JP2003201486A - Method for gasifying organic material - Google Patents

Method for gasifying organic material

Info

Publication number
JP2003201486A
JP2003201486A JP2002277949A JP2002277949A JP2003201486A JP 2003201486 A JP2003201486 A JP 2003201486A JP 2002277949 A JP2002277949 A JP 2002277949A JP 2002277949 A JP2002277949 A JP 2002277949A JP 2003201486 A JP2003201486 A JP 2003201486A
Authority
JP
Japan
Prior art keywords
water
gas
catalyst
gasification
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002277949A
Other languages
Japanese (ja)
Other versions
JP4304237B2 (en
Inventor
Takeshi Sako
猛 佐古
Izumi Okajima
いづみ 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2002277949A priority Critical patent/JP4304237B2/en
Publication of JP2003201486A publication Critical patent/JP2003201486A/en
Application granted granted Critical
Publication of JP4304237B2 publication Critical patent/JP4304237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently and easily gasifying an organic material. <P>SOLUTION: This method for gasifying the organic material is to contact the organic material with subcritical water or super critical water in the presence of a catalyst comprising hydrogen-activating metals and/or a catalyst comprising alkaline materials. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機物を水素を含
む有用ガスに変換させる有機物のガス化方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for gasifying an organic substance which converts the organic substance into a useful gas containing hydrogen.

【0002】[0002]

【従来の技術】廃自動車、廃家電製品および廃電線など
の処理工程から排出されるシュレッダーダストなどのプ
ラスチック混合廃棄物、あるいは臭素化難燃プラスチッ
クなどは、塩素や臭素などのハロゲン原子を含んでいる
ために、焼却処理過程でダイオキシン類の生成が懸念さ
れることから、現在は大部分が埋立処理されている。ま
た、ガラス繊維強化プラスチックや水酸化マグネシウム
などを含有する廃プラスチックは、焼却時に炉壁をいた
めたりするために、同様に埋立処理されている。しか
し、近年、埋立地の確保が難しくなってきており、ま
た、確保できたとしても、周囲の環境悪化を招く恐れが
あるために、難処理廃プラスチックの安全で経済的な処
理方法の碓立が急務とされている。これまでに廃プラス
チックの様々なリサイクル法が検討されているが、ハロ
ゲン原子を含んだプラスチックやガラス繊維などの添加
物を含有するプラスチックおよびプラスチック混合廃棄
物の経済的なリサイクル技術に関するものはほとんどな
い。
2. Description of the Related Art Plastic mixed waste such as shredder dust or brominated flame-retardant plastic discharged from the processing process of waste automobiles, waste home electric appliances and waste electric wires, etc., contains halogen atoms such as chlorine and bromine. Therefore, most of them are currently landfilled because there is a concern that dioxins will be produced during the incineration process. Further, glass fiber reinforced plastics and waste plastics containing magnesium hydroxide and the like are similarly landfilled in order to damage the furnace wall during incineration. However, in recent years, it has become difficult to secure landfill sites, and even if they can be secured, there is a risk of deteriorating the surrounding environment. Therefore, a safe and economical treatment method for difficult-to-process waste plastic has been established. Is urgently needed. Various recycling methods for waste plastics have been studied so far, but there are few related to economical recycling technology for plastics containing halogen atoms, plastics containing additives such as glass fiber, and plastic mixed wastes. .

【0003】プラスチック等の有機物質のガス化に関し
ては、すでにいくつかの関連特許がある。特開2001
−19402号公報(特許文献1)では、超臨界水に酸
化カルシウムや水酸化カルシウム等の二酸化炭素吸収剤
多量を加えて石炭やプラスチックから水素を製造する方
法が提案されている。しかし、この方法の場合、ガス化
反応で副生する二酸化炭素を除去するために多量の非水
溶性のCaOやCa(OH)等の二酸化炭素吸収剤を
反応系に加えるので、反応効率が悪くなる上、ガス化生
成物からその二酸化炭素吸収剤を高純度で分離回収し、
再使用することに大きな困難を生じる等の問題がある。
また、特開2000−239672号公報(特許文献
2)では、石炭等の炭素資源のガス化を3段階の反応で
行う方法が記載されているが、この方法の場合、装置コ
ストが高くなる等の問題を含むものであった。
There are already some related patents relating to the gasification of organic substances such as plastics. JP 2001
Japanese Patent Laid-Open No. 19402 (Patent Document 1) proposes a method of producing hydrogen from coal or plastic by adding a large amount of a carbon dioxide absorbent such as calcium oxide or calcium hydroxide to supercritical water. However, in the case of this method, a large amount of carbon dioxide absorbent such as CaO or Ca (OH) 2 which is insoluble in water is added to the reaction system in order to remove carbon dioxide produced as a by-product in the gasification reaction, so that the reaction efficiency is improved. Besides worsening, the carbon dioxide absorbent is separated and collected with high purity from the gasification product,
There is a problem that it causes great difficulty in reuse.
Further, Japanese Patent Application Laid-Open No. 2000-239672 (Patent Document 2) describes a method of gasifying a carbon resource such as coal by a three-step reaction, but in the case of this method, the apparatus cost becomes high, etc. It included the problem of.

【0004】[0004]

【特許文献1】特開2001−19402号公報[Patent Document 1] Japanese Patent Laid-Open No. 2001-19402

【特許文献2】特開2000−239672号公報[Patent Document 2] Japanese Patent Laid-Open No. 2000-239672

【0005】[0005]

【発明が解決しようとする課題】本発明は、プラスチッ
クや食品廃棄物等の有機物を効率よくかつ簡易にガス化
させる方法を提供することをその課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for efficiently and easily gasifying organic substances such as plastics and food wastes.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、以下に示す有機物の
ガス化方法が提供される。 (1)有機物を、水素活性化金属からなる金属触媒及び
/又は水溶性アルカリ性物質からなるアルカリ触媒の存
在下において、亜臨界水又は超臨界水と接触させること
を特徴とする有機物のガス化方法。 (2)有機物と水を含む被処理原料を、1.5〜50M
Paの条件下で200〜500℃の温度に加熱して可溶
化させた後、水素活性化金属からなる金属触媒及び/又
は水溶性アルカリ性物質からなるアルカリ触媒の存在下
において、超臨界水と接触させることを特徴とする有機
物のガス化方法。 (3)有機物と水を含む被処理原料をガス化する方法に
おいて、(i)該被処理原料を、1.5〜50MPaの
条件下で200〜500℃の温度に加熱して可溶化させ
る可溶化工程、(ii)該可溶化物を水溶性アルカリ性
物質からなるアルカリ触媒の存在下で亜臨界水又は超臨
界水と接触させる有機物のガス化工程、(iii)該ガ
ス化工程で得られたガス化生成物を冷却し、減圧した
後、気液分離する気液分離工程、(iv)該気液分離工
程で得られたガスを、少なくとも水素とメタンと二酸化
炭素とに分離するガス分離工程、(v)該気液分離工程
で得られた液体を、固液分離する固液分離工程、を包含
することを特徴とする有機物のガス化方法。 (4)該超臨界水が該アルカリ触媒を含む前記(1)〜
(3)のいずれかに記載の方法。 (5)該有機物が、プラスチックである前記(1)〜
(4)のいずれかに記載の方法。 (6)該有機物が、食品廃棄物である前記(1)〜
(4)のいずれかに記載の方法。 (7)該有機物が、家畜糞尿である前記(1)〜(4)
のいずれかに記載の方法。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, the following gasification method of an organic substance is provided. (1) A method for gasifying an organic matter, which comprises contacting an organic matter with subcritical water or supercritical water in the presence of a metal catalyst made of a hydrogen-activated metal and / or an alkali catalyst made of a water-soluble alkaline substance. . (2) A raw material containing an organic substance and water is added in an amount of 1.5 to 50M.
After being heated to a temperature of 200 to 500 ° C. under the condition of Pa to be solubilized, it is contacted with supercritical water in the presence of a metal catalyst composed of a hydrogen activated metal and / or an alkali catalyst composed of a water-soluble alkaline substance. A method for gasifying an organic substance, which comprises: (3) In a method of gasifying a raw material to be treated containing an organic substance and water, (i) the raw material to be treated can be heated to a temperature of 200 to 500 ° C. under the condition of 1.5 to 50 MPa to be solubilized. A solubilization step, (ii) a gasification step of an organic matter in which the solubilized product is contacted with subcritical water or supercritical water in the presence of an alkali catalyst composed of a water-soluble alkaline substance, and (iii) obtained in the gasification step A gas-liquid separation step of cooling the gasification product and depressurizing it, followed by gas-liquid separation; (iv) a gas separation step of separating the gas obtained in the gas-liquid separation step into at least hydrogen, methane and carbon dioxide. And (v) a solid-liquid separation step in which the liquid obtained in the gas-liquid separation step is solid-liquid separated. (4) The above (1) to which the supercritical water contains the alkali catalyst.
The method according to any one of (3). (5) The organic substance is a plastic (1) to
The method according to any one of (4). (6) The above-mentioned (1) to which the organic matter is food waste.
The method according to any one of (4). (7) The organic matter is livestock manure (1) to (4)
The method described in any one of.

【0007】[0007]

【発明の実施の形態】本発明の有機物には、常温で固体
状を示す各種の有機物が包含される。このような有機物
には、低分子有機化合物、高分子有機化合物(プラスチ
ック、ゴム、多糖類等)、有機廃棄物(家畜糞尿、バガ
ス、下水汚染の他、生ごみやビール粕、酒粕、しょう油
粕、しょうちゅう粕等の食品廃棄物等)等が挙げられ
る。有機物の形状は、粉末や塊状等の各種の形状である
ことができ、特に制約されない。
BEST MODE FOR CARRYING OUT THE INVENTION The organic substance of the present invention includes various organic substances which are solid at room temperature. Such organic substances include low molecular weight organic compounds, high molecular weight organic compounds (plastics, rubber, polysaccharides, etc.), organic wastes (livestock manure, bagasse, sewage pollution), garbage, beer lees, sake lees, soy sauce lees. , Food waste such as soy sauce cake). The shape of the organic substance can be various shapes such as powder and lump, and is not particularly limited.

【0008】プラスチック(樹脂)としては、従来公知
の各種のものが挙げられる。このようなものには、ポリ
オレフィン系樹脂、スチレン系樹脂、ABS樹脂、エチ
レン/酢酸ビニル共重合体、フェノキシ樹脂、ポリアセ
タール樹脂、ポリアミド、ポリエステル、熱可塑性ポリ
イミド、ポリエーテルイミド、ポリエーテルエーテルケ
トン、ポリカーボネート、ポリサルホン、ポリフェニレ
ンエーテル等の熱可塑性樹脂やエポキシ樹脂、グアナミ
ン樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和
ポリエステル樹脂、ポリイミド、ポリウレタン、ユリア
樹脂等の熱硬化性樹脂、さらに、セルロースや蛋白質な
どの天然高分子が包含される。これらのプラスチック
は、難燃化剤や充填剤等の各種の添加剤を含有するもの
であることができる。本発明で用いるプラスチックは、
好ましくは、廃棄プラスチックである。プラスチック
は、粉体の他、フィルム、板体、容器等の成形物である
ことができる。成形物の場合、これを粉砕して粉砕物の
形状で被処理原料として用いることができる。その寸法
はできるだけ小さい寸法であることが望ましいが、通
常、20mm以下、好ましくは10mm以下である。そ
の下限値は、特に制約されないが、通常、2mm程度で
ある。
Examples of plastics (resins) include various conventionally known ones. Such materials include polyolefin resins, styrene resins, ABS resins, ethylene / vinyl acetate copolymers, phenoxy resins, polyacetal resins, polyamides, polyesters, thermoplastic polyimides, polyetherimides, polyetheretherketones, polycarbonates. Thermoplastic resins such as polysulfone and polyphenylene ether, epoxy resins, guanamine resins, vinyl ester resins, phenolic resins, unsaturated polyester resins, polyimides, polyurethanes, urea resins, and other natural resins such as cellulose and proteins. Macromolecules are included. These plastics can contain various additives such as flame retardants and fillers. The plastic used in the present invention is
Preference is given to waste plastic. The plastic may be a powder, a molded product such as a film, a plate, or a container. In the case of a molded product, it can be crushed and used as a raw material in the form of a crushed product. It is desirable that the size be as small as possible, but it is usually 20 mm or less, preferably 10 mm or less. The lower limit value is not particularly limited, but is usually about 2 mm.

【0009】本発明においては、被処理原料として用い
る有機物を、水素活性化金属からなる金属触媒及び/又
は水溶性アルカリ性物質からなるアルカリ触媒の存在下
において、亜臨界水又は超臨界水と接触させる。本発明
で用いる水素化活性金属(触媒金属)としては、従来公
知の各種の遷移金属が用いられる。このようなものに
は、Cu、Ti、V、Cr、Mo、W、Mn、Fe、C
o、Ni、Pt、Pd、Ir、Rh、Re等の金属が包
含される。本発明では、特に、8族金属を好ましく用い
ることができる。本発明で用いる触媒金属はそれ単独で
用いることも可能であるが、通常は、担体に担持させた
担持触媒として用いられる。担体としては、シリカ、ア
ルミナ、シリカ−アルミナ、チタニア、マグネシア等の
金属酸化物の他、ゼオライト、セピオライト、粘土等の
多孔性無機物を挙げることができる。担体に担持させる
方法としては、含浸法等の従来公知の各種の方法を用い
ることができる。担体に触媒金属を担持させた触媒にお
いて、その触媒金属の含有量は、全触媒中、5〜70重
量%、好ましくは10〜30重量%である。触媒金属の
形態は、金属状態の他、酸化物や硫化物等であることが
できる。触媒の寸法は、0.2〜3mm、好ましくは
0.5〜1mmである。
In the present invention, an organic substance used as a raw material to be treated is brought into contact with subcritical water or supercritical water in the presence of a metal catalyst composed of a hydrogen-activated metal and / or an alkali catalyst composed of a water-soluble alkaline substance. . As the hydrogenation active metal (catalyst metal) used in the present invention, various conventionally known transition metals are used. These include Cu, Ti, V, Cr, Mo, W, Mn, Fe, C
Metals such as o, Ni, Pt, Pd, Ir, Rh and Re are included. In the present invention, a Group 8 metal can be particularly preferably used. The catalyst metal used in the present invention can be used alone, but it is usually used as a supported catalyst supported on a carrier. Examples of the carrier include metal oxides such as silica, alumina, silica-alumina, titania and magnesia, as well as porous inorganic substances such as zeolite, sepiolite and clay. As a method for supporting the carrier, various conventionally known methods such as an impregnation method can be used. In the catalyst in which the catalyst metal is supported on the carrier, the content of the catalyst metal is 5 to 70% by weight, preferably 10 to 30% by weight based on the whole catalyst. The form of the catalytic metal may be an oxide, a sulfide, or the like, in addition to the metallic state. The dimensions of the catalyst are 0.2 to 3 mm, preferably 0.5 to 1 mm.

【0010】本発明で用いる水溶性アルカリ性物質から
なるアルカリ触媒において、該アルカリ性物質には、N
aOH、NaCO、NaHCO、KOH、K
、KHCO等を挙げることができる。本発明で
は、このアルカリ触媒は、前記金属触媒と併用すること
ができる。
In the alkaline catalyst comprising a water-soluble alkaline substance used in the present invention, the alkaline substance is N
aOH, Na 2 CO 3 , NaHCO 3 , KOH, K 2 C
O 3 , KHCO 3 and the like can be mentioned. In the present invention, this alkali catalyst can be used in combination with the metal catalyst.

【0011】本発明においては、有機物は、水素を含む
ガスに変換される。この場合のガス化反応を示すと、以
下の通りである。 CmHn + mH2O → mCO + (n/2+m)H2 (1) CO + H2O → CO2 + H2 (2) CO + 3H2O → CH4 + H2O (3)
In the present invention, organic substances are converted into a gas containing hydrogen. The gasification reaction in this case is as follows. CmHn + mH 2 O → mCO + (n / 2 + m) H 2 (1) CO + H 2 O → CO 2 + H 2 (2) CO + 3H 2 O → CH 4 + H 2 O (3)

【0012】亜臨界水又は超臨界水の使用割合は、有機
物100重量部(乾燥物基準、以下同じ)当り、300
〜5000重量部、好ましくは500〜2000重量部
である。触媒の使用割合は、水素化活性金属からなる金
属触媒の場合、触媒金属量で、有機物100重量部当
り、5〜100重量部、好ましくは10〜60重量部で
ある。アルカリ触媒の場合、有機物100重量部当り、
5〜100重量部、好ましくは10〜80重量部であ
る。
The ratio of subcritical water or supercritical water used is 300 per 100 parts by weight of organic matter (dry matter basis, the same applies hereinafter).
To 5000 parts by weight, preferably 500 to 2000 parts by weight. In the case of a metal catalyst composed of a hydrogenation active metal, the catalyst is used in an amount of 5 to 100 parts by weight, preferably 10 to 60 parts by weight, based on 100 parts by weight of the organic substance, in the case of a metal catalyst comprising a hydrogenation active metal. In the case of alkaline catalyst, per 100 parts by weight of organic matter,
It is 5 to 100 parts by weight, preferably 10 to 80 parts by weight.

【0013】本発明のガス化反応温度は400〜100
0℃、好ましくは500〜800℃、反応圧力は水の亜
臨界圧力以上(5MPa以上)、特に超臨界圧力以上
(22.1MPa以上)である。その上限値は50MP
a、好ましくは40MPaである。本発明では、反応圧
力は、一般的には、5〜50MPa、好ましくは10〜
40MPaである。反応時聞は1分〜120分、好まし
くは10分〜30分である。本発明によれば、有機物は
熱分解し、さらに亜臨界水又は超臨界水と反応して水
素、メタン、二酸化炭素を主成分とするガスを生成す
る。本発明では、この時水素とメタンの生成比を制御す
ることが可能である。水素の生成割合を上げるために
は、反応温度が高いほど、また、水/有機物の仕込比が
大きいほど有利である。また、本発明では分解・ガス化
溶媒として亜臨界水又は超臨界水を使用しているので、
反応時に有害なダイオキシン類が副生することを完全に
抑制できる。生成ガスとして、水素、二酸化炭素の他、
メタンなどの低級炭化水素などからなる混合ガスが得ら
れる。この混合ガスは、これをアルカリ溶液中に流通す
ることにより、二酸化炭素を吸収・除去し、水素、メタ
ンなどの燃料あるいは化学原料として有用なガスを主成
分とする混合ガスを得ることができる。
The gasification reaction temperature of the present invention is 400 to 100.
The reaction pressure is 0 ° C., preferably 500 to 800 ° C., and the reaction pressure is not less than the subcritical pressure of water (5 MPa or more), particularly not less than the supercritical pressure (22.1 MPa or more). The upper limit is 50MP
a, preferably 40 MPa. In the present invention, the reaction pressure is generally 5 to 50 MPa, preferably 10 to
It is 40 MPa. The reaction time is 1 minute to 120 minutes, preferably 10 minutes to 30 minutes. According to the present invention, an organic substance is thermally decomposed and further reacts with subcritical water or supercritical water to generate a gas containing hydrogen, methane, and carbon dioxide as main components. In the present invention, it is possible to control the production ratio of hydrogen and methane at this time. In order to increase the production rate of hydrogen, it is advantageous that the reaction temperature is high and the feed ratio of water / organic material is high. Further, in the present invention, since subcritical water or supercritical water is used as the decomposition / gasification solvent,
It is possible to completely suppress by-products of harmful dioxins during the reaction. In addition to hydrogen and carbon dioxide,
A mixed gas composed of lower hydrocarbons such as methane can be obtained. By circulating this mixed gas in an alkaline solution, carbon dioxide is absorbed and removed, and a mixed gas containing a gas useful as a fuel such as hydrogen and methane or a chemical raw material as a main component can be obtained.

【0014】本発明を実施する場合、亜臨界水又は超臨
界水中には、有機物の分解を促進させるために、酸化剤
を含有させることができる。酸化剤としては、空気、酸
素、過酸化水素、オゾン等が挙げられる。酸化剤の使用
量は、有機物(乾燥物)100重量部当り、5〜100
重量部、好ましくは10〜50重量部である。酸化剤と
して空気又は酸素を用いる場合、その反応器における酸
素分圧は、1〜20MPa、好ましくは1〜10MPa
である。
When the present invention is carried out, subcritical water or supercritical water may contain an oxidizing agent in order to accelerate the decomposition of organic substances. Examples of the oxidizing agent include air, oxygen, hydrogen peroxide, ozone and the like. The amount of the oxidizing agent used is 5 to 100 per 100 parts by weight of the organic matter (dry matter).
Parts by weight, preferably 10 to 50 parts by weight. When air or oxygen is used as the oxidant, the oxygen partial pressure in the reactor is 1 to 20 MPa, preferably 1 to 10 MPa.
Is.

【0015】本発明により有機物のガス化を行う場合、
有機物は、これをあらかじめ亜臨界水〜超臨界水条件に
保持して可溶化した後、亜臨界水又は超臨界水に接触さ
せるのが好ましい。この場合、有機物の可溶化は、具体
的には、有機物を水の存在下で1.5〜50MPa、好
ましくは3〜30MPaの圧力下で200〜500℃、
好ましくは300〜400℃に加熱することにより実施
することができる。水の使用割合は、有機物100重量
部当り、100〜5000重量部、好ましくは200〜
2000重量部の割合である。また、その水には、触
媒、好ましくはアルカリ触媒を含有させるのが好まし
い。
When gasifying an organic substance according to the present invention,
It is preferable that the organic substance is contacted with subcritical water or supercritical water after being preliminarily held under subcritical water to supercritical water conditions to be solubilized. In this case, the solubilization of the organic substance is specifically carried out at 200 to 500 ° C. under the pressure of 1.5 to 50 MPa, preferably 3 to 30 MPa in the presence of water.
It can be preferably carried out by heating to 300 to 400 ° C. The amount of water used is 100 to 5,000 parts by weight, preferably 200 to 5,000 parts by weight, per 100 parts by weight of organic matter.
The ratio is 2000 parts by weight. It is also preferable that the water contains a catalyst, preferably an alkali catalyst.

【0016】次に、本発明の実施態様について図面を参
照しながら説明する。図1は、本発明を実施する場合の
フローシートの1つの例を示す。このフローシートに従
って有機物をガス化するには、被処理原料である有機物
(廃プラスチック等)は、前処理装置1において、脱ハ
ロゲン処理される。この脱ハロゲン処理は、従来公知の
方法により実施することができる。例えば、被処理原料
を、大気圧下、温度100〜450℃、好ましくは20
0〜400℃程度に加熱する。これにより、有機物中に
含まれたハロゲン(塩素、臭素等)は、ハロゲン化水素
として除去される。被処理原料がハロゲン含有量の少な
いものである場合には、この前処理装置1は必要とされ
ない。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows one example of a flow sheet for implementing the present invention. In order to gasify the organic matter according to this flow sheet, the organic matter (waste plastic etc.) as the raw material to be treated is dehalogenated in the pretreatment apparatus 1. This dehalogenation treatment can be carried out by a conventionally known method. For example, the raw material to be treated is heated to a temperature of 100 to 450 ° C., preferably 20 at atmospheric pressure.
Heat to about 0 to 400 ° C. As a result, the halogen (chlorine, bromine, etc.) contained in the organic substance is removed as hydrogen halide. When the raw material to be treated has a low halogen content, the pretreatment device 1 is not required.

【0017】ハロゲンの除去された有機物は、亜臨界水
又は超臨界水ガス化槽2において、ガス化される。この
ガス化槽2においては、水はその超臨界条件に保持され
ており、この亜臨界水又は超臨界水中には、触媒が含ま
れている。このガス化槽2でプラスチックのガス化によ
り生成したガスは、ガス分離塔3に導入される。このガ
ス分離塔3は、CO2を選択的に分離する分離膜を有す
る分離装置であることができる。このガス分離塔3にお
いては、水素やメタンからなるガスと、CO2とが分離
される。
The halogen-free organic matter is gasified in the subcritical water or supercritical water gasification tank 2. In this gasification tank 2, water is kept under its supercritical conditions, and the subcritical water or supercritical water contains a catalyst. The gas generated by gasification of plastic in the gasification tank 2 is introduced into the gas separation tower 3. The gas separation column 3 can be a separation device having a separation membrane that selectively separates CO 2 . In this gas separation tower 3, a gas composed of hydrogen or methane is separated from CO 2 .

【0018】ガス分離塔3は、CO2吸収剤を充填した
充填塔であることができる。CO2吸収剤としては、酸
化カルシウムや、水酸化カルシウム、酸化マグネシウ
ム、水酸化マグネシウム、シリカ/アルミナ等が挙げら
れる。
The gas separation column 3 can be a packed column filled with a CO 2 absorbent. Examples of the CO 2 absorbent include calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, silica / alumina and the like.

【0019】亜臨界水又は超臨界水ガス化槽2において
は、ガス化されなかった残渣(金属、ガラス等)が排出
される。またこのガス化槽2においては、槽内の水を亜
臨界又は超臨界圧以上に保持するために、その槽内の水
の一部を抜出し、高圧ポンプにより加圧してガス化槽2
に圧入させる。
In the subcritical water or supercritical water gasification tank 2, the ungasified residue (metal, glass, etc.) is discharged. Further, in this gasification tank 2, in order to maintain the water in the tank at a subcritical or supercritical pressure or higher, a part of the water in the tank is extracted and pressurized by a high-pressure pump to be gasified in the gasification tank 2
Press into.

【0020】本発明によると、有機物を、水素、メタ
ン、CO2等のガスに分解させることができる。プラス
チック中に窒素原子が存在する場合には、窒素ガスやア
ンモニアガスが副生する。
According to the present invention, organic substances can be decomposed into gases such as hydrogen, methane and CO 2 . When nitrogen atoms are present in the plastic, nitrogen gas and ammonia gas are by-produced.

【0021】被処理原料がハロゲンを含有する場合に
は、ガス化槽2の亜臨界水又は超臨界水には、水溶性ア
ルカリ(NaOH、Na2CO、NaHCO等)を
あらかじめ添加しておき、ハロゲンをこのアルカリと反
応させることによって除去することができる。この場合
には、前処理装置1を省略することが可能である。
When the raw material to be treated contains halogen, water-soluble alkali (NaOH, Na 2 CO 3 , NaHCO 3, etc.) is added to the subcritical water or supercritical water in the gasification tank 2 in advance. The halogen can then be removed by reacting with this alkali. In this case, the pretreatment device 1 can be omitted.

【0022】次に、本発明を実施する場合のフローシー
トの他の例を図2に示す。図2に示されたフローシート
に従って有機物を連続ガス化するには、アルカリ触媒を
含む水をそのタンク11からライン31及びポンプ1
5、ライン34、ライン35を通って亜臨界水又は超臨
界水ガス化槽17に導入し、亜臨界又は超臨界条件に保
持する。また、水とアルカリ触媒を含む有機物を、タン
ク12からライン32、亜〜超臨界水可溶化槽13に導
入させ、ここで有機物を可溶化させた後、ライン33、
ポンプ16及びライン35を通って、超臨界ガス化槽1
7に導入する。亜臨界水又は超臨界水は、ガス化槽17
で作ってもよいが、あらかじめ別の装置で作り、これを
ガス化槽17に導入することもできる。
Next, FIG. 2 shows another example of the flow sheet for carrying out the present invention. In order to continuously gasify the organic matter according to the flow sheet shown in FIG. 2, water containing an alkali catalyst is fed from the tank 11 to the line 31 and the pump 1.
5, introduced into the subcritical water or supercritical water gasification tank 17 through the line 34 and the line 35, and maintained under the subcritical or supercritical conditions. In addition, an organic substance containing water and an alkali catalyst is introduced from the tank 12 into the line 32 and the sub-supercritical water solubilization tank 13, where the organic substance is solubilized, and then the line 33,
Through the pump 16 and the line 35, the supercritical gasification tank 1
Introduce to 7. Subcritical water or supercritical water is used in the gasification tank 17
Alternatively, it may be prepared in advance by another device and introduced into the gasification tank 17.

【0023】亜臨界水又は超臨界水ガス化槽において
は、有機物と亜臨界水又は超臨界水とが触媒の存在下で
触媒反応して、有機物はガス化される。
In the subcritical water or supercritical water gasification tank, the organic matter and the subcritical water or supercritical water undergo a catalytic reaction in the presence of a catalyst to gasify the organic matter.

【0024】この有機物のガス化生成物は、触媒ととも
に、ライン36を通ってガス化槽17から排出させ、冷
却器18、ライン37を通り、さらに背圧弁19を通っ
て減圧されて気液分離器20に導入する。
This organic gasification product is discharged from the gasification tank 17 through the line 36 together with the catalyst, passes through the cooler 18 and the line 37, and is further decompressed through the back pressure valve 19 to separate gas and liquid. It is introduced into the container 20.

【0025】気液分離器20で分離されたガス(気体)
は、これをガス分離塔21に送り、ここで、水素、メタ
ン及び二酸化炭素(CO)に分離する。一方、気液分
離器20で分離された液体は、ライン39を通って固液
分離器22送り、ここでアルカリ触媒を含む水と残渣と
に分離する。触媒を含む水は、タンク11に送り、再利
用する。
Gas separated by the gas-liquid separator 20
Sends it to the gas separation column 21 where it is separated into hydrogen, methane and carbon dioxide (CO 2 ). On the other hand, the liquid separated by the gas-liquid separator 20 is sent through the line 39 to the solid-liquid separator 22, where it is separated into water containing an alkali catalyst and a residue. The water containing the catalyst is sent to the tank 11 for reuse.

【0026】前記可溶化槽13においては、可溶化しな
いものを残渣として分離する。このような残渣には、金
属、ガラス、砂等が包含される。
In the solubilization tank 13, those which are not solubilized are separated as a residue. Such residues include metals, glass, sand and the like.

【0027】気液分離器20において、その温度は、2
0〜100℃、好ましくは25〜60℃であり、その圧
力は0.1〜10MPa、好ましくは0.1〜8MPa
である。
In the gas-liquid separator 20, the temperature is 2
The pressure is 0 to 100 ° C, preferably 25 to 60 ° C, and the pressure is 0.1 to 10 MPa, preferably 0.1 to 8 MPa.
Is.

【0028】亜臨界水又は超臨界水ガス化槽17におい
て、その温度は400〜1000℃、好ましくは500
〜800℃であり、その圧力は5〜50MPa、好まし
くは10〜40MPaである。
In the subcritical water or supercritical water gasification tank 17, the temperature is 400 to 1000 ° C., preferably 500.
˜800 ° C., and the pressure is 5˜50 MPa, preferably 10˜40 MPa.

【0029】亜〜超臨界水可溶化槽13において、その
温度は200〜500℃、その圧力は1.5〜50MP
aである。
In the sub-supercritical water solubilization tank 13, the temperature is 200 to 500 ° C. and the pressure is 1.5 to 50 MP.
a.

【0030】[0030]

【実施例】以下に、実施例により本発明を詳細に説明す
る。なお、以下の実施例では、廃自動車の処理工程から
排出されたシュレッダーダスト、及びその主要構成成分
であるポリエチレンと、前処理により脱塩化水素したポ
リ塩化ビニル(ポリエンと呼ぶ)等の有機物を使用し
た。
EXAMPLES The present invention will be described in detail below with reference to examples. In the following examples, shredder dust discharged from the treatment process of an abandoned automobile, polyethylene as its main component, and polyvinyl chloride dehydrochlorinated by pretreatment (called polyene) are used. did.

【0031】実施例1 ポリエチレン0.05gとニッケル系触媒0.01gを
分解・ガス化反応器に充填し、650℃、30MPaの
超臨界水によりポリエチレンを分解・ガス化した。この
時の反応時間は10分又は30分だった。実験結果を表
1のNo.1、No.2に示す。表1からわかるよう
に、ポリエチレンを超臨界水で処理すると100%分解
し、水素、メタン、二酸化炭素が主成分の混合ガスが得
られること、反応時間が10分の場合でもポリエチレン
は100%分解し、ガスの生成量と組成は30分の場合
とほぼ同じことから、短時間に完全にガス化することが
わかった。
Example 1 0.05 g of polyethylene and 0.01 g of nickel-based catalyst were charged into a decomposition / gasification reactor, and polyethylene was decomposed / gasified with supercritical water at 650 ° C. and 30 MPa. The reaction time at this time was 10 minutes or 30 minutes. The experimental results are shown in Table 1. 1, No. 2 shows. As can be seen from Table 1, when polyethylene is treated with supercritical water, 100% is decomposed and a mixed gas containing hydrogen, methane and carbon dioxide as main components is obtained. Even when the reaction time is 10 minutes, polyethylene is 100% decomposed. However, it was found that the gas was completely gasified in a short time because the amount of gas produced and the composition were almost the same as in the case of 30 minutes.

【0032】[0032]

【表1】 [Table 1]

【0033】実施例2 前処理により脱塩化水素処理を行ったポリエン0.05
gとニッケル系触媒又はアルカリ触媒(NaCO
0〜0.05gを分解・ガス化反応器に充填し、650
℃、30MPaの超臨界水によりガス化反応を行った。
この時の反応時間は30分だった。実験結果を表2のN
o.3〜No.7に示す。No.3に示すように、触媒
を添加しないと分解率は35%とかなり低く、ガス生成
量も250ml/g−樹脂と少なかったが、触媒を加え
ると分解・ガス化が促進され、触媒量の増加とともに分
解率・ガス生成量が増加した。また、触媒量が増加する
と、生成ガス中の水素と二酸化炭素の生成量は増加した
が、メタンの量は横ばいだった。
Example 2 Polyene 0.05 dehydrochlorinated by pretreatment
g and nickel catalyst or alkali catalyst (Na 2 CO 3 ).
Charge 0 to 0.05 g into the decomposition / gasification reactor and set it to 650
The gasification reaction was performed with supercritical water at 30 ° C. and 30 MPa.
The reaction time at this time was 30 minutes. The experimental results are shown in N of Table 2.
o. 3 to No. 7 shows. No. As shown in 3, the decomposition rate was 35% and the gas production amount was as low as 250 ml / g-resin without adding the catalyst, but when the catalyst was added, decomposition / gasification was promoted and the catalyst amount increased. At the same time, the decomposition rate and gas production increased. Moreover, as the amount of catalyst increased, the amounts of hydrogen and carbon dioxide produced in the produced gas increased, but the amount of methane remained unchanged.

【0034】実施例3 ポリエン0.05gとアルカリ触媒の炭酸ナトリウム
0.02gを分解・ガス化反応器に充填し、650℃、
30MPaの超臨界水によりガス化反応を行った。この
時の反応時間は30分だった。実験結果を表2のNo.
8に示す。ポリエンに対して同じ重量分率のニッケル触
媒を加えた時と比較して、分解率は少し低い程度だった
が、水素、メタン、二酸化炭素の生成量は大幅に減少し
た。これは低分子化の程度が小さいためにかなりの量の
分解生成物が水溶性オリゴマーとして水中に残存し、ガ
ス化されなかったためである。
Example 3 0.05 g of polyene and 0.02 g of sodium carbonate as an alkali catalyst were charged in a decomposition / gasification reactor at 650 ° C.
The gasification reaction was carried out with 30 MPa of supercritical water. The reaction time at this time was 30 minutes. The experimental results are shown in No. 2 of Table 2.
8 shows. Although the decomposition rate was a little lower than that when the same weight fraction of nickel catalyst was added to polyene, the production amount of hydrogen, methane and carbon dioxide was significantly reduced. This is because the degree of lowering the molecular weight was small, so that a considerable amount of decomposition products remained in the water as water-soluble oligomers and were not gasified.

【0035】[0035]

【表2】 [Table 2]

【0036】実施例4 前処理により構成ポリマー中のポリ塩化ビニルの脱塩化
水素を行ったシュレッダーダスト0.05gとニッケル
触楳0.01gを分解・ガス化反応器に充填し、650
〜800℃、30MPaの超臨界水によりガス化反応を
行った。この時の反応時間は30分だった。実験結果を
表3のNo.9、No.10に示す。No.9に示すよ
うに、650℃の時の樹脂分解率は77%とかなり高い
値が得られたが、単位樹脂重量当たりのガス生成量は少
なかった。これは、実施例3のNo.8と同様に、相当
量の分解生成物が水中に残存したためである。このため
に、反応温度を800℃まで上げて分解・ガス化を行っ
た。その時の結果をNo.10に示す。反応温度の上昇
により、プラスチックの低分子化・ガス化が促進され、
高い分解率とガス生成量が得られた。
Example 4 0.05 g of shredder dust obtained by dehydrochlorinating polyvinyl chloride in the constituent polymer by pretreatment and 0.01 g of nickel catalyst were charged in a decomposition / gasification reactor, and 650
The gasification reaction was performed with supercritical water at ˜800 ° C. and 30 MPa. The reaction time at this time was 30 minutes. The experimental results are shown in Table 3, No. 9, No. Shown in 10. No. As shown in FIG. 9, the resin decomposition rate at 650 ° C. was 77%, which was a very high value, but the gas generation amount per unit resin weight was small. This is No. 3 of the third embodiment. This is because, as in No. 8, a considerable amount of decomposition products remained in water. For this purpose, the reaction temperature was raised to 800 ° C. to decompose and gasify. The result at that time is No. Shown in 10. By increasing the reaction temperature, the low molecular weight and gasification of plastics are promoted,
High decomposition rate and gas production were obtained.

【0037】実施例5 シュレッダーダストの処理条件を緩和するために、酸化
剤を添加して分解・ガス化を行った。すなわち、脱塩素
化したシュレッダーダスト0.05gとニッケル触媒
0.01gを分解・ガス化反応器に充填し、酸化剤とし
て空気を混合して、超臨界水によりガス化反応を行っ
た。この時の反応温度は650℃、反応圧力は30MP
a、反応時間は30分だった。実験結果を表3のNo.
11に示す。酸化剤の添加により、シュレッダーダスト
中のプラスチックの部分酸化反応が起こり、後続するガ
ス化が大幅に促進された。その結果、No.10の80
0℃の時に匹敵するガス生成量が得られた。一方、酸化
剤により生成ガス中の一部の水素とメタンの酸化が起こ
った結果、これらのガスの生成割合は少し下がり、逆に
二酸化炭素の割合が増加した。
Example 5 In order to relax the processing conditions of shredder dust, an oxidizing agent was added for decomposition and gasification. That is, 0.05 g of dechlorinated shredder dust and 0.01 g of nickel catalyst were charged in a decomposition / gasification reactor, air was mixed as an oxidant, and a gasification reaction was performed with supercritical water. At this time, the reaction temperature is 650 ° C, the reaction pressure is 30MP
a, the reaction time was 30 minutes. The experimental results are shown in Table 3, No.
11 shows. The addition of the oxidant caused a partial oxidation reaction of the plastic in the shredder dust, which greatly promoted the subsequent gasification. As a result, No. 80 of 10
A comparable amount of gas production was obtained at 0 ° C. On the other hand, as a result of the oxidation of a part of hydrogen and methane in the produced gas by the oxidant, the production ratio of these gases decreased a little and conversely the carbon dioxide ratio increased.

【0038】[0038]

【表3】 [Table 3]

【0039】実施例6 ポリエンと各種触媒を分解・ガス化反応器に充填し、7
00℃、30MPaの超臨界水によりガス化を行った。
このときの反応時間は30分だった。実験結果を表4に
示す。水素生成量に関して、No.12のニッケル触媒
と比較して、ナトリウムイオンを含む触媒では、No.
13の水酸化ナトリウムの時に約80%、No.14と
15の炭酸塩、炭酸水素塩では約50%の水素が生成し
た。一方カリウムイオンを含む触媒では、No.16の
水酸化カリウムの時にはニッケル触媒を用いた時の約9
6%、No.17の炭酸塩では80%、No.18の炭
酸水素塩では70%の水素が得られた。
Example 6 Polyene and various catalysts were charged into a decomposition / gasification reactor, and
Gasification was performed with supercritical water at 00 ° C and 30 MPa.
The reaction time at this time was 30 minutes. The experimental results are shown in Table 4. Regarding the amount of hydrogen produced, No. In comparison with the nickel catalyst of No. 12, in the catalyst containing sodium ion, No.
Approximately 80% when using sodium hydroxide of No. 13, No. 13 About 50% of hydrogen was produced by the carbonates and hydrogen carbonates of 14 and 15. On the other hand, in the catalyst containing potassium ions, No. When using 16 potassium hydroxide, about 9 when using nickel catalyst
6%, No. 80% for the carbonate of No. 17, No. 17 Hydrogen carbonate of 18 yielded 70% hydrogen.

【0040】[0040]

【表4】 [Table 4]

【0041】実施例7 生ごみと各種触媒を分解・ガス化反応器に充填し、65
0℃、30MPaの超臨界水によりガス化を行った。こ
のときの反応時間は30分だった。実験結果を表5に示
す。No.19に示すようにニッケル触媒を用いた時が
水素生成量が最も多かった。またNo.20と23のよ
うなアルカリ触媒、No.21と24のような炭酸塩、
No.22と25のような炭酸水素塩を用いると、ニッ
ケル触媒の35〜77%の水素を発生した。
Example 7 The garbage and various catalysts were charged in a decomposition / gasification reactor, and 65
Gasification was performed with supercritical water at 0 ° C. and 30 MPa. The reaction time at this time was 30 minutes. The experimental results are shown in Table 5. No. As shown in 19, the hydrogen production was highest when the nickel catalyst was used. In addition, No. Alkaline catalysts such as 20 and 23, no. Carbonates like 21 and 24,
No. With hydrogen carbonates such as 22 and 25, 35 to 77% of the hydrogen of the nickel catalyst was generated.

【0042】[0042]

【表5】 [Table 5]

【0043】実施例8 図2に示す違続式超臨界水ガス化フローシートに従っ
て、触媒として安価なアルカリ、アルカリ炭酸塩又はア
ルカリ炭酸水素塩を用いて、ポリエチレンを超臨界水ガ
ス化した。可溶化槽13の温度は350℃、圧力は飽和
蒸気圧の16.5MPa、ガス化糟17の温度は700
℃、圧力は30MPa、滞留時間30分だった。可溶化
槽に仕込んだポリエチレンは100g、水は500g、
触媒は20g、可溶化槽からの可溶化ポリエチレン+水
+触媒混合液の供給速度は1.54g/分、超臨界水ガ
ス化糟上部からの追加用の水の供給速度は1ml/分だ
った。この時の生成ガス量を表6のNo.26〜No.
31に示す。表6からわかるように、ポリエチレンを分
解・ガス化すると水素、メタンを主成分とする混含ガス
が得られること、KOH、KCO、NaOHの場
合、ニッケル触蝶を用いた同一反応条件の水素生成量2
74ml/分に匹敵する水素が得られることがわかっ
た。
Example 8 According to the discontinuous supercritical water gasification flow sheet shown in FIG. 2, polyethylene was supercritical water gasified by using an inexpensive alkali, alkali carbonate or alkali hydrogen carbonate as a catalyst. The temperature of the solubilization tank 13 is 350 ° C., the pressure is 16.5 MPa of the saturated vapor pressure, and the temperature of the gasification tank 17 is 700.
The temperature was 30 ° C., the pressure was 30 MPa, and the residence time was 30 minutes. 100 g of polyethylene charged in the solubilization tank, 500 g of water,
The catalyst was 20 g, the supply rate of solubilized polyethylene + water + catalyst mixture from the solubilization tank was 1.54 g / min, and the additional water supply rate from the supercritical water gasifier was 1 ml / min. . The produced gas amount at this time is shown in No. 6 of Table 6. 26-No.
31. As can be seen from Table 6, when polyethylene is decomposed and gasified, a mixed gas containing hydrogen and methane as main components is obtained, and in the case of KOH, K 2 CO 3 and NaOH, the same reaction conditions using a nickel butterfly are used. Hydrogen production 2
It was found that a hydrogen equivalent to 74 ml / min was obtained.

【0044】[0044]

【表6】 [Table 6]

【0045】実施例9 図2に示す連続式式超臨界水ガスフローシートに従っ
て、触媒として水酸化カリウム又は水酸化ナトリウムを
用いてポリエチレンを超臨界水ガス化した。可溶化槽の
温度は350℃、圧力は飽和蒸気圧の16.5MPa、
ガス化糟の温度は700℃、圧力は30MPa、滞留時
間30分だった。可溶化槽に仕込んだポリエチレンは1
00g、水は500g、触媒は20〜100g、可溶化
槽からの可溶化ポリエチレン+水+触媒混合液の供給速
度は1.54g/分、超臨界水ガス化槽上部からの追加
用の水の供給速度は1ml/分だった。水素生成量に対
する触媒添加量の効果を表7のNo.32〜No.37
に示す。表7からわかるように、水酸化カリウム、水酸
化ナトリウムともに触媒量を増やすと水素生成量が大幅
に増加することがわかった。
Example 9 Polyethylene was supercritical water gasified using potassium hydroxide or sodium hydroxide as a catalyst according to the continuous type supercritical water gas flow sheet shown in FIG. The temperature of the solubilization tank is 350 ° C., the pressure is 16.5 MPa of the saturated vapor pressure,
The temperature of the gasifier was 700 ° C., the pressure was 30 MPa, and the residence time was 30 minutes. The polyethylene loaded in the solubilization tank is 1
00 g, water 500 g, catalyst 20 to 100 g, supply rate of solubilized polyethylene + water + catalyst mixed liquid from solubilization tank is 1.54 g / min, additional water from supercritical water gasification tank upper part The feed rate was 1 ml / min. The effect of the amount of catalyst added on the amount of hydrogen produced is shown in Table 7. 32-No. 37
Shown in. As can be seen from Table 7, it was found that the amount of hydrogen produced increased significantly when the catalyst amount was increased for both potassium hydroxide and sodium hydroxide.

【0046】[0046]

【表7】 [Table 7]

【0047】実施例10 図2に示す連続式超臨界水ガス化フローシートに従っ
て、触媒として水酸化カリウムを用いてシュレッダーダ
ストを超臨界水ガス化した。可溶化槽の温度は350
℃、圧力は飽和蒸気庄の16.5MPa、ガス化槽の温
度は700℃、圧力は30MPa、滞留時間は30分だ
った。可溶化槽に仕込んだシュレッダーダスストは10
0g、水は500g、触媒は100g、可溶化槽からの
可溶化シュレッダーダスト+水+触媒混合液の供給速度
は1.54g/分、超臨界水ガス化槽上部からの追加用
の水の供給速度は1ml/分だった。この時のガス生成
量は、シュレッダーダスト供給量0.256g/分に対
して水素212ml/分、メタン65ml/分、二酸化
炭素116ml/分、エタン9ml/分だった。
Example 10 Shredder dust was gasified into supercritical water by using potassium hydroxide as a catalyst according to the continuous supercritical water gasification flow sheet shown in FIG. The temperature of the solubilization tank is 350
C., the pressure was 16.5 MPa in saturated steam, the temperature in the gasification tank was 700.degree. C., the pressure was 30 MPa, and the residence time was 30 minutes. There are 10 shredder dusts in the solubilization tank.
0 g, water 500 g, catalyst 100 g, supply rate of solubilized shredder dust + water + catalyst mixture from solubilization tank is 1.54 g / min, additional water supply from supercritical water gasification tank upper part The speed was 1 ml / min. The gas production amount at this time was 212 ml / min of hydrogen, 65 ml / min of methane, 116 ml / min of carbon dioxide, and 9 ml / min of ethane with respect to the supplied amount of shredder dust of 0.256 g / min.

【0048】[0048]

【発明の効果】本発明によれば、有機物を水素を含むガ
スに効率よくかつ簡便に分解ガス化させることができ
る。
According to the present invention, an organic substance can be decomposed and gasified into a gas containing hydrogen efficiently and simply.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する場合のフローシートの1例を
示す。
FIG. 1 shows an example of a flow sheet for carrying out the present invention.

【図2】本発明を実施する場合のフローシートの他の例
を示す。
FIG. 2 shows another example of a flow sheet for carrying out the present invention.

【符号の説明】[Explanation of symbols]

[図1] 1 前処理装置 2 超臨界水ガス化槽 3 ガス分離塔 [図2] 13 亜〜臨界水可溶化槽 17 超臨界水ガス化槽 20 気液分離器 21 ガス分離塔 22 固液分離器 [Figure 1] 1 Pretreatment device 2 Supercritical water gasification tank 3 gas separation tower [Fig. 2] 13 Sub-critical water solubilization tank 17 Supercritical water gasification tank 20 gas-liquid separator 21 gas separation tower 22 Solid-liquid separator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08J 11/14 C01B 3/02 Z 11/16 C10L 3/00 ZABA // C01B 3/02 B09B 3/00 304Z Fターム(参考) 4D004 AA02 AA03 AA04 AA07 AA11 CA04 CA23 CA27 CA39 CC09 DA03 DA06 DA07 4D059 AA01 AA07 AA08 BC02 BF02 BK11 BK12 CC03 DA70 EA06 EA20 EB06 EB20 4F301 AA01 AA03 AA06 AA12 AA15 AA20 AA22 AA23 AA24 AA25 AA26 AA27 AA28 AA29 CA12 CA23 CA25 CA26 CA33 CA41 CA53 CA72 CA73 4G140 BA02 BB03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08J 11/14 C01B 3/02 Z 11/16 C10L 3/00 ZABA // C01B 3/02 B09B 3/00 304Z F-term (reference) 4D004 AA02 AA03 AA04 AA07 AA11 CA04 CA23 CA27 CA39 CC09 DA03 DA06 DA07 4D059 AA01 AA07 AA08 BC02 BF02 BK11 BK12 CC03 DA70 EA06 EA20 EB06 EB20 4F301 AA01 AA03 AA06 AA12 AA15 AA20 AA22 AA23 AA24 AA25 AA26 AA27 AA28 AA29 CA12 CA23 CA25 CA26 CA33 CA41 CA53 CA72 CA73 4G140 BA02 BB03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 有機物を、水素活性化金属からなる金属
触媒及び/又は水溶性アルカリ性物質からなるアルカリ
触媒の存在下において、亜臨界水又は超臨界水と接触さ
せることを特徴とする有機物のガス化方法。
1. A gas of an organic matter, which comprises contacting an organic matter with subcritical water or supercritical water in the presence of a metal catalyst comprising a hydrogen-activated metal and / or an alkali catalyst comprising a water-soluble alkaline substance. Method.
【請求項2】 有機物と水を含む被処理原料を、1.5
〜50MPaの条件下で200〜500℃の温度に加熱
して可溶化させた後、水素活性化金属からなる金属触媒
及び/又は水溶性アルカリ性物質からなるアルカリ触媒
の存在下において、超臨界水と接触させることを特徴と
する有機物のガス化方法。
2. A material to be treated containing an organic substance and water is added to 1.5
After being heated to a temperature of 200 to 500 ° C. under a condition of ˜50 MPa to be solubilized, it is treated with supercritical water in the presence of a metal catalyst composed of a hydrogen activated metal and / or an alkali catalyst composed of a water-soluble alkaline substance. A method for gasifying an organic substance, which comprises contacting.
【請求項3】 有機物と水を含む被処理原料をガス化す
る方法において、(i)該被処理原料を、1.5〜50
MPaの条件下で200〜500℃の温度に加熱して可
溶化させる可溶化工程、(ii)該可溶化物を水溶性ア
ルカリ性物質からなるアルカリ触媒の存在下で亜臨界水
又は超臨界水と接触させる有機物のガス化工程、(ii
i)該ガス化工程で得られたガス化生成物を冷却し、減
圧した後、気液分離する気液分離工程、(iv)該気液
分離工程で得られたガスを、少なくとも水素とメタンと
二酸化炭素とに分離するガス分離工程、(v)該気液分
離工程で得られた液体を、固液分離する固液分離工程、
を包含することを特徴とする有機物のガス化方法。
3. A method of gasifying a raw material to be treated containing an organic substance and water, wherein (i) the raw material to be treated is 1.5 to 50.
A solubilization step of solubilizing by heating to a temperature of 200 to 500 ° C. under a MPa condition; (ii) Subcritical water or supercritical water in the presence of an alkali catalyst composed of a water-soluble alkaline substance; Gasifying step of contacting organic matter, (ii
i) a gas-liquid separation step in which the gasification product obtained in the gasification step is cooled and decompressed, and then gas-liquid separation is performed, and (iv) the gas obtained in the gas-liquid separation step is at least hydrogen and methane. A gas separation step of separating into carbon dioxide and carbon dioxide, (v) a solid-liquid separation step of solid-liquid separating the liquid obtained in the gas-liquid separation step,
A method for gasifying an organic substance, comprising:
【請求項4】 該超臨界水が該アルカリ触媒を含む請求
項1〜3のいずれかに記載の方法。
4. The method according to claim 1, wherein the supercritical water contains the alkali catalyst.
【請求項5】 該有機物が、プラスチックである請求項
1〜4のいずれかに記載の方法。
5. The method according to claim 1, wherein the organic substance is plastic.
【請求項6】 該有機物が、食品廃棄物である請求項1
〜4のいずれかに記載の方法。
6. The organic matter is food waste.
The method according to any one of to 4.
【請求項7】 該有機物が、家畜糞尿である請求項1〜
4のいずれかに記載の方法。
7. The organic matter is livestock excrement according to claim 1.
4. The method according to any one of 4 above.
JP2002277949A 2001-09-21 2002-09-24 Gasification method of organic matter Expired - Lifetime JP4304237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277949A JP4304237B2 (en) 2001-09-21 2002-09-24 Gasification method of organic matter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-290003 2001-09-21
JP2001290003 2001-09-21
JP2002277949A JP4304237B2 (en) 2001-09-21 2002-09-24 Gasification method of organic matter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008260117A Division JP2009030071A (en) 2001-09-21 2008-10-06 Method for gasifying organic substance

Publications (2)

Publication Number Publication Date
JP2003201486A true JP2003201486A (en) 2003-07-18
JP4304237B2 JP4304237B2 (en) 2009-07-29

Family

ID=27666261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277949A Expired - Lifetime JP4304237B2 (en) 2001-09-21 2002-09-24 Gasification method of organic matter

Country Status (1)

Country Link
JP (1) JP4304237B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289796A (en) * 2004-03-09 2005-10-20 Japan Science & Technology Agency Method and apparatus for producing hydrogen
JP2006061852A (en) * 2004-08-27 2006-03-09 Ngk Insulators Ltd Method for recovering useful hydrocarbon from sludge
JP2008031081A (en) * 2006-07-28 2008-02-14 Tohoku Univ Method of oxidation
JP2009124983A (en) * 2007-11-22 2009-06-11 Nippon Steel Chem Co Ltd Method for producing liquid material from spent brewing malt
JP4814403B1 (en) * 2011-06-17 2011-11-16 民朗 金辺 Methane production equipment
JP2013511386A (en) * 2009-11-24 2013-04-04 株式会社北斗興業 Waste to energy conversion by hydrothermal decomposition and resource regeneration methods.
JP2014196415A (en) * 2013-03-29 2014-10-16 大阪瓦斯株式会社 Method of producing fuel gas
JP2015017197A (en) * 2013-07-11 2015-01-29 日曹エンジニアリング株式会社 Method for gasifying organic waste
CN107847991A (en) * 2015-04-13 2018-03-27 阿基米德有限责任公司 Equipment and correlation technique for Waste disposal
CN114479174A (en) * 2022-03-28 2022-05-13 广西丰林木业集团股份有限公司 Environment-friendly efficient degradation recycling method for waste cured urea-formaldehyde resin
JP2022542831A (en) * 2019-07-18 2022-10-07 エスシーダブリュー・システムズ・ベーフェー Methods of converting hydrocarbons to products

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030071A (en) * 2001-09-21 2009-02-12 National Univ Corp Shizuoka Univ Method for gasifying organic substance
KR102250826B1 (en) * 2019-09-20 2021-05-11 (주)골드앤스노우 월드와이드 Hydrogen gas generating composition and hydrogen gas trapping nanostructure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289796A (en) * 2004-03-09 2005-10-20 Japan Science & Technology Agency Method and apparatus for producing hydrogen
JP2006061852A (en) * 2004-08-27 2006-03-09 Ngk Insulators Ltd Method for recovering useful hydrocarbon from sludge
JP4522193B2 (en) * 2004-08-27 2010-08-11 メタウォーター株式会社 Method for recovering useful hydrocarbons from sludge
JP2008031081A (en) * 2006-07-28 2008-02-14 Tohoku Univ Method of oxidation
JP2009124983A (en) * 2007-11-22 2009-06-11 Nippon Steel Chem Co Ltd Method for producing liquid material from spent brewing malt
JP2013511386A (en) * 2009-11-24 2013-04-04 株式会社北斗興業 Waste to energy conversion by hydrothermal decomposition and resource regeneration methods.
JP2013001823A (en) * 2011-06-17 2013-01-07 Tamiaki Kanabe Apparatus for producing methane
JP4814403B1 (en) * 2011-06-17 2011-11-16 民朗 金辺 Methane production equipment
JP2014196415A (en) * 2013-03-29 2014-10-16 大阪瓦斯株式会社 Method of producing fuel gas
JP2015017197A (en) * 2013-07-11 2015-01-29 日曹エンジニアリング株式会社 Method for gasifying organic waste
CN107847991A (en) * 2015-04-13 2018-03-27 阿基米德有限责任公司 Equipment and correlation technique for Waste disposal
JP2022542831A (en) * 2019-07-18 2022-10-07 エスシーダブリュー・システムズ・ベーフェー Methods of converting hydrocarbons to products
CN114479174A (en) * 2022-03-28 2022-05-13 广西丰林木业集团股份有限公司 Environment-friendly efficient degradation recycling method for waste cured urea-formaldehyde resin
CN114479174B (en) * 2022-03-28 2023-12-01 广西丰林木业集团股份有限公司 Environment-friendly efficient degradation recycling method for waste solidified urea resin

Also Published As

Publication number Publication date
JP4304237B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP3057250B2 (en) Organic waste treatment method
JP2003201486A (en) Method for gasifying organic material
Xiu et al. Application of critical water-alcohol composite medium to treat waste printed circuit boards: Oil phase products characteristic and debromination
CN1197694C (en) Method for treatment of fire retardant resin composition
KR102158694B1 (en) Dechlorination apparatus and method for converting low grade fuel oil into low chlorine clean light fuel oil
JP2009030071A (en) Method for gasifying organic substance
JP3989540B2 (en) Carbonization of halogenated carbon
WO2001038787A1 (en) Improved chlorinated hydrocarbon waste incinerator an d valorization of chlorinated residuals process unit
JP2003013077A (en) Method for treating organic compound
JP4481193B2 (en) Product packaging material processing method and processing apparatus
JP2001288480A (en) Method and apparatus for plastic waste gasification
JP2005270768A (en) Method for gasifying papermaking sludge and used paper waste and making hydrogen
JP5016766B2 (en) Method and equipment for treating substances containing CH polymer chain
JP2005279361A (en) Method for treating waste
JPH06299169A (en) Method for gasifying plastics
JP2004131358A (en) Method and apparatus for producing hydrogen by using mixed molten salt
JP4121283B2 (en) Method for producing gaseous fuel using ruthenium (IV) oxide as catalyst in supercritical water
JP6276723B2 (en) Hazardous polystyrene foam waste disposal method and hazardous foam polystyrene waste disposal equipment
JP7258319B1 (en) Method for decomposing fluorine atom-containing polymer, and apparatus for decomposing fluorine atom-containing polymer
JP2003523448A5 (en)
WO2022070464A1 (en) Fuel production method and fuel production system
JP2007246681A (en) Method for producing fuel gas from ordinary temperature dechlorination treatment product of pvc
JP2003326520A (en) Method and apparatus for grinding waste plastic, method and apparatus for treating waste plastic
WO2024042190A1 (en) Catalytic oxidative depolymerization process and catalyst
JPH10101841A (en) Thermal treatment of waste

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

R150 Certificate of patent or registration of utility model

Ref document number: 4304237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term