JP2003194142A - Vibration control structure using curved surface type particle damper - Google Patents

Vibration control structure using curved surface type particle damper

Info

Publication number
JP2003194142A
JP2003194142A JP2001393689A JP2001393689A JP2003194142A JP 2003194142 A JP2003194142 A JP 2003194142A JP 2001393689 A JP2001393689 A JP 2001393689A JP 2001393689 A JP2001393689 A JP 2001393689A JP 2003194142 A JP2003194142 A JP 2003194142A
Authority
JP
Japan
Prior art keywords
vibration
cylindrical container
vibration control
movable
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001393689A
Other languages
Japanese (ja)
Inventor
Nobuto Saeki
暢人 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001393689A priority Critical patent/JP2003194142A/en
Publication of JP2003194142A publication Critical patent/JP2003194142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control vibration in a structure or the like by means of a curved surface type particle damper showing stable vibration control performance irrespective of an exciting direction v-v. <P>SOLUTION: A vibration control structure supports a main vibrating body 3 on elastic columns 2 raised from a foundation part 1, and arranges in the main vibrating body 3 a cylindrical container 5 containing movable granules 4 in a state with a vertically maintained axis. A cylindrical wall 6 of the cylindrical container 5 is perpendicular to an exciting direction v-v, so that the movable granules 4 in the cylindrical container 5 flow in a maximal locus along a motion direction m-m irrespective of the exciting direction v-v to exert continuously stable vibration control performance. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、水平面内における任意
の方向から加えられる振動エネルギーを吸収する曲面型
粒子ダンパを用いた制振構造に関する。 【0002】 【従来の技術】地震を始めとする各種振動から建築物,
構造物,機械設備等を保護するためオイルダンパ等の制
振装置が使用されているが、制振方向が一方向に限られ
ることが欠点である。多方向の制振が可能な制振装置と
して防振ゴム等を用いたダンパも知られているが、この
場合には高温,低温等の環境変化に応じて制振性能が大
きく劣化することが問題である。他方、単一粒子に代え
て粒状体を可動物体に使用した粒状体衝撃ダンパは、環
境の変化に拘らず振動エネルギーを粒状体の運動エネル
ギーとして吸収し、衝突時の騒音や衝突壁の損傷を防止
する。従来の粒状体衝撃ダンパでは、衝突面が振動方向
に垂直となるように設計された直方体や円筒体形状の容
器に粒状体を入れている。 【0003】 【発明が解決しようとする課題】衝撃ダンパの性能は衝
突を含む可動物体の運動に大きく影響され、容器の衝突
面が振動方向に対して直角でない場合、衝撃ダンパの制
振性能が減少することが考えられる。円筒容器を使用し
た従来の衝撃ダンパにあっても、円筒容器の頂面又は底
面を衝突面にしているため、振動方向に対して直角でな
い事態が生じる。他方、衝突面の設置の仕方によって
は、常に主振動体の振動方向に沿って可動物体を運動さ
せることも可能である。そこで、水平振動系において円
筒面が衝突壁となるように円筒容器を衝撃ダンパに設置
することにより、十分な制振効果が得られるのであれ
ば、水平面内において何れの方向から加えられる振動エ
ネルギーに対しても制振可能なダンパが期待できる。 【0004】 【課題を解決するための手段】本発明は、このような前
提に立って完成されたものであり、円筒容器の円筒面を
衝突壁に使用することにより、加振方向に拘らず振動エ
ネルギーを効率よく吸収し、建築物,構造物,機械設備
等を各種振動から保護することを目的とする。本発明の
制振構造は、その目的を達成するため、基礎部から立ち
上がった弾性支柱で主振動体を支持し、加振方向に対し
て衝突面が直交するように、可動粒状体を収容した円筒
容器を鉛直方向に軸を維持した曲面型粒子ダンパを主振
動体に配置していることを特徴とする。 【0005】 【実施の形態】本発明に従った制振構造は、基礎部1か
ら立設した弾性支柱2で主振動体3を支持し、可動粒状
体4を収容した円筒容器5を主振動体3に設置している
(図1a)。x−y平面を地面と水平に維持して曲面型
粒子ダンパを配置すると、x−y平面内の何れの方向に
対しても円筒容器5の円筒面が直交する。 【0006】この状態で基礎部1が加振されると、円筒
容器5内にある可動粒状体4が円筒壁6と衝突を繰り返
し(図1b)、主振動体3の振動を低減する。x−y平
面における何れの加振方向v−vに対しても円筒壁6が
直交するため、運動方向m−mに沿った可動粒状体4の
動きは円筒容器5内で最大の軌跡をとる。その結果、加
振方向v−vの変化に拘らず、常に同じ制振性能が得ら
れる。 【0007】加振方向v−vに衝突面を直交させる手段
として、鉛直方向に軸を維持した円筒容器5の外に球状
容器を使用することもできる。球状容器に可動粒状体4
を収容した場合にも、同様な最大軌跡で可動粒状体4が
球状容器内を流動して球状壁との衝突を繰り返し、振動
エネルギーを吸収する。 【0008】これに対し、直方体容器7に可動粒状体4
(図2a)や軸を水平にして配置した円筒容器8(図2
b)に可動粒状体4を収容した衝撃ダンパでは、直方体
容器7の長手方向又は円筒容器8の軸方向を加振方向v
−vとする振動エネルギーに対しては直方体容器7,円
筒容器8内で可動粒状体4が最大の運動軌跡をとるが、
加振方向v−vが変化すると可動粒状体4の運動方向m
−mが種々変化する(図2c)。運動方向m−mの変化
に応じ吸収される振動エネルギーが変わるため、加振方
向v−vによっては十分な制振性能を示さないことがあ
る。 【0009】この対比から明らかなように、鉛直方向に
軸を維持した円筒容器5を主振動体3に設置することに
より、水平面(x−y平面)内における何れの加振方向
v−vに対しても円筒容器5の円筒壁6が直交する。そ
して、振動エネルギーが加えられた場合、加振方向v−
vに拘らず円筒容器5内で可動粒状体4が最大の運動軌
跡をとり、可動粒状体4の運動エネルギーや可動粒状体
4/円筒壁6の摩擦仕事として振動エネルギーを吸収す
る。したがって、優れた制振性能が常に発現し、建築
物,構造物,機械設備等を各種振動から保護する。 【0010】 【発明の効果】以上に説明したように、本発明の制振構
造は、円筒面を衝突壁にした容器に可動粒状体4を収容
した曲面型粒子ダンパを使用しているので、水平面内の
何れの方向から加えられる振動エネルギーに対しても優
れた制振性能を呈する。そのため、各種機械設備,建築
物,構造物,アンテナ,照明灯等、広範な分野における
制振に使用できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping structure using a curved particle damper for absorbing vibration energy applied from an arbitrary direction in a horizontal plane. 2. Description of the Related Art Buildings,
Although a vibration damping device such as an oil damper is used to protect structures, machinery and the like, there is a drawback that the vibration damping direction is limited to one direction. A damper using a vibration-proof rubber or the like is also known as a vibration damping device capable of multi-directional vibration damping, but in this case, the vibration damping performance may be significantly deteriorated in accordance with environmental changes such as high temperature and low temperature. It is a problem. On the other hand, a granular impact damper using a granular material as a movable object instead of a single particle absorbs vibration energy as kinetic energy of the granular material regardless of environmental changes, and reduces noise and damage to the collision wall at the time of collision. To prevent. In the conventional granular material impact damper, the granular material is put in a rectangular parallelepiped or cylindrical container designed so that the collision surface is perpendicular to the vibration direction. [0003] The performance of an impact damper is greatly affected by the motion of a movable object including a collision, and when the collision surface of the container is not perpendicular to the vibration direction, the vibration damping performance of the impact damper is reduced. It is thought that it will decrease. Even in a conventional impact damper using a cylindrical container, the top surface or the bottom surface of the cylindrical container is used as a collision surface. On the other hand, the movable object can always be moved along the vibration direction of the main vibrator depending on how the collision surface is set. Therefore, if a sufficient vibration damping effect can be obtained by installing the cylindrical container on the impact damper so that the cylindrical surface becomes the collision wall in the horizontal vibration system, the vibration energy applied from any direction in the horizontal plane can be reduced. A damper that can be damped can be expected. SUMMARY OF THE INVENTION The present invention has been completed based on such a premise, and uses a cylindrical surface of a cylindrical container as a collision wall so that the cylindrical container can be used regardless of the vibration direction. The purpose is to efficiently absorb vibration energy and protect buildings, structures, machinery and equipment from various vibrations. In order to achieve the object, the vibration damping structure of the present invention supports the main vibrating body with the elastic struts rising from the base portion, and accommodates the movable granular body so that the collision surface is orthogonal to the vibration direction. A curved particle damper in which the axis of the cylindrical container is maintained in the vertical direction is disposed on the main vibrator. [0005] In the vibration damping structure according to the present invention, a main vibrator 3 is supported by an elastic column 2 erected from a base 1, and a cylindrical container 5 containing a movable granular material 4 is vibrated. It is placed on body 3 (FIG. 1a). When the curved particle damper is arranged while keeping the xy plane horizontal to the ground, the cylindrical surface of the cylindrical container 5 is orthogonal to any direction in the xy plane. When the foundation 1 is vibrated in this state, the movable granular material 4 in the cylindrical container 5 repeatedly collides with the cylindrical wall 6 (FIG. 1b), and the vibration of the main vibrating body 3 is reduced. Since the cylindrical wall 6 is orthogonal to any of the vibration directions v-v on the xy plane, the movement of the movable granular material 4 along the movement direction mm takes the maximum trajectory in the cylindrical container 5. . As a result, the same vibration suppression performance is always obtained regardless of the change in the vibration direction v-v. As means for making the collision surface orthogonal to the vibration direction vv, a spherical container may be used in addition to the cylindrical container 5 whose axis is maintained in the vertical direction. Movable granular material 4 in spherical container
Also, the movable granular material 4 flows in the spherical container with the same maximum trajectory and repeatedly collides with the spherical wall to absorb vibration energy. On the other hand, the movable granular material 4 is
(FIG. 2a) and a cylindrical container 8 (FIG.
In the impact damper accommodating the movable granular material 4 in b), the longitudinal direction of the rectangular parallelepiped container 7 or the axial direction of the cylindrical container 8 is set in the vibration direction v.
For the vibration energy −v, the movable granular material 4 takes the maximum motion trajectory in the rectangular parallelepiped container 7 and the cylindrical container 8.
When the vibration direction v-v changes, the movement direction m of the movable granular material 4
−m varies (FIG. 2c). Since the absorbed vibration energy changes according to the change in the movement direction mm, sufficient vibration suppression performance may not be exhibited depending on the vibration direction vv. As is apparent from this comparison, by installing the cylindrical container 5 whose axis is maintained in the vertical direction on the main vibrating body 3, any of the vibrating directions vv in the horizontal plane (xy plane) can be obtained. On the other hand, the cylindrical wall 6 of the cylindrical container 5 is orthogonal. When vibration energy is applied, the vibration direction v-
Regardless of v, the movable granular material 4 takes the maximum motion trajectory in the cylindrical container 5 and absorbs vibration energy as kinetic energy of the movable granular material 4 and frictional work between the movable granular material 4 and the cylindrical wall 6. Therefore, excellent vibration damping performance is always exhibited, and the building, structure, mechanical equipment, etc. are protected from various vibrations. As described above, the vibration damping structure of the present invention uses a curved particle damper in which the movable granular material 4 is accommodated in a container having a cylindrical surface as a collision wall. It exhibits excellent vibration damping performance against vibration energy applied from any direction in the horizontal plane. Therefore, it can be used for vibration suppression in a wide range of fields such as various types of mechanical equipment, buildings, structures, antennas, and lightings.

【図面の簡単な説明】 【図1】 本発明に従った制振構造のモデル図(a)及
び振動エネルギーが加えられた場合の可動粒状体の運動
を説明する図(b) 【図2】 従来の直方体容器(a)又は軸を水平にした
円筒容器(b)に可動粒状体を収容した衝撃ダンパ及び
振動エネルギーが加えられた場合の可動粒状体の運動を
説明する図(c) 【符号の説明】 1:基礎部 2:弾性支柱 3:主振動体 4:
可動粒状体 5:円筒容器 6:円筒壁 7:直
方体容器 8:軸を水平にした円筒容器 v−v:加振方向 m−m:可動粒状体の運動方向
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a model diagram of a vibration damping structure according to the present invention, and FIG. 1 (b) is a diagram illustrating movement of a movable granular material when vibration energy is applied. Diagram (c) for explaining a conventional rectangular parallelepiped container (a) or a cylindrical container (b) having a horizontal axis and an impact damper accommodating the movable granules and the motion of the movable granules when vibration energy is applied. Explanation: 1: Basic part 2: Elastic strut 3: Main vibrator 4:
Movable granular material 5: Cylindrical container 6: Cylindrical wall 7: Rectangular container 8: Cylindrical container v-v: Vibration direction mm: Motion direction of movable granular material

Claims (1)

【特許請求の範囲】 【請求項1】 基礎部から立ち上がった弾性支柱で主振
動体を支持し、加振方向に対して衝突面が直交するよう
に、可動粒状体を収容した円筒容器を鉛直方向に軸を維
持して主振動体に配置していることを特徴とする曲面型
粒子ダンパを用いた制振構造。
Claims: 1. A cylindrical container accommodating a movable granular material, wherein a main vibrator is supported by an elastic support standing upright from a base portion, and a movable surface of the cylindrical container is perpendicular to a vibration direction. A vibration damping structure using a curved particle damper characterized by being arranged on a main vibrator while maintaining an axis in a direction.
JP2001393689A 2001-12-26 2001-12-26 Vibration control structure using curved surface type particle damper Pending JP2003194142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393689A JP2003194142A (en) 2001-12-26 2001-12-26 Vibration control structure using curved surface type particle damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393689A JP2003194142A (en) 2001-12-26 2001-12-26 Vibration control structure using curved surface type particle damper

Publications (1)

Publication Number Publication Date
JP2003194142A true JP2003194142A (en) 2003-07-09

Family

ID=27600617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393689A Pending JP2003194142A (en) 2001-12-26 2001-12-26 Vibration control structure using curved surface type particle damper

Country Status (1)

Country Link
JP (1) JP2003194142A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030653A (en) * 2007-07-24 2009-02-12 Kochi Univ Of Technology Dynamic vibration damper using locking
CN105863097A (en) * 2016-05-11 2016-08-17 同济大学 Nonlinear rail type collaborative tuning damper
US9521753B1 (en) 2014-03-04 2016-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Vibration damping circuit card assembly
US10021779B1 (en) 2017-11-28 2018-07-10 TopLine Coporation Quick response particle damper for printed circuit boards and planar surfaces
US10041558B1 (en) 2017-10-06 2018-08-07 Topline Corporation Tunable apparatus for adjusting effective performance of particle impact damper
CN109826330A (en) * 2019-01-30 2019-05-31 北京工业大学 The adjustable more bending chamber composite particles of the natural frequency of vibration tune vibration absorber
KR20190071422A (en) * 2017-12-14 2019-06-24 삼성전자주식회사 Vibration decreasing device
US10704639B2 (en) 2018-08-14 2020-07-07 Topline Corporation Unidirectional particle damper for printed circuit boards and planar surfaces

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249038U (en) * 1985-09-12 1987-03-26
JPH01131770A (en) * 1987-11-17 1989-05-24 Shimizu Corp Vibration damper for structure
JPH03221303A (en) * 1990-01-23 1991-09-30 Mitsubishi Materials Corp Boring bar
JPH05202637A (en) * 1992-01-28 1993-08-10 Kajima Corp Vibration control device for structure
JPH0654985A (en) * 1992-08-11 1994-03-01 Hitachi Ltd Electric washing machine
JPH07127306A (en) * 1993-11-02 1995-05-16 Kajima Corp Vibration controller
JPH07324519A (en) * 1994-05-31 1995-12-12 Penta Ocean Constr Co Ltd Vibration controller
JPH0847802A (en) * 1994-08-05 1996-02-20 Sanhoo Sangyo:Kk Inner diameter machining holder
JPH0941714A (en) * 1995-07-27 1997-02-10 Ohbayashi Corp Vibration-mitigating device
JPH11231079A (en) * 1998-02-13 1999-08-27 Nikon Corp Stage device and exposure device
JP2000046103A (en) * 1998-07-31 2000-02-18 Matsushita Electric Works Ltd Damping member for motor
JP2001132793A (en) * 1999-11-05 2001-05-18 Tokai Rubber Ind Ltd Active-type dynamic vibration damper for building structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249038U (en) * 1985-09-12 1987-03-26
JPH01131770A (en) * 1987-11-17 1989-05-24 Shimizu Corp Vibration damper for structure
JPH03221303A (en) * 1990-01-23 1991-09-30 Mitsubishi Materials Corp Boring bar
JPH05202637A (en) * 1992-01-28 1993-08-10 Kajima Corp Vibration control device for structure
JPH0654985A (en) * 1992-08-11 1994-03-01 Hitachi Ltd Electric washing machine
JPH07127306A (en) * 1993-11-02 1995-05-16 Kajima Corp Vibration controller
JPH07324519A (en) * 1994-05-31 1995-12-12 Penta Ocean Constr Co Ltd Vibration controller
JPH0847802A (en) * 1994-08-05 1996-02-20 Sanhoo Sangyo:Kk Inner diameter machining holder
JPH0941714A (en) * 1995-07-27 1997-02-10 Ohbayashi Corp Vibration-mitigating device
JPH11231079A (en) * 1998-02-13 1999-08-27 Nikon Corp Stage device and exposure device
JP2000046103A (en) * 1998-07-31 2000-02-18 Matsushita Electric Works Ltd Damping member for motor
JP2001132793A (en) * 1999-11-05 2001-05-18 Tokai Rubber Ind Ltd Active-type dynamic vibration damper for building structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030653A (en) * 2007-07-24 2009-02-12 Kochi Univ Of Technology Dynamic vibration damper using locking
US9521753B1 (en) 2014-03-04 2016-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Vibration damping circuit card assembly
CN105863097A (en) * 2016-05-11 2016-08-17 同济大学 Nonlinear rail type collaborative tuning damper
CN105863097B (en) * 2016-05-11 2017-12-26 同济大学 Non-liner track formula cooperates with tuned damper
US10041558B1 (en) 2017-10-06 2018-08-07 Topline Corporation Tunable apparatus for adjusting effective performance of particle impact damper
US10021779B1 (en) 2017-11-28 2018-07-10 TopLine Coporation Quick response particle damper for printed circuit boards and planar surfaces
KR20190071422A (en) * 2017-12-14 2019-06-24 삼성전자주식회사 Vibration decreasing device
KR102504575B1 (en) 2017-12-14 2023-03-02 삼성전자주식회사 Vibration decreasing device
US10704639B2 (en) 2018-08-14 2020-07-07 Topline Corporation Unidirectional particle damper for printed circuit boards and planar surfaces
CN109826330A (en) * 2019-01-30 2019-05-31 北京工业大学 The adjustable more bending chamber composite particles of the natural frequency of vibration tune vibration absorber
CN109826330B (en) * 2019-01-30 2020-06-19 北京工业大学 Multi-bending-cavity composite particle tuning vibration reduction device with adjustable natural vibration frequency

Similar Documents

Publication Publication Date Title
JPS61274135A (en) Mechanically damped device
JP2003194142A (en) Vibration control structure using curved surface type particle damper
JP2016033396A (en) Vibration isolation vibration damping apparatus
CN105756216A (en) Tuned mass damper with collision energy dissipating function
JP5128970B2 (en) Floor support and floor structure
JP4806272B2 (en) Vibration attenuator
JP4432208B2 (en) Damper and building using it
Simonian Particle damping applications
JP2000249186A (en) Non-directional vibration damper
JP2004068289A (en) Earthquake proof frame
KR200228560Y1 (en) Seismic-isolated apparatus for fixing objects which are hanged under ceiling
JP2001355672A (en) Particle vibration-isolating damper
JP2919303B2 (en) Collision mitigation damping structure, building using the structure, and damping method
JP2007132015A (en) Toggle vibration control equipment
JP3055127B2 (en) Active vibration suppression device
JPH0791106A (en) Vibration-damping apparatus
KR100628439B1 (en) Semiactive damper for damping vibration of structures
JP2007051742A (en) Damping structure
JP3032870B2 (en) Structure damping device
Yannawar et al. Response behaviour of a three storied framed structure with tuned liquid damper
JPH10266626A (en) Vibration control device for ultra-multistoried building having different building vibration period in crossing two directions
JP5201558B2 (en) Dynamic vibration absorber using locking
JPH041375A (en) Multidegree-of-freedom dynamic damping method and multidegree-of-freedom dynamic damper
JPH09310428A (en) Damping device for pole
JP2003206980A (en) Impact mass damper type damping device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060906

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309