JP2003194526A - Cross-sectional shape measuring apparatus - Google Patents

Cross-sectional shape measuring apparatus

Info

Publication number
JP2003194526A
JP2003194526A JP2001396195A JP2001396195A JP2003194526A JP 2003194526 A JP2003194526 A JP 2003194526A JP 2001396195 A JP2001396195 A JP 2001396195A JP 2001396195 A JP2001396195 A JP 2001396195A JP 2003194526 A JP2003194526 A JP 2003194526A
Authority
JP
Japan
Prior art keywords
light
laser
amount
sectional shape
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001396195A
Other languages
Japanese (ja)
Other versions
JP3613708B2 (en
Inventor
Takashi Kuboyama
隆志 久保山
Riyousuke Suzuki
亮祐 鈴木
Takao Kanamaru
孝夫 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2001396195A priority Critical patent/JP3613708B2/en
Publication of JP2003194526A publication Critical patent/JP2003194526A/en
Application granted granted Critical
Publication of JP3613708B2 publication Critical patent/JP3613708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cross-sectional shape measuring apparatus that can measure the shape of a weld with high accuracy even when the reflected light made incident to a beam scanning type laser sensor provided closely to a welding section, such as automatic copying welding equipment, etc., fluctuates due to the condition change of a portion to be measured and temperature changes are violent. <P>SOLUTION: This cross-sectional shape measuring apparatus is provided with a laser radiation device, a one-dimensional optical sensor, and a sensor head having a scanning mechanism which leads laser light emitted from the laser radiation device to an object to be measured and reflected laser light from the object to the one- dimension optical sensor. This instrument is also provided with a quantity-of-incident- light adjuster. The measurement accuracy of this apparatus is improved by adjusting the quantity of incident light in the direction in which the quantity of received light detected by means of the one-dimensional optical sensor approaches a prescribed target value based on the quantity of received light detected by means of the optical sensor when the projecting direction of the laser light is the same in the past in an interlocking way with the scanning operation by means of the scanning mechanism. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、倣い溶接などに利
用する溶接用レーザセンサの計測精度向上技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving the measurement accuracy of a welding laser sensor used for copy welding or the like.

【0002】[0002]

【従来の技術】溶接ロボットを利用した自動溶接装置の
発展が著しいが、より高速に精密で高品位の溶接を行う
ため、ビームスキャン型レーザセンサを導入してできる
だけ近いところから溶接部の形状を測定しながら倣い溶
接するものが用いられるようになってきた。ビームスキ
ャン型レーザセンサは、赤色あるいは赤外線のレーザ光
ビームを放出するレーザ放射装置と、対象物で反射した
レーザ光が入射する素子の位置が対象物までの距離に対
応するように配置されたCCDリニアセンサと、レーザ
光路中に挿入され揺動することによりレーザ光を走査さ
せるスキャニングミラーとを備えて、対象物を走査し表
面までの距離を求めて輪郭を計測するようにしたもので
ある。なお、レーザ放射装置には普通、小型安価でかつ
制御が容易なため半導体レーザ素子が利用される。ま
た、検出光学系に照射するレーザ光の波長に合わせたバ
ンドパスフィルタを利用することにより、環境から侵入
するノイズ光の影響を抑制して信号雑音比(SN比)を
向上させて、より正確な測定ができるように構成されて
いる。
2. Description of the Related Art The progress of automatic welding equipment using welding robots has been remarkable, but in order to perform high-speed, precise and high-quality welding, a beam scan type laser sensor is introduced to make the shape of the welded portion as close as possible. Those that perform copy welding while measuring have come to be used. The beam scan type laser sensor is a laser emitting device that emits a red or infrared laser light beam and a CCD arranged so that the position of an element on which the laser light reflected by the object is incident corresponds to the distance to the object. A linear sensor and a scanning mirror that is inserted into the laser optical path and scans the laser light by swinging the laser light are provided, and the object is scanned, the distance to the surface is obtained, and the contour is measured. A semiconductor laser device is usually used for the laser emitting device because it is small, inexpensive, and easy to control. In addition, by using a bandpass filter that matches the wavelength of the laser light with which the detection optical system is irradiated, the influence of noise light that enters from the environment is suppressed and the signal-to-noise ratio (SN ratio) is improved. It is configured to perform various measurements.

【0003】ところが、レーザ光の強度が変動しなくて
も対象物の材質やレーザ光が当たる面の向きなど表面状
態によってCCDセンサに入射する反射光の強度が変化
するため、安定した表面形状測定ができない。すなわ
ち、反射光が強すぎれば多数のCCD素子が感応し輪郭
が太線で表されるため実際の位置を正確に判定すること
が難しい。また、反射光が弱いとCCD素子出力が検出
閾値より低くなって輪郭線が切れるので、正しい形状が
検出できない。従来、レーザ距離計などでは、計測対象
からの反射光の光量に応じてレーザ出力や検出素子の露
光時間を調整し、受光素子の飽和や反射光の不足など光
度変動に対処する方法が用いられていた。この方法は対
象が移動しないことを前提として目的の距離を測定する
ものであるから、時間に制約を受けることはない。
However, even if the intensity of the laser light does not change, the intensity of the reflected light incident on the CCD sensor changes depending on the surface condition such as the material of the object and the direction of the surface on which the laser light strikes. I can't. That is, if the reflected light is too strong, many CCD elements will be sensitive and the contour will be represented by a thick line, making it difficult to accurately determine the actual position. Further, when the reflected light is weak, the output of the CCD element becomes lower than the detection threshold and the contour line is cut, so that the correct shape cannot be detected. Conventionally, in laser rangefinders, etc., a method has been used in which the laser output and the exposure time of the detection element are adjusted according to the amount of reflected light from the measurement object, and light intensity fluctuations such as saturation of the light receiving element and lack of reflected light are dealt with. Was there. Since this method measures the target distance on the assumption that the object does not move, there is no time constraint.

【0004】しかし、溶接用のビームスキャン型レーザ
センサでは、走査中に走査方向の分解能に対応して数1
00回の距離計測を行う。さらに、レーザ光を照射した
ときの反射位置を検出するため、距離分解能に対応する
数だけ直線配置された受光素子について受光量走査を行
う。1回の受光量走査には数10μs程度かかる。光走
査中に光照射位置が変わり、計測対象表面の変化に従っ
て入射光量が変動するから、CCD素子に入射する光量
に従って直ちにレーザ出力を制御するようにすること
は、制御回路の演算速度や最適な調整量の算出論理の複
雑さという観点から容易でなかった。
However, in the beam scanning type laser sensor for welding, the number 1 corresponds to the resolution in the scanning direction during scanning.
The distance measurement is performed 00 times. Further, in order to detect the reflection position when the laser light is irradiated, the light receiving amount scanning is performed on the light receiving elements linearly arranged by the number corresponding to the distance resolution. It takes about several tens of μs for one scanning of the amount of received light. Since the light irradiation position changes during the optical scanning and the incident light amount changes according to the change of the surface to be measured, it is necessary to control the laser output immediately according to the amount of light incident on the CCD element, in order to reduce the calculation speed of the control circuit and the optimum value. It was not easy from the viewpoint of the complexity of the calculation logic of the adjustment amount.

【0005】また、レーザ放射装置に用いられる半導体
レーザ素子の使用温度はたとえば0−40℃と範囲が狭
いので、溶接部近くに位置して高温に晒される溶接用レ
ーザセンサは使用範囲に収まるように強制的に冷却して
使用する。なお、外気温が低いところで使用するときに
は、始動時など素子が十分暖まるまで作動しないことも
ある。さらに、半導体レーザは温度の影響が大きくレー
ザ光のピーク波長は通常10℃の温度差について5nm
程度の変動する一方、センサの実際温度は環境により変
化するので、バンドパスフィルタの透過波長幅は20n
mなどある程度広く取る必要がある。このため、環境か
ら侵入するノイズ光の除去率が低下しSN比を十分抑え
ることができない。したがって、レーザ高強度を十分に
強くし輪郭線検出に用いる閾値を下げて検出感度を高め
るため、輪郭線を細く鮮明に画定することは困難であ
る。
Further, since the operating temperature of the semiconductor laser element used in the laser emitting device is narrow, for example, 0-40 ° C., the welding laser sensor located near the welded portion and exposed to high temperature should be within the operating range. Forcibly cool and use. When used in a place where the outside air temperature is low, the element may not operate until the element is sufficiently warmed up at the time of starting. Furthermore, semiconductor lasers are greatly affected by temperature, and the peak wavelength of laser light is usually 5 nm for a temperature difference of 10 ° C.
While the actual temperature of the sensor changes depending on the environment while the degree of fluctuation varies, the transmission wavelength width of the bandpass filter is 20n.
It is necessary to take a wide range such as m. Therefore, the removal rate of noise light entering from the environment is lowered, and the SN ratio cannot be suppressed sufficiently. Therefore, it is difficult to define the contour line finely and clearly because the laser high intensity is made sufficiently strong and the threshold value used for the contour line detection is lowered to enhance the detection sensitivity.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明が解決
しようとする課題は、自動倣い溶接装置など溶接部に接
近して設けられるビームスキャン型レーザセンサにおい
て、測定対象部位の条件変化によりセンサに入射する反
射光が変動する場合にも、溶接形状を高精度で計測でき
る装置を提供することであり、半導体素子のように温度
の影響を受けやすいレーザ発生素子を使用した場合に
も、精度よく形状計測できる装置を提供することであ
る。
Therefore, the problem to be solved by the present invention is to provide a beam scan type laser sensor, such as an automatic copying welding apparatus, which is provided close to the welded part, by changing the condition of the measurement target site. It is to provide a device that can measure the welding shape with high accuracy even when the incident reflected light fluctuates, and even when using a laser generation element that is easily affected by temperature such as a semiconductor element, it can be accurately measured. An object is to provide a device capable of measuring a shape.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の断面形状計測装置は、レーザ放射装置と1
次元光センサと、レーザ放射装置からのレーザ光を測定
対象に導きながら対象表面を1方向の走査し表面から反
射するレーザ光を1次元光センサに導くスキャニング機
構を備えて、スキャニング機構を対象に対して相対的に
移動させて必要な領域面を走査するものであって、さら
に、入射光量調節器を備えて、スキャニング機構による
スキャニングに連動してレーザ光照射方向が以前に同じ
照射方向であったときに1次元光センサが検出した受光
量に基づいて受光量が所定の目標値に近づく方向に入射
光量を調整することを特徴とする。
In order to solve the above problems, a cross-sectional shape measuring apparatus of the present invention comprises a laser emitting device and a laser emitting device.
A two-dimensional optical sensor and a scanning mechanism that guides the laser light from the laser emitting device to the measurement target while scanning the target surface in one direction and reflects the laser light reflected from the surface to the one-dimensional optical sensor are provided. It is a device for scanning the necessary area surface by moving it relative to it, and is further equipped with an incident light amount adjuster, and the laser beam irradiation direction is the same irradiation direction as previously, linked to the scanning by the scanning mechanism. It is characterized in that the incident light quantity is adjusted in the direction in which the received light quantity approaches a predetermined target value based on the received light quantity detected by the one-dimensional optical sensor.

【0008】スキャニング機構には、ガルバノミラーな
どを用いてミラー面の向きから直接にレーザ照射方向を
得る機構を用いることができるが、また、揺動角度セン
サを備えたスキャニングミラーを使用する機構を用いる
こともできる。このスキャニングミラーは回動軸を中心
として揺動するものであって、角度センサにより揺動角
度を検出してレーザ光放射方向を知ることができる。ス
キャニングミラーが揺動している間であって以前に同じ
位相角を取った時における検出光量を入射光量調整のた
めに用いる規準受光量とすることができる。なお、入射
光量調整は、スキャニングミラーの揺動の往路と復路の
両方で実施するようにしてもよい。
As the scanning mechanism, a mechanism for directly obtaining the laser irradiation direction from the direction of the mirror surface by using a galvano mirror or the like can be used, but a mechanism using a scanning mirror equipped with a swing angle sensor is also available. It can also be used. This scanning mirror swings around a rotation axis, and the swing angle can be detected by an angle sensor to know the laser beam emission direction. While the scanning mirror is oscillating, the detected light amount when the same phase angle is previously taken can be set as the standard light receiving amount used for adjusting the incident light amount. The adjustment of the incident light amount may be performed on both the forward and backward paths of the swing of the scanning mirror.

【0009】本発明の断面形状計測装置は、レーザ光を
対象物表面に照射し、反射光を測定光学系を介してたと
えばCCD素子を1列に並べた1次元光センサに入射さ
せ、反射光に感応した素子の位置からレーザ光の反射位
置を算定する。こうして得られた反射位置、すなわち対
象物の表面位置のデータをレーザビームのスキャン方向
に集約することにより1スキャン毎の輪郭線を作成す
る。さらに、装置を前進させながら対象物全面について
輪郭線を形成することにより表面形状を計測するように
なっている。
The cross-sectional shape measuring apparatus of the present invention irradiates the surface of an object with a laser beam and causes the reflected light to enter a one-dimensional optical sensor in which, for example, CCD elements are arranged in a row through a measurement optical system to reflect the reflected light. The reflection position of the laser light is calculated from the position of the element sensitive to. Data of the reflection position thus obtained, that is, the surface position of the object is collected in the scanning direction of the laser beam to create a contour line for each scan. Further, the surface shape is measured by forming a contour line on the entire surface of the object while advancing the device.

【0010】本発明の断面形状計測装置によれば、装置
のスキャニング方向に沿って変化する測定対象物の状態
は1次元光センサで受光量情報として取得してある。そ
こで、新しいスキャニングを行うときには以前に取得し
た受光量情報に基づいて、反射光が明るい位置では光量
レベルを下げ、反射光が暗い位置では光量レベルを上げ
るようにして、1次元光センサの入射光量を調整する。
このように、1次元光センサの受光量が所定の目標値に
近づくようにして、受光量の平準化をし検出感度を適当
な水準に保持すると、センサで検出する対象物表面の光
切断線が適当な太さを維持するので、対象物形状計測の
精度を確保することができる。
According to the cross-sectional shape measuring apparatus of the present invention, the state of the measuring object that changes along the scanning direction of the apparatus is acquired by the one-dimensional photosensor as the received light amount information. Therefore, when performing a new scanning, the light intensity level is lowered at the position where the reflected light is bright and raised at the position where the reflected light is dark based on the previously received light amount information, and the incident light amount of the one-dimensional optical sensor is increased. Adjust.
In this way, when the amount of light received by the one-dimensional optical sensor approaches the predetermined target value and the amount of received light is leveled and the detection sensitivity is maintained at an appropriate level, the optical cutting line on the surface of the object detected by the sensor is detected. Maintains an appropriate thickness, so that the accuracy of object shape measurement can be ensured.

【0011】対象物の表面状態はレーザ光のスキャン方
向に沿って変化するので、入射光量調整はレーザ光の照
射方向ごとに行う必要がある。このため、本発明では、
1次元光センサが以前に取得した同じ照射方向における
受光量情報に基づき、新たな測定で受光量が所定の値に
近づく方向に入射光量を調整する。入射光量は、レーザ
発生素子の駆動電流、レーザのパルス点灯時間、カメラ
露光時間、あるいはこれらを組み合わせた要素を変化さ
せることにより調整することができる。レーザ発生素子
と光センサの両方を用いて制御する場合は、入射光量の
調整幅が拡大して、より大きなダイナミックレンジを持
つようにすることができる。
Since the surface condition of the object changes along the scanning direction of the laser light, it is necessary to adjust the incident light amount for each irradiation direction of the laser light. Therefore, in the present invention,
Based on the received light amount information in the same irradiation direction previously acquired by the one-dimensional optical sensor, the incident light amount is adjusted in a direction in which the received light amount approaches a predetermined value by new measurement. The amount of incident light can be adjusted by changing the drive current of the laser generation element, the pulse lighting time of the laser, the exposure time of the camera, or an element combining these. When the control is performed by using both the laser generating element and the optical sensor, the adjustment range of the incident light amount can be expanded and a larger dynamic range can be obtained.

【0012】スキャニング機構に揺動角度センサを備え
たスキャニングミラーを使用するときは、角度センサに
より揺動角度を検出してレーザ光放射方向を画定して、
以前に同じ位相角を取った時における検出光量を入射光
量調整のために用いる規準受光量として、入射光量の調
整をすることができる。なお、スキャニングミラーを揺
動させてスキャンする方式では、往路と復路では交互に
出現し対称的な動きを示すので、往復共に対象物の表面
輪郭測定を行うことができる。この場合は、往路と復路
それぞれ独立に揺動角毎の受光量を評価して入射光量を
調整することが好ましい。
When a scanning mirror equipped with a swing angle sensor is used in the scanning mechanism, the swing angle is detected by the angle sensor to define the laser light emission direction,
The incident light amount can be adjusted by using the detected light amount when the same phase angle is previously taken as the standard light receiving amount used for adjusting the incident light amount. In the method in which the scanning mirror is oscillated to scan, the surface contour measurement of the object can be performed in both the reciprocating manner because the outward movement and the returning movement alternately appear and show a symmetrical movement. In this case, it is preferable to adjust the incident light amount by independently evaluating the amount of received light for each swing angle in the forward path and the return path.

【0013】レーザ照射位置毎の反射位置は光に感応し
た受光素子の位置から求められる。従って、一定の入射
光量があれば1次元光センサ全体の受光量は一定にな
る。そこで、1次元光センサを構成する受光素子の全素
子の出力を総合した、積算値あるいは平均値などをもっ
て入射光量調整の規準受光量としてもよい。もちろん、
簡単のため、受光素子のうち最高強度を示す素子の検出
光量とすることもできる。
The reflection position for each laser irradiation position is obtained from the position of the light receiving element sensitive to light. Therefore, if the amount of incident light is constant, the amount of light received by the entire one-dimensional photosensor is constant. Therefore, an integrated value or an average value obtained by integrating the outputs of all the light receiving elements forming the one-dimensional optical sensor may be used as the standard light receiving amount for adjusting the incident light amount. of course,
For the sake of simplicity, the amount of light detected by the element having the highest intensity among the light receiving elements can be used.

【0014】さらにまた、入射光量調節器は、受光光量
に対応する調整量を記載した変換テーブルを記憶する記
憶装置を備え、この変換テーブルを参照して入射光量の
調整を行うようにしてもよい。対象物の材質や形状によ
って、関数関係が異なるため場合によって適切な関数を
選択して使用することが好ましいからである。また、対
象が変化したときにも、ソフトウエア手段によって容易
に適当な関数を設定することができるので、広く種々の
対象に対処することができる。なお、入射光量調整値
は、前回のスキャニングで同じ照射方向であったときに
得られた受光量情報を処理して算出すればよいので、個
々の演算はスキャニングの1周期の間に行えばよい。し
たがって、測定結果入力処理と調整値演算を並列的に実
行することができる。
Furthermore, the incident light quantity adjuster may be provided with a storage device for storing a conversion table in which an adjustment amount corresponding to the received light quantity is stored, and the incident light quantity may be adjusted with reference to this conversion table. . This is because the functional relationship differs depending on the material and shape of the target object, so it is preferable to select and use an appropriate function depending on the case. Further, even when the target changes, it is possible to easily set an appropriate function by the software means, so that a wide variety of targets can be dealt with. Since the incident light amount adjustment value may be calculated by processing the received light amount information obtained when the same irradiation direction was obtained in the previous scanning, each calculation may be performed during one scanning period. . Therefore, the measurement result input process and the adjustment value calculation can be executed in parallel.

【0015】さらに、本発明における課題を解決するた
め、本発明の断面形状計測装置は、レーザ放射装置に半
導体レーザ発生素子を用いたものであって、半導体レー
ザ発生素子の筐体に温度検出素子と熱移動素子を密着さ
せ、これらと接続された温度調節器を備える。この温度
調節器は、温度検出素子の出力に基づいて熱移動素子の
発吸熱量を調整することにより、半導体レーザ発生素子
を所定の温度に保持するようにする。すると、半導体レ
ーザ発生素子の特性の温度変動を抑制するため、1次元
光センサに設けるバンドパスフィルターの透過波長幅を
より狭くすることができ、環境から漏れ込むノイズ光の
影響を除去することができるので、光センサの測定出力
のSN比が著しく改善され、輪郭線が鮮鋭になり正確な
輪郭線を得て精度よく対象物表面形状を画定することが
できるようになる。
Further, in order to solve the problems of the present invention, the cross-sectional shape measuring apparatus of the present invention uses a semiconductor laser generating element in a laser emitting device, and a temperature detecting element is provided in a housing of the semiconductor laser generating element. And a heat transfer element in close contact with each other, and a temperature controller connected to them is provided. This temperature controller holds the semiconductor laser generating element at a predetermined temperature by adjusting the amount of heat generated and absorbed by the heat transfer element based on the output of the temperature detecting element. Then, since the temperature variation of the characteristics of the semiconductor laser generating element is suppressed, the transmission wavelength width of the bandpass filter provided in the one-dimensional optical sensor can be made narrower, and the influence of noise light leaking from the environment can be eliminated. Therefore, the SN ratio of the measurement output of the optical sensor is remarkably improved, the contour line becomes sharp, an accurate contour line can be obtained, and the object surface shape can be accurately defined.

【0016】熱移動素子にペルチェ効果素子を利用する
と、電流の向きを制御することにより加熱と冷却のいず
れも可能になるので便利である。このような半導体レー
ザ発生素子の温度管理と入射光量の調整を併せて採用す
ることにより、溶接部近傍の高温環境中に装置を置いて
倣い溶接する場合にも、より精度の高い輪郭測定が可能
となり、高品質の溶接を行うことができる。
It is convenient to use a Peltier effect element as the heat transfer element because both heating and cooling can be performed by controlling the direction of the current. By adopting such temperature control of the semiconductor laser generating element and adjustment of the incident light amount together, more accurate contour measurement is possible even when the device is placed in a high temperature environment near the welded part and copy welding is performed. Therefore, high quality welding can be performed.

【0017】[0017]

【発明の実施の形態】以下、本発明について実施例に基
づき図面を参照して詳細に説明する。図1は本実施例の
断面形状計測装置のブロック図、図2は本実施例に用い
られるセンサヘッドの構成を示す概念図、図3は本実施
例における画像合成結果の例を表す図面、図4は本実施
例におけるレーザ走査方向の受光量変化の例を表す分布
図、図5は本実施例で制御量を求めるために用いる変換
テーブルの例を示す図面、図6は本実施例における入射
光量制御手順を説明するフロー図、図7は画像スキャン
と制御量決定タイミングの関係を説明する図面、図8は
本実施例に使用するレーザ投光器の温度制御系のブロッ
ク図、図9はレーザ投光器の温度制御に使用するペルチ
ェ素子の原理図、図10はレーザ投光器の温度制御の効
果を説明するレーザ波長分布とバンドパスフィルタの波
長特性の関係を示した図面である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail based on embodiments with reference to the drawings. FIG. 1 is a block diagram of a cross-sectional shape measuring apparatus of this embodiment, FIG. 2 is a conceptual diagram showing the configuration of a sensor head used in this embodiment, and FIG. 3 is a drawing showing an example of an image composition result in this embodiment. 4 is a distribution chart showing an example of a change in the amount of received light in the laser scanning direction in this embodiment, FIG. 5 is a drawing showing an example of a conversion table used to obtain the control amount in this embodiment, and FIG. 6 is an incident in this embodiment. FIG. 7 is a flowchart for explaining the light quantity control procedure, FIG. 7 is a drawing for explaining the relationship between image scanning and control quantity determination timing, FIG. 8 is a block diagram of the temperature control system of the laser projector used in this embodiment, and FIG. 9 is the laser projector. FIG. 10 is a principle diagram of a Peltier element used for temperature control of FIG. 10, and FIG. 10 is a view showing a relationship between a laser wavelength distribution and a wavelength characteristic of a bandpass filter for explaining an effect of temperature control of a laser projector.

【0018】本実施例の断面形状計測装置は、図1に示
すように、レーザセンサのセンサヘッド1とコントロー
ラ2とディスプレー3から構成され、測定対象物4の表
面形状を測定する。レーザヘッド1の内には、図2に示
すように、レーザ投光器11と1次元光センサ12とス
キャニングミラー13が組み込まれている。レーザ投光
器11は、半導体レーザ発生素子を利用して波長690
nmの赤色レーザを発生する。発生したレーザビーム
は、測定対象4に照射される。測定対象4の表面で反射
した光は、集光光学系14を介して1次元光センサ12
に入射する。
As shown in FIG. 1, the cross-sectional shape measuring apparatus of this embodiment comprises a sensor head 1 of a laser sensor, a controller 2 and a display 3, and measures the surface shape of a measuring object 4. As shown in FIG. 2, a laser projector 11, a one-dimensional optical sensor 12, and a scanning mirror 13 are incorporated in the laser head 1. The laser projector 11 uses a semiconductor laser generating element to generate a wavelength of 690.
emitting a red laser of nm. The generated laser beam is applied to the measurement target 4. The light reflected on the surface of the measuring object 4 is transmitted through the condensing optical system 14 to the one-dimensional optical sensor 12
Incident on.

【0019】なお、1次元光センサの入射光路中には、
照射したレーザ光の波長を挟んだ領域を透過するバンド
パスフィルタが設けられていて、周囲から侵入するノイ
ズ光を排斥して信号雑音比を向上させ、より精度の高い
測定ができるようにしてある。1次元光センサ12は、
CCD素子を多数直線上に配列したリニアセンサで、集
光光学系14によりレーザ反射光をセンサに入射させる
と、集光光学系14の光学中心とレーザ照射位置を結ん
だ直線上にあるCCD素子に光が照射するので、受光し
たCCD素子の位置がレーザ照射位置に対応することに
なり、入射光量が大きい素子の配列上の位置に基づいて
物体の表面位置を知ることができる。
In the incident optical path of the one-dimensional photosensor,
A bandpass filter is provided to pass through the region sandwiching the wavelength of the emitted laser light, and the noise light that invades from the surroundings is rejected to improve the signal-to-noise ratio, enabling more accurate measurement. . The one-dimensional optical sensor 12 is
A linear sensor in which a large number of CCD elements are arranged on a straight line, and when the laser reflected light is made incident on the sensor by the condensing optical system 14, the CCD element on the straight line connecting the optical center of the condensing optical system 14 and the laser irradiation position. Since the light is emitted to the laser beam, the position of the CCD element that receives the light corresponds to the laser irradiation position, and the surface position of the object can be known based on the position on the array of the elements having a large incident light amount.

【0020】物体の断面形状を計測するためには、上記
三角測量を用いた測定機構を切断面方向に走査し、走査
線に沿って位置測定結果を配置する必要がある。この目
的でスキャニングミラー13がレーザ光路中に介装され
ている。レーザ投光器11から放射されるレーザビーム
を屈折して測定対象4に照射し、測定対象の表面で反射
して戻ってくる光を再び屈折して1次元光センサ12に
入射させる。スキャニングミラー13は、揺動軸15を
中心として往復動するので、レーザ光は揺動軸に垂直の
方向に走査し、表面位置測定結果は走査方向に沿って順
次取得される。なお、図には示していないが、スキャニ
ングミラー13の揺動は正弦波関数的変化をするため時
間とレーザ照射方向は必ずしもリニアの関係にないの
で、スキャニングミラー反射面の向きを実際に検出して
測定方向を画定するようにして測定精度を確保してい
る。
In order to measure the cross-sectional shape of the object, it is necessary to scan the measuring mechanism using the triangulation in the direction of the cutting plane and arrange the position measurement result along the scanning line. For this purpose, a scanning mirror 13 is inserted in the laser optical path. The laser beam emitted from the laser projector 11 is refracted and applied to the measurement target 4, and the light reflected by the surface of the measurement target and returned is refracted again and made incident on the one-dimensional optical sensor 12. Since the scanning mirror 13 reciprocates about the swing shaft 15, the laser light scans in the direction perpendicular to the swing shaft, and the surface position measurement results are sequentially acquired along the scanning direction. Although not shown in the figure, since the oscillation of the scanning mirror 13 changes sinusoidally, the time and the laser irradiation direction do not necessarily have a linear relationship. Therefore, the direction of the scanning mirror reflecting surface is actually detected. The measurement accuracy is ensured by demarcating the measurement direction.

【0021】上記構成により、1回の走査により1個の
断面形状計測ができ、計測装置を移動させながら連続的
に走査を繰り返すことにより、対象物の表面形状を面と
して計測することができる。図3は、1回のレーザスキ
ャンにより得られる1個の断面形状計測結果を表示した
例を示す図面である。スキャニングミラー13がある角
度を持っているときに対象物表面に現れる光点から計器
までの距離は、受光量が大きなCCD素子のリニア光セ
ンサ12中の素子列中の位置を用いた三角測量法により
求めることができる。受光した素子の位置は、光センサ
を走査して各素子毎の出力を観察することにより求める
ことができる。
With the above configuration, one cross-sectional shape can be measured by one scanning, and the surface shape of the object can be measured as a surface by continuously repeating the scanning while moving the measuring device. FIG. 3 is a diagram showing an example in which one cross-sectional shape measurement result obtained by one laser scan is displayed. The distance from the light spot appearing on the surface of the object to the measuring instrument when the scanning mirror 13 has an angle is a triangulation method using the position in the element array in the linear optical sensor 12 of the CCD element which receives a large amount of light. Can be obtained by The position of the light-receiving element can be obtained by scanning the optical sensor and observing the output of each element.

【0022】さらに、スキャニングミラー13を揺動さ
せて測定範囲全域にわたってスキャンし、所定の照射角
毎に上記計測を繰り返した結果を表示画面に展開して示
すと、図3に示すような光点が連続した輪郭線が現れ
る。この輪郭線は、対象物の1断面について、スキャニ
ングミラーの揺動軸15から対象物表面までの距離を放
射状に計測した結果を表すことになる。実際の断面形状
情報は、ミラー表面の向きに関する情報を用い、簡単な
変換処理を行うことによって、たとえば1平面からの高
さで表した輪郭として与えることが好ましい。
Further, the scanning mirror 13 is swung to scan over the entire measurement range, and the result of repeating the above measurement for each predetermined irradiation angle is developed and shown on the display screen. A continuous contour line appears. This contour line represents the result of radial measurement of the distance from the swing axis 15 of the scanning mirror to the surface of the object for one cross section of the object. The actual cross-sectional shape information is preferably given as a contour represented by the height from one plane, for example, by using information about the orientation of the mirror surface and performing a simple conversion process.

【0023】また、対象物14の表面特性は一定でない
ため、同じ強度の光を照射すると場所により表面反射率
や反射面の傾きが異なり光センサに入射する反射光の強
度が変化する。たとえば、対象物の表面が入射レーザ光
に対して傾いているときには、面積当たりの入射光が弱
くなり、光センサがキャッチする反射散乱光エネルギは
小さくなる。このため、CCD素子における蓄積電荷量
が少なくなり、閾値の設定によっては輪郭線が途切れる
場合もある。また、対象物表面の光吸収率が高い場合は
光センサに入射する光が少なくなって輪郭線の検出が困
難になる。さらに、光反射率が高い場合にも面の向きに
よっては光センサに入射する光が少なくなる。一方、対
象物表面状態によっては大きな光エネルギーが光センサ
に入射して、CCD素子が飽和したり近隣の多数のCC
D素子が検出出力を生じて太い検出帯になったりして、
正確な表面位置を知ることが難しくなる。
Further, since the surface characteristics of the object 14 are not constant, when the same intensity of light is applied, the surface reflectance and the inclination of the reflecting surface vary depending on the location, and the intensity of the reflected light incident on the optical sensor changes. For example, when the surface of the object is tilted with respect to the incident laser light, the incident light per area becomes weak and the reflected scattered light energy caught by the photosensor becomes small. Therefore, the amount of accumulated charge in the CCD element decreases, and the contour line may be interrupted depending on the setting of the threshold value. Further, when the light absorption rate of the surface of the object is high, the amount of light incident on the optical sensor is small, and it becomes difficult to detect the contour line. Further, even when the light reflectance is high, less light is incident on the optical sensor depending on the orientation of the surface. On the other hand, depending on the condition of the surface of the object, a large amount of light energy may enter the optical sensor, causing the CCD element to saturate or a large number of CCs in the vicinity.
The D element produces a detection output and becomes a thick detection band,
It becomes difficult to know the exact surface position.

【0024】光センサのCCD素子の出力をレーザ光の
走査方向にプロットすると、明るさ評価値である入射光
強度が、たとえば図4に示すように、変化することが分
かる。プロットする出力値は、CCD素子が1列に並ん
だ光センサ全体について出力を積算した値あるいはCC
D素子の出力平均値であってもよく、また1列中の最大
出力を有するCCD素子の出力値であってもよい。本実
施例の断面形状計測装置では、明るさ評価値に所定の基
準値を設定して、基準値より高い明るい領域については
CCD素子に入射する光量を低下させ、基準値より低い
暗い領域についてはCCD素子入射光量を増加させるよ
うに調整している。
When the output of the CCD element of the optical sensor is plotted in the scanning direction of the laser light, it can be seen that the incident light intensity, which is the brightness evaluation value, changes, for example, as shown in FIG. The output value to be plotted is a value obtained by integrating the outputs of all the photosensors in which the CCD elements are arranged in a line or CC
It may be the average output value of the D element or the output value of the CCD element having the maximum output in one column. In the cross-sectional shape measuring apparatus of the present embodiment, a predetermined reference value is set for the brightness evaluation value, the amount of light incident on the CCD element is reduced for a bright area higher than the reference value, and a dark area lower than the reference value is set. It is adjusted to increase the amount of light incident on the CCD element.

【0025】なお、調整は、CPUボード21、画像入
力ボード22、インターフェースボード23、これらを
連結するバス24などを備えたコントローラ2によっ
て、前回のレーザ光スキャンにおいて同じ照射角位相を
持つときに得られた光センサ受光量を明るさ評価値とし
て、この評価値が基準値に近づく方向にレーザ発生素子
の出力や光センサの露光条件を調整することによって行
われる。レーザ光スキャンは極めて高速で繰り返される
ため、前回のスキャンと今回のスキャンでは測定対象位
置が余り変化しないので、前回の測定条件に基づいた改
善動作により今回の測定条件を改善することができる。
また、測定装置が移動して測定位置が変化するにつれ
て、測定対象の表面性状が変化するが、前回のスキャン
で得られた測定結果を利用するので、位置変化に追従し
た的確な調整をすることができる。
The adjustment is obtained by the controller 2 including the CPU board 21, the image input board 22, the interface board 23, and the bus 24 connecting them when the same irradiation angle phase is obtained in the previous laser light scan. This is performed by using the received light amount of the optical sensor as a brightness evaluation value and adjusting the output of the laser generating element and the exposure condition of the optical sensor in the direction in which the evaluation value approaches the reference value. Since the laser beam scan is repeated at an extremely high speed, the measurement target position does not change much between the previous scan and the current scan, so that the measurement operation of this time can be improved by the improvement operation based on the measurement condition of the previous time.
Also, as the measuring device moves and the measurement position changes, the surface texture of the measurement target changes, but since the measurement results obtained in the previous scan are used, make accurate adjustments that follow the position change. You can

【0026】図5は、本実施例で行う調整の手順を表
す。すなわち、計測が始まると、初めの条件に基づいて
1断面についてレーザをスキャンさせる。初めにレーザ
ビームを測定対象領域に照射し(S1)、各照射点につ
いて光センサの測定結果を記録し(S2)、第1回目の
レーザ光スキャンが終了したか否かを判定する(S
3)。終了しない限り上記ステップS1、S2を繰り返
し、1画面分の情報を取得した後にステップS4に進
む。
FIG. 5 shows an adjustment procedure performed in this embodiment. That is, when the measurement is started, the laser is scanned for one section based on the first condition. First, the laser beam is applied to the measurement target area (S1), the measurement result of the optical sensor is recorded for each irradiation point (S2), and it is determined whether the first laser light scan is completed (S).
3). Unless the processing is completed, the above steps S1 and S2 are repeated, and after the information for one screen is acquired, the process proceeds to step S4.

【0027】1回のレーザ光スキャンが終了すると、図
3に示したような断面輪郭線が得られるので、輪郭線情
報を画像入力ボード22で取り込み、CPUボード21
に設けられる画像処理回路によって、取り込んだ輪郭線
情報に対して変換処理などを含む画像処理を施して、実
空間における対象物表面形状を表す情報とする。対象物
表面形状の情報はインターフェースボード23に送ら
れ、ディスプレー3に表示されたり、図外の溶接倣い制
御装置に供給される。また、画像処理によって求められ
たスキャンラインに沿った明るさ分布を検出し(S
5)、明るさ評価値を基準値と比較し、その偏差に基づ
いて光センサ1に入射する光量を調整するための指令値
を算出する(S6)。
When one laser beam scan is completed, a cross-sectional contour line as shown in FIG. 3 is obtained. Therefore, the contour line information is fetched by the image input board 22, and the CPU board 21 is loaded.
An image processing circuit provided in the image processing circuit performs image processing including conversion processing on the captured contour line information to obtain information representing the surface shape of the object in the real space. The information on the surface shape of the object is sent to the interface board 23, displayed on the display 3, and supplied to a welding copying control device (not shown). Further, the brightness distribution along the scan line obtained by the image processing is detected (S
5) The brightness evaluation value is compared with a reference value, and a command value for adjusting the amount of light incident on the optical sensor 1 is calculated based on the deviation (S6).

【0028】1次元光センサの入射光量は、レーザ投光
器11の入力電流、レーザのパルス点灯のデューティ
比、1次元光センサ12の露光時間などを調整すること
により、あるいはこれらの組合せにより制御することが
できる。計測対象4の性状や、1次元光センサ12やレ
ーザ投光器11の特性の影響により、図6(a)(b)
(c)に概念的に示したように、それぞれの操作量と1
次元光センサ12の入射光量の間にはそれぞれ異なる関
数関係を有するので、予め求めた変換テーブルあるいは
計算式をCPUボード21に備えた記憶装置に保持して
おいて、この変換テーブルや計算式を参照してそれぞれ
に適当な調整値を求める必要がある。
The incident light amount of the one-dimensional photosensor is controlled by adjusting the input current of the laser projector 11, the duty ratio of the laser pulse lighting, the exposure time of the one-dimensional photosensor 12, or a combination thereof. You can 6 (a) and 6 (b) depending on the characteristics of the measurement target 4 and the characteristics of the one-dimensional optical sensor 12 and the laser projector 11.
As conceptually shown in (c), each operation amount and 1
Since the incident light amounts of the two-dimensional photosensor 12 have different functional relationships, the conversion table or the calculation formula obtained in advance is held in the storage device provided in the CPU board 21, and the conversion table or the calculation formula is stored. It is necessary to refer to each to find an appropriate adjustment value.

【0029】このようにして準備した調整値の列を用い
て、レーザスキャンの各タイミング毎にレーザ投光器1
1の光出力制御を行って、レーザビームを放射させ対象
物4に照射する(S7)。また、レーザスキャンの各タ
イミング毎に、1次元光センサ12のCCD素子列につ
いて画像データを取り込む(S8)。1次元光センサ1
2は調整値を用いてたとえばシャッタスピードを調整
し、露光時間制御を行ったものであってもよい。レーザ
投光器11と1次元光センサ12の両方を用いて入射光
量調整を行う場合は、調整範囲が極めて大きくなる利点
がある。
Using the row of adjustment values thus prepared, the laser projector 1 is provided at each laser scanning timing.
The light output of 1 is controlled to emit a laser beam to irradiate the object 4 (S7). Further, at each timing of laser scanning, image data is taken in for the CCD element array of the one-dimensional photosensor 12 (S8). One-dimensional optical sensor 1
Reference numeral 2 may be one in which the shutter speed is adjusted by using the adjustment value and the exposure time is controlled. When the amount of incident light is adjusted using both the laser projector 11 and the one-dimensional optical sensor 12, there is an advantage that the adjustment range becomes extremely large.

【0030】1断面についてレーザ光スキャンが終了し
たか否かを判定し、終了しない限り上記ステップS7、
S8を繰り返し、1画面分の情報を取得し終えたらステ
ップS4に進んで(S9)、断面形状表示や溶接制御装
置への形状情報提供を行い(S4)、さらに次回のレー
ザスキャンのための調整値を準備する(S5、S6)。
光点距離は通常、図7に示すように、往復動するスキャ
ンイングミラー13によりレーザビームが対象を走査す
る間の往路または復路の一方のみを使い、比較的速度が
一定している部分で計測するように構成されている。し
たがって、制御機構に供給する調整値は、前回のスキャ
ニングで光センサ12が光点距離測定が終了した後、ス
キャニングミラー13が計測開始位置に戻る間に算出し
ておいて、次の画像計測が始まる時には全て準備されて
いることが好ましい。
Whether or not the laser beam scanning has been completed for one section is judged, and if not completed, the above-mentioned step S7,
When S8 is repeated to obtain information for one screen, the process proceeds to step S4 (S9), the cross-sectional shape is displayed and the welding control device is provided with shape information (S4), and further adjustment for the next laser scan is performed. A value is prepared (S5, S6).
As shown in FIG. 7, the light spot distance is normally measured at a portion where the speed is relatively constant, using only one of the forward path and the backward path while the laser beam scans the object by the reciprocating scanning mirror 13. Is configured to. Therefore, the adjustment value supplied to the control mechanism is calculated while the scanning mirror 13 returns to the measurement start position after the optical sensor 12 finishes measuring the light spot distance in the previous scanning, and the next image measurement is performed. It is preferable that everything is prepared when starting.

【0031】ただし、実際に調整を行うのは、スキャニ
ング中の各位相位置にあるときであるから、その時まで
に調整データが整っていれば足りるので、計測結果を演
算装置に逐次取り込み並列的に調整値を算出して制御機
構に供給するようにしてもよいことはいうまでもない。
また、スキャニングミラー13の往路と復路の両方で断
面形状を計測するようにすれば、測定密度が倍増するの
でより綿密な形状計測ができる。往復両方で計測するよ
うにした場合は、往路と復路ではスキャン方向が逆転す
るので、それぞれ別々に調整値を算出して調整値データ
列が同じ方向に並ぶようにすることが演算および装置制
御の単純化のために好ましい。
However, since the actual adjustment is made at each phase position during scanning, it suffices that the adjustment data is prepared by that time, so the measurement results are sequentially fetched into the arithmetic unit and parallelized. It goes without saying that the adjustment value may be calculated and supplied to the control mechanism.
Further, if the cross-sectional shape is measured on both the forward path and the backward path of the scanning mirror 13, the measurement density is doubled, so that more detailed shape measurement can be performed. When the measurement is performed in both round trips, the scan direction is reversed in the forward and backward passes, so it is necessary to calculate the adjustment values separately and arrange the adjustment value data strings in the same direction. Preferred for simplicity.

【0032】なお、半導体レーザ素子は温度により特性
が著しく変化するため、安定して使用できる範囲がたと
えば0−40℃の間に制約される上、可用範囲内でもレ
ーザ光のピーク波長が変動する。ところが、溶接装置に
使用する断面形状計測装置は、溶接部のごく近傍にセン
サ類を配置して使用しなければならないため、測定中は
高温に晒され温度管理が難しい。したがって、半導体レ
ーザ発生器を組み込んだレーザ投光器を用いるときに
は、レーザ光波長を挟んだ領域を透過させるバンドパス
フィルタはピーク波長の変動を見込んで設定するため、
透過波長幅をたとえば20nm程度までしか狭めること
ができず、高精度の測定結果を得ることが難しい場合が
ある。また、寒冷時の始動など装置温度が可用範囲に入
らない場合には測定ができないことがある。
Since the characteristics of the semiconductor laser device change remarkably with temperature, the stable usable range is restricted to 0-40 ° C., and the peak wavelength of the laser light fluctuates even within the usable range. . However, in the cross-sectional shape measuring device used for the welding device, since the sensors must be arranged in the vicinity of the welded part, the device is exposed to high temperature during the measurement, and the temperature control is difficult. Therefore, when a laser projector incorporating a semiconductor laser generator is used, the bandpass filter that transmits the region sandwiching the laser light wavelength is set in consideration of the fluctuation of the peak wavelength.
The transmission wavelength width can be narrowed only to, for example, about 20 nm, and it may be difficult to obtain highly accurate measurement results. In addition, measurement may not be possible if the device temperature does not fall within the usable range, such as during cold weather starting.

【0033】そこで、本実施例の断面形状計測装置で
は、半導体レーザ発生器の温度を一定に制御することに
より、バンドパスフィルタの透過幅を狭隘化することを
可能にしてノイズ光の侵入を抑制し、測定精度をより向
上させるようにすることができる。また、環境温度が低
すぎる場合にも正しく測定することができる。レーザ投
光器の温度制御系は、図8に示すように、半導体レーザ
発生器が組み込まれたレーザ投光器の筐体51に貼付し
た熱電対やサーミスタなどの温度測定素子52とペルチ
ェ素子などの熱移動素子56、およびこれらを接続する
温度調整器53とから構成される。
Therefore, in the cross-sectional shape measuring apparatus of this embodiment, by controlling the temperature of the semiconductor laser generator to be constant, it is possible to narrow the transmission width of the bandpass filter and suppress the intrusion of noise light. However, the measurement accuracy can be further improved. In addition, even when the environmental temperature is too low, it is possible to perform accurate measurement. As shown in FIG. 8, the temperature control system of the laser projector includes a temperature measuring element 52 such as a thermocouple or thermistor and a heat transfer element such as a Peltier element attached to a housing 51 of the laser projector in which a semiconductor laser generator is incorporated. 56 and a temperature controller 53 connecting them.

【0034】温度調整器53は、温度比較回路54と印
加電流調整回路55を備え、温度測定素子52の出力を
温度信号に変換して目標温度値と比較し、偏差に基づい
て算出した電流値を熱移動素子56に供給する。温度制
御系には遅れ要素が存在するため、通常はON/OFF
制御により印加電流を調整すれば十分で、制御論理は極
めて単純である。なお、いわゆる時間比例式ON/OF
F制御を採用して、偏差が大きい時にはON/OFFの
一方を選択するが小さい時には切替え間隔を短くするよ
うにして、実効的なエネルギ供給量を偏差に対して比例
的に変化させるようにすると、温度変動をより効果的に
抑えて高精度な温度制御を達成することができる。温度
調整器53は、マイコンなどの電子計算機能を備えた装
置により構成することができ、コントローラ2のCPU
ボード21に組み込むことも可能である。
The temperature adjuster 53 includes a temperature comparison circuit 54 and an applied current adjustment circuit 55, converts the output of the temperature measuring element 52 into a temperature signal, compares it with a target temperature value, and calculates a current value based on the deviation. Are supplied to the heat transfer element 56. Since there is a delay element in the temperature control system, it is normally ON / OFF
It is sufficient to adjust the applied current by control, and the control logic is extremely simple. In addition, so-called time proportional ON / OF
If the F control is adopted and one of ON and OFF is selected when the deviation is large, but the switching interval is shortened when the deviation is small, the effective energy supply amount is changed in proportion to the deviation. Therefore, temperature fluctuations can be suppressed more effectively and highly accurate temperature control can be achieved. The temperature adjuster 53 can be configured by a device having an electronic calculation function such as a microcomputer, and is a CPU of the controller 2.
It can also be incorporated into the board 21.

【0035】ペルチェ素子は、ペルチェ効果に差のある
2種の半導体A,Bを図9に示すように交互に直列接続
し、交互の接続面の一方を表面に他方を裏面として電気
絶縁層Cで挟み、端子Tを直流電源に接続して熱電冷却
素子として使用することができる。このようなペルチェ
素子は、両端子Tに印加する電流の極性を変化させるこ
とで加熱と冷却を切替えることができるので、熱移動素
子56として使用するとレーザ投光器の温度管理をより
高度に行うことができる。
In the Peltier element, two kinds of semiconductors A and B having different Peltier effects are alternately connected in series as shown in FIG. 9, and one of the alternating connection surfaces is the front surface and the other is the back surface of the electric insulating layer C. It can be used as a thermoelectric cooling element by connecting the terminal T to a DC power source. Since such a Peltier element can switch between heating and cooling by changing the polarity of the current applied to both terminals T, when it is used as the heat transfer element 56, the temperature control of the laser projector can be performed more highly. it can.

【0036】上記温度制御系によりレーザ投光器の出力
を安定させることにより、図10に示すように、レーザ
光のピーク波長が変動しなくなるので、光センサ12に
仕込む光学フィルタの帯域幅を5nm程度に狭域化する
ことができる。図10は上段にレーザ投光器が放射する
レーザ光の波長分布を示し、下段にレーザ光を透過し外
光ノイズを遮断するためのバンドパス光学フィルタの透
過波長領域を示す。図中、温度制御がなかった状態を点
線で示し、温度制御系を導入した結果を実線で示す。
By stabilizing the output of the laser projector by the temperature control system, the peak wavelength of the laser light does not fluctuate, as shown in FIG. 10, so that the bandwidth of the optical filter charged in the optical sensor 12 is set to about 5 nm. Can be narrowed. FIG. 10 shows the wavelength distribution of the laser light emitted from the laser projector in the upper part, and the transmission wavelength region of the bandpass optical filter for transmitting the laser light and blocking external light noise in the lower part. In the figure, the state without temperature control is shown by the dotted line, and the result of introducing the temperature control system is shown by the solid line.

【0037】半導体レーザ発生器の可用温度範囲内であ
っても、ピーク波長は20nm程度変動するので、これ
を透過させるためバンドパス幅はやはり20nm程度必
要とされる。しかし、レーザ投光器11の温度管理を行
えば、ピーク波長は変動しなくなるので、レーザ光の広
がりをカバーできる程度の透過幅、たとえば5nm程度
の透過幅を持てばよくなる。このため、フィルタを透過
する外乱光の絶対量が減少し、透過光におけるレーザ光
の割合が増大し、SN比が大幅に改善される。したがっ
て、輪郭線を判定するための閾値を厳しく設定しても誤
検出が少なくなるので、CCDセンサの受光量の基づい
て入射光量を調整する機構と協働して、より鋭い輪郭線
を生成して検出することにより、極めて高精度な形状計
測ができるようになる。
Even within the usable temperature range of the semiconductor laser generator, the peak wavelength fluctuates by about 20 nm, so that a bandpass width of about 20 nm is still required to transmit the peak wavelength. However, if the temperature of the laser projector 11 is controlled, the peak wavelength does not fluctuate, so it is sufficient to have a transmission width that can cover the spread of the laser light, for example, a transmission width of about 5 nm. Therefore, the absolute amount of ambient light that passes through the filter is reduced, the proportion of laser light in the transmitted light is increased, and the SN ratio is greatly improved. Therefore, erroneous detection is reduced even if the threshold value for determining the contour line is set severely. Therefore, a sharper contour line is generated in cooperation with the mechanism that adjusts the incident light amount based on the received light amount of the CCD sensor. By performing the detection by the above, it becomes possible to measure the shape with extremely high accuracy.

【0038】また、外気温度が極く低温である状態で始
動させるときにも、レーザ投光器11の温度が管理され
ているため、測定が不能になることはなくなる。なお、
温度検出端と熱移動素子はできるだけ半導体レーザ発生
器に近いところに設置して、直接的に作用するようにす
ることが好ましい。従来のレーザ投光器を使用する場合
にも、これら要素を付設することにより簡単に温度制御
系を構成することができる。レーザ投光器の温度調整系
は入射光量調整機構と独立に使用しても、一定の精度向
上効果が得られることはいうまでもない。
Further, even when starting in a state where the outside air temperature is extremely low, since the temperature of the laser projector 11 is controlled, the measurement will not be disabled. In addition,
It is preferable to install the temperature detecting end and the heat transfer element as close to the semiconductor laser generator as possible so that they directly act on each other. Even when the conventional laser projector is used, the temperature control system can be easily constructed by attaching these elements. Needless to say, even if the temperature adjusting system of the laser projector is used independently of the incident light amount adjusting mechanism, a certain accuracy improving effect can be obtained.

【0039】本実施例の断面形状計測装置は、前回のス
キャニングで得られた計測結果を利用して、反射光が明
るい部分ではセンサの入射光量を抑制し、反射光が暗い
部分では入射光量が増大するようにするので、対象部分
の性状の変化にかかわらず取得する光点画像の大きさが
変化せず、輪郭線を的確に画定することができ、精度の
高い断面形状計測を行うことができる。また、入射光量
の調整に使用する変換テーブルや計算式をソフトウエア
として記憶装置に格納して利用することにより、テーブ
ルや式の変更を簡単に行うことができるので、対象が変
化した場合や変換テーブルなどを修正する場合などにも
容易に対処することができる。
The cross-sectional shape measuring apparatus of this embodiment uses the measurement result obtained in the previous scanning to suppress the incident light amount of the sensor in the portion where the reflected light is bright and to reduce the incident light amount in the portion where the reflected light is dark. Since the size is increased, the size of the light spot image to be acquired does not change regardless of the change in the properties of the target portion, the contour line can be accurately defined, and highly accurate cross-sectional shape measurement can be performed. it can. Also, by storing the conversion table and calculation formula used for adjusting the incident light amount in the storage device as software, it is possible to easily change the table and formula. It is possible to easily deal with cases such as when a table is modified.

【0040】なお、上記実施例の説明では、前回のスキ
ャニングで得られた測定データを用いて調整値を算出し
たが、現在の測定と状態が変化していないと見ることが
できる程度の過去のデータであればよく、直近のデータ
でなくてもよいことはいうまでもない。また、本実施例
の断面形状計測装置は、従来使用してきた倣い溶接装置
にコントローラや温度調整システムなどを付加すること
により容易に構成することができる。なお、ここでは赤
色レーザを用いた場合について記述したが、赤外線など
他の領域の光線を使用してもよいことはいうまでもな
い。
In the description of the above-mentioned embodiment, the adjustment value is calculated using the measurement data obtained in the previous scanning, but it is possible to see that the past measurement is the same as the present measurement. It goes without saying that the data is not limited to the most recent data as long as it is data. Further, the cross-sectional shape measuring apparatus of the present embodiment can be easily configured by adding a controller, a temperature adjusting system, etc. to the conventional copy welding apparatus. Although the case where the red laser is used is described here, it goes without saying that light rays in other regions such as infrared rays may be used.

【0041】[0041]

【発明の効果】以上説明した通り、本発明の断面形状計
測装置は、自動倣い溶接装置など溶接部に接近して設け
られるビームスキャン型レーザセンサに適用することに
より、測定対象部位の条件変化によりセンサに入射する
反射光が変動する場合にも、溶接形状を高精度で計測で
き、また、半導体レーザ発生素子を使用した場合にも、
精度よく形状計測できるようになる。
As described above, the cross-sectional shape measuring apparatus of the present invention is applied to a beam scanning type laser sensor such as an automatic copying welding apparatus which is provided close to a welding portion, so that the condition of a measurement target portion can be changed. Even if the reflected light incident on the sensor fluctuates, the welding shape can be measured with high accuracy, and also when using a semiconductor laser generating element,
The shape can be measured accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における断面形状計測装置のブ
ロック図である。
FIG. 1 is a block diagram of a cross-sectional shape measuring apparatus according to an embodiment of the present invention.

【図2】本実施例に用いられるセンサヘッドの構成を示
す概念図である。
FIG. 2 is a conceptual diagram showing a configuration of a sensor head used in this embodiment.

【図3】本実施例における画像合成結果の例を表す図面
である。
FIG. 3 is a diagram showing an example of an image composition result in the present embodiment.

【図4】本実施例におけるレーザ走査方向の受光量変化
の例を表す分布図である。
FIG. 4 is a distribution diagram showing an example of changes in the amount of received light in the laser scanning direction in the present embodiment.

【図5】本実施例で制御量を求めるために用いる変換テ
ーブルの例を示す図面である。
FIG. 5 is a drawing showing an example of a conversion table used for obtaining a control amount in the present embodiment.

【図6】本実施例における入射光量制御手順を説明する
フロー図である。
FIG. 6 is a flowchart illustrating an incident light amount control procedure in this embodiment.

【図7】画像スキャンと制御量決定タイミングの関係を
説明する図面である。
FIG. 7 is a diagram illustrating a relationship between image scanning and control amount determination timing.

【図8】本実施例に用いるレーザ投光部温度制御系のブ
ロック図である。
FIG. 8 is a block diagram of a laser projection unit temperature control system used in this embodiment.

【図9】熱移動素子として利用するペルチェ素子の構造
を説明する概念図である。
FIG. 9 is a conceptual diagram illustrating the structure of a Peltier element used as a heat transfer element.

【図10】図8の温度制御の効果を説明する図面であ
る。
FIG. 10 is a diagram illustrating an effect of the temperature control of FIG.

【符号の説明】[Explanation of symbols]

1 レーザセンサのセンサヘッド 2 コントローラ 3 ディスプレー 11 レーザ投光器 12 1次元光センサ 13 スキャニングミラー 4 測定対象 14 集光光学系 15 揺動軸 21 CPUボード 22 画像入力ボード 23 インターフェースボード 24 バス 51 レーザ投光器筐体 52 温度測定素子 53 温度調整器 54 温度比較回路 55 印加電流切替回路 56 熱移動素子 1 Laser sensor sensor head 2 controller 3 displays 11 Laser projector 12 One-dimensional optical sensor 13 scanning mirror 4 measurement target 14 Focusing optical system 15 Swing axis 21 CPU board 22 Image input board 23 Interface board 24 bus 51 Laser projector housing 52 Temperature measuring element 53 Temperature controller 54 Temperature comparison circuit 55 Applied current switching circuit 56 Heat transfer element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金丸 孝夫 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 Fターム(参考) 2F065 AA52 BB05 CC15 FF01 FF02 FF09 FF66 FF69 GG04 GG06 GG22 HH04 JJ02 JJ25 LL13 LL22 LL62 MM16 NN02 NN06 NN12 NN17 NN19 QQ23 QQ24 QQ27 QQ29 QQ42 4E068 BA00 CB09 CC02 CE02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takao Kanamaru             118 Futatsuka, Noda City, Chiba Prefecture Kawasaki Heavy Industries             Noda Factory Co., Ltd. F term (reference) 2F065 AA52 BB05 CC15 FF01 FF02                       FF09 FF66 FF69 GG04 GG06                       GG22 HH04 JJ02 JJ25 LL13                       LL22 LL62 MM16 NN02 NN06                       NN12 NN17 NN19 QQ23 QQ24                       QQ27 QQ29 QQ42                 4E068 BA00 CB09 CC02 CE02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 レーザ放射装置と1次元光センサと、該
レーザ放射装置からのレーザ光を対象に導いて1方向に
走査し該対象から反射するレーザ光を前記1次元光セン
サに導くスキャニング機構を備えるものであって、さら
に、入射光量調節器を備えて、該入射光量調節器が前記
スキャニング機構によるスキャニング中のレーザ光照射
方向に連動して以前に同じ照射方向であったときに前記
1次元光センサが検出した受光量に基づいて受光量が所
定の目標値に近づくように入射光量を調整することを特
徴とする断面形状計測装置。
1. A laser emitting device, a one-dimensional optical sensor, and a scanning mechanism which guides laser light from the laser emitting device to a target, scans in one direction, and guides laser light reflected from the target to the one-dimensional photosensor. Further comprising an incident light quantity adjuster, wherein the incident light quantity adjuster is linked to the laser light irradiation direction during the scanning by the scanning mechanism and has the same irradiation direction before. A cross-sectional shape measuring device characterized by adjusting an incident light quantity so that the received light quantity approaches a predetermined target value based on the received light quantity detected by a two-dimensional optical sensor.
【請求項2】 前記入射光量調整の規準となる前記受光
量は、前記スキャニング中のレーザ光照射方向が前回の
スキャニングで同じ方向であった時の検出光量とするこ
とを特徴とする請求項1記載の断面形状計測装置。
2. The amount of light received, which is a criterion for adjusting the amount of incident light, is the amount of light detected when the laser light irradiation direction during the scanning is the same direction in the previous scanning. The cross-sectional shape measuring device according to 1.
【請求項3】 前記スキャニング機構は揺動軸を中心と
して往復動するスキャニングミラーであって、揺動角度
を検出してレーザ光放射方向を推定する角度センサを備
えることを特徴とする請求項1または2記載の断面形状
計測装置。
3. The scanning mechanism is a scanning mirror that reciprocates about a swing shaft, and includes an angle sensor that detects a swing angle and estimates a laser light emission direction. Or the cross-sectional shape measuring device according to 2.
【請求項4】 前記入射光量調整は、前記スキャニング
ミラーの揺動の往路と復路のいずれにおいても実施する
ことを特徴とする請求項2または3記載の断面形状計測
装置。
4. The cross-sectional shape measuring apparatus according to claim 2, wherein the incident light amount adjustment is performed on both the forward and backward paths of the swing of the scanning mirror.
【請求項5】 前記入射光量調整の規準となる前記1次
元光センサの受光量は、該センサを構成する受光素子の
うち最大の検出光量とすることを特徴とする請求項1か
ら4のいずれかに記載の断面形状計測装置。
5. The light receiving amount of the one-dimensional optical sensor, which serves as a criterion for adjusting the incident light amount, is set to the maximum detected light amount of the light receiving elements constituting the sensor. The cross-sectional shape measuring device according to any one of claims.
【請求項6】 前記入射光量の調整は、前記レーザ放射
装置の出力を調整することにより行うことを特徴とする
請求項1から5のいずれかに記載の断面形状計測装置。
6. The cross-sectional shape measuring device according to claim 1, wherein the incident light amount is adjusted by adjusting an output of the laser emitting device.
【請求項7】 前記入射光量の調整は、前記1次元光セ
ンサの露光時間を調整することにより行うことを特徴と
する請求項1から5のいずれかに記載の断面形状計測装
置。
7. The cross-sectional shape measuring device according to claim 1, wherein the incident light amount is adjusted by adjusting an exposure time of the one-dimensional optical sensor.
【請求項8】 前記入射光量調節器は記憶装置を備え、
該記憶装置に受光光量に対応する調整量を記載した変換
テーブルを記憶して、該変換テーブルを参照して前記入
射光量の調整を行うことを特徴とする請求項6または7
記載の断面形状計測装置。
8. The incident light quantity adjuster comprises a storage device,
8. The storage device stores a conversion table in which an adjustment amount corresponding to the received light amount is described, and the incident light amount is adjusted by referring to the conversion table.
The cross-sectional shape measuring device described.
【請求項9】 レーザ放射装置と1次元光センサと、該
レーザ放射装置からのレーザ光を対象に導き該対象から
反射するレーザ光を前記1次元光センサに導くスキャニ
ング機構とを備え、前記レーザ放射装置が半導体レーザ
発生素子を用いたものであって、該半導体レーザ発生素
子の筐体に温度検出素子と熱移動素子を密着させ温度調
節器を備え、該温度調節器が該温度検出素子の出力に基
づいて該熱移動素子の発吸熱量を調整することにより、
前記半導体レーザ発生素子を所定の温度に保持すると共
に、前記1次元光センサに設けるバンドパスフィルター
の透過波長幅をより狭くしてノイズ光の影響を除去する
ことを特徴とする断面形状計測装置。
9. A laser emitting device, a one-dimensional optical sensor, and a scanning mechanism for guiding laser light from the laser emitting device to an object and guiding laser light reflected from the object to the one-dimensional optical sensor. The radiating device uses a semiconductor laser generating element, and a temperature detecting element and a heat transfer element are closely attached to a housing of the semiconductor laser generating element, and a temperature controller is provided, and the temperature controller is the temperature detecting element. By adjusting the amount of heat generated and absorbed by the heat transfer element based on the output,
A cross-sectional shape measuring apparatus, characterized in that the semiconductor laser generating element is maintained at a predetermined temperature, and a transmission wavelength width of a bandpass filter provided in the one-dimensional optical sensor is narrowed to remove the influence of noise light.
【請求項10】 前記熱移動素子がペルチェ素子である
ことを特徴とする請求項9記載の断面形状計測装置。
10. The cross-sectional shape measuring apparatus according to claim 9, wherein the heat transfer element is a Peltier element.
JP2001396195A 2001-12-27 2001-12-27 Cross-sectional shape measuring device Expired - Fee Related JP3613708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001396195A JP3613708B2 (en) 2001-12-27 2001-12-27 Cross-sectional shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001396195A JP3613708B2 (en) 2001-12-27 2001-12-27 Cross-sectional shape measuring device

Publications (2)

Publication Number Publication Date
JP2003194526A true JP2003194526A (en) 2003-07-09
JP3613708B2 JP3613708B2 (en) 2005-01-26

Family

ID=27602356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396195A Expired - Fee Related JP3613708B2 (en) 2001-12-27 2001-12-27 Cross-sectional shape measuring device

Country Status (1)

Country Link
JP (1) JP3613708B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096439A (en) * 2006-10-11 2008-04-24 Steinbichler Optotechnik Gmbh Method and device for determining three-dimensional coordinates of object
JP2009524057A (en) * 2006-01-18 2009-06-25 ファロ テクノロジーズ インコーポレーテッド Portable coordinate measuring instrument with integrated line scan laser scanner
JP2009534969A (en) * 2006-04-27 2009-09-24 スリーディー スキャナーズ リミテッド Optical scanning probe
JP2010237008A (en) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc Device and method for measuring profile of high-temperature object
JP2011106896A (en) * 2009-11-16 2011-06-02 Mitsutoyo Corp Non-contact probe and measuring machine
JP2012093225A (en) * 2010-10-27 2012-05-17 Nikon Corp Shape measurement device, shape measurement control program and shape measurement method
JP2013517496A (en) * 2010-01-20 2013-05-16 ファロ テクノロジーズ インコーポレーテッド Coordinate measuring machine with illuminated probe end and method of operation
US8533967B2 (en) 2010-01-20 2013-09-17 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8601702B2 (en) 2010-01-20 2013-12-10 Faro Technologies, Inc. Display for coordinate measuring machine
US8615893B2 (en) 2010-01-20 2013-12-31 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine having integrated software controls
US8630314B2 (en) 2010-01-11 2014-01-14 Faro Technologies, Inc. Method and apparatus for synchronizing measurements taken by multiple metrology devices
US8638446B2 (en) 2010-01-20 2014-01-28 Faro Technologies, Inc. Laser scanner or laser tracker having a projector
US8664601B2 (en) 2009-04-16 2014-03-04 Tetra Laval Holdings & Finance S.A. System and method for measuring the thickness of a layer of coating
US8677643B2 (en) 2010-01-20 2014-03-25 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8832954B2 (en) 2010-01-20 2014-09-16 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8875409B2 (en) 2010-01-20 2014-11-04 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8898919B2 (en) 2010-01-20 2014-12-02 Faro Technologies, Inc. Coordinate measurement machine with distance meter used to establish frame of reference
JP2015010959A (en) * 2013-06-28 2015-01-19 三菱重工業株式会社 Inspection apparatus, inspection method and program
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
JP2016205884A (en) * 2015-04-17 2016-12-08 三菱電機株式会社 Laser radar device
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
JP2020104156A (en) * 2018-12-28 2020-07-09 株式会社キーエンス Laser processing device
JP2020104154A (en) * 2018-12-28 2020-07-09 株式会社キーエンス Laser processing device
JP7370246B2 (en) 2019-12-26 2023-10-27 株式会社キーエンス laser processing equipment
JP7405606B2 (en) 2019-12-26 2023-12-26 株式会社キーエンス laser processing equipment

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524057A (en) * 2006-01-18 2009-06-25 ファロ テクノロジーズ インコーポレーテッド Portable coordinate measuring instrument with integrated line scan laser scanner
JP2009534969A (en) * 2006-04-27 2009-09-24 スリーディー スキャナーズ リミテッド Optical scanning probe
US8117668B2 (en) 2006-04-27 2012-02-14 Stephen James Crampton Optical scanning probe
US8353059B2 (en) 2006-04-27 2013-01-08 Metris N.V. Optical scanning probe
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
JP2008096439A (en) * 2006-10-11 2008-04-24 Steinbichler Optotechnik Gmbh Method and device for determining three-dimensional coordinates of object
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
JP2010237008A (en) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc Device and method for measuring profile of high-temperature object
US8664601B2 (en) 2009-04-16 2014-03-04 Tetra Laval Holdings & Finance S.A. System and method for measuring the thickness of a layer of coating
JP2011106896A (en) * 2009-11-16 2011-06-02 Mitsutoyo Corp Non-contact probe and measuring machine
US8704154B2 (en) 2009-11-16 2014-04-22 Mitutoyo Corporation Non-contact probe with an optical filter and measuring machine including the same
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US8630314B2 (en) 2010-01-11 2014-01-14 Faro Technologies, Inc. Method and apparatus for synchronizing measurements taken by multiple metrology devices
JP2013517496A (en) * 2010-01-20 2013-05-16 ファロ テクノロジーズ インコーポレーテッド Coordinate measuring machine with illuminated probe end and method of operation
US8832954B2 (en) 2010-01-20 2014-09-16 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8638446B2 (en) 2010-01-20 2014-01-28 Faro Technologies, Inc. Laser scanner or laser tracker having a projector
US8677643B2 (en) 2010-01-20 2014-03-25 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8875409B2 (en) 2010-01-20 2014-11-04 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8898919B2 (en) 2010-01-20 2014-12-02 Faro Technologies, Inc. Coordinate measurement machine with distance meter used to establish frame of reference
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US8942940B2 (en) 2010-01-20 2015-01-27 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine and integrated electronic data processing system
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US8615893B2 (en) 2010-01-20 2013-12-31 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine having integrated software controls
US8601702B2 (en) 2010-01-20 2013-12-10 Faro Technologies, Inc. Display for coordinate measuring machine
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US8537374B2 (en) 2010-01-20 2013-09-17 Faro Technologies, Inc. Coordinate measuring machine having an illuminated probe end and method of operation
US8683709B2 (en) 2010-01-20 2014-04-01 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with multi-bus arm technology
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US8533967B2 (en) 2010-01-20 2013-09-17 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
JP2012093225A (en) * 2010-10-27 2012-05-17 Nikon Corp Shape measurement device, shape measurement control program and shape measurement method
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US11035955B2 (en) 2012-10-05 2021-06-15 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
JP2015010959A (en) * 2013-06-28 2015-01-19 三菱重工業株式会社 Inspection apparatus, inspection method and program
JP2016205884A (en) * 2015-04-17 2016-12-08 三菱電機株式会社 Laser radar device
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
JP2020104154A (en) * 2018-12-28 2020-07-09 株式会社キーエンス Laser processing device
JP2020104156A (en) * 2018-12-28 2020-07-09 株式会社キーエンス Laser processing device
JP7115973B2 (en) 2018-12-28 2022-08-09 株式会社キーエンス Laser processing equipment
JP7115972B2 (en) 2018-12-28 2022-08-09 株式会社キーエンス Laser processing equipment
JP7370246B2 (en) 2019-12-26 2023-10-27 株式会社キーエンス laser processing equipment
JP7405606B2 (en) 2019-12-26 2023-12-26 株式会社キーエンス laser processing equipment

Also Published As

Publication number Publication date
JP3613708B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JP2003194526A (en) Cross-sectional shape measuring apparatus
US8442080B2 (en) Laser operation for survey instruments
US7554652B1 (en) Light-integrating rangefinding device and method
US8797552B2 (en) Apparatus for generating three-dimensional image of object
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
US6721679B2 (en) Distance measuring apparatus and distance measuring method
JP5711925B2 (en) Optical distance measuring device
US7027641B2 (en) Three-dimensional shape measuring system
JP2004157044A (en) Scanning type laser radar
JP2008292370A (en) Distance measuring device
CA2716980C (en) Light-integrating rangefinding device and method
KR0179224B1 (en) Distance measuring device
JP2009222616A (en) Method and apparatus for measuring azimuth
US20200033500A1 (en) Laser scanner with projector
CN110726382B (en) Device and method for detecting the surface of an object by means of an electromagnetic beam
JP2000097629A (en) Optical sensor
JP3381233B2 (en) Autofocus device and focus adjustment method
JP3554268B2 (en) Light beam irradiation measurement device
JP7137466B2 (en) Laser processing equipment
JP4930742B2 (en) Position detection device
WO2019054917A1 (en) Time-of-flight scheimpflug lidar
WO2023181308A1 (en) Computer system, method, and program
JP7379096B2 (en) Measuring device and light amount control method
CN215813342U (en) Depth data measuring head and partial depth data measuring apparatus
JP4266286B2 (en) Distance information acquisition device and distance information acquisition method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees