JP2003194911A - Method for resetting error in location measurement after cycle slip in gps satellite radio wave - Google Patents

Method for resetting error in location measurement after cycle slip in gps satellite radio wave

Info

Publication number
JP2003194911A
JP2003194911A JP2001392272A JP2001392272A JP2003194911A JP 2003194911 A JP2003194911 A JP 2003194911A JP 2001392272 A JP2001392272 A JP 2001392272A JP 2001392272 A JP2001392272 A JP 2001392272A JP 2003194911 A JP2003194911 A JP 2003194911A
Authority
JP
Japan
Prior art keywords
ambiguity
mobile station
satellite
estimated
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001392272A
Other languages
Japanese (ja)
Inventor
Kenji Takahata
健二 高畑
Kenji Tokuyama
憲司 徳山
Hiromi Okada
裕美 岡田
Tadashi Hashimoto
正 橋本
Yoshio Uchida
佳夫 打田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Churyo Engineering Co Ltd
Suzuka Circuitland Co Ltd
Original Assignee
Churyo Engineering Co Ltd
Suzuka Circuitland Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Churyo Engineering Co Ltd, Suzuka Circuitland Co Ltd filed Critical Churyo Engineering Co Ltd
Priority to JP2001392272A priority Critical patent/JP2003194911A/en
Publication of JP2003194911A publication Critical patent/JP2003194911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for resetting errors in location measurements after the occurrence of cycle slips due to radio disturbance of GPS satellites. <P>SOLUTION: In the method for resetting errors in location measurements, (a) the location (Xe, Ye, Ze) of a mobile station is estimated after the occurrence of cycle slips, (b) the location (Xc, Yc, Zc) of the mobile station is obtained by hypothetical ambiguities, (c) the hypothetical ambiguities are taken as estimated ambiguities when the obtained location (Xc, Yc, Zc) lies within a previously set range to the location (Xe, Ye, Ze) of the mobile station, and (d) the estimated ambiguities are verified by the processing (c) at a following time to obtain definite ambiguities. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、移動局の位置測定
方法に関し、特に、衛星の電波障害によるサイクルスリ
ップが生じた後における位置測定誤差の復帰方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the position of a mobile station, and more particularly to a method for recovering a position measurement error after a cycle slip has occurred due to a radio interference of a satellite.

【0002】[0002]

【従来の技術】従来、移動局の位置測定方法として人工
衛星を使用するGPS(GlobalPosition
ing System)が知られている。このGPS
は、複数の衛星からの測距信号を移動局側と基地局の双
方で同時に受信し、4個以上の衛星からの搬送波位相を
測定し、位相アンビギティを確定後、このアンビギティ
に基づく測位計算式で精度±20cm以下の精度で計測
する方法である。
2. Description of the Related Art Conventionally, GPS (Global Position) using an artificial satellite has been used as a method for measuring the position of a mobile station.
ing System) is known. This GPS
Is a positioning calculation formula based on this ambiguity, after receiving the ranging signals from a plurality of satellites at the same time on both the mobile station side and the base station, measuring the carrier phase from four or more satellites, and confirming the phase ambiguity. Is a method of measuring with an accuracy of ± 20 cm or less.

【0003】[0003]

【発明が解決しようとする課題】従来における位置測定
方法は、衛星からの搬送波の位相アンビギティを確定
後、一旦、衛星電波の障害でサイクルスリップが生ずる
と、アンビギティの連続的保持が不可能になって測位計
算精度が悪化し、その後、衛星電波障害が解消しても、
測位計算精度は悪化したままとなる。そこで、この解消
策として、サイクルスリップが生ずる毎にアンビギティ
を再計算するオンザフライ(OTF)や、観測中に生じ
たサイクルスリップを観測後に修正する方法等がある。
In the conventional position measuring method, after the phase ambiguity of the carrier wave from the satellite is determined, once the cycle slip occurs due to the obstacle of the satellite radio wave, it becomes impossible to continuously maintain the ambiguity. Even if the positioning calculation accuracy deteriorates and the satellite radio interference is resolved after that,
Positioning calculation accuracy remains poor. Therefore, as a solution to this problem, there is an on-the-fly (OTF) method that recalculates ambiguity each time a cycle slip occurs, or a method that corrects a cycle slip occurring during observation after the observation.

【0004】しかし、前記両方法とも、サイクルスリッ
プ後、多重解のアンビギティを特定するためには、衛星
が天空を移動する時間として長時間(数分間以上)にわ
たる位相観測データを必要であり、高速の移動局では、
その間の測位データが不確定となる。そこで、本発明
は、サイクルスリップが生じ、衛星電波障害が解消した
後、迅速に、多重解のアンビギティを特定する方法を提
供し、正確な位置測定を可能にするものである。
However, both of the above methods require a long time (several minutes or more) of phase observation data as the time for the satellite to move in the sky in order to identify the ambiguity of the multiple solution after the cycle slip, and thus the high speed is required. In mobile stations,
The positioning data during that time becomes uncertain. Therefore, the present invention provides a method for promptly identifying the ambiguity of multiple solutions after a cycle slip has occurred and satellite radio interference has been resolved, and enables accurate position measurement.

【0005】[0005]

【課題を解決するための手段】請求項1の位置測定誤差
の復帰方法は、サイクルスリップが生じ、GPS衛星の
電波障害が解消した後において、 (a)移動局の位置(Xe、Ye、Ze)を位置推定手
段で推定する。 (b)また、4個以上のGPS衛星からの搬送波から、
1重位相差及び2重位相差による式に基づいて、仮定ア
ンビギティにより移動局の位置(Xc、Yc、Zc)を
求める。 (c)そして、前記求めた位置(Xc、Yc、Zc)
が、前記移動局の位置(Xe、Ye、Ze)に対し、予
め設定の範囲内であるとき、前記仮定アンビギティを推
定アンビギティとする。 (d)そして、この推定アンビギティに対し、以後の時
刻で、前記(c)の処理で検定し、確定アンビギティを
求める。又、請求項2の位置測定誤差の復帰方法は、請
求項1の処理で、推定アンビギティが得られないとき
は、走行路に設置の位置情報に基づいて、確定アンビギ
ティを得るものである。
According to a method of recovering a position measurement error of claim 1, (a) the position (Xe, Ye, Ze) of the mobile station after a cycle slip occurs and the radio wave interference of the GPS satellite is eliminated. ) Is estimated by the position estimation means. (B) Also, from carrier waves from four or more GPS satellites,
The position (Xc, Yc, Zc) of the mobile station is obtained by hypothetical ambiguity based on the equation based on the single phase difference and the double phase difference. (C) Then, the obtained position (Xc, Yc, Zc)
When the position of the mobile station is within a preset range with respect to the position (Xe, Ye, Ze) of the mobile station, the assumed ambiguity is set as the estimated ambiguity. (D) Then, the estimated ambiguity is tested at the subsequent time in the process of (c) to obtain the definite ambiguity. Further, in the method for recovering the position measurement error according to the second aspect, when the estimated ambiguity cannot be obtained by the processing according to the first aspect, the fixed ambiguity is obtained based on the position information of the installation on the traveling road.

【0006】[0006]

【発明の実施の形態】図1は、本発明の概念図であり、
4個以上の人工衛星、基地局及び移動局の関係を示し、
複数の衛星から、基地局と移動局は位相データを取得す
る受信機を備えている。そして、それらの受信機で、位
相データを収集後、オフラインで2重差を計算し、移動
局の位置を求めている。
1 is a conceptual diagram of the present invention,
Shows the relationship between four or more artificial satellites, base stations and mobile stations,
From multiple satellites, base stations and mobile stations are equipped with receivers that acquire phase data. Then, after the phase data is collected by those receivers, the double difference is calculated off-line to obtain the position of the mobile station.

【0007】尚、移動局の位置座標(XB、YB、ZB)
とし、観測可能な第1の衛星の座標(X1、Y1、Z
1)、第2の衛星の座標(X2、Y2、Z2)、第3の衛星
の座標(X3、Y3、Z3)、第4の衛星の座標(X4、Y
4、Z4)、…第Jの衛星の座標(Xj、Yj、Zj)とす
る。衛星からの位相変調されたLバンド信号から搬送波
を再生し、受信機内部の周波数標準から作った衛星の送
信周波数に等しい基準周波数とのビートをとった上、そ
のビート信号の位相差(受信された衛星の搬送波位相と
受信機の位相に対する差ー搬送波位相差)を測定でき
る。基地局と移動局の受信機では、このビート信号を連
続的に積算し、積算された波数(サイクル数)を計測す
る。
The position coordinates of the mobile station (XB, YB, ZB)
And the coordinates of the first observable satellite (X1, Y1, Z
1), coordinates of second satellite (X2, Y2, Z2), coordinates of third satellite (X3, Y3, Z3), coordinates of fourth satellite (X4, Y)
4, Z4), ... The coordinates (Xj, Yj, Zj) of the Jth satellite. The carrier is regenerated from the phase-modulated L-band signal from the satellite, the beat is taken from the reference frequency equal to the transmission frequency of the satellite made from the frequency standard inside the receiver, and the phase difference of the beat signal (received The difference between the carrier phase of the satellite and the phase of the receiver-carrier phase difference) can be measured. In the receivers of the base station and mobile station, the beat signals are continuously integrated and the integrated wave number (cycle number) is measured.

【0008】今、時刻t1、t2、t3、…、tk、…にお
いて搬送波位相データφ(t1)、φ(t2)、…、φ(t
k)、…が得られたとする。その時、観測開始時刻t1で
は、 φ(t1)=(搬送波位相差の端数)+(未知の整数)
=Fr(t1)+N(t1) という形で搬送波位相データが測定される。この電波の
伝播経路内にある波の個数をN(t1)=N1(t1)+N1 とおくと、N(t1)、N1(t1)は共に未知の整数であ
るから、 φ(t1)=Fr(t1)+N(t1)+N1 と表される。
Now, at times t1, t2, t3, ..., Tk, ..., Carrier phase data φ (t1), φ (t2), ..., φ (t
k), ... is obtained. At that time, at the observation start time t1, φ (t1) = (fraction of carrier phase difference) + (unknown integer)
Carrier phase data is measured in the form = Fr (t1) + N (t1). If the number of waves in the propagation path of this radio wave is N (t1) = N1 (t1) + N1, both N (t1) and N1 (t1) are unknown integers, so φ (t1) = Fr It is expressed as (t1) + N (t1) + N1.

【0009】又、同様に、観測時刻tkでは、 φ(tk)=(搬送波位相差の端数)+(未知の整数) =Fr(tk)+N(tk) =Fr(tk)+(N(tk)−N(t1)+N1(t1))
+N1 ここで、(N(tk)−N(t1))は、受信機が時刻t
1からtkまでカウントしたサイクル数の増分を表し、こ
の時間に変化した衛星までの距離の増分(波数の整数
倍)に等しい。
Similarly, at the observation time tk, φ (tk) = (fraction of carrier phase difference) + (unknown integer) = Fr (tk) + N (tk) = Fr (tk) + (N (tk ) -N (t1) + N1 (t1))
+ N1 where (N (tk) -N (t1)) is the time when the receiver is at time t.
It represents the increment of the number of cycles counted from 1 to tk and is equal to the increment of the distance to the satellite (integral multiple of the wave number) changed at this time.

【0010】又、N1(t1)は、観測開始時刻t1にお
ける受信機〜衛星間の電波伝播距離であったから、結
局、右辺第2項は観測時刻tkにおける受信機〜衛星間
の電波伝播距離を表す。即ち、 NK(tk)=N(tk)−N(t1)+N1(t1) とおくことができ、 φ(tk)=Fr(tk)+Nk(tk)+N1 となる。この式の右辺第1、2項の和は、衛星から受信
機までの電波位相の伝播距離(両時計の誤差を含む)を
表す。即ち、 φ(t3)=φR(t3)−φS(t3)+N1 (式1) ここで、φRは受信機時計の位相、φSは衛星時計の位相
である。
Since N1 (t1) is the radio wave propagation distance between the receiver and the satellite at the observation start time t1, the second term on the right side is the radio wave propagation distance between the receiver and the satellite at the observation time tk. Represent That is, NK (tk) = N (tk) -N (t1) + N1 (t1) can be set, and φ (tk) = Fr (tk) + Nk (tk) + N1. The sum of the first and second terms on the right side of this equation represents the propagation distance of the radio wave phase from the satellite to the receiver (including the error between both clocks). That, φ (t3) = φ R (t3) -φ S (t3) + N1 ( 1) where, phi R is the receiver clock phase, the phi S is the phase of the satellite clock.

【0011】今、fを周波数とし、時刻t2に衛星から
発信された衛星電波が時刻tsに受信機に到達した場合
を考えると、衛星から受信機までの伝播中の位相は変化
しないので、φS(t3)=φS(t2)なる関係となり、
(式1)を変形すると、 φ(t3)=φR(t3)−φS(t2)+N1=f(t3−
t2)+N1 又は、λ=c/fとおいて、 Φ(t3)=λφ(t3−t2)+λN1 この式の右辺第1項は、電波の伝播経路長を表す。
Now, considering that f is a frequency and the satellite radio wave transmitted from the satellite at time t2 reaches the receiver at time ts, the phase during propagation from the satellite to the receiver does not change. S (t3) = φ S (t2),
By transforming equation (1), φ (t3) = φ R (t3) -φ S (t2) + N1 = f (t3-
t2) + N1 or .lambda. = c / f, .PHI. (t3) =. lambda..phi. (t3-t2) +. lambda.N1 The first term on the right side of this equation represents the propagation path length of the radio wave.

【0012】即ち、 Φ(t3)=|r(T3)−rA(T2)|+dsag−diono+dtrop+c(dt3− dT2)+λN1 (式2) ここで、 |r(T3)−rA(T2)|:送信アンテナと受信アン
テナの距離 T2:GPS電波が衛星アンテナ位相中心を出た真のG
PS時刻 T3:GPS電波が受信機アンテナに到達した真のGP
S時刻 dsag :sagnac効果による遅延量 diono:電離層による遅延量 dtrop:対流圏による遅延量 dt3 :受信機の時計誤差 dT2 :衛星時計の誤差 c :光速 f :搬送波の周波数 λ :搬送波の波長 この(式2)の観測値は搬送波位相であり、衛星の電波
がロックされている限り、一定のバイアス(波長の整数
倍のオフセット:アンビギティ)を含んでいる。
Φ (t3) = | r (T3) -r A (T2) | + dsag-diono + dtrop + c (dt3−dT2) + λN1 (Equation 2) where | r (T3) −r A (T2) | : Distance between transmitting antenna and receiving antenna T2: True G when GPS radio wave exits from satellite antenna phase center
PS time T3: true GP when GPS radio waves reach the receiver antenna
S time dsag: delay amount due to sagnac effect dino: delay amount due to ionosphere dtrop: delay amount due to troposphere dt3: receiver clock error dT2: satellite clock error c: speed of light f: carrier wave frequency λ: carrier wave wavelength The observation value of 2) is the carrier wave phase, and includes a constant bias (offset of an integral multiple of the wavelength: ambiguity) as long as the satellite radio waves are locked.

【0013】しかし、観測中に、何等かの障害により、
GPS衛星からの電波の位相ロックが外れたときには、
N1は未知に整数値N1Nになり、これをサイクルスリッ
プという。そこで、このサイクルスリップが生じた後、
衛星が復帰したとき、新たにアンビギティを求めて、移
動局の走行位置を正確に求める必要があり、以下、その
求め方について説明する。尚、このアンビギティを求め
る処理は、予め移動局の走行軌跡に関するデータを収集
後に、オフラインで解析する過程においてサイクルスリ
ップが発見されたとき、新たなアンビギティを求めるも
のである。
However, due to some obstacle during observation,
When the phase lock of the radio wave from the GPS satellite is lost,
N1 becomes an unknown integer N1N, which is called cycle slip. So, after this cycle slip occurs,
When the satellite returns, it is necessary to newly obtain the ambiguity to accurately obtain the traveling position of the mobile station. The method for obtaining the ambiguity will be described below. The process for obtaining ambiguity is to obtain new ambiguity when a cycle slip is found in the process of offline analysis after collecting data on the traveling locus of the mobile station.

【0014】(1重位相差による方法)この方式は、前
記(式2)において、1個の衛星に対し、基地局と移動
局は同時に受信し、搬送波位相データの差を求めること
によって、衛星の時間誤差を消去でき、 ΔΦ=Δρ−Δdiono+Δdtrop+cΔdt+λΔN1 (式3) ρ=|r−rA|+dsag が成立する。
(Method based on single phase difference) In this method, the base station and the mobile station simultaneously receive one satellite in (Equation 2), and the difference in carrier phase data is calculated to obtain the satellite phase data. Can be eliminated, and ΔΦ = Δρ−Δdiono + Δdtrop + cΔdt + λΔN1 (Equation 3) ρ = | r−rA | + dsag holds.

【0015】(2重位相差による方法)この方式は、2
個の衛星に対し、基地局と移動局は同時に受信し、前記
式3(1重位相差)で求めた搬送波位相データの差を求
めるものであり、衛星及び受信機の時間誤差を消去で
き、 ▽ΔΦ=▽Δρ−▽Δdiono+▽Δdtrop+λ▽ΔN1 (式4) が成立する。尚、この(式4)において、基地局と移動
局の受信機のアンテナは十分近く、大気圏遅延は無視で
きるので、 ▽ΔΦ=▽Δρ+λ▽ΔN1 (式5) が成立する。
(Method based on double phase difference)
The base station and the mobile station simultaneously receive the number of satellites, and obtain the difference between the carrier wave phase data obtained by the equation 3 (single phase difference). The time error between the satellite and the receiver can be eliminated. ▽ ΔΦ = ▽ Δρ- ▽ Δdiono + ▽ Δdtrop + λ ▽ ΔN1 (Equation 4) is established. In this (Equation 4), the antennas of the receivers of the base station and the mobile station are sufficiently close to each other and the atmospheric delay can be ignored, so that ∇ΔΦ = ∇Δρ + λ∇ΔN1 (Equation 5) is established.

【0016】サイクルスリップが生じた後、GPSから
の電波障害が除かれて、少なくとも4個以上の衛星が可
観測状態である条件の基で、アンビギティ▽ΔN1を仮
定し、前記(式5)の右辺第1項▽Δρは、衛星の位置
ベクトルと測位点の位置ベクトルの2重差を測位点周り
(アプリオリな地点)で回帰行列Hにより線型化し、▽
Δρを最小自乗法で求める。 ▽ΔΦ=H・▽Δρ+λ▽ΔN1 (式6) ここで、 尚、前記(式6)の最小自乗解は下記式で求まる。 ▽Δρ=(HT-1T-1T-1▽ΔΦ ここで、Rはλ▽ΔN1の共分散行列とする。
After the occurrence of the cycle slip, the radio interference from the GPS is removed, and under the condition that at least four or more satellites are in the observable state, the ambiguity ▽ ΔN1 is assumed, and The first term on the right-hand side, ▽ Δρ, linearizes the double difference between the position vector of the satellite and the position vector of the positioning point by the regression matrix H around the positioning point (a priori point),
Calculate Δρ by the method of least squares. ▽ ΔΦ = H ・ ▽ Δρ + λ ▽ ΔN1 (Equation 6) where: The least squares solution of (Equation 6) is obtained by the following equation. ∇Δρ = (H T R -1 H T ) -1 H T R -1 ∇ΔΦ where R is the covariance matrix of λ∇ΔN1.

【0017】次に、このアンビギティ▽ΔN1を確定す
る具体的な処理について、図2に示す処理フロー及び図
3のアンビギティ検定フローを参照して説明する。サイ
クルスリップが生じた後、観測可能な衛星(4個以上)
になったとき(時刻t0)において、基地局と移動局が
各衛星から受信し、測定した搬送波を読み込む(S
1)。
Next, a specific process for determining the ambiguity ∇ΔN1 will be described with reference to the process flow shown in FIG. 2 and the ambiguity test flow shown in FIG. Observable satellites (4 or more) after a cycle slip has occurred
(Time t0), the base station and the mobile station receive the measured carrier waves received from the respective satellites (S
1).

【0018】そして、時刻t0における移動局の位置
(Xe(t0)、Ye(t0)、Ze(t0))は、例えば、
観測可能なGPS衛星の4個を選択して、疑似距離で推
定したり、或いは、移動局に慣性センサを搭載し、サイ
クルスリップが生じる寸前における移動局の位置から、
測定される加速度Nx、Ny、Nz及びロール角速度
p、ピッチ角速度q、ヨー角速度rの測定値を用いて推
定する(S2)。
The position (Xe (t0), Ye (t0), Ze (t0)) of the mobile station at time t0 is, for example,
Select four observable GPS satellites to estimate by pseudo range, or mount an inertial sensor on the mobile station, and from the position of the mobile station just before the cycle slip occurs,
It is estimated using the measured values of the accelerations Nx, Ny, Nz, the roll angular velocity p, the pitch angular velocity q, and the yaw angular velocity r (S2).

【0019】次に、仮定アンビギティ▽ΔN1(t0)
(変化量)を0、+1、+2、+3、…+n、−1、−
2、−3、…−nの何れかに対し、観測可能なGPS衛
星からの位相データとで、(式6)から最小自乗法で、
移動局の位置(Xc(t0)、Yc(t0)、Zc(t
0))を算出する(S3、S4)。そして、求まった移
動局の位置(Xc(t0)、Yc(t0)、Zc(t0))
が、前記位置推定手段によって求めた移動局の位置(X
e(t0)±α、Ye(t0)±β、Ze(t0)±γ)内で
あるか否かを判断し、範囲内であるときには、推定アン
ビギティ▽ΔN1(t0)として、記憶変数M(j)(j
=±1〜±n)に記憶する(S5〜S8)。尚、前記
α、β、γの値は、受信機等の測定精度及び地形照合範
囲(例えば、走行コース内)等を考慮して適宜選定す
る。
Next, the assumed ambiguity ▽ ΔN1 (t0)
(Change amount) is 0, +1, +2, +3, ... + n, -1,-
Phase data from observable GPS satellites for any of 2, -3, ...
Mobile station position (Xc (t0), Yc (t0), Zc (t
0)) is calculated (S3, S4). Then, the obtained position of the mobile station (Xc (t0), Yc (t0), Zc (t0))
Is the position of the mobile station (X
e (t0) ± α, Ye (t0) ± β, Ze (t0) ± γ), and when it is within the range, the storage variable M (is set as the estimated ambiguity ▽ ΔN1 (t0). j) (j
= ± 1 to ± n) (S5 to S8). The values of α, β, and γ are appropriately selected in consideration of the measurement accuracy of the receiver and the topographical matching range (for example, on the traveling course).

【0020】一方、範囲外であるときには、新たな値の
アンビギティ▽ΔN1(t0)で移動局の位置を推定する
ためにステップ3に戻り、前記仮定アンビギティ▽ΔN
1(t0)に対し、ステップ(S4〜S7)を実行し、推
定アンビギティ▽ΔN1(t0)として、順次、記憶変数
M(j)(j=±1〜±n)に記憶する(S8)。そし
て、全ての仮定アンビギティ▽ΔN1(t0)対して実施
した後に終了する(S9)。
On the other hand, when it is out of the range, the process returns to step 3 to estimate the position of the mobile station with a new value of ambiguity ▽ ΔN1 (t0), and the assumed ambiguity ▽ ΔN
Steps (S4 to S7) are executed for 1 (t0), and the estimated ambiguity ∇ΔN1 (t0) is sequentially stored in the storage variable M (j) (j = ± 1 to ± n) (S8). Then, after all hypothetical ambiguities ∇ΔN1 (t0) have been performed, the process ends (S9).

【0021】次に、前記記憶変数M(j)(j=±1〜
±n)に記憶された推定アンビギティ▽ΔN1(t0)に
対し、時刻t1、t2…以後に於て、検定する要領を図3
に示すフロー及びその状態を示す図4を参照して説明す
る。 (a)前記記憶変数M(j)に記憶の各推定アンビギテ
ィに対し、 (a1)時刻t0における移動局の位置(Xc(t0)、Y
c(t0)、Zc(t0))における変化量(▽Δρ)を
(式6)で算出し、この変化量を位置(Xc(t0)、Y
c(t0)、Zc(t0))に加算して、時刻t1における
移動局の位置(Xc(t1)、Yc(t1)、Zc(t
1))を求める(S11)
Next, the storage variable M (j) (j = ± 1 to
The estimated ambiguity ▽ ΔN1 (t0) stored in ± n) is shown in FIG. 3 after time t1, t2 ...
The flow shown in FIG. 4 and the state thereof will be described with reference to FIG. (A) For each estimated ambiguity stored in the storage variable M (j), (a1) the position of the mobile station at time t0 (Xc (t0), Y
The change amount (▽ Δρ) in c (t0) and Zc (t0) is calculated by (Equation 6), and this change amount is calculated at the position (Xc (t0), Y
c (t0), Zc (t0)), and the position of the mobile station at time t1 (Xc (t1), Yc (t1), Zc (t)
1)) is calculated (S11)

【0022】(a2)そして、算出された移動局の位置
(Xc(t1)、Yc(t1)、Zc(t1))が、前記
位置推定手段によって求めた移動局の位置(Xe(t1)
±α、Ye(t1)±β、Ze(t1)±γ)内であるか否
かを判断し(S12〜S14)、範囲内であるときに
は、前記記憶変数M(j)を、新たに、記憶変数M
(j)に記憶する(S15)。
(A2) Then, the calculated position (Xc (t1), Yc (t1), Zc (t1)) of the mobile station is the position (Xe (t1)) of the mobile station obtained by the position estimating means.
± α, Ye (t1) ± β, Ze (t1) ± γ) is determined (S12 to S14), and when it is within the range, the storage variable M (j) is newly added to Memory variable M
It is stored in (j) (S15).

【0023】以後、時刻t2、t3…においても、同様に
検定することによって、推定アンビギティ▽ΔN1(t
0)(記憶変数M(j))は、最終的に1個に絞られ、
その値が確定アンビギティ▽ΔN1である。以上のよう
に、時刻t0で求めた推定アンビギティは、以後の時刻
t1、t2…で、順次検定するという簡便な手法で確定ア
ンビギティを求めることができる。
Thereafter, at times t2, t3, ..., Estimated ambiguity ▽ ΔN1 (t
0) (memory variable M (j)) is finally narrowed down to one,
The value is the determined ambiguity ▽ ΔN1. As described above, the estimated ambiguity obtained at time t0 can be obtained at a subsequent time t1, t2, ...

【0024】しかし、前記の要領で、時刻t0で求めた
推定アンビギティ▽ΔN1(t0)(記憶変数M(j))
について、時刻t1、t2…で検定しても、確定すること
なく、曖昧さが残る場合がある。そこで、図5に示すよ
うに、走行路に、3次元座標位置を移動局に発信する送
信設備を備えておくことが望ましい。この送信設備は、
シュードライト、電波、赤外線、超音波等を介して、送
信設備の位置情報を移動局に発信するものであり、走行
路の上に設けたゲート等に、測定誤差等を考慮して、適
宜の間隔で複数台設置する。又、走行路に埋める送信設
備には、磁界等を介して、送信設備の位置情報を移動局
に伝達する。
However, the estimated ambiguity ▽ ΔN1 (t0) (memory variable M (j)) obtained at time t0 in the above manner.
There is a case in which the ambiguity remains without being confirmed even if the test is performed at the times t1, t2 .... Therefore, as shown in FIG. 5, it is desirable to provide a transmission facility for transmitting the three-dimensional coordinate position to the mobile station on the traveling path. This transmitter is
Position information of the transmission equipment is transmitted to the mobile station via pseudo light, radio waves, infrared rays, ultrasonic waves, etc. Install multiple units at intervals. In addition, the transmission equipment to be buried in the traveling path transmits the position information of the transmission equipment to the mobile station via a magnetic field or the like.

【0025】走行中の移動局は、前記発信設備から「送
信設備の位置情報」を受信し、そのデータを記憶してお
くことによって、このデータに基づいて、移動局が通過
した位置が既知となり、(式6)を介して、曖昧なアン
ビギティ▽ΔN1を修正することができる。以上によっ
て、走行路に位置情報を移動局に発信する送信設備を備
えておくことによって、容易に、曖昧なアンビギティ▽
ΔN1を修正し、確定アンビギティ▽ΔN1を得ることが
できる。
The moving mobile station receives the "position information of the transmitting equipment" from the transmitting equipment and stores the data, whereby the position where the mobile station has passed is known based on this data. , (Equation 6), the ambiguous ambiguity ▽ ΔN1 can be corrected. As described above, it is possible to easily and ambiguously ambiguity by providing transmission equipment for transmitting position information to mobile stations on the road.
It is possible to correct ΔN1 and obtain a fixed ambiguity ▽ ΔN1.

【0026】[0026]

【発明の効果】請求項1の位置測定誤差の復帰方法は、
電波障害が解消した後の時刻において、仮定アンビギテ
ィに対する移動局の位置を算出し、この位置と予め位置
推定手段で求めた移動局の位置の予め設定した範囲内で
ある推定アンビギティを求め、更に、その時刻以後に於
て、その推定アンビギティを検定して確定アンビギティ
を求めるという方法で簡便に求めることができる。又、
請求項2の位置測定誤差の復帰方法は、請求項1の処理
で、推定アンビギティが得られないときは、走行路に設
置の位置情報に基づいて、容易に確定アンビギティを得
ることができる。
The method for recovering the position measurement error according to claim 1 is
At the time after the radio interference is resolved, the position of the mobile station with respect to the assumed ambiguity is calculated, and the estimated ambiguity within the preset range of the position and the position of the mobile station previously obtained by the position estimating means is obtained, and further, After that time, the estimated ambiguity can be tested to obtain the confirmed ambiguity, which can be easily obtained. or,
In the method for recovering the position measurement error according to the second aspect, when the estimated ambiguity cannot be obtained by the processing according to the first aspect, the fixed ambiguity can be easily obtained based on the position information of the installation on the traveling road.

【図面の簡単な説明】[Brief description of drawings]

【図1】衛星、基地局、移動局の概念図である。FIG. 1 is a conceptual diagram of a satellite, a base station, and a mobile station.

【図2】時刻t0におけるアンビギティを求める処理フ
ロー図である。
FIG. 2 is a processing flow chart for obtaining ambiguity at time t0.

【図3】時刻t0で求めた推定アンビギティを検定する
フロー図である。
FIG. 3 is a flowchart for testing the estimated ambiguity obtained at time t0.

【図4】時刻t0で求めた推定アンビギティを検定して
いく過程図である。
FIG. 4 is a process diagram for testing the estimated ambiguity obtained at time t0.

【図5】走行路に設置の送信設備を示す図である。FIG. 5 is a diagram showing transmission equipment installed on a traveling path.

【符号の説明】[Explanation of symbols]

(XB、YB、ZB) 移動局の位置座標 (XA、YA、ZA) 基地局の位置座標 (X1、Y1、Z1) 第1の衛星の座標 (X2、Y2、Z2) 第2の衛星の座標 (X3、Y3、Z3) 第3の衛星の座標 (X4、Y4、Z4) 第4の衛星の座標 (Xj、Yj、Zj) 第jの衛星の座標 (Xe、Ye、Ze) 移動局の推定位置 (Xc、Yc、Zc) 移動局の算出位置 (XB, YB, ZB) Position coordinates of mobile station (XA, YA, ZA) Position coordinates of base station (X1, Y1, Z1) The coordinates of the first satellite (X2, Y2, Z2) Coordinates of the second satellite (X3, Y3, Z3) Coordinates of the third satellite (X4, Y4, Z4) Coordinates of the 4th satellite (Xj, Yj, Zj) Coordinates of the jth satellite (Xe, Ye, Ze) Estimated position of mobile station (Xc, Yc, Zc) Calculated position of mobile station

フロントページの続き (72)発明者 徳山 憲司 名古屋市中村区岩塚町字九反所60番地の1 中菱エンジニアリング株式会社内 (72)発明者 岡田 裕美 名古屋市中村区岩塚町字九反所60番地の1 中菱エンジニアリング株式会社内 (72)発明者 橋本 正 三重県鈴鹿市稲生町7992 株式会社鈴鹿サ ーキットランド内 (72)発明者 打田 佳夫 三重県鈴鹿市稲生町7992 株式会社鈴鹿サ ーキットランド内 Fターム(参考) 2F029 AA02 AB07 AC03 AC06 AC09 AC13 AD01 5J062 AA13 BB01 CC07 DD23 EE04 FF01 FF02 FF03 Continued front page    (72) Inventor Kenji Tokuyama             1 of 60 Kutanesho, Iwatsuka-cho, Nakamura-ku, Nagoya-shi               Nakaryo Engineering Co., Ltd. (72) Inventor Hiromi Okada             1 of 60 Kutanesho, Iwatsuka-cho, Nakamura-ku, Nagoya-shi               Nakaryo Engineering Co., Ltd. (72) Inventor Tadashi Hashimoto             7992 Inao-cho, Suzuka-shi, Mie Suzuka SA Co., Ltd.             -In Kitland (72) Inventor Yoshio Uchida             7992 Inao-cho, Suzuka-shi, Mie Suzuka SA Co., Ltd.             -In Kitland F-term (reference) 2F029 AA02 AB07 AC03 AC06 AC09                       AC13 AD01                 5J062 AA13 BB01 CC07 DD23 EE04                       FF01 FF02 FF03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 移動局と基地局において4個以上の衛星
からの搬送波を受信し、アンビギティに基づく測位計算
式で移動局の位置を計測し、 前記衛星の障害によりアンビギティが不確定になった
後、再度、前記4個以上のGPS衛星からの搬送波の受
信が可能になった後における位置測定誤差の復帰方法で
あって、 (a)移動局の位置(Xe、Ye、Ze)を位置推定手
段で推定し、 (b)4個以上のGPS衛星からの搬送波から、1重位
相差及び2重位相差による式に基づいて、仮定アンビギ
ティにより移動局の位置(Xc、Yc、Zc)を求め、 (c)前記求めた位置(Xc、Yc、Zc)が、前記移
動局の位置(Xe、Ye、Ze)に対し、予め設定の範
囲内であるとき、前記仮定アンビギティを推定アンビギ
ティとし、 (d)この推定アンビギティを、以後の時刻において、
前記(c)の処理によって検定して確定アンビギティを
求めることを特徴とする位置測定誤差の復帰方法。
1. A mobile station and a base station receive carrier waves from four or more satellites, measure the position of the mobile station using a positioning calculation formula based on ambiguity, and the ambiguity becomes uncertain due to the failure of the satellite. After that, it is a method for recovering the position measurement error after the carrier waves from the four or more GPS satellites can be received again, and (a) the position of the mobile station (Xe, Ye, Ze) is estimated. (B) The position (Xc, Yc, Zc) of the mobile station is obtained from the carriers from four or more GPS satellites by hypothetical ambiguity based on the equations based on the single phase difference and the double phase difference. (C) When the obtained position (Xc, Yc, Zc) is within a preset range with respect to the position (Xe, Ye, Ze) of the mobile station, the assumed ambiguity is set as the estimated ambiguity, d) this A constant ambiguity, in the subsequent time,
A method for recovering a position measurement error, which is characterized in that a deterministic ambiguity is obtained by performing a verification by the process of (c).
【請求項2】 走行路に、3次元位置情報を与える送信
設備を設けることを特徴とする請求項1の位置測定誤差
の復帰方法。
2. The method for recovering a position measurement error according to claim 1, wherein transmission equipment for providing three-dimensional position information is provided on the traveling path.
JP2001392272A 2001-12-25 2001-12-25 Method for resetting error in location measurement after cycle slip in gps satellite radio wave Pending JP2003194911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392272A JP2003194911A (en) 2001-12-25 2001-12-25 Method for resetting error in location measurement after cycle slip in gps satellite radio wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392272A JP2003194911A (en) 2001-12-25 2001-12-25 Method for resetting error in location measurement after cycle slip in gps satellite radio wave

Publications (1)

Publication Number Publication Date
JP2003194911A true JP2003194911A (en) 2003-07-09

Family

ID=27599647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392272A Pending JP2003194911A (en) 2001-12-25 2001-12-25 Method for resetting error in location measurement after cycle slip in gps satellite radio wave

Country Status (1)

Country Link
JP (1) JP2003194911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050247A1 (en) * 2003-11-18 2005-06-02 Toyota Jidosha Kabushiki Kaisha Position detection device and method
JP2008002975A (en) * 2006-06-23 2008-01-10 Port & Airport Research Institute Method and device for discriminating false recognition of gps positioning data
JP2009074930A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Positioning device, positioning system, computer program, and positioning method
JP2009525491A (en) * 2006-01-31 2009-07-09 ナヴコム テクノロジー インコーポレイテッド Method for combining local positioning system, local RTK system, and regional, broadband, or global carrier phase positioning system
JP2015068767A (en) * 2013-09-30 2015-04-13 日本電気株式会社 Positioning system, device, method, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050247A1 (en) * 2003-11-18 2005-06-02 Toyota Jidosha Kabushiki Kaisha Position detection device and method
JP2009525491A (en) * 2006-01-31 2009-07-09 ナヴコム テクノロジー インコーポレイテッド Method for combining local positioning system, local RTK system, and regional, broadband, or global carrier phase positioning system
JP2008002975A (en) * 2006-06-23 2008-01-10 Port & Airport Research Institute Method and device for discriminating false recognition of gps positioning data
JP2009074930A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Positioning device, positioning system, computer program, and positioning method
JP2015068767A (en) * 2013-09-30 2015-04-13 日本電気株式会社 Positioning system, device, method, and program

Similar Documents

Publication Publication Date Title
US10976444B2 (en) System and method for GNSS ambiguity resolution
US10012738B2 (en) Positioning method and positioning apparatus using satellite positioning system
JP5421903B2 (en) Partial search carrier phase integer ambiguity determination
US6473694B1 (en) Method, apparatus and system for estimating user position with a satellite positioning system in poor signal conditions
EP1891458B1 (en) Method and apparatus for validating a position in a satellite positioning system using range-rate measurements
EP1336864B1 (en) Method and system for GPS position determination from calculated time
US20070075896A1 (en) Attitude determination exploiting geometry constraints
JP5078082B2 (en) POSITIONING DEVICE, POSITIONING SYSTEM, COMPUTER PROGRAM, AND POSITIONING METHOD
JPH07301667A (en) Method for determining specified position on ground and device for establishing initial position for gps
CN101014874A (en) Independent positioning device and independent positioning method
JP2008298443A (en) Multipath detection device, positioning device, attitude azimuth orientation device, multipath detection method, and multipath detection program
CN102608634A (en) Determining position and method thereof
JP2010071686A (en) Positioning apparatus, computer program, and positioning method
EP2092362B1 (en) Phase based measurement corrections
CN104730551B (en) Space-ground bistatic differential interferometry baseline coordinate and deformation quantity measurement method
JP2002054946A (en) Attitude sensor of object and integer bias re- determination method
JP2008039690A (en) Carrier-wave phase type position measuring instrument
JP2008039691A (en) Carrier-wave phase type position measuring instrument
JP2009079975A (en) Positioning system
JP2003194911A (en) Method for resetting error in location measurement after cycle slip in gps satellite radio wave
WO2020149014A1 (en) Satellite selection device and program
EP3631515B1 (en) Method for estimating a position of a mobile device using gnss signals
JP4928114B2 (en) Carrier phase relative positioning device
JP4322829B2 (en) Cycle slip detection device and cycle slip detection method
EP3916430A1 (en) Single delta range differences using synthetic clock steering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329