JP2003203331A - Master carrier for magnetic transfer - Google Patents

Master carrier for magnetic transfer

Info

Publication number
JP2003203331A
JP2003203331A JP2001398879A JP2001398879A JP2003203331A JP 2003203331 A JP2003203331 A JP 2003203331A JP 2001398879 A JP2001398879 A JP 2001398879A JP 2001398879 A JP2001398879 A JP 2001398879A JP 2003203331 A JP2003203331 A JP 2003203331A
Authority
JP
Japan
Prior art keywords
substrate
pattern
soft magnetic
magnetic layer
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001398879A
Other languages
Japanese (ja)
Inventor
Shoichi Nishikawa
正一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001398879A priority Critical patent/JP2003203331A/en
Publication of JP2003203331A publication Critical patent/JP2003203331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a master carrier for magnetic transfer, which has a soft magnetic layer free from bridging even in a minute pattern and enables magnetic transfer of high transfer quality with a structure which lessens damage of a pattern edge part and secures the durability. <P>SOLUTION: The master carrier for magnetic transfer is provided with a substrate 31 having pattern-like ruggedness corresponding to information to be transferred and a soft magnetic layer 32 formed on at least projecting parts 31a of the substrate 31, and the soft magnetic layer 32 is formed by collimate sputtering, and each projecting part 31a of the substrate is provided with not only an upper film part 32a on the upper face thereof but also a side film part 32b having a film structure of reducing the film thickness toward the bottom of a recessed part 31b by oblique incidence B, on the side face thereof. The pattern edge part is reinforced by the film structure of the side face formed without damaging transfer characteristics, and thus the transfer quality as well as the durability are realized. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、情報が担持された
マスター担体からスレーブ媒体へ磁気転写する磁気転写
方法に使用するパターン状の凹凸を備えた磁気転写用マ
スター担体に関するものである。 【0002】 【従来の技術】磁気転写方法は、磁性体の微細凹凸パタ
ーンにより転写情報を担持したマスター担体と、転写を
受ける磁気記録部を有するスレーブ媒体とを密着させた
状態で、転写用磁界を印加してマスター担体に担持した
情報(例えばサーボ信号)に対応する磁化パターンをス
レーブ媒体に転写記録するものである。この磁気転写方
法としては、例えば特開昭63−183623号公報、
特開平10−40544号公報、特開平10−2695
66号公報等に開示されている。 【0003】磁気転写に使用されるマスター担体は、シ
リコン基板、ガラス基板等に、フォトファブリケーショ
ン、スパッタ、エッチングなどの処理を施して磁性体に
よる凹凸パターンを形成したもので構成されている。 【0004】また、半導体などで使用されているリトグ
ラフィー技術、あるいは光ディスクスタンパー作成に使
用されているスタンパー作成技術を応用し、磁気転写用
マスター担体を作成することが考えられている。 【0005】ここで、本発明が対象とする磁気転写の基
本工程の一態様を図3に基づき説明する。この例は、面
内記録によるものである。まず、磁気転写を受ける磁気
記録層を有するスレーブ媒体2と、図3(b)に示すよう
な、基板31の微細凹凸パターンに軟磁性層32が被覆
されてなり、この軟磁性層32による凹凸パターンを有
するマスター担体3とを用意する。そして、最初に図3
(a)に示すように、スレーブ媒体2に初期静磁界Hinを
トラック方向の一方向に印加して予め初期磁化(直流消
磁)を行う。その後、図3(b)に示すように、スレーブ
媒体2の磁気記録面と、マスター担体3の軟磁性層32
による凸部パターンとを密着させ、スレーブ媒体2のト
ラック方向に初期磁界Hinとは逆方向に転写用磁界Hdu
を印加して磁気転写を行う。転写用磁界Hduが軟磁性層
32による凸部パターンに吸い込まれ、この部分の磁化
は反転せず、その他の部分の磁化が反転する結果、図3
(c)に示すように、スレーブ媒体2のトラックにはマス
ター担体3の軟磁性層32の凹凸パターンに応じた磁化
パターンが転写記録される。なお、垂直記録方式におい
ても、上記と略同様の軟磁性層による凹凸パターンを有
するマスター担体を使用することによってスレーブ媒体
に磁気転写が行える。 【0006】 【発明が解決しようとする課題】ところで、上記のよう
な磁気転写における転写品質を高めるためには、マスタ
ー担体3に精度良く軟磁性層32による転写パターンを
形成する必要がある。例えば、スタンパー法等によって
所定のパターンに微細凹凸形状が形成された基板31に
対し、その微細パターン上に、軟磁性材料が真空蒸着
法、スパッタリング法、イオンプレーティング法等の真
空成膜手段によって被覆され、基板31の凹凸パターン
と同様の凹凸パターンに軟磁性層32が形成される。 【0007】上記軟磁性層32の成膜時には、各種成膜
手段における軟磁性層蒸発源(スパッタ源)からは、あ
る立体角を有して多方向からの蒸気流が基板に到達し、
凸部の角部および側面への成膜も行われ、ほぼ均一な膜
厚の軟磁性層32となる。その場合にも、微細パターン
の凹凸幅が0.3μmレベルのものでは、直進成分以外
の蒸気流(斜め成分)の影響を受けた軟磁性層32のパ
ターン形状は、磁気転写後の信号品位が問題となってい
なかった。 【0008】ところが、記録密度の増大などに対応して
パターンの凹凸幅が0.1μmレベルに狭くなると、軟
磁性層成膜時の斜め成分の蒸気流により、基板上に形成
される軟磁性層のパターン形状は、基板の凹凸パターン
を反映せず、斜め成分により凸部幅が広くなり、極端に
は凸部をまたいで凹部を埋めるように軟磁性層が結合す
るブリッジングが起こり、成膜された軟磁性層の表面が
平坦化しているケースがあった。このようなマスター担
体では、磁気転写時に軟磁性層パターン外に磁束が出な
いため、スレーブ媒体の磁化が転写パターンに応じて反
転せず、良好な磁気転写が実施できなくなるという問題
があった。 【0009】上記点に対し、前記軟磁性層をコリメート
スパッタを用いて形成すると、パターン間に干渉がない
磁性層の成膜が可能となることを見いだした。このコリ
メートスパッタは、パターンが形成された基板と、軟磁
性材料の蒸発源との間に、平行通路を有するコリメータ
ー部材を設置して斜め成分を除去し、該コリメーター部
材を通して基板上に軟磁性層を成膜するもので、基板の
表面に対し垂直方向に平行入射して成膜が行えるもので
ある(後述の図2参照)。コリメートスパッタによるマ
スター担体を用いると、0.1μmレベルの極微細パタ
ーンにおいても磁気ヘッドで信号を書き込んだ場合と同
等レベルの転写信号品位を確保できる。 【0010】しかし、上記のようなマスター担体を使用
して多数のスレーブ媒体への磁気転写を繰り返すと、転
写信号品位が劣化する問題が発生した。このマスター担
体の表面を観察した結果、軟磁性層パターンが破損して
おり、特にパターンエッジのダメージが大きいことが分
かった。 【0011】前述の図3に示すような0.3μmレベル
のパターンでは、パターンの凸部側面に対しても軟磁性
層が均一な膜厚で形成されているために、パターンエッ
ジが破損しにくくなっていたが、0.1μmレベルの極
微細パターンでは凸部側面に軟磁性層が同様に形成され
ると、前述のようにパターン間でブリッジングが起こ
り、良好な磁気転写が行えず、磁気転写用マスター担体
として機能しなくなることが判明した。 【0012】本発明はこのような問題に鑑みなされたも
ので、微細パターンであっても軟磁性層の破損が少なく
耐久性を確保した構造を有し、かつ転写品質の高い磁気
転写が行える磁気転写用マスター担体を提供することを
目的とするものである。 【0013】 【課題を解決するための手段】本発明の磁気転写用マス
ター担体は、スレーブ媒体に転写すべき情報に応じたパ
ターン状の凹凸を有する基板と、該基板の少なくとも凸
部に形成された軟磁性層とを備えてなる磁気転写用マス
ター担体であって、前記軟磁性層はコリメートスパッタ
を用いて形成され、前記基板の凸部上面に加えて、該凸
部の側面に斜め入射により凹部の底部に向けて膜厚が減
少する膜構造に軟磁性層が設けられてなることを特徴と
するものである。 【0014】前記凸部の側面の軟磁性膜は、凹部の底部
側で膜厚がゼロとなるように設けるのが好ましい。 【0015】前記コリメートスパッタは、パターンが形
成された基板と、軟磁性材料の蒸発源との間に、平行通
路を有するコリメーター部材を設置し、該コリメーター
部材を通して基板上に軟磁性層を成膜するもので、基板
の表面に対し垂直入射と斜め入射により成膜する。 【0016】つまり、軟磁性層の形成を、パターンが形
成された基板と、軟磁性材料の蒸発源との間に、基板の
表面と垂直方向の平行通路を有するコリメーター部材を
設置し、該コリメーター部材を通して、斜め成分が除去
された直進成分の蒸気流により基板上に軟磁性層を成膜
するコリメートスパッタを前提とし、基板の表面への垂
直入射によりパターン凸部の上面に、ある程度厚い膜厚
の軟磁性層を形成する際には、凸部側面へは軟磁性層は
形成されず、垂直方向から若干傾けた斜め入射により凸
部側面へ所定の膜厚構造に軟磁性層を形成した結果、極
微細パターンにおいても耐久性を確保できるマスター担
体を作成するに至ったものである。 【0017】前記軟磁性層の成膜は、軟磁性材料を真空
蒸着法、スパッタリング法、イオンプレーティング法等
の真空成膜手段によって行うのが好適である。 【0018】また、前記コリメーター部材は、断面が格
子状、蜂の巣状、波板と平板を積層した段ボール状など
の細分化された平行通路を有するハニカム構造のものが
好適である。 【0019】 【発明の効果】上記のような本発明によれば、基板に形
成したパターン上にコリメートスパッタを用いて軟磁性
層を形成し、基板の凸部上面に加えて、該凸部の側面に
斜め入射により凹部の底部に向けて膜厚が減少する膜構
造に軟磁性層を設たことにより、パターンエッジ部の強
度が高くなって破損が防止でき多数回の磁気転写を繰り
返しても信号品位の劣化が少なく耐久性が確保できると
共に、凹部の底部に向けて膜厚が減少するためにパター
ン間でブリッジングが起こることなく、記録密度の増大
などに対応してパターンの凹凸幅が0.1μmレベルに
狭くなっても、軟磁性層のパターン形状が基板の凹凸パ
ターンを正確に反映しており、転写品質の高い磁気転写
が良好に行え信頼性が向上できる。 【0020】 【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。図1は一つの実施の形態におけるマスター
担体の部分断面図、図2は一例の軟磁性層の成膜装置の
概略図である。 【0021】磁気転写用マスター担体3は、図1に示す
ように、転写する情報に対応した形態の微細凹凸パター
ンが形成された基板31に、そのパターン上に軟磁性層
32を成膜してなる。上記基板31は、表面に微細凹凸
パターンが各種作成方法によって形成され、このような
基板31を後述の成膜装置1に搬送し、垂直入射および
斜め入射により基板31のパターン上に軟磁性層32を
成膜する。 【0022】基板31のパターンの凹凸形状は、凸部3
1aの上面は平坦で、側面は若干外側に傾斜して、凸部
31aの上部が狭く(凹部31bの上部が広く)、凸部
31aの底部が広く(凹部31bの底部が狭く)なるよ
うに形成されている。また、成膜された軟磁性層32
は、凸部31aの上面に成膜された上膜部32aと、凸
部31aの側面に成膜された側膜部32bと、凹部31
bの底部に成膜された底膜部32cを有し、上膜部32
a(および底膜部32c)は主に垂直入射(矢印A)に
より厚く形成され、側膜部32bは主に斜め入射(矢印
B)により上部から凹部31bの底部に向けて膜厚が減
少し、底部近傍で膜厚がゼロとなる膜構造を有してい
る。なお、前記凸部31aの側面は傾斜面でなく垂直面
であってもよい。 【0023】上記基板31のパターン凸部31aの平面
形状は略矩形状であり、トラック方向の前後側面および
トラック幅方向の左右側面のいずれについても、上記の
ような膜構造の側膜部32bを形成するのが好ましい
が、いずれか一方であってもよい。 【0024】図2に示す成膜装置10は、不図示の真空
ポンプにより減圧される真空チャンバー4と、基盤5
と、パターンが形成された基板31を真空チャンバー4
内に保持する基板ホルダ8と、この基板ホルダ8に保持
された基板31と対向する位置に設置された軟磁性材料
の蒸発源6と、基板31と蒸発源6との間に設置された
コリメーター部材7とを備えている。この成膜装置10
の基本構造は、従来公知の真空蒸着法、スパッタリング
法、イオンプレーティング法等の成膜装置のものが使用
される。 【0025】前記コリメーター部材7は、基板31の表
面と垂直方向の平行通路7aを有し、蒸発源6からの軟
磁性材料の蒸気流の斜め成分を除去し、直進成分とする
ものであり、このコリメーター部材7の平行通路7aを
通して基板31上に軟磁性層32を成膜する。 【0026】また、コリメーター部材7は、詳細は図示
していないが、断面が格子状、蜂の巣状、波板と平板を
積層した段ボール状などの細分化された平行通路7aを
有するハニカム構造のもので構成される。 【0027】さらに、前記基板ホルダ8は、傾斜角度が
変更調整可能に設けられ、コリメーター部材7を通した
入射角度が、基板31の表面に対して垂直方向の垂直入
射Aと、この垂直方向から両側(または片側)に所定角
度(例えば5゜程度)傾けた斜め入射Bが行えるように
なっている。なお、基板ホルダ8を固定して、コリメー
ター部材7などの角度が変更できるようにしてもよい。 【0028】そして、前記成膜装置10を用いて、所定
の成膜条件で、軟磁性材料の蒸発源6から蒸気流を発生
させ、まず、基板31の表面と垂直方向の平行通路7a
を有するコリメーター部材7を通して、斜め成分が除去
され直進成分による蒸気流を垂直入射させ、基板ホルダ
8に保持した基板31のパターン上に、軟磁性層32を
成膜する。この所定時間の垂直入射Aにより、凸部31
a上の上膜部32aおよび凹部31b底部の底膜部32
cが主に形成される。 【0029】続いて、基板ホルダ8を傾斜角度(例えば
5゜程度)傾けて、同様にコリメーター部材7を通した
直進成分による蒸気流を斜め入射させ、基板ホルダ8に
保持した基板31のパターン上に、軟磁性層32を成膜
する。さらに基板ホルダ8を逆方向に傾斜角度(例えば
5゜程度)傾けて、同様にコリメーター部材7を通した
直進成分による蒸気流を斜め入射させ、基板ホルダ8に
保持した基板31のパターン上に、軟磁性層32を成膜
する。この所定時間の斜め入射Bにより、凸部31aの
両側面へ上部から凹部31bの底部に向けて膜厚が減少
する側膜部32bが形成される。膜厚は主に成膜時間に
よって調整する。このようにしてマスター担体3が作成
される。 【0030】本実施形態によれば、基板31のパターン
上には、コリメーター部材7によって斜め成分が除去さ
れ直進成分による軟磁性材料の蒸発源6からの蒸気流に
よるコリメートスパッタで軟磁性層32が成膜されたた
めに、作成されたマスター担体3は、パターンの凹凸幅
が0.1μmレベルに狭くなっても、ブリッジングを生
起することなく基板31の凹凸パターンを正確に反映し
て凸部31a上に上膜部32aを形成でき、さらに、凸
部31a側面にパターンエッジ部を補強するように斜め
入射で上部から底部に向けて膜厚が漸減する側膜部32
bを有する膜構造に、軟磁性層32のパターンが形成で
き、そのパターン精度が高いことに伴い転写品質の高い
磁気転写が可能となり、破損によるコンタミネーション
も防止して耐久性が確保できる。 【0031】なお、作成されたマスター担体3は磁気転
写装置に搬送され、前述の図3に示すような基本工程
で、トラック方向または垂直方向に予め初期磁化したス
レーブ媒体2と密着され、この密着状態で電磁石装置等
の磁界印加装置によって初期磁化方向と略逆向きの方向
に転写用磁界を印加して、マスター担体3の転写情報に
対応した磁化パターンをスレーブ媒体2に転写記録す
る。 【0032】マスター担体3の基板31としては、ニッ
ケル、シリコン、アルミニウム、合金等を使用する。凹
凸パターンの形成は、スタンパー法等によって行われ
る。 【0033】スタンパー法は、表面が平滑なガラス板
(または石英板)の上にスピンコート等でフォトレジス
トを形成し、このガラス板を回転させながらサーボ信号
に対応して変調したレーザー光(または電子ビーム)を
照射し、所定のパターン、例えばサーボ信号に相当する
パターンを露光する。その後、フォトレジストを現像処
理し、露光部分を除去しフォトレジストによる凹凸形状
を有する原盤を得る。次に、原盤の表面の凹凸パターン
をもとに、この表面にメッキ(電鋳)を施し、ポジ状凹
凸パターンを有する基板を作成し、原盤から剥離する。
基板31の凹凸パターンの深さ(突起の高さ)は、80
nm〜800nmの範囲が好ましく、より好ましくは1
00nm〜600nmである。 【0034】また、前記原盤にメッキを施して第2の原
盤を作成し、この第2の原盤を使用してメッキを行い、
ネガ状凹凸パターンを有する基板を作成してもよい。さ
らに、第2の原盤にメッキを行うか樹脂液を押し付けて
硬化を行って第3の原盤を作成し、第3の原盤にメッキ
を行い、ポジ状凹凸パターンを有する基板を作成しても
よい。一方、前記ガラス板にフォトレジストによるパタ
ーンを形成した後、エッチングしてガラス板に穴を形成
し、フォトレジストを除去した原盤を得て、以下前記と
同様に基板を形成してもよい。 【0035】前記軟磁性層32の形成は、前述のような
コリメートスパッタを用いて、軟磁性材料を真空蒸着
法、スパッタリング法、イオンプレーティング法等の真
空成膜手段などにより成膜する。その磁性材料として
は、Co、Co合金(CoNi、CoNiZr、CoN
bTaZr等)、Fe、Fe合金(FeCo、FeCo
Ni、FeNiMo、FeAlSi、FeAl、FeT
aN)、Ni、Ni合金(NiFe)を用いることがで
きる。特に好ましくはFeCo、FeCoNiである。
軟磁性層32(上膜部32a)の厚みは、50nm〜5
00nmの範囲が好ましく、さらに好ましくは100n
m〜400nmである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic transfer having pattern-like irregularities used in a magnetic transfer method for magnetic transfer from a master carrier carrying information to a slave medium. The present invention relates to a master carrier for use. 2. Description of the Related Art A magnetic transfer method is a magnetic field for transfer in a state where a master carrier carrying transfer information by means of a fine uneven pattern of a magnetic material and a slave medium having a magnetic recording portion to be transferred are in close contact. Is applied, and a magnetization pattern corresponding to information (for example, servo signal) carried on the master carrier is transferred and recorded on the slave medium. As this magnetic transfer method, for example, Japanese Patent Laid-Open No. 63-183623,
Japanese Patent Laid-Open Nos. 10-40544 and 10-2695
66 and the like. A master carrier used for magnetic transfer is formed by forming a concave / convex pattern with a magnetic material by subjecting a silicon substrate, a glass substrate, or the like to treatments such as photofabrication, sputtering, and etching. Further, it is considered that a master carrier for magnetic transfer is produced by applying a lithography technique used in a semiconductor or the like, or a stamper producing technique used for producing an optical disc stamper. Here, an embodiment of the basic process of magnetic transfer which is the object of the present invention will be described with reference to FIG. This example is based on in-plane recording. First, a slave medium 2 having a magnetic recording layer to be subjected to magnetic transfer, and a soft magnetic layer 32 covered with a fine uneven pattern of a substrate 31 as shown in FIG. A master carrier 3 having a pattern is prepared. And first, FIG.
As shown in (a), initial magnetization (DC demagnetization) is performed in advance by applying an initial static magnetic field Hin to the slave medium 2 in one direction in the track direction. Thereafter, as shown in FIG. 3B, the magnetic recording surface of the slave medium 2 and the soft magnetic layer 32 of the master carrier 3.
And a convex magnetic field pattern for the transfer in the direction opposite to the initial magnetic field Hin in the track direction of the slave medium 2.
Is applied to perform magnetic transfer. As a result of the transfer magnetic field Hdu being sucked into the convex pattern by the soft magnetic layer 32, the magnetization of this portion is not reversed, and the magnetization of the other portion is reversed.
As shown in (c), a magnetization pattern corresponding to the concavo-convex pattern of the soft magnetic layer 32 of the master carrier 3 is transferred and recorded on the track of the slave medium 2. Even in the perpendicular recording method, magnetic transfer can be performed on a slave medium by using a master carrier having a concavo-convex pattern with a soft magnetic layer substantially the same as described above. However, in order to improve the transfer quality in the magnetic transfer as described above, it is necessary to form a transfer pattern using the soft magnetic layer 32 on the master carrier 3 with high accuracy. For example, with respect to the substrate 31 on which fine irregularities are formed in a predetermined pattern by a stamper method or the like, a soft magnetic material is formed on the fine pattern by a vacuum film forming means such as a vacuum deposition method, a sputtering method, or an ion plating method. The soft magnetic layer 32 is formed in a concavo-convex pattern similar to the concavo-convex pattern of the substrate 31. During the formation of the soft magnetic layer 32, vapor flows from multiple directions having a certain solid angle from a soft magnetic layer evaporation source (sputter source) in various film forming means reach the substrate.
Film formation is also performed on the corners and side surfaces of the convex portions, and the soft magnetic layer 32 having a substantially uniform film thickness is obtained. Even in such a case, when the unevenness width of the fine pattern is at a level of 0.3 μm, the pattern shape of the soft magnetic layer 32 affected by the vapor flow (diagonal component) other than the linear component has a signal quality after magnetic transfer. It was not a problem. However, if the uneven width of the pattern is reduced to the 0.1 μm level corresponding to the increase in recording density, etc., the soft magnetic layer formed on the substrate by the oblique component vapor flow during the formation of the soft magnetic layer. The pattern shape does not reflect the concave / convex pattern of the substrate, and the convex part width is widened by an oblique component, and in the extreme, bridging occurs in which the soft magnetic layer is bonded so as to fill the concave part across the convex part. In some cases, the surface of the soft magnetic layer was flattened. In such a master carrier, no magnetic flux is generated outside the soft magnetic layer pattern at the time of magnetic transfer, so that there is a problem that the magnetization of the slave medium is not reversed according to the transfer pattern, and good magnetic transfer cannot be performed. In contrast to the above, it has been found that when the soft magnetic layer is formed using collimated sputtering, it is possible to form a magnetic layer with no interference between patterns. In this collimated sputtering, a collimator member having a parallel path is installed between a substrate on which a pattern is formed and an evaporation source of a soft magnetic material to remove oblique components, and the softening is performed on the substrate through the collimator member. A magnetic layer is formed, and can be formed by parallel incidence perpendicularly to the surface of the substrate (see FIG. 2 described later). When a master carrier by collimated sputtering is used, a transfer signal quality of the same level as when a signal is written by a magnetic head can be ensured even with an ultrafine pattern of 0.1 μm level. However, when magnetic transfer to a large number of slave media is repeated using the master carrier as described above, there has been a problem that the quality of the transfer signal deteriorates. As a result of observing the surface of this master carrier, it was found that the soft magnetic layer pattern was damaged, and the damage at the pattern edge was particularly large. In the 0.3 μm level pattern as shown in FIG. 3 described above, since the soft magnetic layer is formed with a uniform film thickness on the side surface of the convex portion of the pattern, the pattern edge is hardly damaged. However, when the soft magnetic layer is similarly formed on the side surface of the convex portion in the ultrafine pattern of 0.1 μm level, bridging occurs between the patterns as described above, and good magnetic transfer cannot be performed. It has been found that it does not function as a transfer master carrier. The present invention has been made in view of the above problems, and has a structure in which even a fine pattern has a structure in which a soft magnetic layer is hardly damaged and ensures durability, and magnetic transfer with high transfer quality can be performed. An object of the present invention is to provide a master carrier for transfer. A magnetic transfer master carrier according to the present invention is formed on a substrate having a pattern of unevenness corresponding to information to be transferred to a slave medium, and at least on a convex portion of the substrate. A magnetic transfer master carrier comprising a soft magnetic layer, wherein the soft magnetic layer is formed using collimated sputtering, and in addition to the upper surface of the convex portion of the substrate, the side surface of the convex portion is obliquely incident. A soft magnetic layer is provided in a film structure in which the film thickness decreases toward the bottom of the recess. The soft magnetic film on the side surface of the convex part is preferably provided so that the film thickness becomes zero on the bottom side of the concave part. In the collimated sputtering, a collimator member having a parallel path is installed between a substrate on which a pattern is formed and an evaporation source of a soft magnetic material, and a soft magnetic layer is formed on the substrate through the collimator member. The film is formed by vertical incidence and oblique incidence on the surface of the substrate. That is, the soft magnetic layer is formed by installing a collimator member having a parallel passage perpendicular to the surface of the substrate between the substrate on which the pattern is formed and the evaporation source of the soft magnetic material. Presumed to be collimated sputtering, in which a soft magnetic layer is formed on a substrate by a vapor flow of a straight component from which an oblique component has been removed through a collimator member, the upper surface of the pattern convex portion is thick to some extent by vertical incidence on the surface of the substrate. When forming a soft magnetic layer with a film thickness, the soft magnetic layer is not formed on the side surface of the convex part, and the soft magnetic layer is formed on the side surface of the convex part with a predetermined thickness structure by oblique incidence slightly inclined from the vertical direction. As a result, a master carrier capable of ensuring durability even in an extremely fine pattern has been produced. The soft magnetic layer is preferably formed by vacuum film forming means such as a vacuum deposition method, a sputtering method, or an ion plating method using a soft magnetic material. The collimator member preferably has a honeycomb structure having a finely divided parallel passage such as a lattice shape, a honeycomb shape, or a corrugated cardboard shape in which corrugated plates and flat plates are laminated. According to the present invention as described above, the soft magnetic layer is formed on the pattern formed on the substrate by using collimated sputtering, and in addition to the upper surface of the convex portion of the substrate, the convex portion By providing a soft magnetic layer in the film structure where the film thickness decreases toward the bottom of the recess due to oblique incidence on the side surface, the strength of the pattern edge is increased and damage can be prevented. There is little degradation of signal quality and durability can be secured, and since the film thickness decreases toward the bottom of the recess, bridging does not occur between patterns, and the pattern unevenness width corresponds to the increase in recording density etc. Even when the thickness is reduced to a level of 0.1 μm, the pattern shape of the soft magnetic layer accurately reflects the concave / convex pattern of the substrate, so that magnetic transfer with high transfer quality can be performed well and reliability can be improved. DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail below. FIG. 1 is a partial cross-sectional view of a master carrier in one embodiment, and FIG. 2 is a schematic diagram of an example of a soft magnetic layer forming apparatus. As shown in FIG. 1, the magnetic transfer master carrier 3 is formed by forming a soft magnetic layer 32 on a substrate 31 on which a fine concavo-convex pattern having a form corresponding to information to be transferred is formed. Become. The substrate 31 has a fine uneven pattern formed on the surface thereof by various preparation methods. The substrate 31 is conveyed to the film forming apparatus 1 described later, and the soft magnetic layer 32 is formed on the pattern of the substrate 31 by vertical incidence and oblique incidence. Is deposited. The uneven shape of the pattern of the substrate 31 is the convex portion 3.
The upper surface of 1a is flat and the side surface is slightly inclined outward so that the upper part of the convex part 31a is narrow (the upper part of the concave part 31b is wide) and the bottom part of the convex part 31a is wide (the bottom part of the concave part 31b is narrow). Is formed. The formed soft magnetic layer 32
The upper film part 32a formed on the upper surface of the convex part 31a, the side film part 32b formed on the side surface of the convex part 31a, and the concave part 31
a bottom film portion 32c formed on the bottom of b, and an upper film portion 32
a (and bottom film part 32c) are formed thick mainly by vertical incidence (arrow A), and the thickness of side film part 32b decreases mainly from the top toward the bottom of recess 31b mainly by oblique incidence (arrow B). The film structure has a film thickness of zero near the bottom. The side surface of the convex portion 31a may be a vertical surface instead of an inclined surface. The planar shape of the pattern convex portion 31a of the substrate 31 is substantially rectangular, and the side film portion 32b having the above-described film structure is formed on both the front and rear side surfaces in the track direction and the left and right side surfaces in the track width direction. Although it is preferable to form, either one may be sufficient. The film forming apparatus 10 shown in FIG. 2 includes a vacuum chamber 4 evacuated by a vacuum pump (not shown), and a substrate 5.
Then, the substrate 31 on which the pattern is formed is attached to the vacuum chamber 4.
A substrate holder 8 held therein, a soft magnetic material evaporation source 6 installed at a position facing the substrate 31 held by the substrate holder 8, and a collimator installed between the substrate 31 and the evaporation source 6. And a meter member 7. This film forming apparatus 10
As the basic structure, a conventional film deposition apparatus such as a vacuum deposition method, a sputtering method, or an ion plating method is used. The collimator member 7 has parallel passages 7a perpendicular to the surface of the substrate 31, and removes an oblique component of the vapor flow of the soft magnetic material from the evaporation source 6 to make a straight component. The soft magnetic layer 32 is formed on the substrate 31 through the parallel passage 7a of the collimator member 7. Although the collimator member 7 is not shown in detail, the collimator member 7 has a honeycomb structure having finely divided parallel passages 7a such as a lattice shape, a honeycomb shape, or a corrugated cardboard shape in which corrugated plates and flat plates are laminated. Composed of things. Further, the substrate holder 8 is provided so that the tilt angle can be changed and adjusted. The incident angle through the collimator member 7 is perpendicular to the surface of the substrate 31 and the vertical incidence A. An oblique incident B tilted at a predetermined angle (for example, about 5 °) to both sides (or one side) is possible. The substrate holder 8 may be fixed so that the angle of the collimator member 7 and the like can be changed. A vapor flow is generated from the evaporation source 6 of the soft magnetic material using the film forming apparatus 10 under predetermined film forming conditions. First, parallel passages 7a perpendicular to the surface of the substrate 31 are generated.
A soft magnetic layer 32 is formed on the pattern of the substrate 31 held on the substrate holder 8 by allowing the vapor component due to the straight component to be vertically incident through the collimator member 7 having the above. Due to the normal incidence A of this predetermined time, the convex portion 31
The upper film part 32a on a and the bottom film part 32 at the bottom of the concave part 31b
c is mainly formed. Subsequently, the substrate holder 8 is inclined at an inclination angle (for example, about 5 °), and similarly, a vapor flow caused by a straight traveling component passing through the collimator member 7 is obliquely incident to the pattern of the substrate 31 held on the substrate holder 8. A soft magnetic layer 32 is formed thereon. Further, the substrate holder 8 is tilted in the opposite direction (for example, about 5 °), and similarly, a vapor flow caused by a straight component passing through the collimator member 7 is obliquely incident on the pattern of the substrate 31 held on the substrate holder 8. Then, the soft magnetic layer 32 is formed. By the oblique incidence B for a predetermined time, the side film portions 32b whose film thickness decreases from the top toward the bottom of the recess 31b are formed on both side surfaces of the protrusion 31a. The film thickness is mainly adjusted by the film formation time. In this way, the master carrier 3 is created. According to the present embodiment, the oblique component is removed by the collimator member 7 on the pattern of the substrate 31, and the soft magnetic layer 32 is formed by collimated sputtering by the vapor flow from the evaporation source 6 of the soft magnetic material by the straight traveling component. Therefore, even if the uneven width of the pattern is reduced to a level of 0.1 μm, the master carrier 3 thus formed accurately reflects the uneven pattern of the substrate 31 without causing bridging. An upper film part 32a can be formed on 31a, and the side film part 32 whose film thickness gradually decreases from the top to the bottom by oblique incidence so as to reinforce the pattern edge part on the side surface of the convex part 31a.
Since the pattern of the soft magnetic layer 32 can be formed on the film structure having b, and the pattern accuracy is high, magnetic transfer with high transfer quality is possible, and contamination due to breakage is prevented and durability can be secured. The prepared master carrier 3 is conveyed to a magnetic transfer device, and is brought into close contact with the slave medium 2 which has been previously magnetized in the track direction or the vertical direction in the basic process as shown in FIG. In this state, a magnetic field for transfer is applied in a direction substantially opposite to the initial magnetization direction by a magnetic field application device such as an electromagnet device, and a magnetization pattern corresponding to the transfer information of the master carrier 3 is transferred and recorded on the slave medium 2. As the substrate 31 of the master carrier 3, nickel, silicon, aluminum, an alloy or the like is used. The formation of the concavo-convex pattern is performed by a stamper method or the like. In the stamper method, a photoresist is formed on a glass plate (or quartz plate) having a smooth surface by spin coating or the like, and laser light (or modulated in response to a servo signal while rotating the glass plate (or An electron beam is irradiated to expose a predetermined pattern, for example, a pattern corresponding to a servo signal. Thereafter, the photoresist is developed, the exposed portion is removed, and a master having a concavo-convex shape by the photoresist is obtained. Next, based on the concavo-convex pattern on the surface of the master, plating (electroforming) is performed on the surface to create a substrate having a positive concavo-convex pattern, and the substrate is peeled off.
The depth of the concavo-convex pattern of the substrate 31 (the height of the protrusion) is 80
The range of nm to 800 nm is preferable, more preferably 1
00 nm to 600 nm. In addition, a second master is produced by plating the master, and plating is performed using the second master.
You may create the board | substrate which has a negative uneven | corrugated pattern. Furthermore, the second master may be plated or a resin solution may be pressed and cured to create a third master, and the third master may be plated to create a substrate having a positive uneven pattern. . On the other hand, after forming a pattern with a photoresist on the glass plate, etching may be performed to form a hole in the glass plate to obtain a master from which the photoresist has been removed, and the substrate may be formed in the same manner as described above. The soft magnetic layer 32 is formed by using collimated sputtering as described above, and depositing a soft magnetic material by a vacuum film forming means such as a vacuum deposition method, a sputtering method, or an ion plating method. As the magnetic material, Co, Co alloy (CoNi, CoNiZr, CoN
bTaZr etc.), Fe, Fe alloy (FeCo, FeCo)
Ni, FeNiMo, FeAlSi, FeAl, FeT
aN), Ni, Ni alloy (NiFe) can be used. Particularly preferred are FeCo and FeCoNi.
The thickness of the soft magnetic layer 32 (upper film portion 32a) is 50 nm to 5 nm.
The range of 00 nm is preferable, more preferably 100 n
m to 400 nm.

【図面の簡単な説明】 【図1】本発明の一つの実施の形態における磁気転写用
マスター担体の要部断面図 【図2】一つの実施の形態における軟磁性層の成膜装置
の概略図 【図3】磁気転写の基本工程の一態様を示す図 【符号の説明】 2 スレーブ媒体 3 マスター担体 6 蒸発源 7 コリメーター部材 7a 平行通路 8 基板ホルダ 10 成膜装置 31 基板 31a 凸部 31b 凹部 32 軟磁性層 32a 上膜部 32b 側膜部 32c 底膜部 A 垂直入射 B 斜め入射
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an essential part of a master carrier for magnetic transfer in one embodiment of the present invention. FIG. 2 is a schematic diagram of a film forming apparatus for a soft magnetic layer in one embodiment. FIG. 3 is a diagram showing an embodiment of a basic process of magnetic transfer. Description of Symbols 2 Slave medium 3 Master carrier 6 Evaporation source 7 Collimator member 7a Parallel path 8 Substrate holder 10 Film forming apparatus 31 Substrate 31a Convex part 31b Concave part 32 Soft magnetic layer 32a Upper film part 32b Side film part 32c Bottom film part A Normal incidence B Oblique incidence

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 5/86 101 G11B 5/86 101B Front page continuation (51) Int.Cl. 7 Identification symbol FI Theme code (reference) G11B 5/86 101 G11B 5/86 101B

Claims (1)

【特許請求の範囲】 【請求項1】 スレーブ媒体に転写すべき情報に応じた
パターン状の凹凸を有する基板と、該基板の少なくとも
凸部に形成された軟磁性層とを備えてなる磁気転写用マ
スター担体であって、 前記軟磁性層はコリメートスパッタを用いて形成され、
前記基板の凸部上面に加えて、該凸部の側面に斜め入射
により凹部の底部に向けて膜厚が減少する膜構造に軟磁
性層が設けられてなることを特徴とする磁気転写用マス
ター担体。
What is claimed is: 1. A magnetic transfer comprising a substrate having a pattern of irregularities corresponding to information to be transferred to a slave medium, and a soft magnetic layer formed on at least the convex portion of the substrate. A master carrier, wherein the soft magnetic layer is formed using collimated sputtering,
In addition to the upper surface of the convex portion of the substrate, a magnetic transfer master comprising a soft magnetic layer in a film structure in which the film thickness decreases toward the bottom of the concave portion by oblique incidence on the side surface of the convex portion Carrier.
JP2001398879A 2001-12-28 2001-12-28 Master carrier for magnetic transfer Pending JP2003203331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001398879A JP2003203331A (en) 2001-12-28 2001-12-28 Master carrier for magnetic transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001398879A JP2003203331A (en) 2001-12-28 2001-12-28 Master carrier for magnetic transfer

Publications (1)

Publication Number Publication Date
JP2003203331A true JP2003203331A (en) 2003-07-18

Family

ID=27639665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001398879A Pending JP2003203331A (en) 2001-12-28 2001-12-28 Master carrier for magnetic transfer

Country Status (1)

Country Link
JP (1) JP2003203331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047633A (en) * 2010-08-27 2012-03-08 Toshiba Plant Systems & Services Corp Preprocessing apparatus for online type sample analyzer and method of controlling preprocessing apparatus for online type sample analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047633A (en) * 2010-08-27 2012-03-08 Toshiba Plant Systems & Services Corp Preprocessing apparatus for online type sample analyzer and method of controlling preprocessing apparatus for online type sample analyzer

Similar Documents

Publication Publication Date Title
JP3343326B2 (en) Master information carrier
KR100357736B1 (en) Master information carrier, process for producing the carrier, and method and apparatus for recording master information signal on magnetic recording medium by using the carrier
JP2001256644A (en) Master carrier for magnetic transfer
JP3329259B2 (en) Master information carrier and method of manufacturing magnetic recording medium
US20080014456A1 (en) Process of producing master carrier for magnetic transfer
JP2003203331A (en) Master carrier for magnetic transfer
US6887593B2 (en) Master information carrier for magnetic transfer
JP2003022527A (en) Method for manufacturing master carrier for magnetic transfer
US7667908B2 (en) Magnetic transfer method for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and magnetic recording apparatus
JP3646990B2 (en) Master information magnetic recording apparatus and method of manufacturing magnetic recording medium
JP2003091806A (en) Master carrier for magnetic transfer
JP2006260690A (en) Master disk for magnetic transfer
US7641822B2 (en) Master information carrier for magnetic transfer and a method for producing the carrier
JP2003187435A (en) Master carrier for magnetic transfer
JP2003187433A (en) Master carrier for magnetic transfer
JP2003022530A (en) Magnetic transfer method
JP2003178440A (en) Master carrier for magnetic transfer
JP2003203323A (en) Master carrier for magnetic transfer
JP2005100605A (en) Process of producing master carrier for magnetic transfer
JP2003178439A (en) Master carrier for magnetic transfer
JP2004110875A (en) Master carrier for magnetic transfer
JP2006192399A (en) Method for applying photoresist, method for forming resist pattern and method for manufacturing master information carrier by using these methods
JP2004127494A (en) Master carrier for magnetic transfer
JP2003187429A (en) Master carrier for magnetic transfer
JP2004178736A (en) Method of electron beam drawing, and disk-like substrate for high-density recording

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425