圧縮機を運
転している時でも、吸収冷凍効果を充分に発揮できるよ
うにしている。また、吸収冷凍効果を優先的に用い、吸
収冷凍効果単独での運転を可能とし、電気によるバック
アップも可能にして、吸収冷凍効果を充分に利用、使い
きることができる空気調和装置として用いることができ
る冷凍装置である。
INDUSTRIAL APPLICABILITY According to the present invention, the refrigerating capacity of the refrigerant circuit (refrigerating capacity of the compression refrigerator) can be obtained by the absorption refrigeration effect alone without operating the compressor of the compression refrigerator, and the compressor is operated. It is designed so that the absorption and refrigeration effect can be fully exerted even when it is being used. Further, the absorption refrigeration effect is preferentially used, the operation of the absorption refrigeration effect alone can be performed, and the backup by electric power is also possible, so that the absorption refrigeration effect can be used sufficiently and used as an air conditioner. It is a refrigeration device that can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍装置の圧縮冷凍機の一例を示すフ
ロー構成図で、(a)は全体図、(b)はEc部詳細
図。
FIG. 1 is a flow configuration diagram showing an example of a compression refrigerator of a refrigeration apparatus of the present invention, (a) is an overall view, and (b) is a detailed view of an Ec portion.

【図2】(a)、(b)は、本発明の冷凍装置の圧縮冷
凍機の他の例を示すフロー構成図。
2A and 2B are flow configuration diagrams showing another example of the compression refrigerator of the refrigeration apparatus of the present invention.

【図3】本発明の冷凍装置の圧縮冷凍機の他の例を示す
フロー構成図。
FIG. 3 is a flow configuration diagram showing another example of the compression refrigerator of the refrigeration apparatus of the present invention.

【図4】(a)、(b)は、本発明の冷凍装置の圧縮冷
凍機の他の例を示すフロー構成図。
4A and 4B are flow configuration diagrams showing another example of the compression refrigerator of the refrigeration apparatus of the present invention.

【図5】本発明の冷凍装置の吸収冷凍機と圧縮冷凍機を
組合せた例を示すフロー構成図。
FIG. 5 is a flow configuration diagram showing an example in which an absorption refrigerator and a compression refrigerator of the refrigeration apparatus of the present invention are combined.

【図6】本発明の冷凍装置の吸収冷凍機と圧縮冷凍機を
組合せた別の例を示すフロー構成図。
FIG. 6 is a flow configuration diagram showing another example in which the absorption refrigerator and the compression refrigerator of the refrigeration apparatus of the present invention are combined.

【符号の説明】[Explanation of symbols]

Mc、Mc1、Mc2:圧縮機、Ec:蒸発器、Cc
1:第一凝縮器、Cc2:第二凝縮器、Sc:過冷却
器、TA、TR、TS:温度センサー、A:吸収器、
G:再生器、C:凝縮器、E:蒸発器、SP:吸収溶液
ポンプ、RP:冷媒ポンプ、1:吸収冷凍機、10:熱
交換器、11〜14、16:溶液管路、15、17、1
8:冷媒管路、19:冷水循環路、20:冷却水循環
路、21:排熱源流路
Mc, Mc1, Mc2: Compressor, Ec: Evaporator, Cc
1: first condenser, Cc2: second condenser, Sc: supercooler, TA, TR, TS: temperature sensor, A: absorber,
G: regenerator, C: condenser, E: evaporator, SP: absorption solution pump, RP: refrigerant pump, 1: absorption refrigerator, 10: heat exchanger, 11 to 14, 16: solution pipe line, 15, 17, 1
8: Refrigerant pipeline, 19: Cold water circulation channel, 20: Cooling water circulation channel, 21: Exhaust heat source channel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 入江 毅一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 遠藤 哲也 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 青山 淳 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 内村 知行 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 福住 幸大 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, Koichi Irie             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Tetsuya Endo             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Jun Aoyama             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Tomoyuki Uchimura             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION (72) Inventor Kodai Fukuzumi             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 排熱を熱源として冷凍効果を発揮する蒸
発器Eを有する吸収冷凍機と、圧縮機、外気又は冷却水
で冷却する第一凝縮器、前記吸収冷凍機の蒸発器Eと熱
交換関係に接続した第二凝縮器及び冷凍効果を発揮する
蒸発器Ecを有する圧縮冷凍機とを組合せた冷凍装置で
あって、前記圧縮機には、前記吸収冷凍機の冷凍効果だ
けでは蒸発器Ecへの負荷を賄いきれない時に運転する
制御手段を備えていることを特徴とする冷凍装置。
1. An absorption refrigerator having an evaporator E that exerts a refrigerating effect using exhaust heat as a heat source, a compressor, a first condenser cooled by outside air or cooling water, an evaporator E of the absorption refrigerator, and heat. A refrigerating apparatus in which a second condenser connected in an exchange relationship and a compression refrigerator having an evaporator Ec exhibiting a refrigerating effect are combined, and the compressor is an evaporator having only the refrigerating effect of the absorption refrigerator. A refrigerating apparatus comprising a control unit that operates when the load on Ec cannot be covered.
【請求項2】 前記圧縮冷凍機は、一台の吸収冷凍機
に、複数台を接続することを特徴とする請求項1記載の
冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein a plurality of the compression refrigerators are connected to one absorption refrigerator.
【請求項3】 前記圧縮機を運転する制御手段は、前記
蒸発器Ecにおける被冷却媒体の目標温度と実際の温度
との差を基に行うことを特徴とする請求項1又は2記載
の冷凍装置。
3. The refrigerating machine according to claim 1 or 2, wherein the control means for operating the compressor operates based on a difference between a target temperature and an actual temperature of the medium to be cooled in the evaporator Ec. apparatus.
【請求項4】 前記圧縮機を運転する制御手段は、前記
蒸発器Ecにおける冷媒の蒸発圧力を基に行うことを特
徴とする請求項1又は2記載の冷凍装置。
4. The refrigerating apparatus according to claim 1, wherein the control means for operating the compressor operates based on the evaporation pressure of the refrigerant in the evaporator Ec.
【請求項5】 前記圧縮機を運転する制御手段は、前記
吸収冷凍機の蒸発温度又は蒸発温度に関連する物理量を
基に行うことを特徴とする請求項1又は2記載の冷凍装
置。
5. The refrigerating apparatus according to claim 1, wherein the control means for operating the compressor performs the evaporation temperature of the absorption refrigerator or a physical quantity related to the evaporation temperature.
JP2002007050A 2002-01-16 2002-01-16 Exhaust heat recovery-type refrigerating device Pending JP2003207223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002007050A JP2003207223A (en) 2002-01-16 2002-01-16 Exhaust heat recovery-type refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002007050A JP2003207223A (en) 2002-01-16 2002-01-16 Exhaust heat recovery-type refrigerating device

Publications (1)

Publication Number Publication Date
JP2003207223A true JP2003207223A (en) 2003-07-25

Family

ID=27645656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002007050A Pending JP2003207223A (en) 2002-01-16 2002-01-16 Exhaust heat recovery-type refrigerating device

Country Status (1)

Country Link
JP (1) JP2003207223A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249356A (en) * 2009-04-13 2010-11-04 Daikin Ind Ltd Refrigerating device
JP2010249357A (en) * 2009-04-13 2010-11-04 Daikin Ind Ltd Refrigerating device
JP2010255862A (en) * 2009-04-21 2010-11-11 Daikin Ind Ltd Refrigerating device
JP2010255860A (en) * 2009-04-21 2010-11-11 Daikin Ind Ltd Refrigerating device
CN106679210A (en) * 2016-11-28 2017-05-17 中国科学院理化技术研究所 Novel variable-pressure-ratio vapor compression/heat pipe integrated machine room air conditioning system and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249356A (en) * 2009-04-13 2010-11-04 Daikin Ind Ltd Refrigerating device
JP2010249357A (en) * 2009-04-13 2010-11-04 Daikin Ind Ltd Refrigerating device
JP2010255862A (en) * 2009-04-21 2010-11-11 Daikin Ind Ltd Refrigerating device
JP2010255860A (en) * 2009-04-21 2010-11-11 Daikin Ind Ltd Refrigerating device
CN106679210A (en) * 2016-11-28 2017-05-17 中国科学院理化技术研究所 Novel variable-pressure-ratio vapor compression/heat pipe integrated machine room air conditioning system and control method thereof

Similar Documents

Publication Publication Date Title
EP1882889A2 (en) Absorption cooling system
JP2012145309A (en) Heat source system
JP3719581B2 (en) Combined air conditioner
JP2000304375A (en) Latent heat recovery type absorption water cooler heater
JP2003207223A (en) Exhaust heat recovery-type refrigerating device
JPH0473556A (en) Absorption type heat pump
JPH10300265A (en) Refrigerating equipment
CN215597816U (en) Air conditioning system
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP5808105B2 (en) Heat source system and control method thereof
JP4152140B2 (en) Waste heat absorption refrigerator
JP2010255880A (en) Absorption type system
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP3918980B2 (en) Refrigeration equipment
JP3874262B2 (en) Refrigeration system combining absorption and compression
JP4100462B2 (en) Heat utilization system
JPH04251170A (en) Refrigerating device and operation method thereof in cogeneration system
JP2000018757A (en) Cooler
JPH08145496A (en) Refrigerator
JP3874263B2 (en) Refrigeration system combining absorption and compression
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JP3871206B2 (en) Refrigeration system combining absorption and compression
JP2004012102A (en) Refrigeration system
JP2003222429A (en) Refrigeration unit used in cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070312