JP2003206244A - Method for gas-phase catalytic oxidation - Google Patents

Method for gas-phase catalytic oxidation

Info

Publication number
JP2003206244A
JP2003206244A JP2002004635A JP2002004635A JP2003206244A JP 2003206244 A JP2003206244 A JP 2003206244A JP 2002004635 A JP2002004635 A JP 2002004635A JP 2002004635 A JP2002004635 A JP 2002004635A JP 2003206244 A JP2003206244 A JP 2003206244A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
catalytic oxidation
phase catalytic
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002004635A
Other languages
Japanese (ja)
Other versions
JP4295462B2 (en
Inventor
Shuhei Yada
修平 矢田
Hirochika Hosaka
浩親 保坂
Kimikatsu Jinno
公克 神野
Teruo Saito
輝雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002004635A priority Critical patent/JP4295462B2/en
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to CNA2004100786010A priority patent/CN1607032A/en
Priority to EP02806067A priority patent/EP1466883A4/en
Priority to CNB2004100785997A priority patent/CN100349648C/en
Priority to PCT/JP2002/013372 priority patent/WO2003057653A1/en
Priority to CNA2004100786006A priority patent/CN1607031A/en
Priority to ES08004563T priority patent/ES2743407T3/en
Priority to AU2002357503A priority patent/AU2002357503A1/en
Priority to CNB028276302A priority patent/CN100378050C/en
Priority to RU2004123098/04A priority patent/RU2309936C2/en
Priority to BR0214991-5A priority patent/BR0214991A/en
Priority to EP08004563.6A priority patent/EP1925606B1/en
Publication of JP2003206244A publication Critical patent/JP2003206244A/en
Priority to US10/864,492 priority patent/US7528281B2/en
Priority to US12/081,916 priority patent/US7667072B2/en
Priority to US12/081,919 priority patent/US20080216915A1/en
Priority to US12/081,918 priority patent/US20080253943A1/en
Application granted granted Critical
Publication of JP4295462B2 publication Critical patent/JP4295462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for gas-phase catalytic oxidation to form a reaction product gas, capable of effectively preventing the formation of hot spots, having high yield of the reaction product gas and long life of a catalyst and achieving good results by using a fixed-bed multi-tubular heat-exchange reactor having plural reaction tubes, circulating a heat medium outside of the reaction tubes and supplying a reaction raw material gas into the reaction tube packed with a catalyst. <P>SOLUTION: The gas-phase catalytic oxidation to form a reaction product gas is carried out by using a fixed-bed multi-tubular heat-exchange reactor having plural reaction tubes, circulating a heat medium outside of the reaction tubes and supplying a reaction raw material gas into the reaction tube packed with a catalyst. The reaction is performed while estimating the reaction state in the reaction tubes and changing the packing state of the catalyst in the tube according to the estimation result in a manner to decrease the non- uniformity of the reaction states in the reaction tubes. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数の反応管を有
する固定床式多管熱交換型反応器を用い、反応管外部に
熱媒体を循環させ、触媒を充填した反応管内部に反応原
料ガスを供給することにより、反応生成ガスを得る気相
接触酸化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a fixed bed multi-tube heat exchange reactor having a plurality of reaction tubes, a heat medium is circulated outside the reaction tubes, and a reaction raw material is placed inside the reaction tube filled with a catalyst. The present invention relates to a gas phase catalytic oxidation method for obtaining a reaction product gas by supplying a gas.

【0002】[0002]

【従来の技術】従来より、複数の反応管を有する固定床
式多管熱交換型反応器が知られている。また、固定床式
多管熱交換型反応器を用いて気相接触酸化方法を行うこ
とが知られている。
2. Description of the Related Art Conventionally, a fixed-bed multitubular heat exchange reactor having a plurality of reaction tubes has been known. It is also known to carry out the gas phase catalytic oxidation method using a fixed bed multi-tube heat exchange type reactor.

【0003】例えば、固定床式多管熱交換型反応器を用
い、反応管外部に熱媒体を循環させ、触媒を充填した反
応管内部に反応原料ガスを供給する。すると、反応管内
で接触酸化反応が生じ、該反応により反応生成ガスが得
られるというものである。
For example, a fixed bed multi-tube heat exchange type reactor is used, a heat medium is circulated outside the reaction tube, and a reaction raw material gas is supplied into the reaction tube filled with a catalyst. Then, a catalytic oxidation reaction occurs in the reaction tube, and the reaction product gas is obtained by the reaction.

【0004】この場合、反応管内で生じた反応熱を吸収
するために熱媒体が使用されている固定床式多管熱交換
型反応器においては、熱媒体が該反応器内をできるだけ
均一に流れるようにするために、邪魔板と呼ばれる、熱
媒体の流路を変えるための板が設置されている。
In this case, in a fixed bed multi-tube heat exchange type reactor in which a heat medium is used to absorb the heat of reaction generated in the reaction tube, the heat medium flows in the reactor as evenly as possible. In order to do so, a plate called a baffle plate for changing the flow path of the heat medium is installed.

【0005】しかし、このような、邪魔板を設置した固
定床式多管熱交換型反応器においては、プラントの規模
が小さい場合には特に問題にはならなかったが、現在の
ように生産性を上げる目的でプラントの規模、即ち反応
器が大きくなった場合は、以下のような問題が生じる。
However, in such a fixed bed type multi-tube heat exchange type reactor having a baffle plate, there was no particular problem when the scale of the plant was small. When the scale of the plant, that is, the reactor becomes large for the purpose of increasing the temperature, the following problems occur.

【0006】つまり、反応器シェル内での熱媒体の流れ
が不均一な部分が生じる。そして、反応器内の複数の反
応管のうち、一部の反応管では除熱の悪い状態が形成さ
れる。そして、除熱の悪い状態にさらされた反応管で
は、局部的異常高温帯(ホットスポット)が発生し、場
合によっては反応の暴走が生じる。
That is, there is a portion where the flow of the heat medium in the reactor shell is not uniform. Then, a part of the plurality of reaction tubes in the reactor has a poor heat removal state. Then, in the reaction tube exposed to the poor heat removal state, a locally abnormal high temperature zone (hot spot) occurs, and in some cases reaction runaway occurs.

【0007】また、このように反応管相互で反応状態を
異ならせると、上記のような過度な反応を生じる反応管
の発生を防止することができず、また、目的生成ガスの
収率が低下し、触媒の寿命が低下するという問題も発生
する。
If the reaction states of the reaction tubes are different from each other as described above, it is impossible to prevent the generation of the reaction tubes causing the excessive reaction as described above, and the yield of the target product gas is lowered. However, there is a problem that the life of the catalyst is shortened.

【0008】一方、従来の規模の小さな反応器であって
も、生産性を上げる目的で、反応原料ガスの供給を増加
させれば、反応の際に生じる発熱に対して除熱が間に合
わない場所が生じ、上述のホットスポット等の問題が発
生する。
On the other hand, even in the case of a conventional small-scale reactor, if the supply of the reaction raw material gas is increased for the purpose of increasing the productivity, a place where heat removal during the reaction cannot be removed in time. Occurs, and problems such as the hot spots described above occur.

【0009】つまり、従来の方法は、固定床式多管熱交
換型反応器を用いて気相接触酸化を行う場合に、ホット
スポットの発生が有効に防止でき、かつ反応生成ガスの
収率も高く、触媒の寿命も長い、良好な結果を示す気相
接触酸化方法ではなかった。
That is, according to the conventional method, when the gas phase catalytic oxidation is carried out by using the fixed bed multi-tube heat exchange type reactor, the generation of hot spots can be effectively prevented and the yield of the reaction product gas is also increased. It was not a gas-phase catalytic oxidation method showing high results and a long catalyst life, which showed good results.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明は、複
数の反応管を有する固定床式多管熱交換型反応器を用
い、反応管外部に熱媒体を循環させ、触媒を充填した反
応管内部に反応原料ガスを供給することにより、反応生
成ガスを得る気相接触酸化方法において、ホットスポッ
トの発生を有効に防止でき、かつ、反応生成ガスの収率
も高く及び触媒の寿命も長い、良好な結果を示す気相接
触酸化方法を提供することを課題とする。
Therefore, the present invention uses a fixed bed type multi-tube heat exchange type reactor having a plurality of reaction tubes, and a reaction medium in which a heat medium is circulated outside the reaction tubes and a catalyst is filled. By supplying the reaction raw material gas to the inside, in the gas phase catalytic oxidation method for obtaining the reaction product gas, it is possible to effectively prevent the generation of hot spots, and also the yield of the reaction product gas is high and the life of the catalyst is long, An object of the present invention is to provide a vapor-phase catalytic oxidation method showing good results.

【0011】[0011]

【課題を解決するための手段】上記ホットスポットの発
生を防ぐ手段として、例えば、反応管内の触媒層の温度
を下げるため、反応管径の小型化や熱容量の大きい熱媒
体の使用や熱媒体の循環量アップ等の反応器の機器面に
関する改良を行うこと、又は反応原料ガスの濃度の変更
等の反応条件面に関する改良を行うことが考えられる。
As means for preventing the occurrence of the above hot spot, for example, in order to lower the temperature of the catalyst layer in the reaction tube, the size of the reaction tube is reduced, the use of a heat medium having a large heat capacity, and the use of a heat medium It is conceivable to make improvements in the equipment aspect of the reactor such as increasing the circulation amount, or to make improvements in terms of the reaction conditions such as changing the concentration of the reaction raw material gas.

【0012】しかし、これらの方法を反応器における全
反応管に一律同様に施すのでは、コストもかかり、また
生産性向上の観点からも好ましくはない。また、これら
の方法では、反応器内における各反応管の反応状態は均
一にはならない。
However, if these methods are uniformly applied to all the reaction tubes in the reactor, it will be costly and not preferable from the viewpoint of improving productivity. Further, in these methods, the reaction state of each reaction tube in the reactor is not uniform.

【0013】本発明者らは、鋭意研究を重ねた結果、反
応器内の各反応管の反応状態を均一にすることが、ホッ
トスポットの発生を有効に防止できること、及び反応生
成ガスの収率を高めること、触媒の寿命を長期間にする
ことに有効であることを確認した。
As a result of intensive studies, the inventors of the present invention have found that the reaction state of each reaction tube in the reactor can be made uniform, the occurrence of hot spots can be effectively prevented, and the yield of the reaction product gas. It was confirmed that it is effective in increasing the temperature and extending the life of the catalyst.

【0014】そこで、本発明者らは、以下に記載する方
法とすることで、上記課題を解決する気相接触酸化方法
が提供できることを見出し、本発明の完成に至った。
Therefore, the present inventors have found that a vapor phase catalytic oxidation method that solves the above problems can be provided by using the method described below, and completed the present invention.

【0015】すなわち、本発明は、以下のとおりであ
る。 (1)複数の反応管を有する固定床式多管熱交換型反応
器を用い、反応管外部に熱媒体を循環させ、触媒を充填
した反応管内部に反応原料ガスを供給することにより、
反応生成ガスを得る気相接触酸化方法において、反応管
内部の反応状態を予測し、その予測結果に応じて、反応
管の間の反応状態の不均一性が減少されるように、反応
管における触媒の充填仕様を変更することを特徴とす
る、気相接触酸化方法。 (2)前記熱媒体が、反応管から発生する反応熱を吸収
するためのものである、(1)に記載の気相接触酸化方
法。 (3)前記反応管内部の反応状態の予測を、反応管内部
の熱状態を把握することにより行うことを特徴とする、
(1)又は(2)に記載の気相接触酸化方法。 (4)前記反応管内部の熱状態を把握するために、反応
管の触媒層温度を測定することを特徴とする、(1)〜
(3)の何れかに記載の気相接触酸化方法。 (5)前記反応管内部の熱状態を把握するために、コン
ピューターによるシミュレーション解析を用いることを
特徴とする、(1)〜(3)の何れかに記載の気相接触
酸化方法。 (6)前記コンピューターによるシミュレーション解析
により、熱媒体の流動解析を行うことを特徴とする、
(5)に記載の気相接触酸化方法。 (7)前記コンピューターによるシミュレーション解析
により、熱媒体の流動解析と反応管内部の反応熱解析と
を行うことを特徴とする、(6)に記載の気相接触酸化
方法。 (8)前記触媒の充填仕様を決める項目として、触媒の
種類、触媒の量、触媒の形状、触媒の希釈方法、反応帯
域の長さの各項目が挙げられることを特徴とする、
(1)〜(7)の何れかに記載の気相接触酸化方法。 (9)前記固定床式多管熱交換型反応器において、複数
の反応管のうち一部の反応管については、反応管への反
応原料ガスの供給を停止することを特徴とする、(1)
〜(8)の何れかに記載の気相接触酸化方法。
That is, the present invention is as follows. (1) By using a fixed bed multi-tube heat exchange type reactor having a plurality of reaction tubes, a heat medium is circulated outside the reaction tubes, and a reaction raw material gas is supplied into the reaction tubes filled with the catalyst,
In a gas-phase catalytic oxidation method for obtaining a reaction product gas, the reaction state inside the reaction tube is predicted, and the heterogeneity of the reaction state between the reaction tubes is reduced according to the prediction result so that the reaction tube A gas-phase catalytic oxidation method characterized in that the packing specifications of the catalyst are changed. (2) The vapor phase catalytic oxidation method according to (1), wherein the heat medium is for absorbing reaction heat generated from a reaction tube. (3) The reaction state inside the reaction tube is predicted by grasping the heat state inside the reaction tube.
The vapor phase catalytic oxidation method according to (1) or (2). (4) The temperature of the catalyst layer of the reaction tube is measured in order to grasp the heat state inside the reaction tube, (1) to
The vapor phase catalytic oxidation method according to any one of (3). (5) The vapor phase catalytic oxidation method according to any one of (1) to (3), characterized in that a simulation analysis by a computer is used to grasp the thermal state inside the reaction tube. (6) The flow analysis of the heat medium is performed by the simulation analysis by the computer,
The vapor phase catalytic oxidation method according to (5). (7) The vapor phase catalytic oxidation method according to (6), characterized in that the flow analysis of the heat medium and the reaction heat analysis inside the reaction tube are performed by the simulation analysis by the computer. (8) The items for determining the packing specifications of the catalyst include the types of the catalyst, the amount of the catalyst, the shape of the catalyst, the method of diluting the catalyst, and the length of the reaction zone.
The vapor phase catalytic oxidation method according to any one of (1) to (7). (9) In the fixed bed type multi-tube heat exchange reactor, the supply of the reaction raw material gas to the reaction tubes is stopped for some of the reaction tubes. )
~ The vapor phase catalytic oxidation method according to any one of (8).

【0016】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0017】本発明は、複数の反応管を有する固定床式
多管熱交換型反応器を用いて、気相接触酸化方法を行
う。
In the present invention, the gas phase catalytic oxidation method is carried out using a fixed bed multi-tube heat exchange type reactor having a plurality of reaction tubes.

【0018】つまり、上記反応器において、反応管外部
に熱媒体を循環させ、触媒を充填した反応管内部に反応
原料ガスを供給することにより、反応生成ガスを生成さ
せる。
That is, in the above reactor, the reaction medium is circulated outside the reaction tube and the reaction raw material gas is supplied into the reaction tube filled with the catalyst to generate the reaction product gas.

【0019】本発明において、上記熱媒体は、反応管か
ら発生する反応熱を吸収するために使用することが好ま
しい。該熱媒体としては、反応管から発生する反応熱を
吸収する機能を有していれば、例えば、部分水素化トリ
フェニル等の有機熱媒や、ナトリウム、カリウム等のア
ルカリ金属(亜)硝酸塩いわゆるナイター等の無機溶触
塩等、如何なる材料も使用し得る。
In the present invention, the heat medium is preferably used to absorb reaction heat generated from the reaction tube. As the heat medium, as long as it has a function of absorbing reaction heat generated from the reaction tube, for example, an organic heat medium such as partially hydrogenated triphenyl or an alkali metal (nitrite) such as sodium or potassium, so-called Any material can be used, such as an inorganic contact salt such as a night game.

【0020】また、本発明の気相接触酸化方法では、生
成させたい反応生成ガスの種類に応じて、反応原料ガス
や触媒を適宜選択することができる。
Further, in the vapor phase catalytic oxidation method of the present invention, the reaction raw material gas and the catalyst can be appropriately selected according to the kind of reaction product gas to be produced.

【0021】例えば、本発明の気相接触酸化方法によ
り、プロピレンまたはイソブチレンを分子状酸素または
分子状酸素含有ガスにより、複合酸化物触媒の存在下で
酸化して、(メタ)アクロレイン或いは(メタ)アクリ
ル酸を製造することができる。より詳しくは、プロピレ
ンまたはイソブチレンをMo−Bi系複合酸化物触媒の
存在下で酸化して主に(メタ)アクロレインを製造し
(前段反応)、該前段反応で生成した(メタ)アクロレ
インをMo−V系複合酸化物触媒の存在下で酸化して
(メタ)アクリル酸を製造することができる。
For example, by the gas phase catalytic oxidation method of the present invention, propylene or isobutylene is oxidized with molecular oxygen or a gas containing molecular oxygen in the presence of a complex oxide catalyst to give (meth) acrolein or (meth). Acrylic acid can be produced. More specifically, propylene or isobutylene is oxidized in the presence of a Mo-Bi-based composite oxide catalyst to mainly produce (meth) acrolein (pre-reaction), and the (meth) acrolein produced in the pre-reaction is converted into Mo-. It can be oxidized in the presence of a V-based complex oxide catalyst to produce (meth) acrylic acid.

【0022】上記(メタ)アクロレイン或いは(メタ)
アクリル酸を本発明の気相接触酸化方法を用いて製造す
る場合、特に工業化を考慮すると、以下に記載する製造
方式を利用することが有効となる。以下、プロピレンを
例に挙げて説明する。 1)ワンパス方式 プロピレンと空気とスチ−ムを混合供給して、主として
アクロレインとアクリル酸を製造する(前段反応)。こ
の前段反応で得られたガスを分離することなく後段反応
へ供給する。このとき、後段反応で反応させるのに必要
な空気およびスチ−ムを前段反応で得られたガスに加え
て後段反応へ供給する方式。 2)未反応プロピレンリサイクル方式 後段反応で得られたアクリル酸を含有する反応生成ガス
をアクリル酸捕集装置に導き、アクリル酸を水溶液とし
て捕集する。該捕集装置より未反応プロピレンを含有す
る廃ガスの一部を分離する。該廃ガスを再び前段反応に
供するよう供給すると、未反応プロピレンの一部をリサ
イクルすることができる方式。 3)燃焼廃ガスリサイクル方式 後段反応で得られたアクリル酸を含有する反応生成ガス
をアクリル酸捕集装置に導き、アクリル酸を水溶液とし
て捕集する。該捕集装置より廃ガスを全量接触的に燃焼
酸化させ、含有される未反応プロピレン等を主として二
酸化炭素及び水に変換する。得られた燃焼廃ガスの一部
を再び前段反応に供するよう供給する方式。
The above (meth) acrolein or (meth)
When acrylic acid is produced using the vapor-phase catalytic oxidation method of the present invention, it is effective to use the production method described below, especially considering industrialization. Hereinafter, propylene will be described as an example. 1) One-pass system Propylene, air, and steam are mixed and supplied to mainly produce acrolein and acrylic acid (pre-reaction). The gas obtained in this first-stage reaction is supplied to the second-stage reaction without separation. At this time, the air and steam necessary for the reaction in the second-stage reaction are added to the gas obtained in the first-stage reaction and supplied to the second-stage reaction. 2) The reaction product gas containing acrylic acid obtained in the unreacted propylene recycling system second-stage reaction is introduced into an acrylic acid collector to collect acrylic acid as an aqueous solution. A part of the waste gas containing unreacted propylene is separated from the collector. When the waste gas is supplied again for the first-stage reaction, a part of the unreacted propylene can be recycled. 3) Combustion waste gas recycling system The reaction product gas containing acrylic acid obtained in the second-stage reaction is introduced into an acrylic acid collector to collect acrylic acid as an aqueous solution. The whole amount of waste gas is catalytically burned and oxidized by the trapping device, and the unreacted propylene and the like contained therein are mainly converted into carbon dioxide and water. A method in which a part of the obtained combustion waste gas is supplied so as to be used again in the first-stage reaction.

【0023】本発明の気相接触酸化方法は、上記の3つ
の方式の何れを用いて、工業的製造を行ってもよく、特
に製造方式には限定されるものではない。
The vapor phase catalytic oxidation method of the present invention may be carried out industrially using any of the above three methods, and is not particularly limited to the manufacturing method.

【0024】また、上記のオレフィンから不飽和アルデ
ヒドまたは不飽和酸を得る前段反応で使用する触媒とし
ては、下記一般式(1)で示されるMo−Bi系複合酸
化物触媒が好ましく用いられる。
As the catalyst used in the pre-stage reaction for obtaining an unsaturated aldehyde or unsaturated acid from the above olefin, a Mo-Bi type composite oxide catalyst represented by the following general formula (1) is preferably used.

【0025】[0025]

【化1】 Moab Bic Fedefghix ・・・(1) (上記式(1)中、Moはモリブデン、Wはタングステ
ン、Biはビスマス、Feは鉄、Aはニッケルおよびコ
バルトから選ばれる少なくとも一種の元素、Bはナトリ
ウム、カリウム、ルビジウム、セシウムおよびタリウム
から選ばれる少なくとも一種の元素、Cはアルカリ土類
金属から選ばれる少なくとも一種の元素、Dはリン、テ
ルル、アンチモン、スズ、セリウム、鉛、ニオブ、マン
ガン、ヒ素、ホウ素および亜鉛から選ばれる少なくとも
一種の元素、Eはシリコン、アルミニウム、チタニウム
およびジルコニウムから選ばれる少なくとも一種の元
素、そしてOは酸素であり、a、b、c、d、e、f、
g、h、iおよびxはそれぞれMo、W、Bi、Fe、
A、B、C、D、EおよびOの原子比を表し、a=12
のとき、0≦b≦10、0<c≦10(好ましくは0.
1≦c≦10)、0<d≦10(好ましくは0.1≦d
≦10)、2≦e≦15、0<f≦10(好ましくは
0.001≦f≦10)、0≦g≦10、0≦h≦4、
0≦i≦30、x は各々の元素の酸化状態によって定ま
る数値である。) また、上記のオレフィンから不飽和アルデヒドまたは不
飽和酸を得る後段反応で使用する触媒としては、下記の
一般式(2)で示されるMo−V系複合酸化物触媒が好
ましく用いられる。
Embedded image Mo a W b B c Fe d A e B f C g D h E i O x ... (1) (In the above formula (1), Mo is molybdenum, W is tungsten, Bi is bismuth, Fe is iron, A is at least one element selected from nickel and cobalt, B is at least one element selected from sodium, potassium, rubidium, cesium and thallium, C is at least one element selected from alkaline earth metals, D is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic, boron and zinc, E is at least one element selected from silicon, aluminum, titanium and zirconium, and O Is oxygen, a, b, c, d, e, f,
g, h, i and x are Mo, W, Bi, Fe,
Represents the atomic ratio of A, B, C, D, E and O, a = 12
, 0 ≦ b ≦ 10, 0 <c ≦ 10 (preferably 0.
1 ≦ c ≦ 10), 0 <d ≦ 10 (preferably 0.1 ≦ d)
≦ 10), 2 ≦ e ≦ 15, 0 <f ≦ 10 (preferably 0.001 ≦ f ≦ 10), 0 ≦ g ≦ 10, 0 ≦ h ≦ 4,
0 ≦ i ≦ 30 and x are numerical values determined by the oxidation state of each element. ) Further, as the catalyst used in the subsequent reaction for obtaining the unsaturated aldehyde or unsaturated acid from the above-mentioned olefin, a Mo-V type composite oxide catalyst represented by the following general formula (2) is preferably used.

【0026】[0026]

【化2】 Moabc Cudefg ・・・(2) (上記式(2)中、Moはモリブデン、Vはバナジウ
ム、Wはタングステン、Cuは銅、XはMg、Ca、S
rおよびBaよりなる群から選ばれる少なくとも一種の
元素、YはTi、Zr、Ce、Cr、Mn、Fe、C
o、Ni、Zn、Nb、Sn、Sb、PbおよびBiよ
りなる群から選ばれる少なくとも一種の元素、そしてO
は酸素であり、a、b、c、d、e、fおよびgはそれ
ぞれMo、V、W、Cu、X、YおよびOの原子比を示
し、a=12とするとき、2≦b≦14、0≦c≦1
2、0<d≦6、0≦e≦3、0≦f≦3であり、gは
各々の元素の酸化状態によって定まる数値である。) 本発明の気相接触酸化方法で使用する反応管には、触媒
と必要に応じて触媒希釈用の不活性物質(以下、「希釈
剤」ともいう)とを充填する。
Embedded image Mo a V b W c Cu d X e Y f O g (2) (In the above formula (2), Mo is molybdenum, V is vanadium, W is tungsten, Cu is copper, and X is Mg, Ca, S
At least one element selected from the group consisting of r and Ba, Y is Ti, Zr, Ce, Cr, Mn, Fe, C
at least one element selected from the group consisting of o, Ni, Zn, Nb, Sn, Sb, Pb and Bi, and O
Is oxygen, and a, b, c, d, e, f and g each represent an atomic ratio of Mo, V, W, Cu, X, Y and O. When a = 12, 2 ≦ b ≦ 14, 0 ≦ c ≦ 1
2, 0 <d ≦ 6, 0 ≦ e ≦ 3, 0 ≦ f ≦ 3, and g is a numerical value determined by the oxidation state of each element. ) A reaction tube used in the gas phase catalytic oxidation method of the present invention is filled with a catalyst and, if necessary, an inert substance for diluting the catalyst (hereinafter, also referred to as “diluent”).

【0027】触媒の反応管への充填仕様は、触媒の種
類、触媒の量、触媒の形状(形、大きさ)、触媒の希釈
方法(希釈剤の種類、希釈剤の量)、反応帯域の長さ等
の各要素を総合的に勘案し、決定するとよい。
The specifications for filling the catalyst into the reaction tube are: catalyst type, catalyst amount, catalyst shape (shape, size), catalyst dilution method (diluent type, diluent amount), reaction zone It is advisable to decide after comprehensively considering each factor such as length.

【0028】本発明の気相接触酸化方法で使用する触媒
の形状(形、大きさ)は特に制限はなく、触媒の成型法
についても特に制限はない。例えば、押し出し成型法ま
たは打錠成型法の何れで成型された触媒でも使用可能で
あり、また触媒成分よりなる複合酸化物を、炭化ケイ
素、アルミナ、酸化ジルコニウム、酸化チタンなどの不
活性な担体に担持して構成させた触媒を使用してもよ
い。また、触媒の形も、球状、円柱状、リング状、不定
形などのいずれの形でも良い。但し、特にリング状触媒
を使用するとホットスポット部における蓄熱の防止に効
果がある。
The shape (shape, size) of the catalyst used in the vapor phase catalytic oxidation method of the present invention is not particularly limited, and the molding method of the catalyst is also not particularly limited. For example, a catalyst molded by either an extrusion molding method or a tablet molding method can be used, and a composite oxide composed of a catalyst component can be used as an inert carrier such as silicon carbide, alumina, zirconium oxide, or titanium oxide. A supported catalyst may be used. Further, the shape of the catalyst may be any shape such as spherical shape, cylindrical shape, ring shape, and amorphous shape. However, especially when a ring-shaped catalyst is used, it is effective in preventing heat accumulation in the hot spot portion.

【0029】また、希釈剤の種類としては、気相接触酸
化反応条件化で安定であり、反応原料物質及び生成物と
反応性がない材質のものであれば何でもよく、具体的に
は、アルミナ、シリコンカ−バイド、シリカ、酸化ジル
コニア、酸化チタン等、触媒の担体に使われるものを使
用するとよい。また、希釈剤の形状は触媒と同様に制限
はなく、球状、円柱状、リング状、不定形などのいずれ
でもよい。大きさは、反応管径及び差圧を考慮して決め
ればよい。
Any kind of diluent may be used as long as it is stable under the gas phase catalytic oxidation reaction condition and has no reactivity with the reaction raw material and the product. , Silicon carbide, silica, zirconia oxide, titanium oxide and the like, which are used as catalyst carriers, may be used. The shape of the diluent is not limited as in the case of the catalyst, and may be spherical, cylindrical, ring-shaped, or amorphous. The size may be determined in consideration of the reaction tube diameter and the differential pressure.

【0030】触媒と希釈剤との混合比は、特に制限はな
いが、混合比が極端に大きい、あるいは小さい場合は、
触媒と希釈剤の混合状態が不均一とならないよう混合比
を留意するとよい。
The mixing ratio of the catalyst and the diluent is not particularly limited, but when the mixing ratio is extremely large or small,
It is advisable to pay attention to the mixing ratio so that the mixed state of the catalyst and the diluent does not become non-uniform.

【0031】また、一つの反応管における反応帯域にお
いて、触媒の充填仕様を層状で異ならせてもよい。例え
ば、反応管上部に充填する触媒の充填仕様と、反応管下
部に充填する触媒の充填仕様とを異ならせてもよい。一
般に、一つの反応管における反応帯数は2〜3までの数
で設定するとよい。
Further, in the reaction zone in one reaction tube, the packing specifications of the catalyst may be different in layers. For example, the packing specifications of the catalyst packed in the upper part of the reaction tube and the packing specifications of the catalyst packed in the lower part of the reaction tube may be different. Generally, the number of reaction zones in one reaction tube may be set to a number of 2 to 3.

【0032】また、反応原料ガスを導入する反応管の入
口部分から出口部分に向かって触媒活性が高くなるよう
に触媒を充填するとよい。
Further, it is preferable to fill the catalyst so that the catalytic activity becomes higher from the inlet portion to the outlet portion of the reaction tube for introducing the reaction raw material gas.

【0033】次に、本発明の気相接触酸化方法におけ
る、各反応管内部の反応状態の予測方法について説明す
る。
Next, a method of predicting the reaction state inside each reaction tube in the vapor phase catalytic oxidation method of the present invention will be described.

【0034】本発明では、通常の反応状態を逸脱して、
ホットスポット等異常な反応状態となる反応管の発生を
防止するために、上記反応状態の予測を行うものであ
る。
In the present invention, in the deviation from the normal reaction state,
The above reaction state is predicted in order to prevent the generation of reaction tubes that are in an abnormal reaction state such as hot spots.

【0035】そこで、通常の反応状態とは異なる、異常
な反応状態を生じている又は生じる可能性がある反応管
を予測する。
Therefore, a reaction tube which is different from the normal reaction state, or which has an abnormal reaction state or may have an abnormal reaction state is predicted.

【0036】具体的には、他の反応管と均一な状態(同
レベルの反応状態)にない反応管を挙げることになる。
Specifically, a reaction tube which is not in a uniform state (reaction state at the same level) as other reaction tubes is mentioned.

【0037】そして、上記反応状態を予測するには、反
応管内部の熱状態を把握することが好ましい。
In order to predict the reaction state, it is preferable to grasp the heat state inside the reaction tube.

【0038】反応管内部の熱状態を把握するには、反応
管の触媒層温度を測定すること、又はコンピューターシ
ミュレーション解析を用いることにより行うことができ
る。
The thermal state inside the reaction tube can be determined by measuring the temperature of the catalyst layer in the reaction tube or by using computer simulation analysis.

【0039】具体的には、反応管の触媒層の温度を測定
した結果、他の反応管と比較して温度が高いと判断され
る場合や、コンピューターシミュレーション解析の結
果、反応管内の温度が他の反応管内の温度より高いと判
断される場合に、他の反応管の反応状態と異なる状態で
あると予測することができる。
Specifically, when the temperature of the catalyst layer of the reaction tube is measured and it is determined that the temperature is higher than that of other reaction tubes, or when the temperature in the reaction tube is different as a result of computer simulation analysis. When it is determined that the temperature is higher than the temperature in the reaction tube of No. 2, it can be predicted that the reaction state is different from the reaction states of the other reaction tubes.

【0040】上記コンピューターによるシミュレーショ
ン解析を用いて反応管内部の熱状態を把握する場合、よ
り具体的には、熱媒体の流動解析を行う、又は、熱媒体
の流動解析と反応管内部の反応熱解析とを併せて解析す
ることにより把握することができる。
When the heat state inside the reaction tube is grasped by using the simulation analysis by the computer, more specifically, the flow analysis of the heat medium is performed, or the flow analysis of the heat medium and the reaction heat inside the reaction tube are performed. It can be grasped by performing the analysis together with the analysis.

【0041】上記熱媒体の流動解析は、邪魔板や反応管
のレイアウト、及び熱媒体供給口等の反応器の構造、及
び、熱媒体の物性や熱媒体の流通量等熱媒体の関する項
目を決めシミュレ−ションすることにより得る。具体的
には、運動量保存式、質量保存式、エンタルピー保存式
等を用いて熱媒体の流れ方向及び熱媒体流れの速度等を
計算して、伝熱係数、温度分布を算出するとよい。本発
明では、流体解析ソフトとして、CFX(イギリス、C
FX社製)を用いて解析を行うことができる。
The above-mentioned flow analysis of the heat medium is performed on the items related to the heat medium such as the layout of the baffle plate and the reaction tube, the structure of the reactor such as the heat medium supply port, and the physical properties of the heat medium and the flow rate of the heat medium. It is obtained by deciding and simulating. Specifically, the heat transfer coefficient and the temperature distribution may be calculated by calculating the flow direction of the heat medium, the velocity of the heat medium flow, and the like using a momentum conservation formula, a mass conservation formula, an enthalpy conservation formula, and the like. In the present invention, as fluid analysis software, CFX (UK, C
The analysis can be performed by using FX.

【0042】また、反応管内部の反応熱解析は、反応管
構造、供給ガス及び触媒物性、反応速度式等の反応管に
関する項目を決めシュミレーションすることにより得
る。具体的には、運動量保存式、質量保存式、エンタル
ピー保存式、反応速度式等を用いて反応管内の各微小区
間での反応量を求めるとよい。本発明では、解析ソフト
として、g−PROMS(イギリス、AEA社製)を用
いて解析を行うことができる。
The reaction heat analysis inside the reaction tube can be obtained by determining and simulating items relating to the reaction tube such as the reaction tube structure, feed gas and catalyst physical properties, and reaction rate formula. Specifically, the reaction amount in each minute section in the reaction tube may be obtained using a momentum conservation formula, a mass conservation formula, an enthalpy conservation formula, a reaction rate formula, or the like. In the present invention, g-PROMS (manufactured by AEA, UK) can be used as the analysis software for analysis.

【0043】このようにして、上記熱媒体の流動解析に
より除熱が悪い部分を考慮し、さらに反応管内部の反応
熱解析を加えると、より反応管内のすべての場所にある
各反応管内の反応状態を予測することができる。
In this way, by taking into consideration the bad heat removal portion by the flow analysis of the heat medium and further adding the reaction heat analysis inside the reaction tube, the reaction inside each reaction tube at every place in the reaction tube is further improved. The state can be predicted.

【0044】本発明者らは、コンピューターによるシミ
ュレーションの解析の結果、以下に示す図2のダブルセ
グメントタイプの固定床式多管熱交換型反応器や図3の
リングアンドド−ナツタイプの固定床式多管熱交換型反
応器を用いた気相接触酸化方法において、反応管に対し
て垂直流れ(横流れ)に比べて、反応管に沿う流れ(縦
流れ)は除熱が悪いこと、更に、反応器外周部の縦流れ
よりも反応器中心部の縦流れの部分の除熱が非常に悪い
こと確認した。
As a result of computer simulation analysis, the inventors of the present invention have shown the following double-segment type fixed bed multi-tube heat exchange type reactor of FIG. 2 and ring and donut type fixed bed type of FIG. In the gas-phase catalytic oxidation method using a multi-tube heat exchange reactor, the flow along the reaction tube (longitudinal flow) has poor heat removal compared to the vertical flow (lateral flow) with respect to the reaction tube. It was confirmed that the heat removal in the vertical flow portion in the center of the reactor was much worse than that in the peripheral portion of the reactor.

【0045】また、これらの固定床式多管熱交換型反応
器において熱媒体の流通量を増加させた場合、横流れの
部分は熱媒体の流通量に応じて除熱効果は向上するが、
熱媒の縦流れになる部分、特に反応器中心部の縦流れに
なる部分は、熱媒体の流通量を増加しても、流通量を増
加した割には除熱効果は上がらないことを確認した。
Further, when the flow rate of the heat medium is increased in these fixed bed type multi-tube heat exchange type reactors, the heat removal effect in the lateral flow portion is improved according to the flow rate of the heat medium.
It has been confirmed that the heat removal effect does not increase in the part where the heat medium flows vertically, especially in the part where the heat medium flows vertically, even if the flow amount of the heat medium is increased. did.

【0046】また、図4のマルチバッフルタイプの固定
床式多管熱交換型反応器を用いた気相接触酸化方法にお
いて、反応器外周部の熱媒体の滞留部に除熱の悪い部分
が存在することを確認した。
Further, in the gas phase catalytic oxidation method using the multi-baffle type fixed bed type multi-tube heat exchange type reactor shown in FIG. 4, there is a poor heat removal portion in the heat medium retention area on the outer periphery of the reactor. Confirmed to do.

【0047】よって、上記除熱の悪い部分を充分考慮に
入れ、該部分に存在する反応管における反応状態を慎重
に予測するとよい。
Therefore, it is advisable to take into consideration the above-mentioned poor heat removal portion and carefully predict the reaction state in the reaction tube existing in that portion.

【0048】そして、本発明では、上記予測の結果をも
とに、その予測結果に応じて、各反応管における触媒の
充填仕様を変更する。
Then, in the present invention, based on the result of the above prediction, the specification for filling the catalyst in each reaction tube is changed according to the result of the prediction.

【0049】つまり、上記した他の反応管と反応状態が
異なると判断した反応管について、他の反応管と同じ反
応状態となるよう、言い換えると、反応管の間の反応状
態の不均一性が減少されるように、触媒の充填仕様を変
更する。
That is, with respect to the above-mentioned reaction tube judged to have a different reaction state from that of the other reaction tube, the reaction state becomes the same as that of the other reaction tube, in other words, the non-uniformity of the reaction state between the reaction tubes is caused. Change the packing specifications of the catalyst so that it is reduced.

【0050】例えば、反応管の触媒層温度を測定した結
果、所定の触媒層温度領域からはずれていると判断され
る反応管に対しては、他の反応管の触媒層温度と同レベ
ルになるように、触媒の充填仕様を変更する。
For example, as a result of measuring the catalyst layer temperature of a reaction tube, a reaction tube determined to be out of a predetermined catalyst layer temperature region has the same level as the catalyst layer temperature of another reaction tube. As described above, the catalyst filling specifications are changed.

【0051】または、コンピューターによるシミュレー
ションの結果、熱媒体の循環状態が悪い部分に存在する
反応管であって、反応管で生じた反応熱が充分除熱され
ず所定の温度領域からはずれていると判断される反応管
に対しては、他の反応管内部の想定温度と同レベルにな
るように、触媒の充填仕様を変更する。
Alternatively, as a result of computer simulation, it is found that the reaction tube existing in a portion where the heat medium is in a poor circulation state is not removed sufficiently from the reaction heat and deviates from the predetermined temperature range. For the determined reaction tube, the catalyst filling specifications are changed so that the temperature is the same as the assumed temperature inside the other reaction tubes.

【0052】上記充填仕様の変更の目安を、以下に記載
する。例えば、温度測定又はシミュレーションにより、
各反応管における触媒層のピーク温度を求める。次に、
これら各ピーク温度の結果をもとにして、反応器全体を
代表する平均的なピーク温度の値を決定する。そして、
この平均的なピーク温度の値と各反応管のピーク温度と
を比較し、平均的なピーク温度と15℃以上、好ましく
は、10℃以上差のある反応管に対し、充填仕様を変更
するとよい。尚、ここで、触媒層のピーク温度とは、反
応管に触媒を単層で充填する場合は、最も温度の高い部
分の温度をいい、複数個の反応帯に分割して触媒を充填
する場合は、それぞれの反応帯での最も温度の高い部分
の温度をいう。また、平均的なピーク温度は、除熱が著
しく悪い部分のものを除いた反応管のピーク温度の平均
値として算出する。
A guideline for changing the filling specifications is described below. For example, by temperature measurement or simulation,
The peak temperature of the catalyst layer in each reaction tube is determined. next,
Based on the results of each of these peak temperatures, an average peak temperature value representative of the entire reactor is determined. And
The value of this average peak temperature is compared with the peak temperature of each reaction tube, and the filling specification may be changed for reaction tubes that differ from the average peak temperature by 15 ° C or more, preferably 10 ° C or more. . Here, the peak temperature of the catalyst layer refers to the temperature of the hottest part when the catalyst is packed in a single layer in the reaction tube, and when the catalyst is packed in a plurality of reaction zones. Means the temperature of the hottest part in each reaction zone. Further, the average peak temperature is calculated as the average value of the peak temperatures of the reaction tube excluding the part where the heat removal is extremely bad.

【0053】本発明において、触媒の充填仕様を変更す
るには、触媒の種類、触媒の量、触媒の形状(形や大き
さ)、触媒の希釈方法(希釈剤の種類、希釈剤の量)、
反応帯域の長さの各要素を考慮して、変更することがで
きる。中でも、触媒と希釈剤の量を変え、触媒と希釈剤
の配合比を調整することにより、充填仕様を変更すると
よい。
In the present invention, in order to change the catalyst packing specification, the type of catalyst, the amount of catalyst, the shape (shape and size) of the catalyst, the method of diluting the catalyst (type of diluent, amount of diluent) are used. ,
It can be changed in consideration of each factor of the length of the reaction zone. Above all, the filling specification may be changed by changing the amounts of the catalyst and the diluent and adjusting the compounding ratio of the catalyst and the diluent.

【0054】本発明では、反応管における触媒層内の温
度が低下するように、又は言い換えると、反応をおさえ
る方向に、上記充填仕様を変更するとよい。
In the present invention, the filling specification may be changed so that the temperature in the catalyst layer in the reaction tube is lowered, or in other words, the reaction is suppressed.

【0055】尚、本発明の気相接触酸化方法において、
生産性を上げる為に、大量の原料を供給しようとする
と、発熱と除熱のバランスがとれていた場所でも、反応
熱の増加に伴い除熱が間に合わなくなる場所が生じる場
合がある。その場合には、上記反応管への触媒充填仕様
を変更することに加え、さらに極端に除熱の悪い部分の
反応管は、プラギング等でこの反応管へは反応原料ガス
の供給を停止し、流さないようにするということが有効
である。
In the vapor phase catalytic oxidation method of the present invention,
When it is attempted to supply a large amount of raw material in order to increase the productivity, there are cases where even if the heat generation and the heat removal are well balanced, the heat removal may not be in time as the reaction heat increases. In that case, in addition to changing the catalyst filling specifications for the reaction tube, the reaction tube in the part with extremely poor heat removal is stopped by supplying reaction raw material gas to this reaction tube due to plugging or the like, It is effective not to let it flow.

【0056】[0056]

【発明の実施の形態】本発明の気相接触酸化方法で用い
る、固定床式多管熱交換型反応器の第1の実施態様を図
1に示す。
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 shows a first embodiment of a fixed-bed multitubular heat exchange reactor used in the gas-phase catalytic oxidation method of the present invention.

【0057】図1において、1は反応器、2は反応原料
ガス導入口(ダウンフローの場合)或いは反応生成ガス
排出口(アップフローの場合)、3は反応生成ガス排出
口(ダウンフローの場合)或いは反応原料ガス導入口
(アップフローの場合)、4は反応管(内部には触媒を
充填)、5は上部管板、6は下部管板、7、8、9は邪
魔板、10は熱媒体出口ノズル、11は熱媒体入口ノズ
ル、13は反応温度調節用熱媒体入口ライン、14は熱
媒体オ−バ−フロ−ラインをそれぞれ示す。
In FIG. 1, 1 is a reactor, 2 is a reaction material gas inlet (in the case of downflow) or reaction product gas outlet (in the case of upflow), 3 is a reaction product gas outlet (in the case of downflow) ) Or reaction raw material gas inlet (in the case of upflow), 4 is a reaction tube (the inside is filled with a catalyst), 5 is an upper tube plate, 6 is a lower tube plate, 7, 8 and 9 are baffle plates, and 10 are A heat medium outlet nozzle, 11 is a heat medium inlet nozzle, 13 is a reaction medium temperature control heat medium inlet line, and 14 is a heat medium overflow line.

【0058】尚、図1の固定床式多管熱交換型反応器
は、アップフローで熱媒体を流したときの構成である
が、本発明では、むろんダウンフローで熱媒体を流すこ
ともできる。
The fixed bed multi-tube heat exchange type reactor shown in FIG. 1 has a structure in which the heat medium is flown by the upflow, but in the present invention, the heat medium can of course be flown by the downflow. .

【0059】反応原料ガスは空気及び/或いは希釈ガ
ス、リサイクルガス等と混合されて、反応原料ガス導入
口(2或いは3)から反応器(1)へ導入されて、触媒
が充填された反応管(4)へ供給、反応管内で接触酸化
反応により酸化されて生成した反応生成ガス及び未反応
ガスは、反応生成ガス排出口(3或いは2)より排出さ
れる。
The reaction raw material gas is mixed with air and / or a diluent gas, a recycle gas, etc., introduced into the reactor (1) through the reaction raw material gas inlet (2 or 3), and a reaction tube filled with a catalyst. The reaction product gas and the unreacted gas that are supplied to (4) and are oxidized by the catalytic oxidation reaction in the reaction tube are discharged from the reaction product gas discharge port (3 or 2).

【0060】熱媒体は、ポンプ(12)によって熱媒体
入口ノズル(11)より反応器シェルに導入され、反応
管内で発生した反応熱を除去しながら反応器シェル内を
流通し、熱媒体出口ノズル(10)より排出され、ポン
プにより循環される。熱媒体の温度制御は、冷熱媒ノズ
ル(13)より冷熱媒体を導入することにより行われ、
ノズル(13)より導入された熱媒体量が熱媒体オバ−
フロ−ライン(14)より排出される。
The heat medium is introduced into the reactor shell from the heat medium inlet nozzle (11) by the pump (12), flows through the reactor shell while removing the heat of reaction generated in the reaction tube, and the heat medium outlet nozzle It is discharged from (10) and circulated by a pump. The temperature control of the heating medium is performed by introducing the cooling medium from the cooling medium nozzle (13),
The amount of heat medium introduced from the nozzle (13) is overheated by the heat medium.
It is discharged from the flow line (14).

【0061】上記本発明の固定床式多管熱交換型反応器
における邪魔板の構造は特に限定はなく、例えば、図2
で示すダブルセグメント・バッフルタイプ、図3で示す
リングアンドド−ナツ・バッフルタイプ、図4で示すマ
ルチ・バッフルタイプの固定床式多管熱交換型反応器の
何れも使用できる。尚、図2〜4には、邪魔板の形状及
び熱媒体の流れを記載している。
The structure of the baffle plate in the fixed bed type multi-tube heat exchange type reactor of the present invention is not particularly limited.
The double-segment baffle type shown in FIG. 3, the ring-and-nut baffle type shown in FIG. 3, and the multi-baffle type fixed-bed multitubular heat exchange type reactor shown in FIG. 4 can be used. 2 to 4 show the shape of the baffle plate and the flow of the heat medium.

【0062】[0062]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0063】(参考例1)以下の実験により、除熱の悪
い部分に位置する反応管は、触媒の充填仕様を変更する
ことにより他の反応管と同じ反応状態にできることを示
す。
Reference Example 1 The following experiment shows that the reaction tube located in the part where heat removal is poor can be brought into the same reaction state as other reaction tubes by changing the packing specifications of the catalyst.

【0064】内径が27mm長さ5mのステンレス製反
応管からなる固定床式多管熱交換型反応器を用いた。熱
媒体として有機熱媒体である部分水素化トリフェニルを
用いた。この固定床式多管熱交換型反応器は、外部ポン
プにより熱媒体を循環し、更に熱媒体循環量を制御でき
るタイプである。
A fixed bed multi-tube heat exchange type reactor consisting of a stainless steel reaction tube having an inner diameter of 27 mm and a length of 5 m was used. Partially hydrogenated triphenyl, which is an organic heat medium, was used as the heat medium. This fixed bed multi-tube heat exchange reactor is a type in which a heat medium is circulated by an external pump and the heat medium circulation amount can be controlled.

【0065】反応管に常法に準じた方法により調製した
Mo−V−Sb系触媒を触媒80%とアルミナボ−ル2
0%を体積比で混合したものを層高1.8mになるよう
に充填し、その上に触媒50%とアルミナボ−ル50%
を体積比で混合したものを層高1.0mになるように充
填した。
A reaction tube was provided with a Mo-V-Sb catalyst prepared by a method in accordance with a conventional method with 80% catalyst and 2 alumina balls.
A mixture of 0% by volume was filled to a layer height of 1.8 m, and 50% of catalyst and 50% of alumina ball were placed on top of it.
Was mixed in a volume ratio, and the mixture was filled to a layer height of 1.0 m.

【0066】アクロレイン6mol%、酸素7mol
%、水蒸気16mol%及び窒素等からなる混合ガスを
接触時間2秒の条件で、熱媒体温度265℃、熱媒体が
2.5m3/hで循環している固定床式多管熱交換型反応
器に供給した。
Acrolein 6 mol%, oxygen 7 mol
%, 16 mol% of water vapor and nitrogen, etc., a fixed bed multi-tube heat exchange type reaction in which the heat medium temperature is 265 ° C. and the heat medium is circulated at 2.5 m 3 / h under the condition that the contact time is 2 seconds. Supplied to the vessel.

【0067】この時のアクロレイン転化率、アクリル酸
収率、触媒層のピ−ク温度はそれぞれ、99%、97
%、295℃であった。
At this time, the acrolein conversion rate, the acrylic acid yield, and the peak temperature of the catalyst layer were 99% and 97%, respectively.
%, 295 ° C.

【0068】ここで、アクロレイン転化率、アクリル酸
収率はそれぞれ、以下のようにして、求めた。
Here, the acrolein conversion rate and the acrylic acid yield were determined as follows.

【0069】[0069]

【数1】 [Equation 1]

【0070】[0070]

【数2】 また、触媒層のピ−ク温度は、反応管に多点式熱電対
(20点)を挿入し、各測定点の温度を測定することに
より求めた。
[Equation 2] The peak temperature of the catalyst layer was determined by inserting a multipoint thermocouple (20 points) into the reaction tube and measuring the temperature at each measurement point.

【0071】次に、熱媒体の循環量を0.5m3/hにし
たこと以外は、上記と同じ方法で実験した。その結果、
アクロレイン転化率、アクリル酸収率、触媒層のピ−ク
温度はそれぞれ、99.7%、95.5%、313℃であ
った。
Next, an experiment was conducted in the same manner as above except that the circulation rate of the heat medium was set to 0.5 m 3 / h. as a result,
The acrolein conversion rate, acrylic acid yield, and peak temperature of the catalyst layer were 99.7%, 95.5%, and 313 ° C., respectively.

【0072】次に、熱媒体の循環量を0.5m3/hのま
まにし、反応管における触媒の充填仕様を変えて、上記
と同じ方法で実験をした。ここで、上記Mo−V−Sb
系触媒を層高1.3mになるように充填し、その上に該
触媒40%とアルミナボ−ル60%を体積比で混合した
ものを層高1.5mになるように充填した。その結果、
アクロレイン転化率、アクリル酸収率、触媒層のピ−ク
温度はそれぞれ、99.1%、97%、296℃であ
り、最初に測定した熱媒体を2.5m3/hで循環してい
た際の実験結果と同等の結果が得られた。
Next, an experiment was conducted in the same manner as described above, while keeping the circulation amount of the heat medium at 0.5 m 3 / h and changing the specification for filling the catalyst in the reaction tube. Here, the above Mo-V-Sb
The system catalyst was packed to a bed height of 1.3 m, and a mixture of 40% of the catalyst and 60% of an alumina ball in a volume ratio was further packed to a bed height of 1.5 m. as a result,
The acrolein conversion rate, acrylic acid yield, and peak temperature of the catalyst layer were 99.1%, 97%, and 296 ° C., respectively, and the heat medium initially measured was circulated at 2.5 m 3 / h. The same result as the experimental result was obtained.

【0073】このことから、熱媒体の循環状態が悪い場
合(熱媒体の循環量を上記0.5m3/hとした場合)に
は、触媒充填仕様を変えることにより、熱媒体の循環状
態が良い場合(熱媒体の循環量を上記2.5m3/hとし
た場合)と同等の転化率、収率、ピ−ク温度とすること
が可能であることが確認できた。
From this, when the circulation state of the heat medium is poor (when the circulation amount of the heat medium is 0.5 m 3 / h), the circulation state of the heat medium can be changed by changing the catalyst filling specifications. It was confirmed that the conversion rate, yield, and peak temperature could be the same as in the case of good conditions (when the circulation amount of the heat medium was 2.5 m 3 / h).

【0074】[0074]

【実施例1】内径が27mm、長さ3mのステンレス製
反応管20000本からなり、シェル側に熱媒体の流路
を変更する為にダブルセグメントタイプの邪魔板を設置
した固定床式多管熱交換型反応器を用いて、図5に示す
位置(A〜H)にある反応管の触媒層温度を測定できる
ように多点式熱電対を設置した。熱媒体は、部分水素化
トリフェニルを使用した。
[Example 1] A fixed-bed multi-tube heat system consisting of 20,000 stainless steel reaction tubes with an inner diameter of 27 mm and a length of 3 m, and a double segment type baffle plate installed on the shell side to change the flow path of the heat medium. Using the exchange type reactor, a multi-point thermocouple was installed so that the catalyst layer temperature of the reaction tube at the position (A to H) shown in FIG. 5 could be measured. Partially hydrogenated triphenyl was used as the heating medium.

【0075】全反応管に上記参考例1と同様のMo−V
−Sb系触媒を80%とアルミナボ−ル20%を体積比
で混合したものを層高1.8mになるように充填し、そ
の上に触媒50%とアルミナボ−ル50%を体積比で混
合したものを層高1.0mになるようにし、更にその上
にアルミナボ−ルを反応管上部まで充填した。
The same Mo-V as in Reference Example 1 was used in all reaction tubes.
A mixture of 80% Sb-based catalyst and 20% alumina ball in a volume ratio is filled to a bed height of 1.8 m, and 50% catalyst and 50% alumina ball are mixed in the volume ratio. The obtained product was made to have a layer height of 1.0 m, and an alumina ball was further filled up to the upper part of the reaction tube.

【0076】この固定床式多管熱交換型反応器に、アク
ロレイン6mol%、酸素7mol%、水蒸気16mo
l%及び残りの大部分は窒素と微量のアクリル酸、酢
酸、二酸化炭素、一酸化炭素等からなる混合ガスを接触
時間2.5秒の条件で、供給した。この時の熱媒温度は
260℃であった。
In this fixed bed multi-tube heat exchange type reactor, acrolein 6 mol%, oxygen 7 mol%, steam 16 mo
A mixed gas of 1% and most of the rest, nitrogen and a trace amount of acrylic acid, acetic acid, carbon dioxide, carbon monoxide, etc. was supplied under the condition of a contact time of 2.5 seconds. The heat medium temperature at this time was 260 degreeC.

【0077】A〜Hに設置された各反応管内の触媒層の
ピ−ク温度を表1に示す。
Table 1 shows the peak temperatures of the catalyst layers in the reaction tubes installed in A to H.

【0078】[0078]

【表1】 表1の結果より、この場合における平均的ピーク温度を
291℃とした。
[Table 1] From the results of Table 1, the average peak temperature in this case was 291 ° C.

【0079】この時のアクロレイン転化率は、99.2
%で、アクリル酸収率は、95.3%であった。
The acrolein conversion rate at this time was 99.2.
%, The acrylic acid yield was 95.3%.

【0080】次に、反応器内における各反応管の触媒層
のピーク温度と平均的ピーク温度とを比較し、差が10
℃を越えている反応管(F、G、Hにある反応管)につ
いて、プラキング又は触媒充填仕様を変更した。
Next, the peak temperature of the catalyst layer of each reaction tube in the reactor is compared with the average peak temperature, and the difference is 10
The plaking or catalyst packing specifications were changed for the reaction tubes (the reaction tubes in F, G, and H) that exceeded the temperature.

【0081】図5に記載されたエリア1は、最も除熱の
悪い部分である。そこで、Hを含むエリア1に設置され
た反応管には、反応ガスが流れないように反応管上下を
プラギングした。
Area 1 shown in FIG. 5 is the portion where the heat removal is the worst. Therefore, the reaction tube installed in the area 1 containing H was plugged above and below the reaction tube so that the reaction gas would not flow.

【0082】図5に記載されたF、Gを含むエリア2に
設置された反応管の充填仕様を次のように変更した。触
媒90%とアルミナボ−ル10%を体積比で混合したも
のを層高1.3mになるように充填し、その上に触媒4
0%とアルミナボ−ル60%を体積比で混合したものを
層高1.0mになるようにし、更にその上にアルミナボ
−ルを反応管上部まで充填した。
The filling specification of the reaction tube installed in the area 2 containing F and G shown in FIG. 5 was changed as follows. A mixture of 90% catalyst and 10% alumina ball in a volume ratio was filled to a bed height of 1.3 m, and the catalyst 4 was placed thereon.
A mixture of 0% and 60% alumina ball in volume ratio was made to have a layer height of 1.0 m, and further alumina ball was filled up to the upper part of the reaction tube.

【0083】図5に記載されたA、B、C、D、Eを含
むエリア3に設置された反応管は、平均的ピーク温度と
同程度の触媒層ピーク温度を示したため、充填仕様を変
更しなかった。
The reaction tubes installed in the area 3 including A, B, C, D and E shown in FIG. 5 showed a catalyst layer peak temperature similar to the average peak temperature, so the filling specification was changed. I didn't.

【0084】上記仕様の反応管に対し、上記と同様の条
件で反応原料ガスを供給した。つまり、アクロレイン6
mol%、酸素7mol%、水蒸気16mol%及び残
りの大部分は窒素と微量のアクリル酸、酢酸、二酸化炭
素、一酸化炭素等からなる混合ガスを接触時間2.5秒
の条件で、供給した。この時の熱媒温度は262℃であ
った。
The reaction raw material gas was supplied to the reaction tube having the above specifications under the same conditions as above. That is, acrolein 6
Mol%, oxygen 7 mol%, water vapor 16 mol%, and most of the rest were mixed gas containing nitrogen and a trace amount of acrylic acid, acetic acid, carbon dioxide, carbon monoxide, etc., under the condition that the contact time was 2.5 seconds. The heat medium temperature at this time was 262 ° C.

【0085】A〜Hに設置された各反応管内の触媒層の
ピ−ク温度を表2に示す。
Table 2 shows the peak temperatures of the catalyst layers in the respective reaction tubes installed in A to H.

【0086】[0086]

【表2】 表2の結果より、この場合における平均的ピーク温度を
291℃とした。この結果、各反応管は、平均的ピーク
温度と同程度の触媒層ピーク温度を示すことが確認でき
た。
[Table 2] From the results of Table 2, the average peak temperature in this case was 291 ° C. As a result, it was confirmed that each reaction tube exhibited a catalyst layer peak temperature that was comparable to the average peak temperature.

【0087】この時のアクロレイン転化率は、99.1
%で、アクリル酸収率は、96.8%であった。
The acrolein conversion rate at this time was 99.1.
%, The acrylic acid yield was 96.8%.

【0088】このように、同一の反応器において、同様
の反応状態となるように反応管における触媒層の充填仕
様を変更した結果、各反応管の間の反応状態の不均一性
が減少され、反応器内の各反応管の反応状態を均一にす
ることができた。
As described above, as a result of changing the packing specifications of the catalyst layers in the reaction tubes so that the same reaction state is achieved in the same reactor, the non-uniformity of the reaction state between the reaction tubes is reduced, The reaction state of each reaction tube in the reactor could be made uniform.

【0089】これにより、ホットスポットの発生を有効
に防止でき、かつ、反応生成ガスの収率も高く及び触媒
の寿命も長い、良好な結果を示す気相接触酸化方法を提
供することができた。
As a result, it was possible to provide a gas-phase catalytic oxidation method capable of effectively preventing the generation of hot spots, having a high reaction product gas yield, and a long catalyst life, and showing favorable results. .

【0090】[0090]

【発明の効果】本発明により、複数の反応管を有する固
定床式多管熱交換型反応器を用い、反応管外部に熱媒体
を循環させ、触媒を充填した反応管内部に反応原料ガス
を供給することにより、反応生成ガスを得る気相接触酸
化方法において、ホットスポットの発生を有効に防止で
き、かつ、反応生成ガスの収率も高く及び触媒の寿命も
長い、良好な結果を示す気相接触酸化方法を提供するこ
とができた。
According to the present invention, a fixed bed type multi-tube heat exchange type reactor having a plurality of reaction tubes is used, a heat medium is circulated outside the reaction tubes, and a reaction raw material gas is supplied inside the reaction tubes filled with a catalyst. In the gas-phase catalytic oxidation method for obtaining the reaction product gas by supplying the gas, it is possible to effectively prevent the generation of hot spots, and to obtain a good result that the yield of the reaction product gas is high and the life of the catalyst is long. A phase catalytic oxidation method could be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明で使用する固定床式多管熱交換型反応
器の1態様図
FIG. 1 is a view showing one embodiment of a fixed-bed multitubular heat exchange type reactor used in the present invention.

【図2】 本発明で使用する固定床式多管熱交換型反応
器の1態様図
FIG. 2 is a view showing one embodiment of a fixed-bed multitubular heat exchange reactor used in the present invention.

【図3】 本発明で使用する固定床式多管熱交換型反応
器の1態様図
FIG. 3 is a view showing one embodiment of a fixed-bed multitubular heat exchange reactor used in the present invention.

【図4】 本発明で使用する固定床式多管熱交換型反応
器の1態様図
FIG. 4 is a view showing one embodiment of a fixed-bed multitubular heat exchange reactor used in the present invention.

【図5】 本発明の実施例1を説明するための図FIG. 5 is a diagram for explaining the first embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 57/055 C07C 57/055 A (72)発明者 神野 公克 三重県四日市市東邦町1番地 三菱化学株 式会社内 (72)発明者 斉藤 輝雄 三重県四日市市東邦町1番地 三菱化学株 式会社内 Fターム(参考) 4G070 AA01 AB04 BB02 CB02 CB16 CC01 DA12 DA21 4H006 AA02 AC46 BA05 BA06 BA07 BA08 BA10 BA11 BA12 BA13 BA14 BA18 BB62 BC10 BC11 BC13 BC18 BC31 BC32 BC40 BD21 BD81 BE30 4H039 CA65 CC30 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C07C 57/055 C07C 57/055 A (72) Inventor Kimikatsu Jinno 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Chemical Corporation In-company (72) Inventor Teruo Saito 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Chemical Co., Ltd. In-company F-term (reference) 4G070 AA01 AB04 BB02 CB02 CB16 CC01 DA12 DA21 4H006 AA02 AC46 BA05 BA06 BA07 BA08 BA10 BA11 BA12 BA13 BA14 BA18 BB62 BC10 BC11 BC13 BC18 BC31 BC32 BC40 BD21 BD81 BE30 4H039 CA65 CC30

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 複数の反応管を有する固定床式多管熱交
換型反応器を用い、反応管外部に熱媒体を循環させ、触
媒を充填した反応管内部に反応原料ガスを供給すること
により、反応生成ガスを得る気相接触酸化方法におい
て、反応管内部の反応状態を予測し、その予測結果に応
じて、反応管の間の反応状態の不均一性が減少されるよ
うに、反応管における触媒の充填仕様を変更することを
特徴とする、気相接触酸化方法。
1. A fixed bed multi-tube heat exchange reactor having a plurality of reaction tubes is used, a heat medium is circulated outside the reaction tubes, and a reaction raw material gas is supplied into the reaction tubes filled with a catalyst. In a gas-phase catalytic oxidation method for obtaining a reaction product gas, a reaction state is predicted by predicting a reaction state inside the reaction tube and reducing the heterogeneity of the reaction state between the reaction tubes according to the prediction result. The method for vapor-phase catalytic oxidation, characterized in that the packing specifications of the catalyst in (1) are changed.
【請求項2】 前記熱媒体が、反応管から発生する反応
熱を吸収するためのものである、請求項1に記載の気相
接触酸化方法。
2. The vapor phase catalytic oxidation method according to claim 1, wherein the heat medium is for absorbing reaction heat generated from a reaction tube.
【請求項3】 前記反応管内部の反応状態の予測を、反
応管内部の熱状態を把握することにより行うことを特徴
とする、請求項1又は2に記載の気相接触酸化方法。
3. The vapor phase catalytic oxidation method according to claim 1, wherein the reaction state inside the reaction tube is predicted by grasping the heat state inside the reaction tube.
【請求項4】 前記反応管内部の熱状態を把握するため
に、反応管の触媒層温度を測定することを特徴とする、
請求項1〜3の何れかに記載の気相接触酸化方法。
4. The temperature of the catalyst layer of the reaction tube is measured in order to grasp the heat state inside the reaction tube.
The vapor phase catalytic oxidation method according to claim 1.
【請求項5】 前記反応管内部の熱状態を把握するため
に、コンピューターによるシミュレーション解析を用い
ることを特徴とする、請求項1〜3の何れかに記載の気
相接触酸化方法。
5. The vapor phase catalytic oxidation method according to claim 1, wherein a simulation analysis by a computer is used to grasp the thermal state inside the reaction tube.
【請求項6】 前記コンピューターによるシミュレーシ
ョン解析により、熱媒体の流動解析を行うことを特徴と
する、請求項5に記載の気相接触酸化方法。
6. The vapor phase catalytic oxidation method according to claim 5, wherein the flow analysis of the heat medium is performed by the simulation analysis by the computer.
【請求項7】 前記コンピューターによるシミュレーシ
ョン解析により、熱媒体の流動解析と反応管内部の反応
熱解析とを行うことを特徴とする、請求項6に記載の気
相接触酸化方法。
7. The vapor-phase catalytic oxidation method according to claim 6, wherein a flow analysis of the heat medium and a reaction heat analysis inside the reaction tube are performed by the simulation analysis by the computer.
【請求項8】 前記触媒の充填仕様を決める項目とし
て、触媒の種類、触媒の量、触媒の形状、触媒の希釈方
法、反応帯域の長さの各項目が挙げられることを特徴と
する、請求項1〜7の何れかに記載の気相接触酸化方
法。
8. The item for determining the packing specification of the catalyst includes each item of the type of catalyst, the amount of catalyst, the shape of the catalyst, the method of diluting the catalyst, and the length of the reaction zone. Item 8. A vapor phase catalytic oxidation method according to any one of Items 1 to 7.
【請求項9】 前記固定床式多管熱交換型反応器におい
て、複数の反応管のうち一部の反応管については、反応
管への反応原料ガスの供給を停止することを特徴とす
る、請求項1〜8の何れかに記載の気相接触酸化方法。
9. The fixed bed multi-tube heat exchange type reactor is characterized in that the supply of the reaction raw material gas to the reaction tubes is stopped for some of the reaction tubes. The vapor phase catalytic oxidation method according to claim 1.
JP2002004635A 2001-12-28 2002-01-11 Gas phase catalytic oxidation method Expired - Lifetime JP4295462B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2002004635A JP4295462B2 (en) 2002-01-11 2002-01-11 Gas phase catalytic oxidation method
BR0214991-5A BR0214991A (en) 2001-12-28 2002-12-20 Methods for catalytic vapor phase extending and for compacting a catalyst
CNB2004100785997A CN100349648C (en) 2001-12-28 2002-12-20 Method for vapor phase catalytic oxidation
PCT/JP2002/013372 WO2003057653A1 (en) 2001-12-28 2002-12-20 Method for vapor phase catalytic oxidation
CNA2004100786006A CN1607031A (en) 2001-12-28 2002-12-20 Method for vapor phase catalytic oxidation
ES08004563T ES2743407T3 (en) 2001-12-28 2002-12-20 Method for catalytic oxidation in vapor phase
AU2002357503A AU2002357503A1 (en) 2001-12-28 2002-12-20 Method for vapor phase catalytic oxidation
CNB028276302A CN100378050C (en) 2001-12-28 2002-12-20 Method for vapor phase catalytic oxidation
CNA2004100786010A CN1607032A (en) 2001-12-28 2002-12-20 Method for vapor phase catalytic oxidation
EP02806067A EP1466883A4 (en) 2001-12-28 2002-12-20 Method for vapor phase catalytic oxidation
EP08004563.6A EP1925606B1 (en) 2001-12-28 2002-12-20 Method for vapor phase catalytic oxidation
RU2004123098/04A RU2309936C2 (en) 2001-12-28 2002-12-20 Method for catalytic oxidation in vapor phase and method for preparing (meth)acrolein or (meth)acrylic acid
US10/864,492 US7528281B2 (en) 2001-12-28 2004-06-10 Method for vapor phase catalytic oxidation
US12/081,916 US7667072B2 (en) 2001-12-28 2008-04-23 Method for vapor phase catalytic oxidation
US12/081,919 US20080216915A1 (en) 2001-12-28 2008-04-23 Method for vapor phase catalytic oxidation
US12/081,918 US20080253943A1 (en) 2001-12-28 2008-04-23 Method for vapor phase catalytic oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004635A JP4295462B2 (en) 2002-01-11 2002-01-11 Gas phase catalytic oxidation method

Publications (2)

Publication Number Publication Date
JP2003206244A true JP2003206244A (en) 2003-07-22
JP4295462B2 JP4295462B2 (en) 2009-07-15

Family

ID=27643921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004635A Expired - Lifetime JP4295462B2 (en) 2001-12-28 2002-01-11 Gas phase catalytic oxidation method

Country Status (1)

Country Link
JP (1) JP4295462B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213179A (en) * 2004-01-29 2005-08-11 Mitsubishi Rayon Co Ltd Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid
JP2005289919A (en) * 2004-04-01 2005-10-20 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid or (meth)acrolein
JP2005325044A (en) * 2004-05-13 2005-11-24 Mitsubishi Chemicals Corp Method for conducting pilot test of multitubular reactor
WO2005115605A1 (en) * 2004-05-31 2005-12-08 Mitsubishi Chemical Corporation Method of maintaining multitubular reactor
JP2012016671A (en) * 2010-07-09 2012-01-26 Ihi Corp Multitube reactor
JP2012512124A (en) * 2008-12-16 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Reactor and process for preparing phosgene
JP2012512123A (en) * 2008-12-16 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Reactor and process for preparing phosgene
US9713800B2 (en) 2012-04-04 2017-07-25 Sumitomo Chemical Company, Limited Multi-tubular reactor and multi-tubular reactor design and fabrication method
WO2023276407A1 (en) * 2021-06-30 2023-01-05 昭和電工株式会社 Method for producing alcohols

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213179A (en) * 2004-01-29 2005-08-11 Mitsubishi Rayon Co Ltd Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid
JP2005289919A (en) * 2004-04-01 2005-10-20 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid or (meth)acrolein
CN100425334C (en) * 2004-05-13 2008-10-15 三菱化学株式会社 Pilot test method for multitubular reactor
JP2005325044A (en) * 2004-05-13 2005-11-24 Mitsubishi Chemicals Corp Method for conducting pilot test of multitubular reactor
WO2005110591A1 (en) * 2004-05-13 2005-11-24 Mitsubishi Chemical Corporation Pilot test method for multitubular reactor
US7549341B2 (en) 2004-05-31 2009-06-23 Mitsubishi Chemical Corporation Method of maintaining a multitubular reactor
JP2005334852A (en) * 2004-05-31 2005-12-08 Mitsubishi Chemicals Corp Maintenance method for multi-tubular reactor
CN100434156C (en) * 2004-05-31 2008-11-19 三菱化学株式会社 Maintenance method for multi-tubular reactor
WO2005115605A1 (en) * 2004-05-31 2005-12-08 Mitsubishi Chemical Corporation Method of maintaining multitubular reactor
JP4543756B2 (en) * 2004-05-31 2010-09-15 三菱化学株式会社 Maintenance method for multi-tube reactors
JP2012512124A (en) * 2008-12-16 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Reactor and process for preparing phosgene
JP2012512123A (en) * 2008-12-16 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Reactor and process for preparing phosgene
JP2012016671A (en) * 2010-07-09 2012-01-26 Ihi Corp Multitube reactor
US9713800B2 (en) 2012-04-04 2017-07-25 Sumitomo Chemical Company, Limited Multi-tubular reactor and multi-tubular reactor design and fabrication method
WO2023276407A1 (en) * 2021-06-30 2023-01-05 昭和電工株式会社 Method for producing alcohols
GB2621960A (en) * 2021-06-30 2024-02-28 Resonac Corp Method for producing alcohols

Also Published As

Publication number Publication date
JP4295462B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
CN1064666C (en) Catalytic gas-phase oxidation of propene to acrolein
EP1925606B1 (en) Method for vapor phase catalytic oxidation
JP4212888B2 (en) Plate type catalytic reactor
US20070043238A1 (en) Process for production of (meth)acrylic acid of (meth)acrolein
CA2157632A1 (en) Catalytic gas-phase oxidation of acrolein to acrylic acid
CN101429109B (en) Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
WO2003055835A1 (en) Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
JP4295462B2 (en) Gas phase catalytic oxidation method
US20080021238A1 (en) Apparatus For (Meth) Acrylic Acid Production And Process For Producing (Meth) Acrylic Acid
JP4163021B2 (en) Vapor phase catalytic oxidation method using multi-tube heat exchanger type reactor
JP2005330205A (en) Method for producing (meth)acrolein or (meth)acrylic acid
JP4194359B2 (en) Gas phase catalytic oxidation method
US20080228001A1 (en) Process for Producing (Meth)Acrylic Acid or (Meth)Acrolein
JP4028392B2 (en) Gas phase catalytic oxidation method
JP4163895B2 (en) Method for producing (meth) acrolein and (meth) acrylic acid
JP2003261501A (en) Method for vapor-phase catalytic oxidation
JP2003252820A (en) Method for producing (meth)acrolein or (meth)acrylic acid
JP5171031B2 (en) Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same
JP2020044485A (en) Reaction method and reactor
KR100694950B1 (en) Method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4295462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term