JP2003193132A - Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property - Google Patents

Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property

Info

Publication number
JP2003193132A
JP2003193132A JP2001399406A JP2001399406A JP2003193132A JP 2003193132 A JP2003193132 A JP 2003193132A JP 2001399406 A JP2001399406 A JP 2001399406A JP 2001399406 A JP2001399406 A JP 2001399406A JP 2003193132 A JP2003193132 A JP 2003193132A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
sheet
steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001399406A
Other languages
Japanese (ja)
Other versions
JP4258149B2 (en
Inventor
Tetsuo Toge
哲雄 峠
Minoru Takashima
高島  稔
Mitsumasa Kurosawa
光正 黒沢
Hideo Yamagami
日出雄 山上
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001399406A priority Critical patent/JP4258149B2/en
Publication of JP2003193132A publication Critical patent/JP2003193132A/en
Application granted granted Critical
Publication of JP4258149B2 publication Critical patent/JP4258149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving the magnetic properties of a grain oriented silicon steel sheet after finish annealing by properly controlling the growth of grains in a primarily crystallized sheet even under the condition that a slab heating temperature is low to the extent of the case of common steel, and also improving its coating properties. <P>SOLUTION: The steel slab having a prescribed componential composition is heated to ≤1,300°C, and is thereafter hot-rolled. After that, the steel sheet is, if required, subjected to hot rolled sheet annealing, and is then subjected to cold rolling for one time or for two or more times including process annealing so as to obtain a final sheet thickness. Next, the steel sheet is subjected to annealing for primary recrystallization and decarburization, and is then subjected to final finish annealing. In this method of producing a silicon steel sheet consisting of a series of stages above, electromagnetic stirring is performed on casting of the steel slab, and, as for the annealing for primary recrystallization and decarburization, the steel sheet is retained in the temperature range of 600 to 1,000°C for ≤120 sec, and also, the atmosphere in the residence period is controlled so that the content of hydrogen is regulated to 30 to 60 vol.%, and a dew point to 15 to 40°C, and, after that, the steel sheet is retained in the temperature range of 750 to 900°C for ≥60 sec, and the atmosphere in the residence time is controlled so that the content of hydrogen is regulated to 40 to 70 vol.%, and a dew point to 40 to 70°C. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、磁気特性および
被膜特性の優れた方向性電磁鋼板を安定して製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、軟磁性体であり、変
圧器や発電機の鉄心材料として広く用いられている。近
年、省エネルギーの観点から、これら電気機器のエネル
ギーロスを小さくするニーズが高まっており、鉄心材料
として用いられている方向性電磁鋼板についても、従来
にも増して、良好な磁気特性が求められるようになって
きた。
2. Description of the Related Art Grain-oriented electrical steel sheets are soft magnetic materials and are widely used as iron core materials for transformers and generators. In recent years, from the viewpoint of energy saving, there is an increasing need to reduce the energy loss of these electric devices, and the grain-oriented electrical steel sheet used as an iron core material is required to have better magnetic properties than ever before. Has become.

【0003】方向性電磁鋼板は、鉄の磁化容易軸である
〈001〉方位が鋼板の圧延方向に高度に揃った結晶組
織を有するものであり、かような集合組織は、方向性電
磁鋼板の製造工程中、仕上焼鈍の際にいわゆるゴス方位
と称される(110)〔001〕方位の結晶粒を優先的
に巨大成長させる、二次再結晶を通じて形成される。従
って、二次再結晶粒の結晶方位が磁気特性に大さな影響
を及ぼす。
The grain-oriented electrical steel sheet has a crystal structure in which the <001> orientation, which is the axis of easy magnetization of iron, is highly aligned with the rolling direction of the steel sheet, and such a texture is that of the grain-oriented electrical steel sheet. It is formed through secondary recrystallization in which a (110) [001] -oriented crystal grain, which is a so-called Goss orientation, is preferentially grown huge during finish annealing during the manufacturing process. Therefore, the crystal orientation of the secondary recrystallized grains has a great influence on the magnetic properties.

【0004】また、方向性電磁鋼板の需要家において
は、磁気特性と共に被膜特性も重要視される。なぜな
ら、方向性電磁鋼板の被膜には、トランスの鉄心におい
て絶縁性を保つ役割はもとより、ビルディングファクタ
ーを改善する役割、さらには騒音に影響する磁歪・歪み
感受性を変化させる役割があるからである。
In addition, in the consumer of grain-oriented electrical steel, not only the magnetic characteristics but also the coating characteristics are important. This is because the coating of the grain-oriented electrical steel sheet has a role of improving the building factor as well as a role of maintaining insulation in the iron core of the transformer, and a role of changing magnetostriction / strain sensitivity that affects noise.

【0005】さて、このような方向性電磁鋼板は、4.5
mass%以下のSiを含む鋼スラブを、加熱し、熱間圧延
し、必要に応じて熱延板焼鈍を施したのち、1回あるい
は中間焼鈍を挟む2回以上の冷間圧延により最終板厚と
し、次いで湿潤水素雰囲気での連続焼鈍を施したのち、
マグネシアを主成分とする焼鈍分離剤を塗布してから、
1200℃5時間程度の仕上焼鈍を行うことにより製造され
てきた。例えば、米国特許第1965559 号明細書、特公昭
40−15644 号および同51−13469 号各公報などに、その
技術が開示されている。
By the way, such a grain-oriented electrical steel sheet has 4.5
A steel slab containing less than mass% of Si is heated, hot-rolled, and if necessary hot-rolled sheet annealed, then the final sheet thickness is obtained by cold rolling once or twice or more with intermediate annealing. Then, after performing continuous annealing in a wet hydrogen atmosphere,
After applying an annealing separator with magnesia as the main component,
It has been manufactured by performing finish annealing at 1200 ° C for about 5 hours. For example, U.S. Pat.
The technology is disclosed in Japanese Patent Publication Nos. 40-15644 and 51-13469.

【0006】{110}<001>方位に集積した二次
再結晶を効果的に促進させる技術として、従来、一次再
結晶粒の正常粒成長を抑制するインヒビターと呼ばれる
分散相を、均一かつ適正なサイズに分散させることが重
要であると言われてきた。このインヒビターの作用によ
り、最終仕上げ焼鈍時に、一次再結晶粒の成長が抑制さ
れ、最も粒成長の優位性の高い{110}<001>方
位の粒だけが、他の方位を蚕食して大きく成長するので
ある。
As a technique for effectively promoting the secondary recrystallization accumulated in the {110} <001> orientation, conventionally, a dispersed phase called an inhibitor that suppresses normal grain growth of primary recrystallized grains is uniformly and appropriately added. It has been said that it is important to disperse in size. By the action of this inhibitor, the growth of primary recrystallized grains is suppressed during the final finish annealing, and only the grains with {110} <001> orientation, which has the highest grain growth advantage, grows significantly by eroding other orientations. To do.

【0007】かかるインヒビターとして代表的なもの
は、MnS、MnSe、AlN及びVNのような硫化物、Se化合
物や窒化物等で、鋼中への溶解度が極めて小さいものが
用いられており、熱間圧延前のスラブ加熱時にインヒビ
ターを一旦完全に固溶させた後、その後の工程で微細に
析出させる方法がとられてきた。インヒビターを十分に
固溶させるためのスラブ加熱温度は1400℃程度であり、
普通鋼のスラブ加熱温度に比べて約200 ℃も高い。
Typical examples of such inhibitors include sulfides such as MnS, MnSe, AlN and VN, Se compounds and nitrides, which have extremely low solubility in steel. A method has been adopted in which the inhibitor is once completely solid-soluted at the time of heating the slab before rolling and then finely precipitated in the subsequent steps. The slab heating temperature for sufficiently dissolving the inhibitor is about 1400 ° C,
It is about 200 ° C higher than the slab heating temperature of ordinary steel.

【0008】このため、かような高温スラブ加熱に対し
て、以下に示す問題点が指摘されるようになってきた。 1)高温加熱を行うためにエネルギー原単位が高い。 2)溶融スケールが発生し易く、またスラブ垂れが生じ
易い。 3)スラブ表層の過脱炭が生じる。 上記2)および3)の問題点を解決するために、方向性
珪素鋼専用の誘導加熱炉が考案されたが、依然として、
エネルギーコストが高いという問題点が残されている。
Therefore, the following problems have been pointed out for such high temperature slab heating. 1) High energy consumption because of high temperature heating. 2) Melt scale is likely to occur and slab dripping is likely to occur. 3) Over-decarburization of the slab surface layer occurs. In order to solve the above problems 2) and 3), an induction heating furnace dedicated to grain-oriented silicon steel was devised, but still
The problem of high energy cost remains.

【0009】そこで、方向性珪素鋼の低温スラブ加熱化
を図る研究がなされるようになった。しかしながら、ス
ラブ加熱温度の低下は、インヒビター成分の固溶量不足
を招くために、抑制力の低下を必然的に引き起こす。
Therefore, studies have been conducted to improve the low temperature slab heating of grain-oriented silicon steel. However, a decrease in the slab heating temperature inevitably causes a decrease in the inhibitory force because the solid solution amount of the inhibitor component becomes insufficient.

【0010】そこで、低温スラブ加熱に起因する抑制力
の低下を、後工程で補う技術として、途中窒化技術が開
発された。例えば、特開昭57−207114号公報には脱炭焼
鈍時に窒化する技術が、特開昭62−70521 号公報には仕
上げ焼鈍条件を特定し、仕上げ焼鈍時に途中窒化するこ
とで低温スラブ加熱を可能にする技術が、それぞれ開示
されている。また、特開昭62−40315 号公報には、Alや
Nがスラブ加熱時に固溶していなくても、後工程の途中
窒化によってインヒビターを適正状態に制御する方法が
開示されている。
Therefore, an intermediate nitriding technique has been developed as a technique for compensating for the reduction of the suppression force due to the low temperature slab heating in the subsequent process. For example, Japanese Patent Laid-Open No. 57-207114 discloses a technique of nitriding during decarburization annealing, and Japanese Laid-Open Patent Publication No. 62-70521 specifies a final annealing condition, and low-temperature slab heating is performed by performing intermediate nitriding during final annealing. Each enabling technology is disclosed. Further, Japanese Patent Application Laid-Open No. 62-40315 discloses a method of controlling an inhibitor to an appropriate state by nitriding during the post-process even if Al and N are not in solid solution during slab heating.

【0011】一方、二次再結晶発現の重要なポイントと
して、インヒビターの存在の他に、一次再結晶組織にお
ける方位差角に注目し、インヒビターに頼らなくても二
次再結晶を生じさせる技術が開発されている。すなわ
ち、方位差角が20〜45°である粒界(高エネルギー粒
界)が二次再結晶発現に重要な役割を果たしていること
が、Acta Materia1 45巻で報告され、これに基づいて、
インヒビターを使用しない方向性電磁鋼板の研究が盛ん
に行われるようになった。
On the other hand, as an important point for the development of secondary recrystallization, attention has been paid to the misorientation angle in the primary recrystallization structure in addition to the presence of the inhibitor, and a technique for causing secondary recrystallization without relying on the inhibitor has been proposed. Being developed. That is, it was reported in Acta Materia1 Volume 45 that the grain boundary (high-energy grain boundary) with misorientation angle of 20 to 45 ° plays an important role, and based on this,
Research on grain-oriented electrical steel sheets that do not use inhibitors has been actively conducted.

【0012】しかしながら、上記の途中窒化技術および
高エネルギー粒界に基づく技術はいずれも、二次再結晶
のための最終仕上焼鈍時の粒成長を制御する技術である
ため、その前工程での一次再結晶板においては、粒成長
の制御がうまくいかず、粒径が不ぞろい(非整粒)にな
り、製品の磁気特性がコイルの部位によって不安定にな
り易いところに問題を残していた。
However, both the above-mentioned intermediate nitriding technique and the technique based on high-energy grain boundaries are techniques for controlling grain growth at the time of final finish annealing for secondary recrystallization, so that the primary process in the preceding step is performed. In the recrystallized plate, the control of grain growth was not successful, the grain size became irregular (non-uniform grain size), and a problem remained where the magnetic properties of the product were apt to become unstable depending on the coil portion.

【0013】また、硫化物、Se化合物をスラブ加熱時に
完全に固溶させる必要性から、スラブ加熱温度が普通鋼
並に低い条件下では、従来の高温スラブ加熱を前提とす
る技術と比較して、SやSeの含有量を低減する必要があ
る。SやSeの含有量が少ないと、一次再結晶焼鈍の際に
形成されるサブスケールの緻密性が劣化し、デンドライ
ト状の粗なサブスケールなりやすい。このようなサブス
ケールの性状の変化は、最終仕上焼鈍時のフォルステラ
イト被膜形成に悪影響を及ぼすことも問題であった。
Further, since it is necessary to completely form a solid solution of sulfides and Se compounds during slab heating, under the condition that the slab heating temperature is as low as that of ordinary steel, compared with the conventional technique which presupposes high temperature slab heating. , S and Se content needs to be reduced. When the content of S or Se is small, the denseness of the subscale formed during the primary recrystallization annealing is deteriorated, and a dendrite-like rough subscale is likely to be formed. It has also been a problem that such changes in the properties of the subscale have an adverse effect on the formation of a forsterite coating during final annealing.

【0014】[0014]

【発明が解決しようとする課題】この発明は、上記した
問題を有利に解決するものであり、スラブ加熱温度が普
通鋼なみに低い条件下でも、一次再結晶板における粒成
長を適正に制御して仕上焼鈍後の磁気特性を改善すると
共に、被膜特性の改善をも実現するための方途について
提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and properly controls grain growth in a primary recrystallized plate even under conditions where the slab heating temperature is as low as ordinary steel. The purpose is to propose a method for improving the magnetic properties after finish annealing and also improving the film properties.

【0015】[0015]

【課題を解決するための手段】さて、発明者らは、スラ
ブ加熱温度が普通鋼なみに低い場合に、磁気特性がコイ
ルの部位によって大きくばらつく原因について、詳細な
検討を行った。その結果、(i) 脱炭焼鈍板において粒径
の小さな粒と大きな粒が混在している、(ii)また、集合
組織が測定部位によって大きくばらついている、ことが
判明した。このようなばらつきが生じる主因としては、
インヒビターの抑制力が弱いために、脱炭焼鈍中に一次
再結晶粒が粒成長し易いことが考えられる。
Means for Solving the Problems Now, the present inventors have conducted a detailed study on the cause of the large variation in magnetic characteristics depending on the coil portion when the slab heating temperature is as low as ordinary steel. As a result, it was found that (i) small and large grains coexist in the decarburized and annealed sheet, and (ii) the texture varies widely depending on the measurement site. The main causes of such variations are:
It is conceivable that the primary recrystallized grains are likely to grow during decarburization annealing because the inhibitory force of the inhibitor is weak.

【0016】インヒビターの抑制力が弱くても、高エネ
ルギー粒界が高移動度を有する性質を利用することによ
り、あるいは窒化処理によるインヒビター補強により、
引き続く仕上焼鈍において二次再結晶を生じさせること
は可能である。しかしながら、脱炭焼鈍終了時点での組
織の不均一は製品の磁気特性の不均一を引き起こしてし
まう。
Even if the inhibitory power of the inhibitor is weak, by utilizing the property that the high energy grain boundaries have high mobility, or by the inhibitor reinforcement by the nitriding treatment,
It is possible to cause secondary recrystallization in subsequent finish annealing. However, the nonuniformity of the structure at the end of decarburization annealing causes nonuniformity of the magnetic properties of the product.

【0017】そこで、脱炭焼鈍終了段階での組織を均一
化する方法について鋭意研究を行った結果、従来は並行
して行われていた一次再結晶と脱炭とを分離して行う方
法に想い至った。すなわち、一次再結晶が完了するまで
の期間は脱炭を抑制し、一次再結晶完了後に脱炭を促進
するように制御する方法が極めて有効であることが新た
に見出されたのである。この発明は、上記の知見に立脚
するものである。
Therefore, as a result of earnest research on a method for homogenizing the structure at the end stage of decarburization annealing, it was thought that a method for separating primary recrystallization and decarburization, which were conventionally performed in parallel, was performed. I arrived. That is, it was newly found that a method of suppressing decarburization during the period until completion of primary recrystallization and controlling so as to promote decarburization after completion of primary recrystallization is extremely effective. The present invention is based on the above findings.

【0018】すなわち、この発明の要旨構成は次のとお
りである。 (1)C:0.01〜0.1 mass%、Si:2.0 〜4.5 mass%お
よびMn:0.03〜2.5 mass%を含み、必要に応じてインヒ
ビター形成成分を含有する鋼スラブを、1300℃以下に加
熱後、熱間圧延し、その後必要に応じて熱延板焼鈍を施
してから、1回または中間焼鈍を挟む2回以上の冷間圧
延により最終板厚とし、次いで一次再結晶および脱炭の
ための焼鈍を施したのち最終仕上焼鈍を施す、一連の工
程からなる方向性電磁鋼板の製造方法において、鋼スラ
ブの鋳造時に電磁攪拌を施すこと、一次再結晶および脱
炭のための焼鈍に関して、鋼板を600 ℃以上1000℃以下
の温度域に120 秒以内で滞在させ、かつこの滞在期間の
雰囲気を水素:30〜60 vol%および露点:15〜40℃に制
御し、しかる後、鋼板を750 ℃以上900 ℃以下の温度域
に60秒以上滞在させ、この滞在期間の雰囲気を水素:40
〜70 vol%および露点:40〜70℃に制御することを特徴
とする磁気特性および被膜特性の優れた方向性電磁鋼板
の製造方法。
That is, the gist of the present invention is as follows. (1) After heating a steel slab containing C: 0.01 to 0.1 mass%, Si: 2.0 to 4.5 mass% and Mn: 0.03 to 2.5 mass% and optionally an inhibitor forming component to 1300 ° C. or lower, Hot-rolling, then hot-rolled sheet annealing if necessary, and then cold rolling once or twice with intermediate annealing to obtain final sheet thickness, and then annealing for primary recrystallization and decarburization. In the method for producing a grain-oriented electrical steel sheet consisting of a series of steps, the steel sheet is subjected to electromagnetic stirring during casting of the steel slab, and the steel sheet is subjected to annealing for primary recrystallization and decarburization. The temperature should be kept within the temperature range of ℃ to 1000 ℃ for 120 seconds or less, and the atmosphere during this stay should be controlled to hydrogen: 30 to 60 vol% and dew point: 15 to 40 ℃. Leave the temperature range below ℃ for 60 seconds or longer to maintain the atmosphere during this stay. Element: 40
~ 70 vol% and dew point: Controlled at 40 to 70 ° C, a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.

【0019】(2)冷間圧延工程において、少なくとも
1パスを100 ℃以上の温度で行うことを特徴とする上記
(1)記載の磁気特性および被膜特性の優れた方向性電
磁鋼板の製造方法。
(2) In the cold rolling step, at least one pass is performed at a temperature of 100 ° C. or higher, and the method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties according to the above (1).

【0020】(3)冷間圧延工程において、該圧延途中
の少なくとも1回のパス間おいて、150 ℃以上の温度域
で1分以上保持することを特徴とする上記(1)または
(2)記載の磁気特性および被膜特性の優れた方向性電
磁鋼板の製造方法。
(3) In the cold rolling step, the temperature is kept at 150 ° C. or higher for at least 1 minute during at least one pass during the rolling, and the above (1) or (2) is characterized. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties as described.

【0021】[0021]

【発明の実施の形態】以下、この発明を具体的に説明す
る。まず、この発明のスラブは、製鋼−連続鋳造によっ
て製造され、その連続鋳造の際に、柱状晶の成長を抑制
するために電磁攪拌を施す、必要がある。この詳細につ
いては、後述する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the slab of the present invention is manufactured by steelmaking-continuous casting, and during the continuous casting, it is necessary to apply electromagnetic stirring to suppress the growth of columnar crystals. The details will be described later.

【0022】また、鋼スラブの組成は、少なくともC,
SiおよびMnについては、所定の範囲に制限する必要があ
るが、その他の元素については従来公知の組成いずれも
が適合する。
The composition of the steel slab is at least C,
For Si and Mn, it is necessary to limit the content to a predetermined range, but for the other elements, any conventionally known composition is suitable.

【0023】鋼スラブの成分組成において、Siについて
は、2.0 mass%以上4.5 mass%以下とする。すなわち、
Siは、電気抵抗を高めて鉄損を低減する作用があり、そ
のためには 2.0mass%以上の含有を必要とするが、4.5
mass%を超えると冷間圧延性が著しく劣化するため、4.
5 mass%以下とした。
In the composition of the steel slab, Si is set to 2.0 mass% or more and 4.5 mass% or less. That is,
Si has the effect of increasing the electric resistance and reducing the iron loss. For that purpose, it is necessary to contain 2.0 mass% or more, but 4.5
If it exceeds mass%, the cold rolling property deteriorates significantly, so 4.
It was set to 5 mass% or less.

【0024】Cは、組織改善のため、0.01mass%以上0.
1 mass%以下の範囲で含有させるものとした。
C is 0.01 mass% or more and 0.
The content was set to be 1 mass% or less.

【0025】Mnは、Siと同じように電気抵抗を増加さ
せ、鉄損を改善する効果があり、また製造時の熱間加工
性を向上させる上でも有用な成分である。この目的のた
めには、0.03mass%以上の含有が必要であるが、2.5 ma
ss%を超えて含有させた場合、γ変態を誘起して磁気特
性が劣化することから、Mnは0.03mass%以上2.5 mass%
以下の範囲とした。
Similar to Si, Mn has the effect of increasing the electric resistance and improving the iron loss, and is also a useful component for improving the hot workability during manufacturing. For this purpose, 0.03 mass% or more is required, but 2.5 ma
When it is contained in excess of ss%, Mn is 0.03 mass% or more and 2.5 mass% or more because the magnetic properties are deteriorated by inducing γ transformation.
The range was as follows.

【0026】その他、二次再結晶を制御するために、イ
ンヒビターとなる微量のSやSeならびに硫化物形成元
素、セレン化物形成元素(Mn,Cuなど)、さらには粒界
偏析元素(Sb,Sn,Biなど)を含有させることもでき
る。これらのインヒビター形成元素を含有させる場合の
適正量は、次のとおりである。
In addition, in order to control the secondary recrystallization, a trace amount of S and Se which serve as inhibitors, sulfide forming elements, selenide forming elements (Mn, Cu, etc.), and grain boundary segregation elements (Sb, Sn) are also included. , Bi, etc.) can be included. Appropriate amounts when these inhibitor-forming elements are contained are as follows.

【0027】S,Seはそれぞれ、硫化物やSe化合物とし
てインヒビター機能を発揮する元素であり、単独添加ま
たは複合添加いずれの場合も 0.005mass%以上 0.030ma
ss%以下の範囲で含有させることが好適である。という
のは、含有量が 0.005mass%未満ではインヒビター機能
を十分に発揮できず、一方0.030mass %をこえるとスラ
ブ加熱時に均一固溶させることが困難となり、かえって
インヒビターとしての機能が損なわれてしまうからであ
る。
Each of S and Se is an element that exhibits an inhibitor function as a sulfide or a Se compound, and 0.005 mass% or more and 0.030 ma or more in both cases of single addition and compound addition.
It is preferable to contain it in the range of ss% or less. The reason is that if the content is less than 0.005 mass%, the inhibitor function cannot be fully exhibited, while if it exceeds 0.030 mass%, it becomes difficult to form a solid solution during heating of the slab, which rather impairs the function as an inhibitor. Because.

【0028】Cuは、CuSやCuSeを形成してインヒビター
として機能する他、被膜特性の改善にも有効に寄与す
る。この目的のためには、0.01mass%以上の含有を必要
とするが、0.50mass%を超えると表面性状が悪化するの
で、0.01mass%以上0.50mass%以下が好適である。
Cu forms CuS and CuSe to function as an inhibitor, and also contributes effectively to the improvement of the film characteristics. For this purpose, the content is required to be 0.01 mass% or more, but if it exceeds 0.50 mass%, the surface quality deteriorates, so 0.01 mass% or more and 0.50 mass% or less is preferable.

【0029】Sb,SnおよびBiはいずれも、粒界に偏析し
てインヒビター機能を発揮する元素であるが、過剰に含
有させると製品のベンド特性などの機械的特性が劣化す
る。従って、Sbは 0.001mass%以上0.1 mass%以下、Sn
は 0.001mass%以上0.1mass%以下、Biは0.0005mass%
以上0.05mass%以下の範囲が好適である。
All of Sb, Sn and Bi are elements that segregate at grain boundaries and exert an inhibitor function. However, if they are contained in excess, mechanical properties such as bend properties of the product deteriorate. Therefore, Sb is 0.001 mass% or more and 0.1 mass% or less, Sn
Is 0.001mass% or more and 0.1mass% or less, Bi is 0.0005mass%
A range of at least 0.05 mass% and less is suitable.

【0030】窒化物形成元素のAlに関しては、高温スラ
ブ加熱の条件下では有効なインヒビターであるが、1300
℃以下の低温スラブ加熱を前提とする、この発明におい
ては、均一に析出させることが困難なため、一次再結晶
組織(および集合組織)を不均一たらしめる。従って、
Alの含有量は0.01mass%未満に低減することが好まし
い。
Regarding the nitride forming element Al, it is an effective inhibitor under the condition of high temperature slab heating.
In the present invention, which is premised on a low temperature slab heating of ℃ or less, it is difficult to precipitate uniformly, so that the primary recrystallization structure (and texture) is made nonuniform. Therefore,
The Al content is preferably reduced to less than 0.01 mass%.

【0031】なお、最近、これらのインヒビター元素を
特に添加しなくても二次再結晶させる技術が開示されて
いるが、この技術はこの発明においても好適に適用でき
る。
Recently, a technique of secondary recrystallization without adding any of these inhibitor elements has been disclosed, but this technique can be suitably applied to the present invention.

【0032】上記の成分組成に調整したスラブを、1300
℃以下の低温でスラブ加熱し、熱間圧延を施す。次い
で、熱間圧延板に、必要に応じて熱延板焼鈍を施したの
ち、1回または中間焼鈍を挟む2回以上の冷間圧延を施
して、最終板厚とする。中間焼鈍を挟む二回以上の冷間
圧延を施して、最終板厚とする場合には、熱延板焼鈍は
行っても行わなくてもいい。冷間圧延は常温で行っても
良いが、圧延温度を 100℃以上に上げ、動的歪時効によ
って集合組織を制御する、いわゆる温間圧延方法、また
圧延のパス間に 150℃以上の温度域で1分以上保持し、
静的歪時効によって集合組織を制御する、いわゆるパス
間時効処理も、この発明において好適に適用することが
できる。
A slab adjusted to the above component composition was
Slab heating is performed at a low temperature of ℃ or less, and hot rolling is performed. Then, the hot-rolled sheet is annealed by hot-rolled sheet, if necessary, and then cold-rolled once or twice or more with an intermediate annealing, to obtain a final sheet thickness. When the cold rolling is performed twice or more with the intermediate annealing sandwiched to obtain the final thickness, the hot-rolled sheet annealing may or may not be performed. Cold rolling may be performed at room temperature, but the so-called warm rolling method, in which the rolling temperature is raised to 100 ° C or higher and the texture is controlled by dynamic strain aging, or in the temperature range of 150 ° C or higher between rolling passes Hold for 1 minute or more,
The so-called inter-pass aging treatment, which controls the texture by static strain aging, can also be suitably applied in the present invention.

【0033】次いで、最終冷間圧延板に、一次再結晶と
脱炭のための焼鈍を施す。この焼鈍においては、一次再
結晶完了までは脱炭を抑制し、一次再結晶完了後に脱炭
を促進することが重要であり、この発明の中心技術であ
る。具体的には、鋼板を600 ℃以上1000℃以下の温度域
に120 秒以内で滞在させ、かつこの滞在期間の雰囲気を
水素:30〜60 vol%および露点:15〜40℃に制御する、
前段焼鈍と、しかる後、鋼板を750 ℃以上900 ℃以下の
温度域に60秒以上滞在させ、この滞在期間の雰囲気を水
素:40〜70 vol%および露点:40〜70℃に制御する、後
段焼鈍と、を組み合わせることにある。なお、これら前
段焼鈍と後段焼鈍とは、連続して行ってもよいし、両者
を切り離して行ってもよい。
Then, the final cold rolled sheet is annealed for primary recrystallization and decarburization. In this annealing, it is important to suppress decarburization until the completion of primary recrystallization and promote decarburization after the completion of primary recrystallization, which is the core technology of the present invention. Specifically, the steel sheet is allowed to stay in a temperature range of 600 ° C or higher and 1000 ° C or lower for 120 seconds or less, and the atmosphere during this stay is controlled to hydrogen: 30 to 60 vol% and dew point: 15 to 40 ° C.
Pre-annealing, after which the steel sheet is kept in the temperature range of 750 ℃ to 900 ℃ for 60 seconds or more, and the atmosphere during this stay is controlled to hydrogen: 40 to 70 vol% and dew point: 40 to 70 ℃. It is to combine with annealing. The pre-annealing and the post-annealing may be performed continuously or separately.

【0034】ここで、一次再結晶完了まで脱炭を抑制す
る理由は、一次再結晶の進行過程での粒成長抑制力を補
強するためであり、一次再結晶後に脱炭を促進する理由
は、製品鉄損の時効劣化を防ぐためである。
Here, the reason why decarburization is suppressed until the completion of primary recrystallization is to reinforce the grain growth suppressing force in the course of primary recrystallization, and the reason for promoting decarburization after primary recrystallization is as follows. This is to prevent aging deterioration of product iron loss.

【0035】さらに、焼鈍条件は、磁気特性と被膜特性
とを両立させる観点からも、上記の条件に従うことが有
利である。すなわち、一次再結晶板における粒成長が適
正に制御されることにより、仕上焼鈍後の磁気特性が向
上することに加え、一次再結晶焼鈍時に形成される、サ
ブスケールの緻密性が増すことにより、仕上焼鈍後のフ
ォルステライト被膜の密着性を高めることができる。
Further, it is advantageous that the annealing conditions comply with the above-mentioned conditions from the viewpoint of achieving both magnetic properties and coating properties. That is, by appropriately controlling the grain growth in the primary recrystallization plate, in addition to improving the magnetic properties after finish annealing, formed during primary recrystallization annealing, by increasing the subscale denseness, The adhesion of the forsterite coating after finish annealing can be enhanced.

【0036】この発明に従い、炭素をある程度含有させ
た状態で一次再結晶を生じさせ、一次再結晶完了後に脱
炭を完了させることによって、組織、集合組織が均一化
される理由については、未だ明確に解明されたわけでは
ないが、発明者らは次のように考えている。すなわち、
一次再結晶完了までの期間に炭素を含有していると、炭
素によって粒成長の抑制力が補強される。再結晶初期か
ら再結晶完了までの区間は、局所的に再結晶の進行具合
が異なり、比較的早期に核生成する粒と遅れて核生成す
る粒とが混在する。この段階での抑制力は重要であり、
抑制力が弱い場合には、早期に核生成した粒が粗大化す
るため、粒径が不均一になり、そのことが集合組織の不
均一につながる。従って、一次再結晶が完了するまでの
間は、炭素によって抑制力を補強することが有効であ
る。一方、一次再結晶が鋼板全体で完了し、一次再結晶
粒どうしの粒成長が均衡した後は、抑制力の必要性は弱
まるため、脱炭を促進すればいいと考えられる。
According to the present invention, the reason why the structure and the texture are homogenized by causing the primary recrystallization with a certain amount of carbon contained and completing the decarburization after the completion of the primary recrystallization is still clear. Although it has not been clarified yet, the inventors think as follows. That is,
If carbon is contained in the period until the completion of primary recrystallization, the grain growth suppressing force is reinforced by carbon. In the section from the initial stage of recrystallization to the completion of recrystallization, the degree of progress of recrystallization locally differs, and grains that nucleate relatively early and grains that nucleate later coexist. Suppression at this stage is important,
When the suppression power is weak, the grains that nucleate early become coarse, so that the grain size becomes non-uniform, which leads to non-uniform texture. Therefore, it is effective to reinforce the suppressing force by carbon until the primary recrystallization is completed. On the other hand, after the primary recrystallization is completed in the entire steel sheet and the grain growth of the primary recrystallized grains is balanced, the necessity of the suppressing force is weakened, and it is considered that decarburization should be promoted.

【0037】ここに、一次再結晶完了までの期間の脱炭
を抑制するという観点からは、前段焼鈍の雰囲気酸化性
は低い程良いが、酸化性が低すぎると、形成されるサブ
スケールの緻密性が劣化し、製品の被膜劣化につながる
という問題が生じた。発明者らは、製品の磁気特性、被
膜特性の両立という観点からさらに研究を重ねたとこ
ろ、 (a)スラブ鋳造時に電磁攪拌を施し、柱状晶の成長を
抑制すること (b)1回の冷間圧延で最終板厚にする場合は熱延板焼
鈍を施し、2回以上の冷間圧延で最終板厚にする場合は
中間焼鈍を施すこと (c)前段焼鈍の雰囲気は水素30〜60 vol%かつ露点15
〜40℃の範囲内にすること を組み合わせることが、有効であることを突き止めた。
From the viewpoint of suppressing decarburization during the period until the completion of primary recrystallization, the lower the atmospheric oxidizability of the pre-annealing, the better. However, if the oxidizability is too low, the subscale formed will be dense. There is a problem that the property deteriorates and the film of the product deteriorates. The inventors conducted further research from the viewpoint of achieving both magnetic properties and coating properties of the product. (A) Applying electromagnetic stirring during slab casting to suppress the growth of columnar crystals (b) Cooling once Hot-rolled sheet should be annealed to obtain final sheet thickness by hot rolling, and intermediate annealing should be given to obtain final sheet thickness by cold rolling two or more times. (C) Atmosphere of pre-annealing is 30-60 vol. % And dew point 15
It has been found that a combination within the range of -40 ° C is effective.

【0038】すなわち、スラブ段階で柱状晶が発達する
と、熱間圧延後、<110>//RDに集積した未再結晶
バンドが発達しやすい。この未再結晶バンドは、引き続
く冷延工程でもそのまま方位を維持しやすく、焼鈍の際
には再結晶しにくい特徴がある。この発明では、インヒ
ビターが弱いため、このバンド組織は途中の焼鈍過程で
再結晶したり未再結晶のまま残ったりと、まちまちの形
態をとり、その結果一次再結晶組織(および集合組織)
の不均一性が助長される。従って、電磁攪拌によって柱
状晶の成長を抑制することが、一次再結晶組織(および
集合組織)の均一化という観点から必要となる。
That is, if columnar crystals develop in the slab stage, unrecrystallized bands accumulated in <110> // RD tend to develop after hot rolling. This unrecrystallized band has a characteristic that the orientation is easily maintained as it is even in the subsequent cold rolling step, and it is difficult to recrystallize during annealing. In the present invention, since the inhibitor is weak, this band structure takes various forms such as recrystallized during the annealing process or left unrecrystallized, and as a result, primary recrystallized structure (and texture)
The non-uniformity of is promoted. Therefore, it is necessary to suppress the growth of columnar crystals by electromagnetic stirring from the viewpoint of making the primary recrystallization texture (and texture) uniform.

【0039】また、1回の冷間圧延で最終板厚にする場
合の熱延板焼鈍や、2回以上の冷間圧延で最終板厚にす
る場合の中間焼鈍も、最終冷間圧延前の段階で、組織を
均一化し、ひいては一次再結晶組織(および集合組織)
の均一化につながるため、この発明に必須の要件とな
る。
The hot-rolled sheet annealing in the case of obtaining the final sheet thickness by one cold rolling and the intermediate annealing in the case of obtaining the final sheet thickness by the cold rolling two or more times are also performed before the final cold rolling. At the stage, the structure is homogenized, and thus the primary recrystallized structure (and texture)
It is an essential requirement for the present invention because it leads to uniformization.

【0040】従って、上記(a)および(b)の技術を
併用すれば、上記(c)に示す雰囲気にて、被膜劣化を
起こすことなく、磁気特性の良好な方向性電磁鋼板の製
造が可能になる。かくして、発明者らは、スラブ加熱温
度が普通鋼並みに低い条件下で、磁気特性が良好な方向
性電磁鋼板を安定して製造する方法に関する発明を完成
させるに到ったのである。
Therefore, by using the techniques of (a) and (b) together, it is possible to manufacture a grain-oriented electrical steel sheet having good magnetic properties in the atmosphere shown in (c) above without causing film deterioration. become. Thus, the inventors have completed an invention relating to a method for stably producing a grain-oriented electrical steel sheet having good magnetic properties under conditions where the slab heating temperature is as low as ordinary steel.

【0041】また、集合組織を制御するに当り、圧延温
度を100 ℃以上に上げ、動的歪時効によって集合組織を
制御することおよび、圧延のパス間に150 ℃以上の温度
域で1分間以上保持し、静的歪時効によって集合組織を
制御することは、一次再結晶進行過程での抑制力の確保
に繋がるため、有利である。
Further, in controlling the texture, the rolling temperature is raised to 100 ° C. or higher, the texture is controlled by dynamic strain aging, and the temperature range of 150 ° C. or higher is used for one minute or more between rolling passes. It is advantageous to hold and control the texture by static strain aging, because it leads to securing the suppressing force in the process of primary recrystallization.

【0042】なお、炭素を抑制力の補強として利用する
技術としては、脱炭焼鈍後に30〜200ppmの炭素を含有さ
せて磁束密度を向上させることが、特開昭58−11738 号
公報に開示されているが、この技術はあくまで、仕上焼
鈍中の抑制力を補強する技術であり、この発明とは本質
的に異なる。
As a technique of utilizing carbon as a reinforcement of suppressing force, it is disclosed in JP-A-58-11738 to improve the magnetic flux density by adding 30 to 200 ppm of carbon after decarburization annealing. However, this technique is only a technique for reinforcing the restraining force during finish annealing and is essentially different from the present invention.

【0043】さらに、特開平6−2040号公報には、最終
圧延後に、750 〜1050℃の温度域において30秒〜10分
間、少なくとも10 vol%以上の水素を含む露点15℃以下
の焼鈍雰囲気中での焼鈍を施した後に、通常の脱炭焼鈍
を施す技術が開示されているが、この技術は露点の範囲
が、この発明と異なる上、インヒビターが強い条件を前
提としており、集合組織を制御する技術ではなく、この
発明の技術とは本質的に異なるものである。
Further, in JP-A-6-2040, after the final rolling, in an annealing atmosphere having a dew point of 15 ° C. or lower containing at least 10 vol% or more hydrogen for 30 seconds to 10 minutes in a temperature range of 750 to 1050 ° C. A technique for performing normal decarburization annealing after performing annealing at 60 ° C is disclosed.However, this technique has a dew point range different from that of the present invention. However, it is essentially different from the technique of the present invention.

【0044】以上の前、後段の焼鈍が完了後は、鋼板の
表面に焼鈍分離剤を塗布してから、最終仕上焼鈍を施
す。この最終仕上焼鈍には特に制限はなく、従来から周
知の方法に従って行えば良い。
After the preceding and subsequent annealing steps are completed, the annealing separator is applied to the surface of the steel sheet and then the final finish annealing is applied. The final finish annealing is not particularly limited and may be performed according to a conventionally known method.

【0045】さらに、得られた仕上焼鈍板の表面に、絶
縁被膜を塗布、焼き付ける。絶縁被膜の種類は特に限定
されず、公知の絶縁被膜いずれもが適合する。例えば、
特開昭50−79442 号公報や特開昭48−39338 号公報に記
載されている、リン酸塩−クロム酸−コロイダルシリカ
を含有する塗布液を鋼板に塗布し、800 ℃程度で焼き付
ける方法が好適である。また、フラットニング焼鈍によ
り、鋼板の形状を整えることも可能であり、さらには絶
縁被膜焼き付けを兼ねたフラットニング焼鈍を行うこと
もできる。なお、最終冷間圧延後、二次再結晶開始まで
の間に、必要に応じて窒化処理を施すことも粒成長制御
手段の一つとして有効である。
Further, an insulating coating is applied and baked on the surface of the obtained finish annealed plate. The type of insulating coating is not particularly limited, and any known insulating coating is suitable. For example,
The method described in JP-A-50-79442 and JP-A-48-39338 is a method in which a coating solution containing phosphate-chromic acid-colloidal silica is applied to a steel sheet and baked at about 800 ° C. It is suitable. Further, it is possible to adjust the shape of the steel sheet by flattening annealing, and further it is possible to perform flattening annealing which also serves as baking of the insulating film. It is also effective as one of grain growth control means to perform nitriding treatment as needed after the final cold rolling and before the start of secondary recrystallization.

【0046】[0046]

【実施例】実施例1 C:0.05mass%、Si:3.0 mass%、Mn:0.09mass%およ
びAl:0.005 mass%を含有する鋼スラブ3本(以下、鋼
A,BおよびCとして区別する)を、鋼Aは電磁攪拌を
施さずに、鋼BおよびCは電磁攪拌を施して鋳造した。
これらのスラブを1200℃に加熱後、熱間圧延して板厚2.
2mm としたのち、鋼AおよびCは1000℃で30秒間の熱延
板焼鈍を施し、残る鋼Bは熱延板焼鈍を施さなかった。
その後、鋼A、BおよびCはいずれも、酸洗した後、板
厚0.34mmまで1回で冷間圧延した。
Example 1 Three steel slabs containing C: 0.05 mass%, Si: 3.0 mass%, Mn: 0.09 mass% and Al: 0.005 mass% (hereinafter, distinguished as steels A, B and C). Steel A was cast without electromagnetic stirring, and Steels B and C were cast with electromagnetic stirring.
After heating these slabs to 1200 ° C, they are hot-rolled to a plate thickness of 2.
After being set to 2 mm, the steels A and C were annealed at 1000 ° C. for 30 seconds, and the remaining steel B was not annealed.
After that, each of the steels A, B and C was pickled and then cold-rolled once to a plate thickness of 0.34 mm.

【0047】次いで、冷間圧延後のコイルの長手方向10
箇所において、それぞれ幅方向3箇所合計で30箇所から
試験片を採取した。各試験片は、脱脂処理を行ってか
ら、一次再結晶および脱炭のための焼鈍を施した。焼鈍
条件は、鋼A、Bに対しては下記の1の条件、同Cに対
しては、下記の1〜8の8通りの条件を適用した。
Next, the longitudinal direction 10 of the coil after cold rolling
At each of the three locations, test pieces were collected from a total of 30 locations in the width direction. Each test piece was degreased and then annealed for primary recrystallization and decarburization. Regarding the annealing conditions, the following conditions 1 were applied to the steels A and B, and the following eight conditions 1 to 8 were applied to the steels C.

【0048】記 条件1: 前段(900 ℃×30秒間,水素50 vol%,露点30℃) 後段(850 ℃×120 秒間,水素50 vol%,露点60℃) 条件2: 前段(700 ℃×30秒間, 水素50 vol%,露点30℃) 後段(850 ℃×120 秒間, 水素50 vol%,露点60℃) 条件3: 前段(900 ℃×10秒間, 水素40 vol%,露点20℃) 後段(800 ℃×120 秒間, 水素60 vol%,露点55℃) 条件4: 前段(700 ℃×10秒間, 水素40 vol%,露点20℃) 後段(800 ℃×120 秒間, 水素60 vol%,露点55℃) 条件5: 前段(900 ℃×30秒間, 水素50 vol%,露点10℃) 後段(850 ℃×120 秒間, 水素50 vol%,露点60℃) 条件6: 前段(800 ℃×30秒間, 水素50 vol%,露点55℃) 後段(850 ℃×120 秒間, 水素50 vol%,露点60℃) 条件7: 前段(650 ℃×30秒間, 水素50 vol%,露点55℃) 後段(850 ℃×120 秒間, 水素50 vol%,露点60℃) 条件8: 前段(550 ℃×30秒間, 水素50 vol%,露点35℃) 後段(850 ℃×120 秒間, 水素50 vol%,露点60℃)Note Condition 1: First stage (900 ℃ x 30 seconds, hydrogen 50 vol%, dew point 30 ℃) Second stage (850 ° C x 120 seconds, hydrogen 50 vol%, dew point 60 ° C) Condition 2: First stage (700 ℃ x 30 seconds, hydrogen 50 vol%, dew point 30 ℃) Second stage (850 ℃ x 120 seconds, hydrogen 50 vol%, dew point 60 ℃) Condition 3: First stage (900 ℃ x 10 seconds, hydrogen 40 vol%, dew point 20 ℃) Second stage (800 ℃ x 120 seconds, hydrogen 60 vol%, dew point 55 ℃) Condition 4: First stage (700 ℃ x 10 seconds, hydrogen 40 vol%, dew point 20 ℃) Second stage (800 ℃ x 120 seconds, hydrogen 60 vol%, dew point 55 ℃) Condition 5: First stage (900 ℃ x 30 seconds, hydrogen 50 vol%, dew point 10 ℃) Second stage (850 ℃ x 120 seconds, hydrogen 50 vol%, dew point 60 ℃) Condition 6: First stage (800 ℃ x 30 seconds, hydrogen 50 vol%, dew point 55 ℃) Second stage (850 ℃ x 120 seconds, hydrogen 50 vol%, dew point 60 ℃) Condition 7: First stage (650 ℃ x 30 seconds, hydrogen 50 vol%, dew point 55 ℃) Second stage (850 ℃ x 120 seconds, hydrogen 50 vol%, dew point 60 ℃) Condition 8: First stage (550 ℃ x 30 seconds, hydrogen 50 vol%, dew point 35 ℃) Second stage (850 ℃ x 120 seconds, hydrogen 50 vol%, dew point 60 ℃)

【0049】上記の焼鈍終了後に、鋼板の集合組織をX
線回折による鋼板表面の極密度測定にて評価した。次い
で、上記の焼鈍つまり一次再結晶と脱炭のための焼鈍
後、鋼板表面に焼鈍分離剤を塗布してから、最終仕上焼
鈍を施した。焼鈍分離剤としては、MgOを主成分とし、
副成分として Sr(OH)2・8H2Oを5重量部添加したものを
用いた。
After completion of the above-mentioned annealing, the texture of the steel sheet is X
It was evaluated by measuring the pole density of the steel sheet surface by line diffraction. Then, after the above-mentioned annealing, that is, annealing for primary recrystallization and decarburization, an annealing separator was applied to the surface of the steel sheet, and then final finishing annealing was performed. As an annealing separator, MgO is the main component,
As an auxiliary component, 5 parts by weight of Sr (OH) 2 .8H 2 O was added and used.

【0050】最終仕上焼鈍後、未反応の焼鈍分離剤を除
去したのち、コロイダルシリカを含有するリン酸マグネ
シウムを主成分とする絶縁コーティングを塗布し、800
℃で焼き付け、製品とした。各製品について、磁束密度
8 と鉄損W17/50 を測定するともに、被膜密着性(鋼
板を丸棒に巻き付けて被膜が剥離しない最小の曲げ径を
測定)も評価した。かくして得られた結果を、表1に示
す。
After the final finish annealing, the unreacted annealing separating agent was removed, and then an insulating coating containing colloidal silica-containing magnesium phosphate as a main component was applied, and 800
The product was baked at ℃. For each product, the magnetic flux density B 8 and the iron loss W 17/50 were measured, and the film adhesion (the minimum bending diameter at which the steel plate was wrapped around a round bar to prevent the film from peeling) was evaluated. The results thus obtained are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】表1に示したとおり、この発明に従って一
次再結晶と脱炭のための焼鈍条件を制御することによ
り、一次再結晶集合組織のばらつきが軽減され、その結
果、磁気特性が良好な方向性電磁鋼板を安定して得るこ
とができた。また、被膜密着性についても、満足する結
果が得られた。
As shown in Table 1, by controlling the annealing conditions for the primary recrystallization and decarburization according to the present invention, the variation of the primary recrystallization texture is reduced, and as a result, the magnetic properties are favored. The stable electromagnetic steel sheet could be obtained stably. Also, satisfactory results were obtained with respect to film adhesion.

【0053】実施例2 C:0.07mass%、Si:3.30mass%、Mn:0.07mass%、A
l:0.005 mass%およびSb:0.025 mass%を含有する鋼
スラブ4本(以下、鋼D,E,FおよびGとして区別す
る)を、鋼Dは電磁攪拌を施さずに、鋼E,FおよびG
は電磁攪拌を施して鋳造した。これらのスラブを1250℃
に加熱してから、熱間圧延して板厚2.5mmとしたのち、
熱延コイルを酸洗し、板厚1.5mm まで1回目の冷間圧延
を常温にて行った。次に、これらのコイルを脱脂した
後、1000℃で60秒間の中間焼鈍を施した。さらに、酸洗
した後、鋼D,Eのコイルには、板厚0.22mmまで常温で
冷間圧延を施し、鋼Fのコイルには200 ℃の圧延温度で
板厚0.22mmまで圧延を施し、鋼Gのコイルには250 ℃に
5時間保持した後、150 ℃の圧延温度で板厚0.22mmまで
圧延を施した。
Example 2 C: 0.07 mass%, Si: 3.30 mass%, Mn: 0.07 mass%, A
l: 0.005 mass% and Sb: 0.025 mass% contained in four steel slabs (hereinafter referred to as steels D, E, F and G), steel D was subjected to no electromagnetic stirring, steels E, F and G
Was subjected to electromagnetic stirring and cast. These slabs at 1250 ° C
After heating to, after hot rolling to a plate thickness of 2.5 mm,
The hot rolled coil was pickled, and the first cold rolling was performed at room temperature to a plate thickness of 1.5 mm. Next, after degreasing these coils, intermediate annealing was performed at 1000 ° C. for 60 seconds. Further, after pickling, the coils of steels D and E are cold-rolled to a plate thickness of 0.22 mm at room temperature, and the coils of steel F are rolled to a plate thickness of 0.22 mm at a rolling temperature of 200 ° C. The coil of steel G was held at 250 ° C. for 5 hours and then rolled at a rolling temperature of 150 ° C. to a plate thickness of 0.22 mm.

【0054】次いで、冷間圧延後のコイルの長手方向10
箇所において、それぞれ幅方向3箇所合計で30箇所から
試験片を採取した。各試験片は、脱脂処理を行ってか
ら、一次再結晶および脱炭のための焼鈍を施した。焼鈍
条件は、鋼Dに対しては実施例1で適用した上記の1,
3,5,7の4通りの条件、鋼Eに対しては上記の1〜
8の8通りの条件、鋼FおよびGに対しては上記の1の
条件とした。
Next, the longitudinal direction 10 of the coil after cold rolling
At each of the three locations, test pieces were collected from a total of 30 locations in the width direction. Each test piece was degreased and then annealed for primary recrystallization and decarburization. The annealing conditions are as follows:
Four conditions of 3, 5 and 7 and the above 1 to steel E
8 conditions of 8 and steels F and G were the above 1 conditions.

【0055】上記の焼鈍終了後に、鋼板の集合組織をX
線回折による鋼板表面の極密度測定にて評価した。次い
で、上記の焼鈍つまり一次再結晶と脱炭のための焼鈍
後、鋼板表面に焼鈍分離剤を塗布してから、最終仕上焼
鈍を施した。焼鈍分離剤としては、MgOを主成分とし、
副成分として Sr(OH)2・8H2Oを5重量部添加したものを
用いた。
After completion of the above-mentioned annealing, the texture of the steel sheet is X-rayed.
It was evaluated by measuring the pole density of the steel sheet surface by line diffraction. Then, after the above-mentioned annealing, that is, annealing for primary recrystallization and decarburization, an annealing separator was applied to the surface of the steel sheet, and then final finishing annealing was performed. As an annealing separator, MgO is the main component,
As an auxiliary component, 5 parts by weight of Sr (OH) 2 .8H 2 O was added and used.

【0056】最終仕上焼鈍後、未反応の焼鈍分離剤を除
去したのち、コロイダルシリカを含有するリン酸マグネ
シウムを主成分とする絶縁コーティングを塗布し、800
℃で焼き付け、製品とした。各製品について、磁束密度
8 と鉄損W17/50 を測定するとともに、被膜密着性も
評価した。かくして得られた結果を、表2および3に示
す。
After the final finish annealing, the unreacted annealing separator was removed, and then an insulating coating containing colloidal silica-containing magnesium phosphate as a main component was applied, and 800
The product was baked at ℃. For each product, the magnetic flux density B 8 and the iron loss W 17/50 were measured, and the film adhesion was also evaluated. The results thus obtained are shown in Tables 2 and 3.

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【表3】 [Table 3]

【0059】表2および3に示したとおり、この発明に
従って一次再結晶と脱炭のための焼鈍条件を制御するこ
とにより、一次再結晶集合組織のばらつきが軽減され、
その結果、磁気特性が良好な方向性電磁鋼板を安定して
得ることができた。また、被膜密着性についても、満足
する結果が得られた。
As shown in Tables 2 and 3, by controlling the annealing conditions for the primary recrystallization and decarburization according to the present invention, the variation of the primary recrystallization texture is reduced,
As a result, it was possible to stably obtain a grain-oriented electrical steel sheet having good magnetic properties. Also, satisfactory results were obtained with respect to film adhesion.

【0060】実施例3 C:0.05mass%、Si:3.1 mass%、Mn:0.15mass%、A
l:0.005 mass%およびSn:0.02mass%を含有する鋼ス
ラブ2本(以下、鋼HおよびIとして区別する)を電磁
攪拌を施して鋳造した。これらのスラブを1150℃に加熱
後、熱間圧延して板厚2.0mm とした。熱間圧延後のコイ
ルに対して、鋼Hの熱延コイルは酸洗した後、950 ℃で
60秒間の熱延板焼鈍を施し、鋼Iは熱延板焼鈍を施さな
かった。その後、酸洗した後、鋼HおよびIのコイルと
もに、0.29mm厚まで常温で冷間圧延を施した。但し、鋼
HおよびIともに途中板厚1.2mm の時点において、250
℃で5時間保持する時効処理を施した。
Example 3 C: 0.05 mass%, Si: 3.1 mass%, Mn: 0.15 mass%, A
Two steel slabs containing l: 0.005 mass% and Sn: 0.02 mass% (hereinafter referred to as steels H and I) were subjected to electromagnetic stirring and cast. After heating these slabs to 1150 ° C, they were hot-rolled to a plate thickness of 2.0 mm. The hot-rolled coil of steel H was pickled at 950 ° C after the hot-rolled coil.
The hot-rolled sheet was annealed for 60 seconds, and Steel I was not annealed. Then, after pickling, both the coils of Steels H and I were cold-rolled at room temperature to a thickness of 0.29 mm. However, for both steels H and I, when the plate thickness was 1.2 mm in the middle, 250
An aging treatment was carried out by holding at 5 ° C for 5 hours.

【0061】次いで、冷間圧延後のコイルの長手方向10
箇所において、それぞれ幅方向3箇所合計で30箇所から
試験片を採取した。各試験片は、脱脂処理を行ってか
ら、一次再結晶および脱炭のための焼鈍を施した。焼鈍
条件は、鋼Hに対しては実施例1で適用した上記の1〜
8の8通りの条件、鋼Iに対しては上記の2,4,6お
よび8の4通りの条件とした。
Next, the longitudinal direction 10 of the coil after cold rolling is
At each of the three locations, test pieces were collected from a total of 30 locations in the width direction. Each test piece was degreased and then annealed for primary recrystallization and decarburization. The annealing conditions for steel H are 1 to the above applied in Example 1.
8 conditions for steel I, and for steel I, the above 4 conditions of 2, 4, 6 and 8.

【0062】上記の焼鈍終了後に、鋼板の集合組織をX
線回折による鋼板表面の極密度測定にて評価した。次い
で、上記の焼鈍つまり一次再結晶と脱炭のための焼鈍
後、水素、窒素およびアンモニア混合ガス中にて 750
℃, 30秒の窒化焼鈍を施したのち、鋼板表面に焼鈍分離
剤を塗布してから、最終仕上焼鈍を施した。焼鈍分離剤
としては、MgOを主成分とし、副成分としてTiO2を5重
量部、SnO2を2重量部添加したものを用いた。
After completion of the above-mentioned annealing, the texture of the steel sheet was X-rayed.
It was evaluated by measuring the pole density of the steel sheet surface by line diffraction. Then, after the above-mentioned annealing, that is, annealing for primary recrystallization and decarburization, 750
After nitriding annealing at 30 ° C for 30 seconds, an annealing separator was applied to the surface of the steel sheet, and then final finishing annealing was performed. As the annealing separator, one containing MgO as a main component and 5 parts by weight of TiO 2 and 2 parts by weight of SnO 2 as secondary components was used.

【0063】最終仕上焼鈍後、未反応の焼鈍分離剤を除
去したのち、コロイダルシリカを含有するリン酸マグネ
シウムを主成分とする絶縁コーティングを塗布し、800
℃で焼き付け、製品とした。各製品について、磁束密度
8 と鉄損W17/50 を測定するとともに、被膜密着性を
評価した。かくして得られた結果を表4に示す。
After the final finish annealing, the unreacted annealing separator was removed, and then an insulating coating containing colloidal silica-containing magnesium phosphate as a main component was applied, and then 800
The product was baked at ℃. For each product, the magnetic flux density B 8 and the iron loss W 17/50 were measured, and the film adhesion was evaluated. The results thus obtained are shown in Table 4.

【0064】[0064]

【表4】 [Table 4]

【0065】同表に示したとおり、本発明に従って一次
再結晶と脱炭のための焼鈍条件を制御することにより、
一次再結晶集合組織のばらつきが軽減され、良好な磁気
特性の方向性電磁鋼板を安定して得ることができた。ま
た、被膜密着性についても、満足する結果が得られた。
As shown in the table, by controlling the annealing conditions for primary recrystallization and decarburization according to the present invention,
The variation in primary recrystallization texture was reduced, and a grain-oriented electrical steel sheet with good magnetic properties could be stably obtained. Also, satisfactory results were obtained with respect to film adhesion.

【0066】[0066]

【発明の効果】この発明によれば、スラブ加熱温度が普
通鋼なみに低い条件下でも、一次再結晶板における粒成
長が適正に制御されるから、仕上焼鈍後に磁気特性の優
れた方向性電磁鋼板を安定して製造することができる。
さらに、この発明によれば、一次再結晶焼鈍時に形成さ
れるサブスケールの緻密性が増すことによって、被膜の
密着性を高めることができる。
According to the present invention, the grain growth in the primary recrystallized sheet is properly controlled even under the condition where the slab heating temperature is as low as that of ordinary steel. Therefore, the directional electromagnetic field having excellent magnetic properties after finish annealing is obtained. A steel plate can be manufactured stably.
Further, according to the present invention, the denseness of the subscale formed during the primary recrystallization annealing is increased, so that the adhesion of the coating film can be enhanced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 山上 日出雄 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 FA01 FA12 HA01 HA03 JA04 JA07 MA02 MA03 RA04 SA02 SA03 5E041 AA02 CA02 HB11 HB14 NN01 NN18 5E062 AC00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsumasa Kurosawa             1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama             Shi) Kawasaki Steel Co., Ltd. Mizushima Steel Works (72) Inventor Hideo Yamagami             1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama             Shi) Kawasaki Steel Co., Ltd. Mizushima Steel Works (72) Inventor Michio Komatsubara             1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama             Shi) Kawasaki Steel Co., Ltd. Mizushima Steel Works F term (reference) 4K033 AA02 FA01 FA12 HA01 HA03                       JA04 JA07 MA02 MA03 RA04                       SA02 SA03                 5E041 AA02 CA02 HB11 HB14 NN01                       NN18                 5E062 AC00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.01〜0.1 mass%、Si:2.0 〜4.5
mass%およびMn:0.03〜2.5 mass%を含み、必要に応じ
てインヒビター形成成分を含有する鋼スラブを、1300℃
以下に加熱後、熱間圧延し、その後必要に応じて熱延板
焼鈍を施してから、1回または中間焼鈍を挟む2回以上
の冷間圧延により最終板厚とし、次いで一次再結晶およ
び脱炭のための焼鈍を施したのち最終仕上焼鈍を施す、
一連の工程からなる方向性電磁鋼板の製造方法におい
て、 鋼スラブの鋳造時に電磁攪拌を施すこと、 一次再結晶および脱炭のための焼鈍に関して、鋼板を60
0 ℃以上1000℃以下の温度域に120 秒以内で滞在させ、
かつこの滞在期間の雰囲気を水素:30〜60 vol%および
露点:15〜40℃に制御し、しかる後、鋼板を750 ℃以上
900 ℃以下の温度域に60秒以上滞在させ、この滞在期間
の雰囲気を水素:40〜70 vol%および露点:40〜70℃に
制御することを特徴とする磁気特性および被膜特性の優
れた方向性電磁鋼板の製造方法。
1. C: 0.01 to 0.1 mass%, Si: 2.0 to 4.5
mass% and Mn: 0.03 to 2.5 mass%, a steel slab containing an inhibitor forming component as necessary, 1300 ℃
After heating to the following, hot rolling is performed, then hot-rolled sheet annealing is performed as necessary, and then cold rolling is performed once or two or more times with intermediate annealing interposed therebetween to obtain a final sheet thickness, and then primary recrystallization and decrystallization are performed. After the annealing for charcoal, give the final finish annealing,
In the method for producing grain-oriented electrical steel sheet consisting of a series of steps, the steel sheet is subjected to electromagnetic stirring during casting of the steel slab, primary recrystallization and annealing for decarburization.
Allow it to stay in the temperature range of 0 ℃ or more and 1000 ℃ or less within 120 seconds,
Also, the atmosphere during this stay is controlled to hydrogen: 30 to 60 vol% and dew point: 15 to 40 ° C, and then the steel plate is heated to 750 ° C or more.
Excellent magnetic and coating properties, characterized by keeping the atmosphere at 900 ℃ or less for 60 seconds or longer and controlling the atmosphere during this stay to hydrogen: 40 to 70 vol% and dew point: 40 to 70 ℃ For manufacturing high-performance electrical steel sheet.
【請求項2】 冷間圧延工程において、少なくとも1パ
スを100 ℃以上の温度で行うことを特徴とする請求項1
記載の磁気特性および被膜特性の優れた方向性電磁鋼板
の製造方法。
2. The cold rolling step is performed at least one pass at a temperature of 100 ° C. or higher.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties as described.
【請求項3】 冷間圧延工程において、該圧延途中の少
なくとも1回のパス間おいて、150 ℃以上の温度域で1
分以上保持することを特徴とする請求項1または2記載
の磁気特性および被膜特性の優れた方向性電磁鋼板の製
造方法。
3. In the cold rolling step, at least one pass during the rolling is performed in a temperature range of 150 ° C. or higher.
3. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties according to claim 1 or 2, characterized by holding for at least a minute.
JP2001399406A 2001-12-28 2001-12-28 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4258149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399406A JP4258149B2 (en) 2001-12-28 2001-12-28 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399406A JP4258149B2 (en) 2001-12-28 2001-12-28 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2003193132A true JP2003193132A (en) 2003-07-09
JP4258149B2 JP4258149B2 (en) 2009-04-30

Family

ID=27604449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399406A Expired - Fee Related JP4258149B2 (en) 2001-12-28 2001-12-28 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4258149B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110246B1 (en) * 2003-12-26 2012-02-15 주식회사 포스코 Method for manufacturing glassless electrical steel sheet with the appropriate control of the due point
JP2015086414A (en) * 2013-10-29 2015-05-07 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
WO2017057487A1 (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and hot-rolled steel sheet for grain-oriented electromagnetic steel sheet
JP2017110304A (en) * 2017-01-18 2017-06-22 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110246B1 (en) * 2003-12-26 2012-02-15 주식회사 포스코 Method for manufacturing glassless electrical steel sheet with the appropriate control of the due point
JP2015086414A (en) * 2013-10-29 2015-05-07 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
WO2017057487A1 (en) * 2015-09-28 2017-04-06 新日鐵住金株式会社 Grain-oriented electromagnetic steel sheet and hot-rolled steel sheet for grain-oriented electromagnetic steel sheet
JPWO2017057487A1 (en) * 2015-09-28 2018-08-09 新日鐵住金株式会社 Oriented electrical steel sheet and hot rolled steel sheet for grain oriented electrical steel sheet
US11680302B2 (en) 2015-09-28 2023-06-20 Nippon Steel Corporation Grain-oriented electrical steel sheet and hot-rolled steel sheet for grain-oriented electrical steel sheet
JP2017110304A (en) * 2017-01-18 2017-06-22 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP4258149B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
KR20190071745A (en) Hot-rolled steel sheet for manufacturing electronic steel sheet and method for manufacturing the same
JP2001303214A (en) Grain oriented silicon steel sheet excellent in high frequency magnetic property and its producing method
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP3885432B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
CN109923222B (en) Method for producing grain-oriented electromagnetic steel sheet
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP4206664B2 (en) Method for producing grain-oriented electrical steel sheet
JP3948284B2 (en) Method for producing grain-oriented electrical steel sheet
JP2001032021A (en) Manufacture of grain oriented silicon steel sheet
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2003193132A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004115858A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7465975B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP7197068B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7221480B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2005179745A (en) Method for producing bi-directional silicon steel sheet
US20230212720A1 (en) Method for the production of high permeability grain oriented electrical steel containing chromium
JP6988845B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees