JP2003190707A - Method and apparatus for removing ions in liquid by crystallization method - Google Patents

Method and apparatus for removing ions in liquid by crystallization method

Info

Publication number
JP2003190707A
JP2003190707A JP2001399269A JP2001399269A JP2003190707A JP 2003190707 A JP2003190707 A JP 2003190707A JP 2001399269 A JP2001399269 A JP 2001399269A JP 2001399269 A JP2001399269 A JP 2001399269A JP 2003190707 A JP2003190707 A JP 2003190707A
Authority
JP
Japan
Prior art keywords
liquid
reaction tank
crystal nuclei
ions
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001399269A
Other languages
Japanese (ja)
Other versions
JP4052432B2 (en
Inventor
Kazuaki Shimamura
和彰 島村
Toshihiro Tanaka
俊博 田中
Yukiko Miura
友紀子 三浦
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001399269A priority Critical patent/JP4052432B2/en
Priority to KR1020047000525A priority patent/KR100949564B1/en
Priority to PCT/JP2002/010596 priority patent/WO2003033098A1/en
Priority to CNB028141628A priority patent/CN1243588C/en
Priority to US10/483,429 priority patent/US20040213713A1/en
Priority to EP02801551A priority patent/EP1435259B8/en
Publication of JP2003190707A publication Critical patent/JP2003190707A/en
Application granted granted Critical
Publication of JP4052432B2 publication Critical patent/JP4052432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing ions in a liquid by a crystallization method, capable of precipitating hardly soluble crystals having a uniform particle size to obtain a stable removing capacity and capable of miniaturizing an apparatus for removing ions in the liquid by the crystallization method, and the apparatus for removing ions in the liquid by the crystallization method. <P>SOLUTION: In the method for removing ions to be removed in a liquid to be treated by crystallization reaction, the liquid to be treated and a liquid containing ions reacting with the ions to be removed and/or a part of a treated liquid are respectively supplied to two or more crystallization reaction tanks to be subjected to crystallization reaction in the respective tanks. At this time, crystal nuclei are added to the first reaction tank to be grown and the grown crystal nuclei are successively transferred to the rear stage reaction tank and drawn out of the final stage reaction tank to be recovered. In this case, the supply amount of the liquid to be treated is made much toward the rear stage reaction tank and the transfer and draw-out of the crystal nuclei can be performed by an air lift means. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、晶析法による液中
イオンの除去に係り、特に、液中からリン酸イオン、カ
ルシウムイオン、フッ素イオン、炭酸イオン、硫酸イオ
ン等の特定なイオンを除去する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to removal of ions in a liquid by a crystallization method, and in particular, removal of specific ions such as phosphate ion, calcium ion, fluorine ion, carbonate ion, and sulfate ion from the liquid. Method and device.

【0002】[0002]

【従来の技術】従来、液中から特定なイオンを除去する
方法の一つとして晶析法が用いられてきた。晶析法は、
廃水中の特定のイオンと反応するイオンを薬品として添
加したり、pHを変化させることで廃水中を過飽和状態
とし、特定イオンを含む結晶を析出させ分離する方法で
ある。晶析法の例を示すと、下水の2次処理水や汚泥処
理系からの返流水などの廃水中のリン酸イオンを除去す
る場合には、カルシウムを添加し、リン酸カルシウムや
ヒドロキシアパタイト(以下、HAP)の結晶を析出さ
せている。半導体工場の廃水には、フッ素イオンを多く
含んでいる場合が多く、このときは、同じくカルシウム
源を添加してフッ化カルシウムの結晶を析出させてい
る。地下水を原水とする用水、排水、ゴミ浸出水からカ
ルシウムイオンを除去する場合では、pHを上昇させた
り、炭酸源を添加することで炭酸カルシウムの結晶を析
出させている。
2. Description of the Related Art Conventionally, a crystallization method has been used as one of the methods for removing specific ions from a liquid. The crystallization method is
This is a method in which ions that react with specific ions in the wastewater are added as a chemical or the pH is changed to bring the wastewater into a supersaturated state to precipitate and separate crystals containing the specific ions. An example of the crystallization method is as follows. When removing phosphate ions in wastewater such as secondary treated water of sewage and return water from a sludge treatment system, calcium is added and calcium phosphate or hydroxyapatite (hereinafter, HAP) crystals are deposited. Wastewater from semiconductor factories often contains a large amount of fluorine ions, and at this time, a calcium source is also added to precipitate calcium fluoride crystals. When removing calcium ions from ground water as raw water, waste water, and leachate, the calcium carbonate crystals are precipitated by raising the pH or adding a carbonic acid source.

【0003】嫌気性消化汚泥の脱水ろ液や肥料工場廃水
など、液中にリン酸イオンとアンモニアイオンを含有し
ている廃水では、マグネシウムを添加してリン酸マグネ
シウムアンモニウム(以下、MAPという)の結晶を析
出させている。反応方式は、完全混合方式や流動層方式
が用いられるが、固液分離性能を考慮すると後者の方が
採用される場合が多い。流動層方式は、被処理水を上向
流で通水し、流動層内で流動している結晶核の表面で生
成物を析出させることで、反応と固液分離を同時に行う
ことができる。結晶核は、晶析生成物の構成物質を含む
ものが好ましく、砂や砂に生成物をコーティングしたも
のでもよい。この場合、流動槽内で流動している粒子
は、粒子径が大きい方が沈降速度が速く、原水の上向流
速度を速くすることができる。
In wastewater containing phosphate ions and ammonia ions in the liquid, such as dehydrated filtrate of anaerobic digested sludge and fertilizer factory wastewater, magnesium is added to remove magnesium ammonium phosphate (hereinafter referred to as MAP). Crystals are precipitated. As a reaction method, a complete mixing method or a fluidized bed method is used, but the latter method is often used in consideration of solid-liquid separation performance. In the fluidized bed system, the water to be treated is passed in an upward flow, and the product is precipitated on the surface of the crystal nuclei flowing in the fluidized bed, whereby the reaction and the solid-liquid separation can be simultaneously performed. The crystal nucleus preferably contains a constituent substance of the crystallization product, and may be sand or sand coated with the product. In this case, as for the particles flowing in the fluidized tank, the larger the particle diameter is, the faster the sedimentation velocity is, and the upward flow velocity of the raw water can be increased.

【0004】晶析現象は、結晶核の発生がおこる核発生
現象と、結晶核の成長がおこる成長現象からなる。一般
に、難溶性塩の場合は、反応速度が速く、成長現象より
も核発生現象が支配的となり、粗大な結晶を得にくい。
反応槽に結晶核を添加し、新たに結晶核(微細な結晶)
を生成しないような過飽和度で運転を行うことで、生成
物を添加した結晶核の表面で優先的に晶析させる技術が
開発されている。流動層方式で、反応槽内を上昇する液
流速(以下、LVという)は、反応槽内の結晶核の沈降
速度で決まる。結晶核の沈降速度はストークスの式、ア
レンの式などで求められるが、通常、流動化に適したL
Vは結晶核沈降速度の1/10程度である。粒径の小さ
な結晶核及び生成した微細結晶は、沈降速度が遅いため
にLVを高くすることが難しい。そのため、装置容積が
きわめて大きくなる傾向があった。また、装置容積当た
りの有効反応表面積が極めて大きく、結晶成長が遅いな
どの問題点もあった。
The crystallization phenomenon consists of a nucleation phenomenon in which crystal nuclei occur and a growth phenomenon in which crystal nuclei grow. Generally, in the case of a poorly soluble salt, the reaction rate is fast, the nucleation phenomenon is dominant over the growth phenomenon, and it is difficult to obtain coarse crystals.
Crystal nuclei are added to the reaction tank to newly add crystal nuclei (fine crystals).
By operating at such a supersaturation degree that does not generate, the technique of preferentially crystallizing on the surface of the crystal nucleus to which the product is added has been developed. In the fluidized bed method, the liquid flow velocity (hereinafter, referred to as LV) rising in the reaction tank is determined by the sedimentation speed of crystal nuclei in the reaction tank. The settling velocity of crystal nuclei is calculated by Stokes's equation, Allen's equation, etc.
V is about 1/10 of the crystal nucleus sedimentation rate. It is difficult to increase the LV of the crystal nuclei having a small grain size and the generated fine crystals because the sedimentation speed is slow. Therefore, the device volume tends to be extremely large. Further, there is a problem that the effective reaction surface area per unit volume is extremely large and the crystal growth is slow.

【0005】粒径の比較的大きな結晶は、LVを高くす
ることが可能であり、装置当たりの処理量を多くするこ
とができる。しかし、装置当たりの有効反応表面積が小
さく、結晶核が過大成長しやすい。結晶核が過大成長す
ると、やがて流動しにくくなる。結晶核が流動しなくな
ると原水の偏流などにより反応効率が低下し、処理水質
が悪くなるなどの問題が生じる。再び流動させるには、
LVを高めるとよい。各槽の原水の供給量を増加させて
LVを高めることができるが、それと共に薬品の添加量
も増加させる必要があり、また、供給量を増加させるタ
イミングの制御が煩雑になるなどの問題点がある。この
ような問題点を解決するために、特開昭61−1646
96号公報によると、成長した結晶核を抜き出し、比較
的粒径の小さな結晶核を添加する方法が提案されてい
る。
Crystals having a relatively large grain size can have a high LV and a high throughput per unit. However, the effective reaction surface area per device is small, and crystal nuclei are likely to grow excessively. When the crystal nuclei grow excessively, it becomes difficult for them to flow eventually. When the crystal nuclei do not flow, the reaction efficiency decreases due to uneven distribution of raw water, and the quality of treated water deteriorates. To reflow,
It is good to raise LV. Although it is possible to increase the LV by increasing the supply amount of raw water in each tank, it is necessary to increase the addition amount of the chemicals together with it, and it is also problematic that the timing of increasing the supply amount becomes complicated. There is. In order to solve such problems, JP-A-61-1646
According to Japanese Patent Publication No. 96, a method is proposed in which grown crystal nuclei are extracted and crystal nuclei having a relatively small grain size are added.

【0006】添加する結晶核の粒径は、成長した結晶核
の粒径に近いほど流出や膨張率を抑えられて効率がよ
い。しかし、晶析量が多い場合、添加する結晶核量が多
くなる問題があった。また、添加する結晶核に生成物以
外の物質を用いた場合、回収した生成物の純度が悪いと
いう問題もあった。成長した結晶核の粒径に比べ、添加
する結晶核の粒径が50%以下と小さい場合は、添加す
る結晶核にあわせてLVを抑えなければならず、装置容
積が極めて大きくなるという問題点があった。また、L
Vを抑えた結果、粒径の大きな結晶核の流動が悪くな
り、処理水質が悪くなるという問題点もあった。この場
合、反応槽底部の断面積を小さくすることでLVを高め
ることができるが、結局、装置上部の断面積は粒径の小
さな結晶核に合わせる必要があり装置が大型化してしま
う。
The grain size of the crystal nuclei added is closer to the grain size of the grown crystal nuclei, so that the outflow and the expansion rate are suppressed and the efficiency is high. However, when the amount of crystallization is large, there is a problem that the amount of added crystal nuclei is large. Further, when a substance other than the product is used as the crystal nucleus to be added, there is a problem that the purity of the recovered product is poor. When the grain size of the added crystal nucleus is as small as 50% or less as compared with the grain size of the grown crystal nucleus, the LV must be suppressed in accordance with the added crystal nucleus, resulting in an extremely large apparatus volume. was there. Also, L
As a result of suppressing V, there is also a problem that the flow of crystal nuclei having a large grain size becomes poor and the quality of treated water becomes poor. In this case, the LV can be increased by reducing the cross-sectional area of the bottom of the reaction tank, but in the end, the cross-sectional area of the upper part of the apparatus needs to be matched with the crystal nuclei having a small grain size, and the apparatus becomes large.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、被処理液中の特定イオンを化学反
応の結果、粒度の揃った難溶姓の結晶を析出させること
により、安定した除去性能を得ると共に、装置を極めて
小型化することができる晶析法による液中イオンの除去
方法及び装置を提供することを課題する。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art by precipitating a hardly soluble crystal having a uniform particle size as a result of a chemical reaction of specific ions in a liquid to be treated. An object of the present invention is to provide a method and an apparatus for removing ions in a liquid by a crystallization method, which can obtain stable removal performance and can make the apparatus extremely compact.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、被処理液中の被除去イオンを晶析反応
で除去する方法において、前記被処理液及び被除去イオ
ンと反応するイオンを含む液及び/又は処理液の一部
を、2槽以上からなる晶析反応槽の各々に供給して、各
槽で反応晶析させるに際し、第一反応槽に結晶核を添加
し成長させた後、該成長結晶核を順次後段の反応槽に移
送させ、該成長結晶核を最終段の反応槽から抜き出して
回収すると共に、後段の反応槽ほど被処理液の供給量を
多くすることを特徴とする液中イオンの除去方法とした
ものである。前記液中イオンの除去方法において、結晶
核の移送及び抜き出しは、エアリフトで行うことができ
る。また、本発明では、被処理液中の被除去イオンを晶
析除去する装置において、2槽以上の晶析反応槽を設置
し、該第一反応槽に結晶核を添加する手段を、最終段の
反応槽に結晶核を抜き出す手段を設け、前記各反応槽
に、被処理液供給管及び被除去イオンと反応するイオン
を含む液の供給管及び/又は処理液の一部を供給する管
と、エアリフト管とを設置すると共に、後段の反応槽ほ
ど被処理液の供給量を多くする手段を有することを特徴
とする液中イオンの除去装置としたものである。
In order to solve the above problems, in the present invention, in a method of removing ions to be removed from a liquid to be treated by a crystallization reaction, the liquid to be treated is reacted with the liquid to be treated and the ions to be removed. When a solution containing ions and / or a part of the treatment solution is supplied to each of the crystallization reaction tanks consisting of two or more tanks and the reaction crystallization is performed in each tank, crystal nuclei are added to the first reaction tank to grow. After that, the grown crystal nuclei are sequentially transferred to the subsequent reaction tank, the grown crystal nuclei are extracted from the final reaction tank and recovered, and the amount of the liquid to be treated is increased in the latter reaction tank. And a method for removing ions in liquid. In the method for removing ions in liquid, the transfer and extraction of crystal nuclei can be performed by air lift. Further, in the present invention, in the apparatus for crystallizing and removing ions to be removed in the liquid to be treated, a means for adding two or more crystallization reaction tanks and adding crystal nuclei to the first reaction tank is used as the final stage. A means for extracting crystal nuclei is provided in each of the reaction tanks, and to each of the reaction tanks, a liquid supply pipe for supplying a liquid to be treated and a pipe for supplying a liquid containing ions that react with ions to be removed and / or a pipe for supplying a part of the liquid to be treated. A device for removing ions in liquid, characterized in that it is provided with an air lift pipe and has a means for increasing the supply amount of the liquid to be treated in the subsequent reaction tank.

【0009】[0009]

【発明の実施の形態】次に、本発明を図面を参照して詳
細に説明する。図1は、本発明を実施する処理系の1形
態を示す断面構成図であり、反応槽は第一晶析反応槽、
第二晶析反応槽、第三晶析反応槽からなる。各反応槽は
図1のように分離していてよいし、図2に示す別の形態
の断面構成図のように、反応槽の中に反応槽を入れても
よい。図2で、(a)は正面図、(b)は平面図であ
る。以下、図1で説明する。原水供給管、薬品及び/又
は処理水の一部の供給管、及び空気の供給管は、各反応
槽の底部に接続してある。原水の供給管及び薬品の供給
管は、反応槽上部に接続しても良いが、原水を上向流で
通水することで、各反応槽内に存在する結晶核を液流速
のみで流動させることができる。結晶核を流動させる手
段は、液の上昇流速のほかに、機械的攪拌、エア攪拌な
どがある。エアリフト管は、各晶析反応槽の上部から反
応槽内に挿入してある。エアリフト管の底部には、気泡
を集める気泡捕集傘を設けてある。エアリフト管内に空
気を直接吹き込む場合は、気泡捕集傘を設けなくてもよ
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional configuration diagram showing one embodiment of a treatment system for carrying out the present invention, in which the reaction tank is a first crystallization reaction tank,
It consists of a second crystallization reaction tank and a third crystallization reaction tank. Each reaction tank may be separated as shown in FIG. 1, or the reaction tank may be placed in the reaction tank as shown in the sectional configuration view of another embodiment shown in FIG. In FIG. 2, (a) is a front view and (b) is a plan view. This will be described below with reference to FIG. A raw water supply pipe, a partial supply pipe for chemicals and / or treated water, and an air supply pipe are connected to the bottom of each reaction tank. The raw water supply pipe and the chemical supply pipe may be connected to the upper part of the reaction tank, but by flowing the raw water in an upward flow, the crystal nuclei existing in each reaction tank are made to flow only at the liquid flow rate. be able to. Means for causing the crystal nuclei to flow include mechanical stirring and air stirring in addition to the rising flow velocity of the liquid. The air lift tube is inserted into the reaction tank from the upper part of each crystallization reaction tank. A bubble collecting umbrella for collecting bubbles is provided at the bottom of the air lift pipe. When the air is blown directly into the air lift pipe, the bubble collecting umbrella may not be provided.

【0010】各反応槽上部には、処理水流出管を配置し
てある。各反応槽を流出した処理水に原水中の被除去イ
オン及び/又は被除去イオンと反応するイオン或いは化
合物が残留している場合は、各反応槽の処理水流出管を
同反応槽の底部及び/又は後段の反応槽に接続しても良
い。第一反応槽には、結晶核を添加する手段を設けてい
る。結晶核は、晶析生成物の構成物費を含むものが好ま
しく、砂や砂に生成物をコーティングしたものでもよ
い。生成物がその表面で晶析するものとする。最終段の
反応槽には、成長した結晶核を抜き出す手段を設置し、
成長した結晶核を回収する。各反応槽は、原水中の被除
去イオンと、被除去イオンと反応するイオン或いは化合
物とを反応させることで、被除去イオン濃度を低下させ
る。最適な反応pHは、生成させる物質によって異なる
が、いずれの場合もpHが大きく変化しないように、反
応槽内でpH調整するとよい。
A treated water outflow pipe is arranged above each reaction tank. If the treated water flowing out of each reaction tank contains residual ions and / or ions that react with the residual ions in the raw water, connect the treated water outlet pipe of each reaction tank to the bottom of the reaction tank and Alternatively, it may be connected to a reaction tank at a subsequent stage. The first reaction tank is provided with a means for adding crystal nuclei. The crystal nuclei preferably include the constituent cost of the crystallization product, and may be sand or sand coated with the product. The product shall crystallize on its surface. In the reaction tank at the final stage, a means for extracting the grown crystal nuclei is installed,
The grown crystal nuclei are collected. Each reaction tank reduces the concentration of ions to be removed by reacting the ions to be removed in the raw water with the ions or compounds that react with the ions to be removed. The optimum reaction pH depends on the substance to be produced, but it is advisable to adjust the pH in the reaction tank so that the pH does not change significantly in any case.

【0011】第一反応槽では、添加した結晶核の表面で
晶析させる。原水の供給は、液側で微細な結晶を発生し
ない程度の過飽和度となるようにすることで、結晶核の
成長を支配的にする。晶析が進むにつれ、LVに比べ結
晶核の沈降速度が非常に速くなる。第二以降の反応槽で
は、前段で成長した結晶核を移送させた後、原水を通水
する。ここでも同じく原水の供給は、液側で微細な結晶
を発生しない程度の過飽和度となるようにすることで、
結晶核の成長を支配的にする。晶析が進むにつれ、再び
LVに比べ結晶核の沈降速度か非常に速くなる。このよ
うに成長した結晶を後段に移送し、更に成長させる。最
終段の反応槽より結晶を抜き出すことで製品結晶とす
る。
In the first reaction tank, crystallization is performed on the surface of the added crystal nucleus. The supply of raw water makes the growth of crystal nuclei dominant by controlling the degree of supersaturation such that fine crystals are not generated on the liquid side. As the crystallization progresses, the sedimentation rate of crystal nuclei becomes much faster than that of LV. In the second and subsequent reaction tanks, after the crystal nuclei grown in the previous stage are transferred, raw water is passed through. In this case as well, the raw water is supplied so that the degree of supersaturation is such that fine crystals are not generated on the liquid side.
Makes crystal nucleus growth dominant. As the crystallization progresses, the settling rate of the crystal nuclei becomes much faster than that of LV. The crystal thus grown is transferred to the subsequent stage and further grown. The product crystals are obtained by extracting the crystals from the reaction tank at the final stage.

【0012】各反応槽に供給する原水の割合は、粒径の
小さな結晶核が流動している槽ほど少なくする。つま
り、晶析量を少なくする。例えば、3段の反応槽を用い
た場合で、各反応槽で結晶核を2倍(体積は23=8
倍)にすることを考えると、前段反応槽から移送させる
結晶核量は、後段反応槽に移送させる結晶核量に比べ1
/8でよく、つまり、前段反応槽の晶析量は、後段反応
槽の晶析量の1/8でよい。この場合、第一反応槽の供
給量を1Qとすると、第二反応槽の供給量は8Q、第三
反応槽の供給量は64Qとなる。以上の操作を行うこと
で、粒径の小さな結晶核は順次後段の反応槽へ送られ、
更に成長し製品結晶となる。製品結晶は、第一晶析反応
槽に添加した結晶核の粒径にくらべ非常に大きくなって
いるため、不純物(第一晶析反応槽に添加した結晶核)
の割合が極めて少なくなる。例えば、0.1mmの砂を
第一晶析反応槽に添加し、0.5mmの製品結晶を得た
場合、砂の製品結晶に占める割合はわずか0.8%であ
る。本発明プロセスを用いると、容易に不純物の割合を
極めて少なくすることができる。
The proportion of raw water supplied to each reaction tank is made smaller in a tank in which crystal nuclei having a smaller particle size are flowing. That is, the amount of crystallization is reduced. For example, when three reaction vessels are used, the number of crystal nuclei in each reaction vessel is doubled (volume is 2 3 = 8).
The amount of crystal nuclei transferred from the first-stage reaction tank is 1 times that of the latter-stage reaction tank.
/ 8, that is, the crystallization amount in the first-stage reaction tank may be 1/8 of the crystallization amount in the second-stage reaction tank. In this case, when the supply amount of the first reaction tank is 1Q, the supply amount of the second reaction tank is 8Q and the supply amount of the third reaction tank is 64Q. By performing the above operation, the crystal nuclei with a small particle size are sequentially sent to the reaction tank in the subsequent stage,
It grows further and becomes a product crystal. Since the product crystals are much larger than the grain size of the crystal nuclei added to the first crystallization reaction tank, impurities (crystal nuclei added to the first crystallization reaction tank)
The ratio of is extremely small. For example, when 0.1 mm of sand is added to the first crystallization reaction tank to obtain 0.5 mm of product crystals, the ratio of sand to product crystals is only 0.8%. Using the process of the present invention, the proportion of impurities can easily be made extremely low.

【0013】また、従来技術にあるように、成長した結
晶核の粒径に比べ50%以下の結晶核を添加すると、装
置容積が極めて大きくなる傾向があった。本発明による
と、各粒径ごとに適したLVで流動させることができ、
また、粒径の小さな結晶核ほど通水量を少なくすること
が可能であり、装置の小型化に大きく貢献する。本発明
では、結晶核を後段に移送させる手段としてエアリフト
を用いる。エアリフトを用いることで、本発明のように
多段に移送手段を設置しなければならない場合、設置費
用を低減させることができ、また、弁の開閉のみで結晶
核の移送をすることができるので極めて安定した連続運
転が可能となる。また、各反応槽内で粒径の大きな結晶
核のみを選択的に移送させることが可能であり、しかも
その操作は非常に簡単である。
Further, as in the prior art, when the crystal nuclei of 50% or less of the grain size of the grown crystal nuclei are added, the apparatus volume tends to be extremely large. According to the present invention, it is possible to flow at an LV suitable for each particle size,
Further, the smaller the grain size of the crystal nuclei, the smaller the amount of water flow can be made, which greatly contributes to the miniaturization of the apparatus. In the present invention, an air lift is used as a means for transferring the crystal nuclei to the subsequent stage. By using an air lift, when it is necessary to install the transfer means in multiple stages as in the present invention, it is possible to reduce the installation cost, and it is possible to transfer the crystal nuclei only by opening and closing the valve. Stable continuous operation is possible. Further, only crystal nuclei having a large particle size can be selectively transferred in each reaction tank, and the operation is very simple.

【0014】[0014]

【実施例】以下本発明を実施例により更に具体的に説明
する。 実施例1 生物処理系の処理水を用いて、図3に示す処理系で脱リ
ン処理を行った。反応槽は、第一晶析反応槽と第二晶析
反応槽からなる。第一反応槽は直径10cm、高さ3
m、第二反応槽は直径25cm、高さ3mとした。生物
処理系の処理水に必要に応じてリン酸1カリウムを添加
し、所定の温度となるように、リン濃度を調整した。以
下、リン濃度を調整した液を原水とする。第一反応槽は
平均粒径0.2mmの砂を添加して結晶核とし、第二反
応槽は第一反応槽で成長させた結晶核を移送させたもの
を結晶核とした。原水及び処理水の一部は、各反応槽底
部より上向流で通水し、塩化カルシウムとpHを9に調
整することで、結晶核表面にHAPを晶析させた。原水
の通水量は、第一反応槽が1m3/d、第二反応槽が1
0m3/dとした。表1に、通水条件を示す。
EXAMPLES The present invention will be described more specifically below with reference to examples. Example 1 Using the treated water of the biological treatment system, dephosphorization treatment was performed in the treatment system shown in FIG. The reaction tank comprises a first crystallization reaction tank and a second crystallization reaction tank. The first reaction tank has a diameter of 10 cm and a height of 3
The second reaction tank had a diameter of 25 cm and a height of 3 m. If necessary, 1 potassium phosphate was added to the treated water of the biological treatment system, and the phosphorus concentration was adjusted so as to reach a predetermined temperature. Hereinafter, the liquid having the adjusted phosphorus concentration will be referred to as raw water. In the first reaction tank, sand having an average particle size of 0.2 mm was added to form a crystal nucleus, and in the second reaction tank, the crystal nucleus grown in the first reaction vessel was transferred to form a crystal nucleus. Part of the raw water and the treated water was passed upward from the bottom of each reaction tank, and calcium chloride and pH were adjusted to 9 to crystallize HAP on the surface of crystal nuclei. The flow rate of raw water is 1 m 3 / d in the first reaction tank and 1 in the second reaction tank.
It was set to 0 m 3 / d. Table 1 shows the water flow conditions.

【0015】[0015]

【表1】 約12ヶ月通水させた原水と処理水の平均水質を表2に
示す。処理水質は、第一反応槽と第二反応槽の処理水を
あわせたものである。原水のT−P11.5mg/Lに
対し、処理水のT−Pは1.8mg/Lであり、リンの
回収率は84%であり良好に回収された。
[Table 1] Table 2 shows the average water quality of raw water and treated water that have been passed for about 12 months. The treated water quality is the sum of treated water in the first reaction tank and the second reaction tank. The treated water had a T-P of 11.5 mg / L, the treated water had a T-P of 1.8 mg / L, and the phosphorus recovery rate was 84%, indicating good recovery.

【0016】[0016]

【表2】 [Table 2]

【0017】成長した結晶核の抜き出しは約3ヶ月に1
度、以下の手順で行った。 第二反応槽から成長した結晶核の抜き出し 40mmのエアリフト管を用いて、空気量30NL/m
inで抜き出した。なお、抜き出し中は原水の供給は止
め、循環水のみ通水した。 第一反応槽から第二反応槽に成長した結晶核の移送 空気弁を第一反応槽に切り替えて、同じく40mmのエ
アリフト管を用いて、空気60NL/minで抜き出し
た。なお、抜き出し中は第二反応槽同様に原水の供給は
止め、循環水のみ通水した。 第一反応槽に新品の砂(0.2mm)の添加 平均粒径0.2mmの新品の砂を約0.3m分(約4k
g)添加。 原水通水 原水を再び通水開始した。
Extraction of grown crystal nuclei is about once every 3 months.
The procedure was as follows. Extraction of crystal nuclei grown from the second reaction tank Using an air lift tube of 40 mm, air amount 30 NL / m
I pulled it out in. During extraction, the raw water supply was stopped and only circulating water was passed. The transfer air valve for the crystal nuclei that had grown from the first reaction tank to the second reaction tank was switched to the first reaction tank, and air was extracted at 60 NL / min using the same 40 mm air lift tube. During withdrawal, the raw water supply was stopped and only circulating water was passed, as in the second reaction tank. Addition of new sand (0.2 mm) to the first reaction tank About 0.3 m of new sand with an average particle size of 0.2 mm (about 4 k
g) Addition. Raw water flow Water flow was started again.

【0018】第一反応槽の砂の粒径は、初期粒径0.2
mmに対し0.28〜0.35mm(平均0.30m
m)まで成長し、また充填量も0.3mから約1mまで
増加した。第二反応槽の結晶核は、第一反応槽で成長し
た結晶核の粒径0.28〜0.35mm(平均0.30
mm)のものが0.40〜0.50mm(平均0.46
mm)まで成長した。生成物中の砂(不純物)の割合は
約8%であり、90%以上が生成したHAPであった。
実験期間中(1年間)に用いた砂は17kgで、回収し
た結晶核は約220kgであった。また、エアリフトを
用いることにより容易に結晶核の抜き出しができた。
The particle size of the sand in the first reaction tank is 0.2 in the initial particle size.
0.28 to 0.35 mm for mm (average 0.30 m
m) and the filling amount also increased from 0.3 m to about 1 m. The crystal nuclei in the second reaction tank have a grain size of 0.28 to 0.35 mm (average 0.30) of the crystal nuclei grown in the first reaction tank.
mm is 0.40 to 0.50 mm (average 0.46 mm)
mm). The ratio of sand (impurities) in the product was about 8%, and 90% or more was HAP produced.
The sand used during the experimental period (one year) was 17 kg, and the collected crystal nuclei were about 220 kg. Further, the crystal nuclei could be easily extracted by using the air lift.

【0019】比較例1 実施例と同様にして調整した原水を、図4に示す処理系
で脱リン処理を行った。反応槽は直径25cm、高さ3
mのものを用いた。結晶核には0.3mmの砂を用い
た。原水及び/又は処理水の一部は、各反応槽底部より
上向流で通水し、また、塩化カルシウムとpHを9に調
整することで、砂表面にHAPを晶析させた。原水の通
水量は10m3/dとした。通水条件を表3に示す。
Comparative Example 1 Raw water prepared in the same manner as in Example 1 was subjected to dephosphorization treatment by the treatment system shown in FIG. The reaction tank has a diameter of 25 cm and a height of 3
m was used. As the crystal nucleus, 0.3 mm of sand was used. Part of the raw water and / or the treated water was passed upward from the bottom of each reaction tank, and calcium chloride and pH were adjusted to 9 to crystallize HAP on the sand surface. The flow rate of raw water was 10 m 3 / d. Table 3 shows the water flow conditions.

【表3】 3ヶ月に1度全量抜き出しと、結晶核の添加を行った。[Table 3] The total amount was extracted once every three months and crystal nuclei were added.

【0020】約12ヶ月通水させた原水と処理水の平均
水質を表4に示す。原水のT−P12.1mg/Lに対
し、処理水のT−Pは5.0mg/Lであり、リンの回
収率は59%であった。
Table 4 shows the average water qualities of the raw water and the treated water which have been passed for about 12 months. The TP of the treated water was 5.0 mg / L, whereas the TP of the treated water was 12.1 mg / L, and the phosphorus recovery rate was 59%.

【表4】 回収した生成物の平均粒径は0.38mmであり、生成
物中の砂の割合は53%と非常に高かった。また、実験
期間中、添加した砂は約80kg、回収した結晶核は約
150kgであった。実施例に比較し、回収率は25ポ
イント低く、また使用した砂の量は4〜5倍であったに
もかかわらず、回収量は約70%であった。
[Table 4] The recovered product had an average particle size of 0.38 mm, and the ratio of sand in the product was 53%, which was very high. Further, during the experiment period, the added sand was about 80 kg, and the collected crystal nuclei were about 150 kg. The recovery rate was 25 points lower than that of the example, and the recovery rate was about 70% even though the amount of sand used was 4 to 5 times.

【0021】[0021]

【発明の効果】本発明によると、装置容積を小さくする
ことが可能であり、また、結晶核の添加量を削減でき、
しかも製品結晶の純度が高い液中のイオン除去方法及び
装置を提供することができた。
According to the present invention, the volume of the apparatus can be reduced, and the amount of crystal nuclei added can be reduced.
Moreover, it was possible to provide a method and an apparatus for removing ions in a liquid having high purity of product crystals.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の一例を示す断面構成図。FIG. 1 is a cross-sectional configuration diagram showing an example of an apparatus of the present invention.

【図2】本発明の装置の他の例を示す断面構成図で、
(a)正面図、(b)平面図。
FIG. 2 is a cross-sectional configuration diagram showing another example of the device of the present invention,
(A) Front view, (b) Plan view.

【図3】実施例1に用いた装置の断面構成図。FIG. 3 is a cross-sectional configuration diagram of the device used in Example 1.

【図4】比較例1に用いた装置の断面構成図。FIG. 4 is a cross-sectional configuration diagram of an apparatus used in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 9/02 604 B01D 9/02 604 605 605 607 607Z 608 608A 609 609Z 615 615 625 625Z C02F 1/58 C02F 1/58 J M Q ZAB ZABS (72)発明者 三浦 友紀子 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 片岡 克之 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D038 AA08 AB24 AB36 AB40 AB44 AB59 BA01 BB20 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01D 9/02 604 B01D 9/02 604 605 605 605 607 607Z 608 608A 609 609Z 615 615 615 625 625Z C02F 1/58 C02F 1/58 JM Q ZAB ZABS (72) Inventor Yukiko Miura 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Katsuyuki Kataoka 11-11 Haneda-Asahi-cho, Ota-ku, Tokyo Stocks Company Ebara factory F term (reference) 4D038 AA08 AB24 AB36 AB40 AB44 AB59 BA01 BB20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被処理液中の被除去イオンを晶析反応で
除去する方法において、前記被処理液及び被除去イオン
と反応するイオンを含む液及び/又は処理液の一部を、
2槽以上からなる晶析反応槽の各々に供給して、各槽で
反応晶析させるに際し、第一反応槽に結晶核を添加し成
長させた後、該成長結晶核を順次後段の反応槽に移送さ
せ、該成長結晶核を最終段の反応槽から抜き出して回収
すると共に、後段の反応槽ほど被処理液の供給量を多く
することを特徴とする液中イオンの除去方法。
1. A method for removing ions to be removed from a liquid to be treated by a crystallization reaction, wherein a liquid containing the liquid to be treated and ions to be reacted with the ions to be removed and / or a part of the liquid to be treated,
When supplying to each of the crystallization reaction tanks consisting of two or more tanks and carrying out the reaction crystallization in each tank, after adding and growing crystal nuclei to the first reaction tank, the grown crystal nuclei are successively placed in the subsequent reaction tanks. To remove the grown crystal nuclei from the reaction tank at the final stage and collect the grown crystal nuclei, and increase the amount of the liquid to be treated supplied to the reaction tank at the subsequent stage.
【請求項2】 前記結晶核の移送及び抜き出しは、エア
リフトで行うことを特徴とする請求項1記載の液中イオ
ンの除去方法。
2. The method for removing ions in a liquid according to claim 1, wherein the crystal nuclei are transferred and extracted by an air lift.
【請求項3】 被処理液中の被除去イオンを晶析除去す
る装置において、2槽以上の晶析反応槽を設置し、該第
一反応槽に結晶核を添加する手段を、最終段の反応槽に
結晶核を抜き出す手段を設け、前記各反応槽に、被処理
液供給管及び被除去イオンと反応するイオンを含む液の
供給管及び/又は処理水の一部を供給する管と、エアリ
フト管とを設置すると共に、後段の反応槽ほど被処理液
の供給量を多くする手段を有することを特徴とする液中
イオンの除去装置。
3. An apparatus for crystallizing and removing ions to be removed from a liquid to be treated, wherein at least two crystallization reaction tanks are installed, and a means for adding crystal nuclei to the first reaction tank is provided at the final stage. A means for extracting crystal nuclei is provided in the reaction tank, and to each of the reaction tanks, a treated liquid supply pipe and a supply pipe for a liquid containing ions that react with ions to be removed and / or a pipe for supplying a part of treated water, An apparatus for removing ions in a liquid, which is provided with an air lift pipe and has means for increasing a supply amount of a liquid to be treated in a reaction tank at a later stage.
JP2001399269A 2001-10-12 2001-12-28 Method and apparatus for removing ions in liquid by crystallization method Expired - Fee Related JP4052432B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001399269A JP4052432B2 (en) 2001-12-28 2001-12-28 Method and apparatus for removing ions in liquid by crystallization method
KR1020047000525A KR100949564B1 (en) 2001-10-12 2002-10-11 Method and apparatus for removing ion present in solution by the crystallization method
PCT/JP2002/010596 WO2003033098A1 (en) 2001-10-12 2002-10-11 Method and apparatus for removing ion present in solution by the crystallization method
CNB028141628A CN1243588C (en) 2001-10-12 2002-10-11 Method and apparatus for removing ion present in solution by the crystallization method
US10/483,429 US20040213713A1 (en) 2001-10-12 2002-10-11 Method and apparatus for removing ion present in solution by the crystallization method
EP02801551A EP1435259B8 (en) 2001-10-12 2002-10-11 Method and apparatus for removing ion present in solution by the crystallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399269A JP4052432B2 (en) 2001-12-28 2001-12-28 Method and apparatus for removing ions in liquid by crystallization method

Publications (2)

Publication Number Publication Date
JP2003190707A true JP2003190707A (en) 2003-07-08
JP4052432B2 JP4052432B2 (en) 2008-02-27

Family

ID=27604370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399269A Expired - Fee Related JP4052432B2 (en) 2001-10-12 2001-12-28 Method and apparatus for removing ions in liquid by crystallization method

Country Status (1)

Country Link
JP (1) JP4052432B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074248A (en) * 2003-08-28 2005-03-24 Ebara Corp Method and device for collecting and transferring crystal
WO2015001888A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
JP2019147125A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Ion removing system
JP2019147126A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Ion removing system
JP2019147128A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Ion removing system
JP2019147127A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Ion removing system
WO2019167335A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Ion removing system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074248A (en) * 2003-08-28 2005-03-24 Ebara Corp Method and device for collecting and transferring crystal
WO2015001888A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
US9914653B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9914652B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9950936B2 (en) 2013-07-05 2018-04-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9969629B2 (en) 2013-07-05 2018-05-15 Mitsubishi Heavy Industries, Inc. Water treatment process and water treatment system
US10029929B2 (en) 2013-07-05 2018-07-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US10160671B2 (en) 2013-07-05 2018-12-25 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment process and water treatment system
JP2019147125A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Ion removing system
JP2019147126A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Ion removing system
JP2019147128A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Ion removing system
JP2019147127A (en) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 Ion removing system
WO2019167335A1 (en) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Ion removing system
JP7126113B2 (en) 2018-02-28 2022-08-26 パナソニックIpマネジメント株式会社 ion removal system
US11939250B2 (en) 2018-02-28 2024-03-26 Panasonic Intellectual Property Management Co., Ltd. Ion removing system

Also Published As

Publication number Publication date
JP4052432B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP4310196B2 (en) Organic drainage and sludge treatment method and treatment equipment
JP3169899B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPWO2004067139A1 (en) Method and apparatus for removing ions in liquid by crystallization method
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP2003190707A (en) Method and apparatus for removing ions in liquid by crystallization method
KR100949564B1 (en) Method and apparatus for removing ion present in solution by the crystallization method
JPH10113673A (en) Waste water treating device and method therefor
JPH1110194A (en) Wastewater treatment device
JP4097910B2 (en) Method and apparatus for removing phosphorus
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
JP4101506B2 (en) Method and apparatus for removing ions in liquid
JP4417056B2 (en) Crystal recovery and transfer equipment
JP4028189B2 (en) Method and apparatus for removing phosphorus
JP4025037B2 (en) Dephosphorization method and apparatus
JP2002336875A (en) Recovering method and equipment for phosphorus in water
JPH10323677A (en) Waste water treatment device
JP4374825B2 (en) Crystalline dephosphorization method
JP2003117306A (en) Reaction crystallizing method and apparatus
JPH11300369A (en) Dephosphorizing device and dephosphorizing equipment
JP2002273453A (en) Method and device for removing phosphor in water
JP2000061473A (en) Method of removing phosphorus in sewage water
JP2001038370A (en) Waste water treatment device
JP2000225395A (en) Dephosphorization apparatus
JPH1157748A (en) Method of removing phosphorus
JP4519965B2 (en) Crystallization dephosphorization apparatus and crystallization dephosphorization method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4052432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees