JP2003193956A - Wind power generating device - Google Patents

Wind power generating device

Info

Publication number
JP2003193956A
JP2003193956A JP2001390309A JP2001390309A JP2003193956A JP 2003193956 A JP2003193956 A JP 2003193956A JP 2001390309 A JP2001390309 A JP 2001390309A JP 2001390309 A JP2001390309 A JP 2001390309A JP 2003193956 A JP2003193956 A JP 2003193956A
Authority
JP
Japan
Prior art keywords
speed
propeller
ratio
generator
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001390309A
Other languages
Japanese (ja)
Other versions
JP3822100B2 (en
Inventor
Naoki Ishizaki
直樹 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2001390309A priority Critical patent/JP3822100B2/en
Priority to US10/322,942 priority patent/US6911743B2/en
Publication of JP2003193956A publication Critical patent/JP2003193956A/en
Application granted granted Critical
Publication of JP3822100B2 publication Critical patent/JP3822100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
    • F16H2047/045Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion the fluid gearing comprising a plurality of pumps or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance an energy conversion efficiency, increase a total generation amount, and reduce the number of parts and device cost, by changing gear without adding a complicated constitution of such as a gear change mechanism to a mechanical driven type transmission. <P>SOLUTION: A fluid driven type transmission 40 and the mechanical driven type transmission 50 are interposed side by side between an input shaft 11 as a rotation shaft of a propeller 1 and an output shaft 61 as a rotation shaft of a generator 6. The fluid driven type transmission is comprised of a variable hydraulic pump 41 and a variable hydraulic motor 42, and changes a transmission gear ratio r. The mechanical driven type transmission is comprised of, for example, a planetary gear mechanism, and changes, accompanied with the transmission gear ratio r of the fluid driven type transmission, a speed increasing ratio e as a ratio between a revolution speed of the propeller and a revolution speed of a generator, thereby to transmit remaining power of the propeller to the generator. As wind velocity increases, a Dp of the hydraulic pump is decreased and a Dm of the hydraulic motor is increased, to increase the transmission gear ratio r. Accordingly, the speed increasing ratio e becomes small. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は風力発電装置に関す
る。 【0002】 【従来の技術】従来より、風力によってプロペラを回転
させ、このプロペラの回転を増速機で増速してプロペラ
の動力を発電機に伝達することによって、発電を行う風
力発電装置が知られている。 【0003】従来の風力発電装置の各方式を列挙すると
以下のとおりとなる。 【0004】1)増速比を固定にした増速機を用い、誘
導発電機を定格回転で回転させ発電させるという方式。
この方式には、2段の増速機を用いたものがある。この
方式はたとえば特開平5−79450号公報に記載され
ている。 【0005】2)増速比を固定にした増速機を用い、プ
ロペラの回転数に応じて発電機の回転数を可変にすると
いう方式。この方式では発電周波数が変化するためイン
バータなどの周波数変換器を使用して50Hzまたは6
0Hzに整流している。この方式はたとえば論文「富士
重工業における風力発電システムの開発」(「日本風力
エネルギー協会誌」/通巻58/平成13年6月)に記載
されている。 【0006】3)増速機を用いることなくプロペラの動
力を直接発電機に伝達するダイレクト発電方式。この方
式には、誘導発電機の極数を切り換えることにより低速
と高速の2速運転を行うものがある。この方式では発電
周波数が変化するためインバータなどの周波数変換器を
使用して50Hzまたは60Hzに整流している。この方
式はたとえば論文「ギヤレス可変速風力発電装置の開
発」(「三菱重工技報」/Vol.38、No.2/20
01年3月)に記載されている。 【0007】4)油圧ポンプと油圧モータからなる流体
駆動式トランスミッションを増速機として使用する方
式。この方式はたとえば特開平11−280637号公
報に記載されている。 【0008】 【発明が解決しようとする課題】上記1)の方式を採用
すると、増速比が固定されているため、プロペラの回転
数は、発電機の定格回転数(たとえば1500rpm)
と固定の増速比とで定まる一定回転数(たとえば20r
pm)に固定される。 【0009】このため風力の強弱いかんいかかわらず、
プロペラの回転数が固定されてしまい、風力が小さい場
合には発電することができず、風力が大きい場合には発
電効率が悪くなるという問題が発生する。 【0010】風力に応じた回転数でプロペラを回転させ
ることができれば、風力から電力へのエネルギー変換効
率、総発電量は20〜25%増加するといわれている。 【0011】そこで、上記2)、3)の方式を採用すれ
ば、風力に応じてプロペラの回転数を変化させることが
できるので、エネルギー変換効率、総発電量を高めるこ
とができる。 【0012】しかし発電機の出力周波数が変化するた
め、インバータ等の周波数変換器を設ける必要があり、
これによって部品点数の増加、装置コストの増大を招
く。 【0013】一方、上記4)の方式を採用すれば、流体
駆動式トランスミッションで変速が行われるため、風力
に応じて変速を行うことでプロペラの回転数を変化させ
ることができるとともに、発電機の出力周波数を一定に
することができる。このためエネルギー変換効率、総発
電量を高めることができるとともに、インバータ等の周
波数変換器が不要となり部品点数、装置コストを低減す
ることができる。 【0014】しかし一般に、油圧ポンプ、油圧モータか
らなる流体駆動式トランスミッションのトルク伝達効率
は、遊星歯車機構などを使用した機械駆動式トランスミ
ッションと比較して低くエネルギーロスが大きい。機械
駆動式トランスミッションの伝達効率は95%程度であ
るのに対して、流体駆動式トランスミッションの伝達効
率は80%程度であるといわれている。 【0015】このため上記4)の方式では、プロペラの
動力を効率よく発電に使用することができなかった。 【0016】また増速機として、機械駆動式トランスミ
ッションを使用し、この機械駆動式トランスミッション
で変速を行うことも考えられるが、ギアチェンジ機構を
新たに追加することとなり構造が複雑となり部品点数、
装置コストが増加する。 【0017】本発明はこうした実状に鑑みてなされたも
のであり、機械駆動式トランスミッションに、ギアチェ
ンジ機構等の複雑な構造を追加することなく、変速を行
うことによって、エネルギー変換効率、総発電量の向上
を図り、部品点数、装置コストの低減を図り、さらにト
ルク伝達効率の向上、エネルギーロスの低減を図ること
を解決課題とするものである。 【0018】 【課題を解決するための手段および作用効果】そこで、
本発明は、プロペラ(1)の回転を増速して当該プロペ
ラ(1)の動力を発電機(6)に伝達することにより発
電を行う風力発電装置において、容量が可変の油圧ポン
プ(41)と容量が可変の油圧モータ(42)とからな
り、当該容量を変化させることにより変速比を変化させ
る流体駆動式トランスミッション(40)と、前記流体
駆動トランスミッション(40)の変速比と連動し、前
記プロペラ(1)の回転数と前記発電機(6)の回転数
との比率である増速比が変化するように構成された機械
駆動式トランスミッション(50)と、前記プロペラ
(1)の風速を検出する検出手段(7)とを備え、前記
検出手段(7)で検出された風速が大きくなるほど前記
増速比を小さくするように、前記容量を変化させること
を特徴とする。 【0019】第1発明によれば、図1に示すように、プ
ロペラ1の回転軸である入力軸11と、発電機6の回転
軸である出力軸61との間に、流体駆動式トランスミッ
ション40と、機械駆動式トランスミッション50とが
並列に介在されている。 【0020】流体駆動式トランスミッション40は、油
圧ポンプ41と油圧モータ42とからなり、容量が可変
である。油圧ポンプ41、油圧モータ42の容量は、容
量可変機構43によって変化される。 【0021】増速比の可変は以下のようにして行われ
る。 【0022】流体駆動式トランスミッション40の出力
軸44はギア54を介して遊星歯車51のリングギア5
3を駆動する。増速機2、3の出力軸56は、機械駆動
式トランスミッション50を構成する遊星歯車51の遊
星ギア52を駆動する。遊星歯車51のサンギア55は
出力軸61を介して発電機6を駆動する。 【0023】また流体駆動式トランスミッション40の
入力軸45は、増速機2、3の出力軸56つまり機械駆
動式トランスミッション50の入力軸56より歯車5
7、58を介して駆動される。 【0024】流体駆動式トランスミッション40はポン
プ容量を正逆反転することにより、その出力軸44の回
転を正逆反転させることができる。 【0025】プロペラ1の回転数と発電機6の回転数と
の比率である増速比eを小さくしたい場合にはポンプ容
量を負とし、流体駆動式トランスミッション40の出力
軸44の回転を逆回転させる。これにより増速比eを小
さくすることができる。また増速比eを大きくしたい場
合には、ポンプ容量を正としモータ出力を正回転させリ
ングギア53を回転させて、遊星歯車51の出力軸61
の回転数を増加させる。これにより増速比eを大きくで
きる。また油圧モータ42の容量を小さくすることによ
り油圧ポンプ41の入力回転数に対する油圧モータ42
の出力回転数の比を増加させることができる。 【0026】図2に遊星歯車51の構成を示す。 【0027】各ギアの回転数の関係を数式で示すと、下
記(1)式のようになる。 【0028】 Ns/i1−Np(1+1/i1)=NE/i2 …(1) ただしNsはサンギア55の回転数、Npは遊星ギア52
の回転数、NEはリングギア53の外周で噛合するギア
54の回転数、i1は遊星歯車51の増速比、i2は油圧
モータ42の出力軸44の回転数に対するリングギア5
3の回転数の比率である。この式から明らかなようにサ
ンギア55の回転数Nsを一定とすると、ギア54の回
転数NEが増加すると遊星ギア52の回転数Npが減少
し、増速比が増加する。またサンギア55の回転数Ns
が一定で、ギア54の回転数NEが減少すると遊星ギア
52の回転数Npが増加し、増速比eが減少する。 【0029】プロペラ1の風速Vは風速計等の検出手段
7で検出される。 【0030】そこで、図3の特性L1に示すように、検
出手段7で検出された風速Vが大きくなるほど油圧ポン
プ41の容量Dpを小さくするように容量制御機構43
を作動させる。また特性L2に示すように風速Vが大き
くなるにつれ、油圧モータ42の容量Dmを大きくする
ように容量制御機構43を作動させる。これにより図4
の特性L3に示すように風速Vが大きくなるほど、増速
比eが小さくなる。 【0031】このようにして、プロペラ1に当たる風の
風速Vが大きくなるほど、増速比eが小さくなるように
増速比eを変化させて、プロペラ1の回転数を変化させ
ているので、エネルギー変換効率、総発電量が向上す
る。 【0032】また増速比eを変化させて、発電機6側の
回転数を固定にし出力周波数を一定のままとしているの
で、インバータ等の周波数変換器の配設が不要となり、
部品点数、装置コストが低減する。 【0033】また変速は流体駆動式トランスミッション
40で油圧ポンプ41の容量Dpおよび油圧モータ42
の容量Dmを変化させることで行われ、機械駆動式トラ
ンスミッション50には、ギアチェンジ機構を設ける必
要がないので、機械駆動式トランスミッション50の構
造が複雑にならず、部品点数、装置コストが低減する。 【0034】また本発明では、プロペラ1の動力を、流
体駆動式トランスミッション40、機械駆動式トランス
ミッション50の両方に分割して、発電機6に伝達する
ようにしている。 【0035】ここで流体駆動式トランスミッション40
の伝達効率η1を80%とし、機械駆動式トランスミッ
ション50の伝達効率η2を95%として、プロペラ1
の動力が2分割されているものとすると、伝達効率η
(=87.5%)は下記(2)式で表され、流体駆動式
トランスミッション40のみを用いた場合(η1=80
%)と比較して伝達効率が向上する。 【0036】 η(=87.5%)=(η1(=80%)+η2(=95%))/2 …(2) このように本発明によればトルク伝達効率が向上し、エ
ネルギーロスが低減する。 【0037】 【発明の実施の形態】以下図面を参照して本発明に係る
風力発電装置の実施の形態について説明する。 【0038】図1は実施形態の風力発電装置の構成を示
している。 【0039】同図1に示すように、実施形態装置は、大
きくは、風力を受けて回転するプロペラ1と、図示しな
い送電線に電力を供給する発電機6と、油圧ポンプ41
と油圧モータ42とからなる流体駆動式トランスミッシ
ョン40と、遊星歯車機構で構成された機械駆動式トラ
ンスミッション50とから構成されている。 【0040】プロペラ1の回転軸である入力軸11と、
発電機6の回転軸である出力軸61との間に、流体駆動
式トランスミッション40と、機械駆動式トランスミッ
ション50とが並列に介在されている。 【0041】流体駆動式トランスミッション40は、可
変容量型の油圧ポンプ41と可変容量型の油圧モータ4
2と、これら油圧ポンプ41と油圧モータ42とを接続
する油路46と、可変容量型油圧ポンプ41の容量Dp
および可変容量型油圧モータ42の容量Dmを変化させ
る容量可変機構43とからなる。油圧ポンプ41から吐
出された圧油の流量に応じて油圧モータ42が回転し、
油圧ポンプ41の回転数と油圧モータ42の回転数との
比率である変速比rは、油圧ポンプ41の容量Dpおよ
び油圧モータ42の容量Dmを変化させることで、変化
する。 【0042】本実施形態では、機械駆動式トランスミッ
ション50の前段に増速機2、3を設けている。 【0043】すなわちプロペラ1の回転軸である入力軸
11は、増速機2の遊星ギアに連結している。増速機2
のサンギアは、増速機3の遊星ギアに接続している。増
速機3のサンギアは機械駆動式トランスミッション50
の入力軸56に接続している。このためプロペラ1の回
転が増速機2、3で増速されて機械駆動式トランスミッ
ション50に動力が伝達される。すなわち増速機2、3
の合計の増速比をe1とすると、機械駆動式トランスミ
ッション50の入力軸56は、プロペラ1の回転数に増
速比e1を乗算した回転数で回転する。 【0044】この入力軸56は後段の増速機である遊星
歯車51の遊星ギア52に連結している。遊星歯車51
のリングギア53はギア54に連結している。ギア54
は油圧モータ42の出力回転軸44に接続している。 【0045】このため遊星歯車51のリングギア53の
回転数に応じた回転数で油圧モータ42が回転する。 【0046】流体駆動式トランスミッション40はポン
プ容量を正逆反転することにより、その出力軸44の回
転を正逆反転させることができる。 【0047】機械駆動式トランスミッション50の増速
比e2を小さくしたい場合にはポンプ容量Dpを負とし、
流体駆動式トランスミッション40の出力軸44の回転
を逆回転させる。これにより増速比e2を小さくするこ
とができる。また増速比e2を大きくしたい場合には、
ポンプ容量Dpを正としモータ出力を正回転させリング
ギア53を回転させて、遊星歯車51の出力軸61の回
転数を増加させる。これにより増速比e2を大きくでき
る。また油圧モータ42の容量Dmを小さくすることに
より油圧ポンプ41の入力回転数に対する油圧モータ4
2の出力回転数の比を増加させることができる。 【0048】図2に遊星歯車51の構成を示す。 【0049】各ギアの回転数の関係は、前述した(1)
式(Ns/i1−Np(1+1/i1)=NE/i2)で表され
る。 【0050】この式から明らかなようにサンギア55の
回転数Nsを一定とすると、ギア54の回転数NEが増加
すると遊星ギア52の回転数Npが減少し、増速比e2が
増加する。またサンギア55の回転数Nsが一定で、ギ
ア54の回転数NEが減少すると遊星ギア52の回転数
Npが増加し、増速比e2が減少する。 【0051】プロペラ1の近傍には、プロペラ1に当た
る風の流速つまり風速V(m/sec)を検出する風速計7
が設けられている。風速計7には、たとえばピトー管を
使用することができる。 【0052】風速計7の検出信号は、コントローラ10
を介して容量可変機構43に入力される。 【0053】図3はプロペラ1に当たる風の風速Vと油
圧ポンプ41の容量Dpとの関係L1と、同風速Vと油圧
モータ42の容量Dmとの関係L2を示している。 【0054】容量可変機構43は、風速計7の検出信号
Vを入力して、図3の特性L1に示すように、風速Vが
大きくなるほど油圧ポンプ41の容量Dpが小さくなる
ように、油圧ポンプ41の容量を変化させる。また特性
L2に示すように、風速Vが大きくなるほど油圧モータ
42の容量Dmが大きくなるように、油圧モータ42の
容量を変化させる。 【0055】図3に示すように、たとえば風速Vが3m
/secから10m/secの間では、ポンプ容量Dpは、風速
Vに対して反比例的に変化し、モータ容量Dmは、風速
Vに対して正比例的に変化する。風速Vが10m/secを
超える範囲では、ポンプ容量Dpは、油圧ポンプ41の
負の最大容量−Dp(Full)一定となる。なお風速Vが3
m/sec以下のときには、油圧ポンプ41の容量Dp
は、最大容量Dp(Full)一定となり、油圧モータ42の
容量Dmは、最大容量の1/3の容量Dm(1/3)一定とな
る。 【0056】このように風速Vが大きくなるほど油圧ポ
ンプ41の容量Dpを小さくし油圧モータ42の容量Dm
を大きくすると、風速Vが大きくなるほど増速比e2が
小さくなる。すなわち図4の特性L3に示すように風速
Vが大きくなるほど増速比e2が小さくなるので、同図
4に特性L4で示すように、発電機6の定格回転数(た
とえば1500pm)一定となる。図4において増速比
e2が変化するに応じて、増速比e1と増速比e2を合計
した増速比eも同様に変化する。 【0057】このように本実施形態ではプロペラ1にあ
たる風速Vが大きくなるほど増速比eが小さくなるよう
に増速比eを変化させて、プロペラ1の回転数を変化さ
せているので、エネルギー変換効率、総発電量が向上す
る。 【0058】また増速比eを変化させて、発電機6側の
回転数を固定にし出力周波数を一定のままにしているの
で、インバータ等の周波数変換器の配設が不要となり、
部品点数、装置コストが低減する。 【0059】また変速は流体駆動式トランスミッション
40で油圧ポンプ41の容量Dp、油圧モータ42の容
量Dmを変化させることで行われ、機械駆動式トランス
ミッション50にはギアチェンジ機構を設ける必要がな
くなるので、機械駆動式トランスミッション50の構造
が複雑にはならず、部品点数、装置コストが低減する。 【0060】また本実施形態ではプロペラ1の動力を、
流体駆動式トランスミッション40、機械駆動式トラン
スミッション50の両方に分割して、発電機6に伝達す
るようにしている。なお図1では流量駆動式トランスミ
ッション40を、油圧ポンプ41と油圧モータ42との
組を、3つ並列に配置した構成としているが、流体駆動
式トランスミッション40を構成する油圧ポンプ、油圧
モータの個数、配置は任意である。 【0061】ここで流体駆動式トランスミッション40
の伝達効率η1を80%とし、機械駆動式トランスミッ
ション50の伝達効率η2を95%として、プロペラ1
の動力が2分割されているものとすると、伝達効率η
(=87.5%)は下記(2)式で表され、流体駆動式
トランスミッション40のみを用いた場合(η1=80
%)と比較して向上する。 【0062】 η(=87.5%)=(η1(=80%)+η2(=95%))/2 …(2) このため本実施形態によればトルク伝達効率が向上し、
エネルギーロスが低減する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind power generator. 2. Description of the Related Art Conventionally, a wind power generator has been proposed which generates electric power by rotating a propeller by wind power, speeding up the rotation of the propeller by a gearbox, and transmitting the power of the propeller to a generator. Are known. [0003] Each system of the conventional wind power generator is enumerated as follows. [0004] 1) A method in which a speed increaser having a fixed speed increase ratio is used, and an induction generator is rotated at a rated speed to generate power.
Some of these systems use a two-stage speed increaser. This method is described in, for example, Japanese Patent Application Laid-Open No. 5-79450. [0005] 2) A method in which a speed increaser having a fixed speed increase ratio is used, and the number of revolutions of the generator is made variable according to the number of revolutions of the propeller. In this method, since the power generation frequency changes, 50 Hz or 6 Hz using a frequency converter such as an inverter is used.
It is rectified to 0Hz. This method is described, for example, in the paper "Development of a wind power generation system by Fuji Heavy Industries"("Journal of the Japan Wind Energy Association" / Vol. 58 / June 2001). 3) A direct power generation system in which the power of a propeller is directly transmitted to a generator without using a gearbox. In this method, there is a method in which a low-speed and high-speed two-speed operation is performed by switching the number of poles of the induction generator. In this system, since the power generation frequency changes, the frequency is rectified to 50 Hz or 60 Hz using a frequency converter such as an inverter. This method is described, for example, in the paper "Development of Gearless Variable Speed Wind Power Generator"("Mitsubishi Heavy Industries Technical Report" /Vol.38, No.2 / 20).
March 2001). [0007] 4) A system using a fluid-driven transmission composed of a hydraulic pump and a hydraulic motor as a gearbox. This method is described in, for example, Japanese Patent Application Laid-Open No. 11-280637. [0008] When the method 1) is adopted, the speed increase ratio is fixed, so that the rotation speed of the propeller is the rated rotation speed of the generator (for example, 1500 rpm).
And a fixed rotation speed (for example, 20r
pm). Therefore, regardless of whether the wind is strong or weak,
The rotation speed of the propeller is fixed, so that power cannot be generated when the wind power is small, and the power generation efficiency is deteriorated when the wind power is large. It is said that if the propeller can be rotated at a rotation speed corresponding to the wind power, the efficiency of energy conversion from wind power to electric power and the total power generation will increase by 20 to 25%. Therefore, by adopting the above-mentioned methods 2) and 3), the rotation speed of the propeller can be changed in accordance with the wind power, so that the energy conversion efficiency and the total power generation can be increased. However, since the output frequency of the generator changes, it is necessary to provide a frequency converter such as an inverter.
This leads to an increase in the number of parts and an increase in device cost. [0013] On the other hand, if the method 4) is adopted, the speed is changed by the fluid-driven transmission, so that the speed can be changed according to the wind force to change the rotation speed of the propeller. The output frequency can be kept constant. For this reason, energy conversion efficiency and total power generation can be increased, and a frequency converter such as an inverter is not required, so that the number of parts and the device cost can be reduced. However, in general, the torque transmission efficiency of a fluid-driven transmission including a hydraulic pump and a hydraulic motor is lower than that of a mechanically-driven transmission using a planetary gear mechanism or the like, and the energy loss is large. It is said that the transmission efficiency of a mechanically driven transmission is about 95%, while the transmission efficiency of a fluid driven transmission is about 80%. [0015] Therefore, in the method 4), the power of the propeller cannot be efficiently used for power generation. It is also conceivable to use a mechanically driven transmission as the gearbox and perform gear shifting with this mechanically driven transmission. However, a gear change mechanism is newly added, the structure becomes complicated, and the number of parts is reduced.
Equipment costs increase. The present invention has been made in view of the above-mentioned circumstances, and achieves energy conversion efficiency and total power generation by performing gear shifting without adding a complicated structure such as a gear change mechanism to a mechanically driven transmission. It is an object of the present invention to improve the number of components, reduce the number of parts and the cost of the device, and further improve the torque transmission efficiency and reduce the energy loss. Means for Solving the Problems and Action and Effect
The present invention relates to a wind power generation device that generates electric power by increasing the rotation of a propeller (1) and transmitting the power of the propeller (1) to a generator (6). And a hydraulic motor (42) having a variable capacity, and a fluid-driven transmission (40) that changes the gear ratio by changing the capacity, and the fluid-driven transmission (40) interlocks with the gear ratio of the fluid-driven transmission (40). A mechanically driven transmission (50) configured such that a speed increase ratio, which is a ratio between the number of rotations of the propeller (1) and the number of rotations of the generator (6), changes the wind speed of the propeller (1). Detecting means (7) for detecting, wherein the capacity is changed so that the speed increase ratio decreases as the wind speed detected by the detecting means (7) increases. According to the first invention, as shown in FIG. 1, a fluid-driven transmission 40 is provided between an input shaft 11 which is a rotating shaft of the propeller 1 and an output shaft 61 which is a rotating shaft of the generator 6. And a mechanically driven transmission 50 are interposed in parallel. The fluid-driven transmission 40 includes a hydraulic pump 41 and a hydraulic motor 42, and has a variable capacity. The capacity of the hydraulic pump 41 and the capacity of the hydraulic motor 42 are changed by a capacity changing mechanism 43. The speed increase ratio is changed as follows. The output shaft 44 of the fluid-driven transmission 40 is connected to a ring gear 5 of a planetary gear 51 via a gear 54.
3 is driven. The output shafts 56 of the gearboxes 2 and 3 drive the planetary gears 52 of the planetary gears 51 constituting the mechanically driven transmission 50. The sun gear 55 of the planetary gear 51 drives the generator 6 via the output shaft 61. The input shaft 45 of the fluid-driven transmission 40 is connected to the output shaft 56 of the gearboxes 2 and 3, that is, the gear 5 from the input shaft 56 of the mechanically-driven transmission 50.
7 and 58. The fluid-driven transmission 40 can reverse the rotation of the output shaft 44 by reversing the pump displacement in the forward and reverse directions. When it is desired to reduce the speed increase ratio e, which is the ratio of the number of revolutions of the propeller 1 to the number of revolutions of the generator 6, the pump displacement is made negative and the rotation of the output shaft 44 of the fluid-driven transmission 40 is reversed. Let it. As a result, the speed increase ratio e can be reduced. When it is desired to increase the speed increase ratio e, the pump displacement is made positive, the motor output is rotated forward, the ring gear 53 is rotated, and the output shaft 61 of the planetary gear 51 is rotated.
Increase the number of revolutions. As a result, the speed increase ratio e can be increased. Also, by reducing the capacity of the hydraulic motor 42, the hydraulic motor 42
Output rotational speed ratio can be increased. FIG. 2 shows the structure of the planetary gear 51. The relationship between the number of rotations of each gear is expressed by the following equation (1). Ns / i1-Np (1 + 1 / i1) = NE / i2 (1) where Ns is the rotation speed of the sun gear 55, and Np is the planetary gear 52.
NE is the rotational speed of the gear 54 meshing with the outer periphery of the ring gear 53, i1 is the speed increase ratio of the planetary gear 51, i2 is the ring gear 5 with respect to the rotational speed of the output shaft 44 of the hydraulic motor 42.
3 is the ratio of the number of rotations. As is apparent from this equation, when the rotation speed Ns of the sun gear 55 is constant, when the rotation speed NE of the gear 54 increases, the rotation speed Np of the planetary gear 52 decreases, and the speed increase ratio increases. Also, the rotation speed Ns of the sun gear 55
Is constant and the rotation speed NE of the gear 54 decreases, the rotation speed Np of the planetary gear 52 increases, and the speed increase ratio e decreases. The wind speed V of the propeller 1 is detected by detecting means 7 such as an anemometer. Therefore, as shown by the characteristic L1 in FIG. 3, the capacity control mechanism 43 controls the capacity Dp of the hydraulic pump 41 to decrease as the wind speed V detected by the detection means 7 increases.
Activate Further, as indicated by the characteristic L2, as the wind speed V increases, the displacement control mechanism 43 is operated so as to increase the displacement Dm of the hydraulic motor 42. FIG. 4
As shown by the characteristic L3, as the wind speed V increases, the speed increase ratio e decreases. As described above, the speed increase ratio e is changed so that the speed increase ratio e becomes smaller as the wind speed V of the wind impinging on the propeller 1 increases, and the rotational speed of the propeller 1 is changed. Conversion efficiency and total power generation are improved. Further, since the speed increase ratio e is changed to fix the rotation speed on the generator 6 side and keep the output frequency constant, it is not necessary to provide a frequency converter such as an inverter.
The number of parts and equipment costs are reduced. The shift is performed by the fluid-driven transmission 40 using the capacity Dp of the hydraulic pump 41 and the hydraulic motor 42.
The mechanical drive transmission 50 does not need to be provided with a gear change mechanism, so that the structure of the mechanical drive transmission 50 does not become complicated, and the number of parts and the device cost are reduced. . In the present invention, the power of the propeller 1 is divided into both the fluid-driven transmission 40 and the mechanically-driven transmission 50 and transmitted to the generator 6. Here, the fluid-driven transmission 40
The transmission efficiency η1 of the mechanically driven transmission 50 is set to 80%, and the transmission efficiency η2 of the mechanical drive transmission 50 is set to 95%.
Is divided into two, the transmission efficiency η
(= 87.5%) is expressed by the following equation (2), and when only the fluid-driven transmission 40 is used (η1 = 80)
%), The transmission efficiency is improved. Η (= 87.5%) = (η1 (= 80%) + η2 (= 95%)) / 2 (2) As described above, according to the present invention, torque transmission efficiency is improved, and energy loss is reduced. Reduce. Embodiments of a wind turbine generator according to the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of the wind power generator of the embodiment. As shown in FIG. 1, the apparatus according to the embodiment mainly includes a propeller 1 that rotates by receiving wind power, a generator 6 that supplies power to a transmission line (not shown), and a hydraulic pump 41.
A hydraulically driven transmission 40 includes a hydraulic motor 42 and a hydraulic motor 42, and a mechanically driven transmission 50 that includes a planetary gear mechanism. An input shaft 11, which is a rotation shaft of the propeller 1,
A fluid-driven transmission 40 and a mechanically-driven transmission 50 are disposed in parallel between an output shaft 61 that is a rotating shaft of the generator 6. The fluid-driven transmission 40 includes a variable displacement hydraulic pump 41 and a variable displacement hydraulic motor 4.
2, an oil passage 46 connecting the hydraulic pump 41 and the hydraulic motor 42, and a capacity Dp of the variable displacement hydraulic pump 41.
And a variable displacement mechanism 43 for changing the displacement Dm of the variable displacement hydraulic motor 42. The hydraulic motor 42 rotates according to the flow rate of the pressure oil discharged from the hydraulic pump 41,
The gear ratio r, which is the ratio between the number of revolutions of the hydraulic pump 41 and the number of revolutions of the hydraulic motor 42, changes by changing the capacity Dp of the hydraulic pump 41 and the capacity Dm of the hydraulic motor 42. In this embodiment, gearboxes 2 and 3 are provided in front of the mechanically driven transmission 50. That is, the input shaft 11 which is the rotation shaft of the propeller 1 is connected to the planetary gear of the speed increasing gear 2. Gearbox 2
Is connected to the planetary gears of the gearbox 3. The sun gear of the gearbox 3 is a mechanically driven transmission 50.
Is connected to the input shaft 56. Therefore, the rotation of the propeller 1 is increased in speed by the gear units 2 and 3, and the power is transmitted to the mechanical drive transmission 50. That is, gearboxes 2, 3
, The input shaft 56 of the mechanically driven transmission 50 rotates at a rotational speed obtained by multiplying the rotational speed of the propeller 1 by the speed increasing ratio e1. The input shaft 56 is connected to a planetary gear 52 of a planetary gear 51, which is a subsequent speed increaser. Planetary gear 51
Ring gear 53 is connected to a gear 54. Gear 54
Is connected to the output rotary shaft 44 of the hydraulic motor 42. Therefore, the hydraulic motor 42 rotates at a rotation speed corresponding to the rotation speed of the ring gear 53 of the planetary gear 51. The fluid-driven transmission 40 can reverse the rotation of the output shaft 44 by reversing the pump displacement in the forward and reverse directions. When it is desired to reduce the speed increase ratio e2 of the mechanically driven transmission 50, the pump displacement Dp is made negative,
The rotation of the output shaft 44 of the fluid-driven transmission 40 is reversed. As a result, the speed increase ratio e2 can be reduced. If you want to increase the speed increase ratio e2,
With the pump displacement Dp being positive, the motor output is rotated forward and the ring gear 53 is rotated to increase the rotation speed of the output shaft 61 of the planetary gear 51. As a result, the speed increase ratio e2 can be increased. Also, by reducing the capacity Dm of the hydraulic motor 42, the hydraulic motor 4
2 can be increased. FIG. 2 shows the configuration of the planetary gear 51. The relationship between the number of rotations of each gear is described in (1) above.
It is expressed by the formula (Ns / i1-Np (1 + 1 / i1) = NE / i2). As is apparent from this equation, assuming that the rotation speed Ns of the sun gear 55 is constant, when the rotation speed NE of the gear 54 increases, the rotation speed Np of the planetary gear 52 decreases, and the speed increase ratio e2 increases. When the rotation speed Ns of the sun gear 55 is constant and the rotation speed NE of the gear 54 decreases, the rotation speed Np of the planetary gear 52 increases, and the speed increase ratio e2 decreases. In the vicinity of the propeller 1, an anemometer 7 for detecting the flow velocity of the wind impinging on the propeller 1, that is, the wind velocity V (m / sec).
Is provided. A pitot tube can be used for the anemometer 7, for example. The detection signal of the anemometer 7 is transmitted to the controller 10
Is input to the variable capacity mechanism 43 via the. FIG. 3 shows the relationship L1 between the wind speed V of the wind hitting the propeller 1 and the capacity Dp of the hydraulic pump 41, and the relationship L2 between the wind speed V and the capacity Dm of the hydraulic motor 42. The variable displacement mechanism 43 receives the detection signal V of the anemometer 7 and sets the hydraulic pump 41 such that the larger the wind speed V, the smaller the capacity Dp of the hydraulic pump 41 becomes, as shown by the characteristic L1 in FIG. 41 is changed. Further, as indicated by the characteristic L2, the capacity of the hydraulic motor 42 is changed so that the capacity Dm of the hydraulic motor 42 increases as the wind speed V increases. As shown in FIG. 3, for example, when the wind speed V is 3 m
Between / sec and 10 m / sec, the pump capacity Dp changes in inverse proportion to the wind speed V, and the motor capacity Dm changes in direct proportion to the wind speed V. In the range where the wind speed V exceeds 10 m / sec, the pump displacement Dp is constant at the negative maximum displacement −Dp (Full) of the hydraulic pump 41. The wind speed V is 3
m / sec or less, the capacity Dp of the hydraulic pump 41
Is constant at the maximum capacity Dp (Full), and the capacity Dm of the hydraulic motor 42 is constant at a capacity Dm (1/3) of 1/3 of the maximum capacity. As described above, as the wind speed V increases, the capacity Dp of the hydraulic pump 41 decreases, and the capacity Dm of the hydraulic motor 42 decreases.
Is increased, the speed increase ratio e2 decreases as the wind speed V increases. That is, as the wind speed V increases as shown by the characteristic L3 in FIG. 4, the speed increase ratio e2 becomes smaller, so that the rated rotation speed (for example, 1500 pm) of the generator 6 becomes constant as shown by the characteristic L4 in FIG. In FIG. 4, as the speed increase ratio e2 changes, the speed increase ratio e, which is the sum of the speed increase ratio e1 and the speed increase ratio e2, also changes. As described above, in this embodiment, the rotational speed of the propeller 1 is changed by changing the speed increasing ratio e so that the speed increasing ratio e becomes smaller as the wind speed V corresponding to the propeller 1 becomes larger. Efficiency and total power generation are improved. Further, since the speed increase ratio e is changed to fix the rotation speed on the generator 6 side and keep the output frequency constant, it is not necessary to provide a frequency converter such as an inverter.
The number of parts and equipment costs are reduced. The gear shifting is performed by changing the capacity Dp of the hydraulic pump 41 and the capacity Dm of the hydraulic motor 42 in the fluid-driven transmission 40, and it is not necessary to provide a gear change mechanism in the mechanically-driven transmission 50. The structure of the mechanical drive transmission 50 is not complicated, and the number of parts and the cost of the device are reduced. In this embodiment, the power of the propeller 1 is
The fluid-driven transmission 40 and the mechanically-driven transmission 50 are both divided and transmitted to the generator 6. In FIG. 1, the flow-driven transmission 40 has a configuration in which three sets of a hydraulic pump 41 and a hydraulic motor 42 are arranged in parallel. However, the number of hydraulic pumps and The arrangement is arbitrary. Here, the fluid-driven transmission 40
The transmission efficiency η1 of the mechanically driven transmission 50 is set to 80%, and the transmission efficiency η2 of the mechanical drive transmission 50 is set to 95%.
Is divided into two, the transmission efficiency η
(= 87.5%) is expressed by the following equation (2), and when only the fluid-driven transmission 40 is used (η1 = 80)
%). Η (= 87.5%) = (η1 (= 80%) + η2 (= 95%)) / 2 (2) Therefore, according to the present embodiment, the torque transmission efficiency is improved,
Energy loss is reduced.

【図面の簡単な説明】 【図1】図1は実施形態の構成図である。 【図2】図2は機械駆動式トランスミッションの遊星歯
車部を示す図である。 【図3】図3はプロペラに当たる風の風速と油圧ポンプ
の容量および油圧モータの容量との関係を示す図であ
る。 【図4】図4は風速と増速機の増速比、機械駆動式トラ
ンスミッションの出力回転数との関係を示す図である。 【符号の説明】 1 プロペラ 6 発電機 40 流体駆動式トランスミッション 41 油圧ポンプ 42 油圧モータ 50 機械駆動式トランスミッション 2、3 増速機 7 風速計
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of an embodiment. FIG. 2 is a diagram showing a planetary gear unit of a mechanical drive transmission. FIG. 3 is a diagram showing a relationship between a wind speed of a wind impinging on a propeller, a capacity of a hydraulic pump, and a capacity of a hydraulic motor. FIG. 4 is a diagram showing a relationship between a wind speed, a speed increase ratio of a gearbox, and an output rotation speed of a mechanically driven transmission. [Description of Signs] 1 Propeller 6 Generator 40 Fluid-driven transmission 41 Hydraulic pump 42 Hydraulic motor 50 Machine-driven transmission 2, 3 Gearbox 7 Anemometer

Claims (1)

【特許請求の範囲】 【請求項1】 プロペラ(1)の回転を増速して当
該プロペラ(1)の動力を発電機(6)に伝達すること
により発電を行う風力発電装置において、 容量が可変の油圧ポンプ(41)と容量が可変の油圧モ
ータ(42)とからなり、当該容量を変化させることに
より変速比を変化させる流体駆動式トランスミッション
(40)と、 前記流体駆動トランスミッション(40)の変速比と連
動し、前記プロペラ(1)の回転数と前記発電機(6)
の回転数との比率である増速比が変化するように構成さ
れた機械駆動式トランスミッション(50)と、 前記プロペラ(1)の風速を検出する検出手段(7)と
を備え、 前記検出手段(7)で検出された風速が大きくなるほど
前記増速比を小さくするように、前記容量を変化させる
ことを特徴とする風力発電装置。
Claims: 1. A wind power generator for generating electric power by increasing the rotation of a propeller (1) and transmitting the power of the propeller (1) to a generator (6), the capacity of which is: A fluid-driven transmission (40) that includes a variable hydraulic pump (41) and a variable-capacity hydraulic motor (42), and that changes the displacement to change the gear ratio; The number of rotations of the propeller (1) and the power generator (6) are interlocked with a gear ratio.
A mechanically driven transmission (50) configured to change a speed increase ratio that is a ratio with respect to the rotation speed of the propeller; and a detection unit (7) for detecting a wind speed of the propeller (1); (7) The wind power generator, wherein the capacity is changed so that the speed increase ratio decreases as the wind speed detected in (7) increases.
JP2001390309A 2001-12-21 2001-12-21 Wind power generator Expired - Fee Related JP3822100B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001390309A JP3822100B2 (en) 2001-12-21 2001-12-21 Wind power generator
US10/322,942 US6911743B2 (en) 2001-12-21 2002-12-18 Aerogenerator having a fluid transmission and a gear transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390309A JP3822100B2 (en) 2001-12-21 2001-12-21 Wind power generator

Publications (2)

Publication Number Publication Date
JP2003193956A true JP2003193956A (en) 2003-07-09
JP3822100B2 JP3822100B2 (en) 2006-09-13

Family

ID=27598276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390309A Expired - Fee Related JP3822100B2 (en) 2001-12-21 2001-12-21 Wind power generator

Country Status (2)

Country Link
US (1) US6911743B2 (en)
JP (1) JP3822100B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522281A (en) * 2003-03-31 2006-09-28 フォイト・ターボ・ゲーエムベーハー・ウント・コンパニー・カーゲー Drivetrain for transmitting variable power
KR100814132B1 (en) 2007-01-31 2008-03-14 울산대학교 산학협력단 A equipment wind power generation complex
JP2010529378A (en) * 2007-06-08 2010-08-26 オルビタル2 リミテッド Variable ratio transmission
JP4969712B1 (en) * 2011-09-22 2012-07-04 三菱重工業株式会社 Regenerative energy power generator and method for attaching / detaching rotary blade thereof
KR101192240B1 (en) 2003-12-23 2012-10-17 보이트 터보 게엠베하 운트 콤파니 카게 Control system for a wind power with hydrodynamic gear
CN103185121A (en) * 2013-04-02 2013-07-03 江苏大学 Engine liquid compound transmission speeder
JP2015513048A (en) * 2012-01-11 2015-04-30 ヒドロトランス・ベー・フェー transmission
WO2018128058A1 (en) * 2017-01-06 2018-07-12 Kyb株式会社 Hydraulic device and wind power generation device
US11155154B1 (en) * 2020-02-15 2021-10-26 Jiangsu University Multi-pump driven single-motor hydro-mechanical hybrid transmission device and control method thereof

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083378B2 (en) * 2002-02-05 2006-08-01 Jae Young Hur Wind generator
DE102004028619A1 (en) * 2004-06-12 2006-01-05 Voith Turbo Gmbh & Co. Kg Speed-controlled transmission for a power generation plant
US7183664B2 (en) * 2005-07-27 2007-02-27 Mcclintic Frank Methods and apparatus for advanced wind turbine design
US20070182162A1 (en) * 2005-07-27 2007-08-09 Mcclintic Frank Methods and apparatus for advanced windmill design
JP2009513882A (en) * 2005-10-31 2009-04-02 チャプドライヴ・アクティーゼルスカブ Turbine-driven power generation system and control method thereof
NO323807B1 (en) * 2005-10-31 2007-07-09 Chapdrive As Hydraulic transmission method and system
AT504395B1 (en) * 2006-11-21 2009-05-15 Amsc Windtec Gmbh COMPENSATION GEAR OF A WIND POWER PLANT AND METHOD FOR MODIFYING OR SWITCHING THE PERFORMANCE OF THIS BALANCE TRANSMISSION
US7569943B2 (en) * 2006-11-21 2009-08-04 Parker-Hannifin Corporation Variable speed wind turbine drive and control system
EP2115313A4 (en) * 2007-01-26 2013-08-14 Frank Mcclintic Methods and apparatus for advanced wind energy capture system
NO327277B1 (en) * 2007-10-30 2009-06-02 Chapdrive As Wind turbine with hydraulic swivel
CA2728844A1 (en) * 2008-02-26 2009-09-03 Avi Efraty Hydraulic wind farms for grid electricity and desalination
CN101403364A (en) * 2008-04-06 2009-04-08 韦仁旭 Hydraulic power engine and generator set apparatus
US20090273191A1 (en) * 2008-05-01 2009-11-05 Plant Jr William R Power producing device utilizing fluid driven pump
US7932620B2 (en) * 2008-05-01 2011-04-26 Plant Jr William R Windmill utilizing a fluid driven pump
GB2463647B (en) * 2008-09-17 2012-03-14 Chapdrive As Turbine speed stabillisation control system
EP2253842A1 (en) * 2009-05-12 2010-11-24 Aresco SA Wind turbine
WO2011011682A2 (en) * 2009-07-23 2011-01-27 Parker-Hannifin Corporation Wind turbine drive system
US8511079B2 (en) * 2009-12-16 2013-08-20 Eaton Corporation Piecewise variable displacement power transmission
WO2012073280A1 (en) 2010-11-30 2012-06-07 Mitsubishi Heavy Industries, Ltd. Hydraulic pump structure for wind turbine generator or tidal current generator and method of mounting hydraulic pump
US20130234433A1 (en) * 2010-11-30 2013-09-12 Mitsubishi Heavy Industries, Ltd. Wind turbine generator system and operation control method thereof
US8432054B2 (en) * 2011-06-13 2013-04-30 Wind Smart, Inc. Wind turbine with hydrostatic transmission
DE102011084573A1 (en) * 2011-10-14 2013-04-18 Sauer-Danfoss Gmbh & Co. Ohg Stepless adjustable hydromechanical power-split transmission for e.g. wind power plant for converting flow energy into electric energy, has control device adjusting hydraulic pump such that output shaft exhibits constant output speed
GB2512536B (en) 2011-12-20 2018-05-30 Windflow Tech Limited Power generating system and hydraulic control system
CN103047094B (en) * 2012-12-15 2014-12-10 大连华锐重工集团股份有限公司 Main transmission step-up gear box used for high-power and high-speed wind powered generator
CN103277256B (en) * 2013-05-31 2015-07-08 江苏大学 Wind power system based on complex speed-up mechanism
US20150008677A1 (en) * 2013-07-03 2015-01-08 SkyWolf Wind Turbine Corp. Wind turbine with hydraulic motor power generation
US8907518B1 (en) * 2013-08-05 2014-12-09 Adrian Hawkins Hybrid aerogenerator
JP6140071B2 (en) * 2013-12-27 2017-05-31 三菱重工業株式会社 HYDRAULIC TRANSMISSION, RENEWABLE ENERGY POWER GENERATOR, AND OPERATION METHOD THEREOF
CN103779873B (en) * 2014-01-14 2015-09-16 燕山大学 A kind of hydraulic low voltage traversing control method of wind generator set
US10077828B2 (en) * 2016-04-18 2018-09-18 Caterpillar Inc. Powertrain system for machine and method of operating same
CN108374875A (en) * 2018-04-25 2018-08-07 同济大学 A kind of frequency conversion change displacement machine hydraulic stepless speed change transmission system
CN108533692A (en) * 2018-06-12 2018-09-14 重庆大学 A kind of low wind speed offset-type wind turbine gearbox drive mechanism

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2400119A (en) * 1942-01-14 1946-05-14 Joseph F Joy Variable displacement pump
US4206608A (en) * 1978-06-21 1980-06-10 Bell Thomas J Natural energy conversion, storage and electricity generation system
US4239977A (en) * 1978-09-27 1980-12-16 Lisa Strutman Surge-accepting accumulator transmission for windmills and the like
US4498017A (en) * 1982-12-16 1985-02-05 Parkins William E Generating power from wind
US4555978A (en) * 1984-02-14 1985-12-03 Sundstrand Corporation Multiple displacement motor driven power drive unit
US4766779A (en) * 1984-03-05 1988-08-30 Fabco Automotive Corporation Hydrostatic transmission assembly and method of increasing the torque and speed range thereof
US5122036A (en) * 1990-06-18 1992-06-16 Sundstrand Corporation Ram air turbine with power controller and method of operation
US5211539A (en) * 1991-05-13 1993-05-18 Allied-Signal Inc. Apparatus for indicating the pitch of turbofan blades
FI91313C (en) * 1991-08-23 1994-06-10 Valmet Oy Wind turbines and procedures in the operation of the wind turbine's electricity generator
JPH0579450A (en) 1991-09-20 1993-03-30 Mitsubishi Heavy Ind Ltd Wind mill
JPH11280637A (en) 1998-03-31 1999-10-15 Kayaba Ind Co Ltd Generator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522281A (en) * 2003-03-31 2006-09-28 フォイト・ターボ・ゲーエムベーハー・ウント・コンパニー・カーゲー Drivetrain for transmitting variable power
KR101192240B1 (en) 2003-12-23 2012-10-17 보이트 터보 게엠베하 운트 콤파니 카게 Control system for a wind power with hydrodynamic gear
KR100814132B1 (en) 2007-01-31 2008-03-14 울산대학교 산학협력단 A equipment wind power generation complex
JP2010529378A (en) * 2007-06-08 2010-08-26 オルビタル2 リミテッド Variable ratio transmission
KR101294501B1 (en) 2007-06-08 2013-08-07 오비탈2 리미티드 Variable ratio transmission
JP4969712B1 (en) * 2011-09-22 2012-07-04 三菱重工業株式会社 Regenerative energy power generator and method for attaching / detaching rotary blade thereof
WO2013042251A1 (en) * 2011-09-22 2013-03-28 三菱重工業株式会社 Regenerated-energy power generation device and rotary wing attachment/detachment method therefor
US8710693B2 (en) 2011-09-22 2014-04-29 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method of attaching and detaching blade
JP2015513048A (en) * 2012-01-11 2015-04-30 ヒドロトランス・ベー・フェー transmission
CN103185121A (en) * 2013-04-02 2013-07-03 江苏大学 Engine liquid compound transmission speeder
WO2018128058A1 (en) * 2017-01-06 2018-07-12 Kyb株式会社 Hydraulic device and wind power generation device
US11155154B1 (en) * 2020-02-15 2021-10-26 Jiangsu University Multi-pump driven single-motor hydro-mechanical hybrid transmission device and control method thereof

Also Published As

Publication number Publication date
US20030168862A1 (en) 2003-09-11
US6911743B2 (en) 2005-06-28
JP3822100B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP3822100B2 (en) Wind power generator
CN1096581C (en) Variable speed power transmitter
CN101240776B (en) Method for eliminating the impact of backlashes in the gearbox of a wind turbine
JP2003336571A (en) Multistage wind power generator with clutch device
CN1637279A (en) Control system for wind turbine with hydrodynamic transmission
RU2460922C2 (en) Variable gear ratio transmission
EP2276924B1 (en) Method for operating a wind energy converter, control device for a wind energy converter, and wind energy converter
JP2006329244A (en) Transmission device
KR20090083468A (en) Differential gear on a wind power plant and method for changing or switching the power range of said differential gear
JP2005248738A (en) Operation control method for wind power generator
JP2009186008A (en) Continuously variable transmission
RU2010137799A (en) A TRANSMISSION DEVICE FOR A MACHINE FOR PRODUCING ELECTRICITY FROM AN ADJUSTABLE SOURCE OF MOVING FORCE, EQUIPPED WITH SUCH AN ELECTRICITY-GENERATING UNIT AND A WIND TURBINE, ALSO ALSO ALWAYS ALWAYS
EP1631758A1 (en) Variable ratio gear
CN201013531Y (en) Electric infinite variable speed double power stream wind generating set
CN214036723U (en) Stepless speed change mechanism
CN103986278A (en) Different connection motor
JPH11287179A (en) Generating set
CN208122994U (en) A kind of compact controllable power generation device from sea current
CN201213248Y (en) Continuously variant constant frequency operating wind electricity generator
CN112313442A (en) Pump system for lubricating components of a wind turbine
CN203453403U (en) Harmonic reducer
JP2554084Y2 (en) Multi-stage torque converter device
JPH05477Y2 (en)
CN103410932A (en) Harmonic speed reducer
JP2002202084A (en) Impellor variable speed pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees