JP2003202266A - Vacuum ultraviolet spectral measuring device - Google Patents

Vacuum ultraviolet spectral measuring device

Info

Publication number
JP2003202266A
JP2003202266A JP2002000096A JP2002000096A JP2003202266A JP 2003202266 A JP2003202266 A JP 2003202266A JP 2002000096 A JP2002000096 A JP 2002000096A JP 2002000096 A JP2002000096 A JP 2002000096A JP 2003202266 A JP2003202266 A JP 2003202266A
Authority
JP
Japan
Prior art keywords
vacuum ultraviolet
optical path
gas
vacuum
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002000096A
Other languages
Japanese (ja)
Inventor
Masaru Chichii
勝 乳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002000096A priority Critical patent/JP2003202266A/en
Publication of JP2003202266A publication Critical patent/JP2003202266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum ultraviolet spectral measuring device hardly affected by the time and spatial change of the propagation of radiation flux caused by the concentration of a very small amount of remaining O<SB>2</SB>even under a condition that the measuring environment is filled with a gas hardly absorbing the radiation of a vacuum ultraviolet wavelength area in the spectral measurement of the vacuum ultraviolet wavelength area, and to perform the spectral measurement of high accuracy. <P>SOLUTION: This vacuum ultraviolet spectral measuring device comprises an optical path for branching the radiation flux emitted from a light source by a light dividing means under the condition that the measuring environment is filled with the gas hardly absorbing the radiation of the vacuum ultraviolet wavelength area, and a vacuum part separated from the gas of the circumferential measuring environment is formed, or an optical member through which the wavelength of the vacuum ultraviolet area is transmitted is mounted on the optical path from the light dividing means to a light receiving element. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】真空紫外波長領域(200n
m以下から軟X線、X線に至る波長領域)において、光
学素子などの分光特性を高精度に測定する技術に関する
ものでる。
TECHNICAL FIELD The vacuum ultraviolet wavelength region (200 n
In a wavelength range from m or less to soft X-rays and X-rays), the present invention relates to a technique for measuring the spectral characteristics of an optical element or the like with high accuracy.

【0002】[0002]

【従来の技術】真空紫外波長領域(200nm以下から
軟X線、X線に至る波長領域)の分光計測において、こ
の波長領域の放射は大気中の酸素分子により吸収されて
しまうために、測定環境を真空状態か、またはN2やA
r等の気体で置換して測定を行う必要がある。
2. Description of the Related Art In spectroscopic measurement in the vacuum ultraviolet wavelength range (wavelength range from 200 nm or less to soft X-rays and X-rays), the radiation in this wavelength range is absorbed by oxygen molecules in the atmosphere, and In vacuum or N 2 or A
It is necessary to substitute gas such as r for measurement.

【0003】また測定環境を真空状態にした場合、装置
チャンバー内壁より放出されるH2、H2Oや装置チャン
バー内部に設置される各種機構部や電気部品などから発
生するB、NH4 +などの無機系汚染物質、その他有機系
汚染物質により被測定物である光学材料の表面が汚染さ
れ、光学素子の透過率や反射率測定に影響を与えてい
た。
Further, when the measurement environment is in a vacuum state, H 2 and H 2 O emitted from the inner wall of the apparatus chamber, B generated from various mechanical parts and electric parts installed inside the apparatus chamber, NH 4 +, etc. The surface of the optical material, which is the object to be measured, is contaminated by the inorganic pollutants and other organic pollutants, which affects the transmittance and reflectance measurement of the optical element.

【0004】この測定環境を真空状態にした場合に発生
する被測定物の表面汚染を避けるために、測定環境をN
2やAr等の気体で置換して測定を行う方法が多用され
ている。この方法が特開2000−146691に示さ
れている。
In order to avoid the surface contamination of the object to be measured which occurs when the measurement environment is in a vacuum state, the measurement environment is set to N.
A method of substituting with a gas such as 2 or Ar and performing the measurement is often used. This method is disclosed in Japanese Patent Laid-Open No. 2000-146691.

【0005】ここでは、分光測定の光学系光路空間を周
囲測定環境と隔離した小容積の空間とするための囲いを
設け、この空間内に真空紫外波長領域の放射を吸収して
しまうO2をこの波長領域に対して吸収の少ないN2など
の気体で置換させる方法が開示されている。
Here, an enclosure is provided to make the optical path space of the optical system for spectroscopic measurement a small volume space which is isolated from the surrounding measurement environment, and O 2 which absorbs radiation in the vacuum ultraviolet wavelength region is provided in this space. There is disclosed a method of substituting a gas such as N 2 having a low absorption in this wavelength region.

【0006】[0006]

【発明が解決しようとする課題】しかしながらこの従来
例では、分光測定と並行して真空紫外波長領域に対して
吸収の少ないN2などの気体をこの隔離された空間内に
ガス導入口と排出口を設けて循環置換させているので、
光分割手段であるチョッパー以降の参照系光路と測定系
光路の間で置換状態が時間的、空間的に均一にならず、
参照系光路と測定系光路における真空紫外波長の相対的
吸収差を安定にすることができない。
However, in this conventional example, a gas such as N 2 having a small absorption in the vacuum ultraviolet wavelength region is introduced into this isolated space in parallel with the spectroscopic measurement. Since it is arranged and replaced by circulation,
The replacement state is not uniform in time and space between the reference system optical path after the chopper which is the light splitting means and the measurement system optical path,
The relative absorption difference between the vacuum ultraviolet wavelengths in the reference optical path and the measurement optical path cannot be stabilized.

【0007】分光測定を高精度にするためには、この相
対的吸収差を一定にし光分割手段以降の光路における真
空紫外波長の放射束量を時間的、空間的に安定させる必
要がある。
In order to make the spectroscopic measurement highly accurate, it is necessary to make this relative absorption difference constant and to stabilize the radiant flux quantity of the vacuum ultraviolet wavelength in the optical path after the light splitting means temporally and spatially.

【0008】次にこの相対的吸収差について、両光路間
でどの程度のO2濃度差に管理しなければならないかを
説明する。図5は、真空紫外波長領域におけるO2の吸
収係数を示すグラフである(「Absorption
Coefficientsof Oxygen in
the Vacuum Ultraviolet」TH
E JOURNAL OF CHEMICAL PHY
SICS Vol.21No.6 1953)。
Next, how much the difference in O 2 concentration between the two optical paths should be managed with respect to this relative absorption difference will be described. FIG. 5 is a graph showing the absorption coefficient of O 2 in the vacuum ultraviolet wavelength region (“Absorption”).
Coefficients of Oxygen in
the Vacuum Ultraviolet "TH
E JOURNAL OF CHEMICAL PHY
SICS Vol. 21 No. 6 1953).

【0009】この図5から、測定環境がO2のみで充填
されている時、波長157nmの吸収係数をα157と
するとα157=180[cm-1]である。放射束が伝
播する光路の長さをtとすると、その時の放射束の透過
率Tは、T=10-(α157×t )と表わされる。
From FIG. 5, when the measurement environment is filled with O 2 only, assuming that the absorption coefficient at the wavelength of 157 nm is α157, α157 = 180 [cm −1 ]. When the length of the optical path through which the radiant flux propagates is t, the transmittance T of the radiant flux at that time is expressed as T = 10 − ( α 157 × t ) .

【0010】別の表現に置き換えると、測定環境が真空
紫外波長領域に対して吸収の少ないN2などの気体で充
填されているにも係わらず、極微量に残存するO2によ
る吸収の影響を受けて波長157nmの放射束が長さt
の距離を伝播する時に透過率がTになったとすると、こ
の長さtの空間における吸収係数αは、α=(−log
T/t)と表わされる。
In other words, even if the measurement environment is filled with a gas such as N 2 which has a small absorption in the vacuum ultraviolet wavelength region, the influence of absorption by O 2 remaining in a very small amount Then, the radiant flux with a wavelength of 157 nm has a length t
Assuming that the transmittance becomes T when propagating a distance of, the absorption coefficient α in the space of this length t is α = (− log
T / t).

【0011】分光測定の手順は、まず第1に測定系光路
から被測定物である光学素子を退避させた状態で参照系
光路と測定系光路の受光素子の各出力をPr0、Pm0
として測定し、第2に測定系光路に光学素子を設置して
参照系光路と測定系光路の受光素子の各出力をPr、P
mとして測定する。光学素子の透過率Tsを測定する場
合は、Ts=(Pm/Pm0)×(Pr0/Pr)より
算出する。
The procedure of the spectroscopic measurement is as follows. First, the outputs of the light receiving elements of the reference system optical path and the measurement system optical path are Pr0 and Pm0 with the optical element being the object to be measured retracted from the measurement system optical path.
Secondly, an optical element is installed in the optical path of the measurement system, and the outputs of the light receiving elements of the optical path of the reference system and the optical path of the measurement system are set to Pr and P, respectively.
Measure as m. When measuring the transmittance Ts of the optical element, it is calculated from Ts = (Pm / Pm0) × (Pr0 / Pr).

【0012】この透過率Tsを測定する際、前述の第1
の状態、即ち被測定物である光学素子を退避させた状態
で参照系光路と測定系光路の両光路間に極微量に残存す
るO 2の濃度に相対差がないと仮定すると、各系のO2
度は、参照系光路:α/α157=(−logT/t)
/α157と同じであるが、前述の第2の状態、即ち被
測定物である光学素子を光路に設置した状態で参照系光
路のO2濃度は不変であったが、測定系光路のO2濃度が
変化し、各々の系路の透過率がT、T’になったとする
と、その時のO2濃度は(−logT/t)/α15
7、(−logT’/t)/α157と表わされる。
When measuring the transmittance Ts, the above-mentioned first
State, that is, the state in which the measured optical element is retracted
A trace amount remains between the reference system optical path and the measurement system optical path.
O 2Assuming that there is no relative difference in the concentration of2Dark
Degree is the optical path of the reference system: α / α157 = (− logT / t)
/ Α157, but the second state described above, that is,
Reference system light with an optical element that is the object to be measured installed in the optical path
O of the road2The concentration was unchanged, but O in the optical path of the measurement system2Concentration
It is assumed that the transmittances of the respective paths have changed to T and T '.
And O at that time2The concentration is (-logT / t) / α15
7 and (-logT '/ t) / α157.

【0013】透過率分光測定の測定精度を0.05%以
下に抑制しようとするとT’/T=1.0005とな
り、前述の長さtが35cmである時、相対的なO2
度差は、(−logT’/t)/α157−(−log
T/t)/α157=log(T/T’)/(α157
×t)=log(1/1.0005)/(180×3
5)=0.034[ppm]となり、かなり厳しい相対
2濃度差の管理が必要になることが分かる。
In order to suppress the measurement accuracy of the transmittance spectroscopic measurement to 0.05% or less, T '/ T = 1.0005, and when the length t is 35 cm, the relative O 2 concentration difference is , (-LogT '/ t) / α157-(-log
T / t) / α157 = log (T / T ′) / (α157
× t) = log (1 / 1000.5) / (180 × 3)
5) = 0.034 [ppm], which shows that fairly strict control of the relative O 2 concentration difference is required.

【0014】本発明は、真空紫外波長領域の分光測定に
おいて、測定環境が真空紫外波長領域の放射を吸収しに
くい気体で充填された状態であっても、極微量に残存す
るO 2濃度のために生ずる放射束の伝播量の時間的、空
間的変化を受け難くし、高精度な分光測定を行えるよう
にするものである。
The present invention is applicable to spectroscopic measurement in the vacuum ultraviolet wavelength region.
In order to absorb the radiation in the vacuum ultraviolet wavelength range,
Even if it is filled with scavenging gas, a very small amount remains
O 2The amount of radiant flux propagation due to concentration
Achieves highly accurate spectroscopic measurement by making it less susceptible to changes over time
It is something to do.

【0015】[0015]

【課題を解決するための手段】第1に、真空紫外分光測
定装置において、測定環境が真空紫外波長領域の放射を
吸収しにくい気体で充填された状態で、光源から射出す
る放射束を光分割手段により分岐する光路があり、その
光分割手段から受光素子に至るまでの光路に周囲測定環
境の気体と隔離された真空部分が形成されているか、ま
たは真空紫外領域の波長が透過する光学部材を設置した
真空紫外分光測定装置。
First, in a vacuum ultraviolet spectroscopic measurement apparatus, a radiant flux emitted from a light source is optically split while the measurement environment is filled with a gas that hardly absorbs radiation in the vacuum ultraviolet wavelength range. There is an optical path branched by the means, a vacuum portion isolated from the gas of the surrounding measurement environment is formed in the optical path from the light splitting means to the light receiving element, or an optical member that transmits a wavelength in the vacuum ultraviolet region is used. Vacuum ultraviolet spectrophotometer installed.

【0016】第2に、真空紫外分光測定装置において、
測定環境が真空紫外波長領域の放射を吸収しにくい気体
で充填された状態で、光源から受光素子までの光路内に
周囲測定環境の気体と隔離された真空部分が形成されて
いるか、または真空紫外領域の波長が透過する光学部材
を設置した真空紫外分光測定装置。
Secondly, in the vacuum ultraviolet spectrometer,
When the measurement environment is filled with a gas that does not easily absorb radiation in the vacuum ultraviolet wavelength range, a vacuum part is formed in the optical path from the light source to the light receiving element, which is isolated from the gas of the surrounding measurement environment, or vacuum ultraviolet A vacuum ultraviolet spectrophotometer equipped with an optical member that transmits wavelengths in the region.

【0017】[0017]

【発明の実施の形態】(第1の実施例)次に本発明の実
施形態について具他的に説明する。図1は光学素子の分
光特性を測定する装置の全体を表わす図で、参照系と測
定系の光路を有するダブルビーム方式で構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) Next, embodiments of the present invention will be specifically described. FIG. 1 is a diagram showing an entire apparatus for measuring the spectral characteristic of an optical element, which is constructed by a double beam system having optical paths of a reference system and a measurement system.

【0018】1は真空紫外波長領域の放射束を発する光
源ユニット、2は光源ユニット1からの放射束を所定波
長毎に分光する回折格子の分光手段と被測定物である光
学素子25に対してほぼ平行な光束を入射させるための
投光手段を含んだ分光器ユニットである。
Reference numeral 1 denotes a light source unit that emits a radiant flux in the vacuum ultraviolet wavelength range, and 2 denotes a spectral means of a diffraction grating that disperses the radiant flux from the light source unit 1 for each predetermined wavelength and an optical element 25 that is an object to be measured. It is a spectroscope unit including a light projecting means for making a substantially parallel light beam incident.

【0019】3は装置チャンバーで内部の測定環境は真
空紫外波長領域の放射を吸収しにくい気体、例えばN2
やAr等の気体で充填された状態になっている。4はそ
の気体を装置チャンバー内に供給する供給口で、5はそ
の気体の排気口である。
Reference numeral 3 is an apparatus chamber, and the measurement environment inside is a gas that hardly absorbs radiation in the vacuum ultraviolet wavelength region, for example, N 2
It is filled with a gas such as Ar or Ar. Reference numeral 4 is a supply port for supplying the gas into the apparatus chamber, and 5 is an exhaust port for the gas.

【0020】測定環境を真空状態にせず真空紫外波長領
域の放射を吸収しにくい気体にする理由は、従来例で説
明した通り、装置チャンバー内壁より放出されるH2
2Oや装置チャンバー内部に設置される各種機構部や
電気部品などから発生するB、NH4 +などの無機系汚染
物質、その他有機系汚染物質により被測定物である光学
材料の表面が汚染され、光学素子の透過率や反射率測定
に影響を与えるからである。
As described in the conventional example, the reason why the measurement environment is set to a gas that does not easily absorb the radiation in the vacuum ultraviolet wavelength range without being in a vacuum state is that H 2 emitted from the inner wall of the apparatus chamber,
The surface of the optical material to be measured is contaminated with inorganic pollutants such as B and NH 4 + generated from H 2 O and various mechanical parts and electric parts installed inside the chamber of the equipment, and other organic pollutants. This affects the measurement of the transmittance and reflectance of the optical element.

【0021】分光器ユニット2から射出した放射束は装
置チャンバー3内に入り光路6を通過する。次に半円状
のミラー7がモーターなどの回転駆動手段8と連結した
光分割手段9があり、反射により参照系光路10、透過
により測定系光路11へ光路6の放射束を時間的に振り
分けている。
The radiant flux emitted from the spectroscope unit 2 enters the apparatus chamber 3 and passes through the optical path 6. Next, there is a light splitting means 9 in which a semicircular mirror 7 is connected to a rotation driving means 8 such as a motor, and the radiant flux of the optical path 6 is temporally distributed to the reference system optical path 10 by reflection and the measurement system optical path 11 by transmission. ing.

【0022】参照系光路10には光分割手段9から参照
系の受光素子17に至る光路内に周囲測定環境の気体と
隔離された真空状態の部分12が金属管などにより形成
されていて、真空紫外波長領域の放射束を透過させる光
学部材からなるウィンドウ13、14がそれぞれ入口と
出口に設けられ金属管の内部を密閉している。
In the optical path 10 of the reference system, a portion 12 in a vacuum state isolated from the gas of the surrounding measurement environment is formed by a metal tube or the like in the optical path from the light splitting means 9 to the light receiving element 17 of the reference system. Windows 13 and 14 made of optical members for transmitting a radiant flux in the ultraviolet wavelength region are provided at the inlet and the outlet, respectively, to seal the inside of the metal tube.

【0023】また参照系光路の配置において光路を曲げ
る必要がある場合は12の一部にミラー16を使用し、
配置に自由度をもたせることができる。また12は装置
チャンバー3外部と連結した真空ポンプ15により内部
が常時真空状態に維持されるようにしてある。
Further, when it is necessary to bend the optical path in the arrangement of the reference system optical path, a mirror 16 is used for a part of 12,
There is a degree of freedom in placement. Further, 12 is such that the inside thereof is always maintained in a vacuum state by a vacuum pump 15 connected to the outside of the apparatus chamber 3.

【0024】測定系光路11は、参照系光路10と同じ
く、光分割手段9から参照系の受光素子24に至る光路
内に周囲測定環境の気体と隔離された真空状態の部分1
8が金属管などにより形成されていて、真空紫外波長領
域の放射束を透過させる光学部材からなるウィンドウ1
9、20がそれぞれ入口と出口に設けられ金属管の内部
を密閉している。
Similar to the reference system optical path 10, the measurement system optical path 11 is in a vacuum state portion 1 which is isolated from the gas in the surrounding measurement environment in the optical path from the light splitting means 9 to the light receiving element 24 of the reference system.
The window 1 is formed of a metal tube or the like, and is composed of an optical member that transmits a radiant flux in the vacuum ultraviolet wavelength range.
9 and 20 are respectively provided at the inlet and the outlet to seal the inside of the metal pipe.

【0025】また参照系光路の配置において光路を曲げ
る必要がある場合は18の一部にミラー22を使用し、
配置に自由度をもたせることができる。また18は装置
チャンバー3外部と連結した真空ポンプ21により内部
が常時真空状態に維持されるようにしてある。
When it is necessary to bend the optical path in the arrangement of the reference system optical path, a mirror 22 is used in a part of 18,
There is a degree of freedom in placement. A vacuum pump 21 connected to the outside of the apparatus chamber 3 always keeps the inside vacuum.

【0026】このように構成された真空紫外波長領域の
分光測定において、分光測定の手順は、まず第1に測定
系光路11から被測定物である光学素子24を退避させ
た状態で参照系光路10と測定系光路11の受光素子の
各出力をPr0、Pm0として測定し、第2に測定系光
路11に光学素子25を設置して参照系光路10と測定
系光路11の受光素子17、23の各出力をPr、Pm
として測定する。光学素子24の透過率Tsを測定する
場合は、Ts=(Pm/Pm0)×(Pr0/Pr)よ
り算出する。
In the spectroscopic measurement in the vacuum ultraviolet wavelength region constructed as described above, the spectroscopic measurement procedure is as follows. 10 and the outputs of the light receiving elements of the measurement system optical path 11 are measured as Pr0 and Pm0, and secondly, the optical element 25 is installed in the measurement system optical path 11 to receive the light receiving elements 17 and 23 of the reference system optical path 10 and the measurement system optical path 11. Each output of Pr, Pm
To measure. When measuring the transmittance Ts of the optical element 24, it is calculated from Ts = (Pm / Pm0) × (Pr0 / Pr).

【0027】この測定の際、従来のように測定環境をN
2やAr等の真空紫外波長領域の放射を吸収しにくい気
体で充填するために供給口4と排気口5による循環方法
の置換を行っていたが、この従来方法では光分割手段9
以降の参照系光路10と測定系光路11の間で置換状態
が時間的、空間的に均一にならず、参照系光路10と測
定系光路11における真空紫外波長放射の相対的なエネ
ルギー変動が発生することは避けられない。
At the time of this measurement, the measurement environment is changed to N
In order to fill the radiation in the vacuum ultraviolet wavelength region such as 2 and Ar with a gas which is difficult to be absorbed, the supply port 4 and the exhaust port 5 have replaced the circulation method, but in this conventional method, the light splitting means 9 is used.
Subsequent replacement states are not temporally and spatially uniform between the reference system optical path 10 and the measurement system optical path 11, and relative energy fluctuations of vacuum ultraviolet wavelength radiation occur in the reference system optical path 10 and the measurement system optical path 11. It is inevitable to do.

【0028】その影響は従来例で説明した通り、測定精
度を0.05%以下に抑制しようとすると両光路間の相
対O2濃度差を[ppm]にしなければならず、この分
解能でO2濃度差を検出し、かつ管理することは不可能
である。
[0028] Its effect must as described in the conventional example, when the measurement accuracy attempts to suppress the 0.05% or less relative O 2 concentration difference between both optical paths [ppm], O 2 in the resolution It is impossible to detect and manage the density difference.

【0029】分光測定を高精度に行うためには、この相
対的O2濃度差を一定にし光分割手段9以降の両光路1
0、11における真空紫外波長の放射束量を時間的、空
間的に安定させる必要がある。
In order to carry out the spectroscopic measurement with high precision, the relative O 2 concentration difference is kept constant and both optical paths 1 and the optical path after the light dividing means 9 are used.
It is necessary to stabilize the radiant flux amount of the vacuum ultraviolet wavelength at 0 and 11 temporally and spatially.

【0030】そのために本発明が示すように、光分割手
段9から参照系、及び測定系の受光素子17、23に至
る光路内に周囲測定環境の気体と隔離された真空状態の
部分12、18を形成し、O2が残存しない部分を設け
て両光路間で相対O2濃度差が時間的、空間的に生じな
いようにすることが必要である。
Therefore, as shown in the present invention, in the optical path from the light splitting means 9 to the light receiving elements 17 and 23 of the reference system and the measurement system, the portions 12 and 18 in a vacuum state isolated from the gas of the surrounding measurement environment. It is necessary to provide a portion where O 2 does not remain so that a relative O 2 concentration difference between both optical paths does not occur temporally and spatially.

【0031】図2は本発明の別の構成を示す図で、前述
の真空状態の部分12、18の部分が真空紫外領域の波
長に対して透過なCaF2、MgF2などの光学部材2
5、26で構成されている。
FIG. 2 is a view showing another structure of the present invention. The above-mentioned optical parts 2 such as CaF2 and MgF2, which are transparent to the wavelengths in the vacuum ultraviolet region, are provided in the vacuumed parts 12 and 18.
It is composed of 5, 26.

【0032】それ以外の構成は前述の説明と同じであ
る。この光学部材25、26を用いることによっても、
2が残存しない部分を形成することができるので、両
光路間で相対O2濃度差が時間的、空間的に生じないよ
うにすることができる。
The other configurations are the same as those described above. By using the optical members 25 and 26,
Since a portion where O 2 does not remain can be formed, it is possible to prevent a relative O 2 concentration difference between both optical paths from occurring temporally and spatially.

【0033】従来の真空紫外波長領域の放射を吸収しに
くい気体の循環によるO2置換のみでは、一般的に参照
系光路と測定系光路の長さをほぼ等しい長さに設定する
必要があったが、本発明の構成を用いることにより、両
光路の長さを独立に設定することが可能で、装置チャン
バー3内部の光学配置の自由度を拡大することができ
る。
In the conventional O 2 substitution only by circulation of a gas that hardly absorbs radiation in the vacuum ultraviolet wavelength region, it was generally necessary to set the reference system optical path and the measurement system optical path to substantially the same length. However, by using the configuration of the present invention, the lengths of both optical paths can be set independently, and the degree of freedom of the optical arrangement inside the apparatus chamber 3 can be expanded.

【0034】(第2の実施例)図3は本発明の第2の実
施形態を表わす図で、シングルビーム方式で構成されて
いる。実施例1と比較して、光分割手段はなく参照系と
測定系を共通にした光路28が設けられている。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention, which is constructed by a single beam system. Compared to the first embodiment, there is no light splitting means and an optical path 28 having a common reference system and measurement system is provided.

【0035】図3において、実施例1と同じ部材は同じ
番号を使用する。1は真空紫外波長領域の放射束を発す
る光源ユニット、2は光源ユニット1からの放射束を所
定波長毎に分光する回折格子の分光手段と被測定物であ
る光学素子25に対してほぼ平行な光束を入射させるた
めの投光手段を含んだ分光器ユニットである。
In FIG. 3, the same members as those in the first embodiment use the same numbers. Reference numeral 1 is a light source unit that emits a radiant flux in the vacuum ultraviolet wavelength region, and 2 is substantially parallel to a spectroscopic means of a diffraction grating that disperses the radiant flux from the light source unit 1 for each predetermined wavelength and an optical element 25 that is an object to be measured. It is a spectroscope unit including a light projecting means for making a light beam incident.

【0036】3は装置チャンバーで内部の測定環境は真
空紫外波長領域の放射を吸収しにくい気体、例えばN2
やAr等の気体で充填された状態になっている。4はそ
の気体を装置チャンバー内に供給する供給口で、5はそ
の気体の排気口である。
Reference numeral 3 denotes an apparatus chamber, the measurement environment inside of which is a gas which hardly absorbs radiation in the vacuum ultraviolet wavelength region, for example N2.
It is filled with a gas such as Ar or Ar. Reference numeral 4 is a supply port for supplying the gas into the apparatus chamber, and 5 is an exhaust port for the gas.

【0037】測定環境を真空状態にせず真空紫外波長領
域の放射を吸収しにくい気体にする理由は、従来例で説
明した通り、装置チャンバー内壁より放出されるH2
2Oや装置チャンバー内部に設置される各種機構部や
電気部品などから発生するB、NH4 +などの無機系汚染
物質、その他有機系汚染物質により被測定物である光学
材料の表面が汚染され、光学素子の透過率や反射率測定
に影響を与えるからである。
As described in the conventional example, the reason why the measurement environment is set to a gas that does not easily absorb radiation in the vacuum ultraviolet wavelength range without being in a vacuum state is H 2 emitted from the inner wall of the apparatus chamber,
The surface of the optical material to be measured is contaminated with inorganic pollutants such as B and NH 4 + generated from H 2 O and various mechanical parts and electric parts installed inside the chamber of the equipment, and other organic pollutants. This affects the measurement of the transmittance and reflectance of the optical element.

【0038】分光器ユニット2から射出した放射束は装
置チャンバー3内に入り光路28を通過する。光路27
から参照系の受光素子17に至る光路内に周囲測定環境
の気体と隔離された真空状態の部分28が金属管などに
より形成されていて、真空紫外波長領域の放射束を透過
させる光学部材からなるウィンドウ13、14がそれぞ
れ入口と出口に設けられ金属管の内部を密閉している。
The radiant flux emitted from the spectroscope unit 2 enters the apparatus chamber 3 and passes through the optical path 28. Optical path 27
A portion 28 in a vacuum state isolated from the gas of the surrounding measurement environment is formed by a metal tube or the like in the optical path from the light receiving element 17 of the reference system to the light receiving element 17 of the reference system, and is composed of an optical member that transmits a radiant flux in the vacuum ultraviolet wavelength range. Windows 13 and 14 are provided at the inlet and the outlet to seal the inside of the metal tube.

【0039】また真空状態の部分28は装置チャンバー
3外部と連結した真空ポンプ15により内部が常時真空
状態に維持されるようにしてある。分光測定の手順は、
まず第1に光路27から被測定物である光学素子24を
退避させた状態で受光素子23の出力をPrとして測定
し、第2に光路27に光学素子25を設置して受光素子
23のPmとして測定する。
The inside of the vacuumed portion 28 is always maintained in a vacuum state by the vacuum pump 15 connected to the outside of the apparatus chamber 3. The spectroscopic measurement procedure is
First, the output of the light receiving element 23 is measured as Pr while the optical element 24, which is the object to be measured, is retracted from the optical path 27, and secondly, the optical element 25 is installed in the optical path 27 to set Pm of the light receiving element 23. To measure.

【0040】光学素子24の透過率Tsを測定する場合
は、Ts=Pm/Prより算出する。このシングルビー
ム方式の分光測定においても、実施例1と同様、第1と
第2の測定の間でO2の置換状態が時間的、空間的に均
一にならず、光路28における真空紫外波長放射の相対
的なエネルギー変動が発生することは避けられない。
When the transmittance Ts of the optical element 24 is measured, it is calculated from Ts = Pm / Pr. Also in this single-beam spectroscopic measurement, as in Example 1, the O 2 substitution state does not become temporally and spatially uniform between the first and second measurements, and the vacuum ultraviolet wavelength radiation in the optical path 28 occurs. It is unavoidable that the relative energy fluctuations of will occur.

【0041】その影響は従来例で説明した通りである。
分光測定を高精度に行うために、光路27内の受光素子
24に至る間に周囲測定環境の気体と隔離された真空状
態の部分28を形成し、O2が残存しない部分を設けて
前述の第1、第2の測定間でO2濃度差が時間的、空間
的に生じないようにすることが必要である。
The influence is as described in the conventional example.
In order to perform the spectroscopic measurement with high accuracy, a portion 28 in a vacuum state isolated from the gas of the surrounding measurement environment is formed between the light receiving elements 24 in the optical path 27, and a portion where O 2 does not remain is provided. It is necessary to prevent the O 2 concentration difference between the first and second measurements from occurring temporally and spatially.

【0042】図4は実施例の別の構成を示す図で、前述
の真空状態の部分28が真空紫外領域の波長に対して透
過なCaF2、MgF2などの光学部材29で構成されて
いる。それ以外の構成は前述の説明と同じである。
FIG. 4 is a view showing another constitution of the embodiment, in which the above-mentioned vacuum state portion 28 is constituted by an optical member 29 such as CaF 2 or MgF 2 which is transparent to the wavelength in the vacuum ultraviolet region. . The other configurations are the same as those described above.

【0043】この光学部材29を用いることによって
も、O2が残存しない部分を形成することができるの
で、第1、第2の測定間でO2濃度差が時間的、空間的
に生じないようにすることができる。
By using this optical member 29 as well, it is possible to form a portion in which O 2 does not remain, so that the O 2 concentration difference between the first and second measurements does not occur temporally or spatially. Can be

【0044】[0044]

【発明の効果】真空紫外波長領域の分光測定装置におい
て、測定期間中に測定環境に残存するO2が真空紫外波
長の放射束量を時間的、空間的に変動させることを排除
し、従来必要であったサブppm以下のO2濃度管理を
不要とする高精度な測定を実現することができる。
INDUSTRIAL APPLICABILITY In the vacuum ultraviolet wavelength region spectroscopic measurement apparatus, O 2 remaining in the measurement environment during the measurement period is excluded from varying the radiant flux amount of the vacuum ultraviolet wavelength temporally and spatially, and is conventionally required. It is possible to realize highly accurate measurement that does not require O 2 concentration control of sub-ppm or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で真空部分形成を用いた場合の図FIG. 1 is a diagram when a vacuum partial formation is used in Example 1.

【図2】 実施例1で真空紫外波長を透過する光学部材
を用いた場合の図
FIG. 2 is a diagram when an optical member that transmits vacuum ultraviolet wavelengths is used in Example 1.

【図3】 実施例2で真空部分形成を用いた場合の図FIG. 3 is a diagram when a vacuum partial formation is used in Example 2.

【図4】 実施例2で真空紫外波長を透過する光学部材
を用いた場合の図
FIG. 4 is a diagram when an optical member that transmits a vacuum ultraviolet wavelength is used in Example 2.

【図5】 真空紫外波長領域におけるO2の吸収係数を
示すグラフ
FIG. 5 is a graph showing the absorption coefficient of O 2 in the vacuum ultraviolet wavelength region.

【符号の説明】 9 光分割器 10 参照系光路 11 測定系光路 12、18 真空部分 17、23 受光素子 24 光学素子 25、26 真空紫外波長領域に透過な光学部材 27 光路 28 真空部分 29 真空紫外波長領域に透過な光学部材[Explanation of symbols] 9 Optical splitter 10 Reference system optical path 11 Measurement system optical path 12, 18 Vacuum part 17, 23 Light receiving element 24 Optical element 25, 26 Optical member transparent to vacuum ultraviolet wavelength range 27 optical path 28 Vacuum part 29 Optical member transparent to vacuum ultraviolet wavelength range

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 真空紫外分光測定装置において、測定環
境が真空紫外波長領域の放射を吸収しにくい気体で充填
された状態で、光源から射出する放射束を光分割手段に
より分岐する光路があり、その光分割手段から受光素子
に至るまでの光路に周囲測定環境の気体と隔離された真
空部分が形成されていることを特徴とする真空紫外分光
測定装置。
1. A vacuum ultraviolet spectroscopic measurement apparatus has an optical path for branching a radiant flux emitted from a light source by a light splitting means in a state where the measurement environment is filled with a gas that hardly absorbs radiation in the vacuum ultraviolet wavelength region, A vacuum ultraviolet spectroscopic measurement device characterized in that a vacuum portion isolated from the gas of the surrounding measurement environment is formed in the optical path from the light splitting means to the light receiving element.
【請求項2】 真空紫外分光測定装置において、測定環
境が真空紫外波長領域の放射を吸収しにくい気体で充填
された状態で、光源から射出する放射束を光分割手段に
より分岐する光路があり、その光分割手段から受光素子
に至るまでの光路に真空紫外領域の波長が透過する光学
部材を設置したことを特徴とする真空紫外分光測定装
置。
2. The vacuum ultraviolet spectroscopic measurement apparatus has an optical path for branching a radiant flux emitted from a light source by a light splitting means in a state where the measurement environment is filled with a gas that hardly absorbs radiation in the vacuum ultraviolet wavelength range, A vacuum ultraviolet spectroscopic measurement device characterized in that an optical member for transmitting wavelengths in the vacuum ultraviolet region is installed in the optical path from the light splitting means to the light receiving element.
【請求項3】 真空紫外分光測定装置において、測定環
境が真空紫外波長領域の放射を吸収しにくい気体で充填
された状態で、光源から受光素子までの光路内に周囲測
定環境の気体と隔離された真空部分が形成されているこ
とを特徴とする真空紫外分光測定装置。
3. A vacuum ultraviolet spectrophotometer, wherein the measurement environment is filled with a gas that hardly absorbs radiation in the vacuum ultraviolet wavelength range, and is isolated from the gas in the surrounding measurement environment in the optical path from the light source to the light receiving element. A vacuum ultraviolet spectroscopic measurement device characterized in that a vacuum portion is formed.
【請求項4】 真空紫外分光測定装置において、測定環
境が真空紫外波長領域の放射を吸収しにくい気体で充填
された状態で、光源から受光素子までの光路内に真空紫
外領域の波長が透過する光学部材を設置したことを特徴
とする真空紫外分光測定装置。
4. A vacuum ultraviolet spectroscopic measurement apparatus transmits a wavelength in the vacuum ultraviolet region in an optical path from a light source to a light receiving element in a state where the measurement environment is filled with a gas that hardly absorbs radiation in the vacuum ultraviolet wavelength region. A vacuum ultraviolet spectroscopic measurement device characterized in that an optical member is installed.
JP2002000096A 2002-01-04 2002-01-04 Vacuum ultraviolet spectral measuring device Pending JP2003202266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000096A JP2003202266A (en) 2002-01-04 2002-01-04 Vacuum ultraviolet spectral measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000096A JP2003202266A (en) 2002-01-04 2002-01-04 Vacuum ultraviolet spectral measuring device

Publications (1)

Publication Number Publication Date
JP2003202266A true JP2003202266A (en) 2003-07-18

Family

ID=27640601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000096A Pending JP2003202266A (en) 2002-01-04 2002-01-04 Vacuum ultraviolet spectral measuring device

Country Status (1)

Country Link
JP (1) JP2003202266A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506976A (en) * 2003-09-23 2007-03-22 メトロソル・インコーポレーテツド Standard alignment type vacuum ultraviolet reflectometer
US7948631B2 (en) 2008-02-28 2011-05-24 Jordan Valley Semiconductors Ltd. Method and apparatus for using multiple relative reflectance measurements to determine properties of a sample using vacuum ultra violet wavelengths
US7990549B2 (en) 2006-11-30 2011-08-02 Jordan Valley Semiconductors Ltd. Method and apparatus for optically measuring periodic structures using orthogonal azimuthal sample orientation
US8119991B2 (en) 2004-08-11 2012-02-21 Jordan Valley Semiconductors Ltd. Method and apparatus for accurate calibration of VUV reflectometer
CN103148939A (en) * 2013-02-28 2013-06-12 北京振兴计量测试研究所 Ultraviolet spectrum measurement method and system for inhibiting second order spectrum
US8564780B2 (en) 2003-01-16 2013-10-22 Jordan Valley Semiconductors Ltd. Method and system for using reflectometry below deep ultra-violet (DUV) wavelengths for measuring properties of diffracting or scattering structures on substrate work pieces
US8565379B2 (en) 2011-03-14 2013-10-22 Jordan Valley Semiconductors Ltd. Combining X-ray and VUV analysis of thin film layers
US8867041B2 (en) 2011-01-18 2014-10-21 Jordan Valley Semiconductor Ltd Optical vacuum ultra-violet wavelength nanoimprint metrology
JP2015532433A (en) * 2012-10-18 2015-11-09 ブイユーブイ・アナリティクス・インコーポレイテッドVUV Analytics,Inc. Vacuum ultraviolet absorption spectroscopy system and method
US10677767B2 (en) 2018-06-12 2020-06-09 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
CN113820293A (en) * 2020-06-19 2021-12-21 核工业理化工程研究院 Low-temperature gas spectrum measuring device and using method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8014000B2 (en) 2003-01-16 2011-09-06 Jordan Valley Semiconductors Ltd. Broad band referencing reflectometer
US8054453B2 (en) 2003-01-16 2011-11-08 Jordan Valley Semiconductors Ltd. Broad band referencing reflectometer
US8564780B2 (en) 2003-01-16 2013-10-22 Jordan Valley Semiconductors Ltd. Method and system for using reflectometry below deep ultra-violet (DUV) wavelengths for measuring properties of diffracting or scattering structures on substrate work pieces
JP2007506976A (en) * 2003-09-23 2007-03-22 メトロソル・インコーポレーテツド Standard alignment type vacuum ultraviolet reflectometer
US8119991B2 (en) 2004-08-11 2012-02-21 Jordan Valley Semiconductors Ltd. Method and apparatus for accurate calibration of VUV reflectometer
US7990549B2 (en) 2006-11-30 2011-08-02 Jordan Valley Semiconductors Ltd. Method and apparatus for optically measuring periodic structures using orthogonal azimuthal sample orientation
US7948631B2 (en) 2008-02-28 2011-05-24 Jordan Valley Semiconductors Ltd. Method and apparatus for using multiple relative reflectance measurements to determine properties of a sample using vacuum ultra violet wavelengths
US8867041B2 (en) 2011-01-18 2014-10-21 Jordan Valley Semiconductor Ltd Optical vacuum ultra-violet wavelength nanoimprint metrology
US8565379B2 (en) 2011-03-14 2013-10-22 Jordan Valley Semiconductors Ltd. Combining X-ray and VUV analysis of thin film layers
JP2015532433A (en) * 2012-10-18 2015-11-09 ブイユーブイ・アナリティクス・インコーポレイテッドVUV Analytics,Inc. Vacuum ultraviolet absorption spectroscopy system and method
US9465015B2 (en) 2012-10-18 2016-10-11 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US9696286B2 (en) 2012-10-18 2017-07-04 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US9891197B2 (en) 2012-10-18 2018-02-13 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US9976996B2 (en) 2012-10-18 2018-05-22 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US10338040B2 (en) 2012-10-18 2019-07-02 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
US10641749B2 (en) 2012-10-18 2020-05-05 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
CN103148939A (en) * 2013-02-28 2013-06-12 北京振兴计量测试研究所 Ultraviolet spectrum measurement method and system for inhibiting second order spectrum
US10677767B2 (en) 2018-06-12 2020-06-09 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
CN113820293A (en) * 2020-06-19 2021-12-21 核工业理化工程研究院 Low-temperature gas spectrum measuring device and using method thereof

Similar Documents

Publication Publication Date Title
KR101279911B1 (en) Calibration of a radiometric optical monitoring system used for fault detection and process monitoring
CA2904850C (en) Analytes monitoring by differential swept wavelength absorption spectroscopy methods
US6160832A (en) Method and apparatus for wavelength calibration
JP3306079B2 (en) Optical analyzer and calibration method thereof
JP2003214958A (en) Wavelength detecting device, laser device, and wavelength detecting method
US10890484B2 (en) Wavelength measuring device
JP2003202266A (en) Vacuum ultraviolet spectral measuring device
Hausmann et al. Detection of tropospheric OH radicals by long‐path differential‐optical‐absorption spectroscopy: Experimental setup, accuracy, and precision
Ruth et al. Broadband cavity-enhanced absorption spectroscopy with incoherent light
KR101709820B1 (en) Metrology module for laser system
Hoch et al. An instrument for measurements of BrO with LED-based cavity-enhanced differential optical absorption spectroscopy
KR20010110748A (en) Analysis apparatus
KR20010021565A (en) Method for calibration of a spectroscopic sensor
KR20020030736A (en) Energy monitor for molecular fluorine laser
US9772226B2 (en) Referenced and stabilized optical measurement system
US5991032A (en) Contaminant identification and concentration determination by monitoring the intensity of the output of an intracavity laser
JP2000106463A (en) Wavelength calibration method and system for excimer laser
JP2003214949A (en) Monitoring device and ultraviolet laser device
US6456361B1 (en) Method and instrument for measuring vacuum ultraviolet light beam, method of producing device and optical exposure apparatus
JP2000266605A (en) Wavelength measuring device for ultraviolet laser
JP5483161B2 (en) Zero / span adjustment method for laser gas analyzer
JP4699640B2 (en) Wavelength measuring equipment for vacuum ultraviolet laser equipment
JP2000088705A (en) Device for monitoring light of excimer laser
US7646951B2 (en) Apparatus for manufacturing optical fiber Bragg grating, optical fiber, and mid-infrared optical fiber laser
KR20060066561A (en) Light absorbance cell and parallelyzer for the absolute measurement of ozone in uv absorption spectrophotometer