JP2003189425A - Apparatus for testing protection of power receiving and distributing facility system - Google Patents

Apparatus for testing protection of power receiving and distributing facility system

Info

Publication number
JP2003189425A
JP2003189425A JP2001382810A JP2001382810A JP2003189425A JP 2003189425 A JP2003189425 A JP 2003189425A JP 2001382810 A JP2001382810 A JP 2001382810A JP 2001382810 A JP2001382810 A JP 2001382810A JP 2003189425 A JP2003189425 A JP 2003189425A
Authority
JP
Japan
Prior art keywords
test
power
power receiving
current
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001382810A
Other languages
Japanese (ja)
Inventor
Akinobu Kusaba
亮伸 草場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001382810A priority Critical patent/JP2003189425A/en
Publication of JP2003189425A publication Critical patent/JP2003189425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for testing protection of a power receiving and distributing facility system which can safely and efficiently test various electrical device of a power receiving and distributing facility. <P>SOLUTION: When the power receiving and distributing facility is not connected to a power system, one of two parallel lines of the power receiving and distributing facility is connected to a testing power supply 17, a secondary side of a current transformer 18 for a testing meter is connected to a secondary side of a current transformer 15 for a meter provided on each line of two parallel lines, and a testing current from the testing power supply 17 is supplied to a primary side of the current transformer 18. The testing current is adjusted by a testing current adjustment apparatus 21. Current values and phases of secondary currents of the current transformers 15, 18 are measured by an instrument 25 for measuring a quantity of electricity and connected to the secondary sides of the current transformers 15, 18. A polarity test of the current transformer 15 is implemented. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統から電力
を受電し負荷に配電する受配電設備の各種電気機器の試
験を行う受配電設備系統保護試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power receiving and distributing equipment system protection test apparatus for testing various electric equipment of a power receiving and distributing equipment which receives power from a power system and distributes it to a load.

【0002】[0002]

【従来の技術】電力系統から電力を受電し負荷に配電す
る受配電設備においては、新規に設置した場合や改造し
た場合には、受配電設備を構成する各種電気機器が正常
に動作するか否かの確認試験を行う。
2. Description of the Related Art In a power receiving and distributing facility which receives power from a power system and distributes it to a load, whether or not various electric devices constituting the power receiving and distributing facility operate normally when newly installed or modified. Conduct a confirmation test.

【0003】例えば、計器用変流器や計器用変圧器の極
性試験を行う場合には、乾電池を利用した極性(キッ
ク)試験や計器用変流器や計器用変圧器の二次側から電
圧電流を印加して試験器で個別に試験するようにしてい
る。そして、最後に総合評価として、主回路に模擬3相
低電圧電源(AC200V又はAC400V)を印加し
て、極性を確認するやり方が一般的に行われている。
For example, when performing a polarity test on a current transformer for an instrument or a transformer for an instrument, a polarity (kick) test using a dry cell or a voltage from the secondary side of the current transformer for an instrument or the transformer for an instrument is performed. An electric current is applied so that the tester individually tests. Then, finally, as a comprehensive evaluation, a method of applying a simulated three-phase low-voltage power supply (AC200V or AC400V) to the main circuit to confirm the polarity is generally performed.

【0004】また、保護継電器の動作試験では実際に模
擬事故を発生させて各種継電器が動作するか否かの試験
を行うようにしている。また、受電前に実施する停復電
回路の試験方法としては、不足電圧継電器等を模擬的に
動作させて停復電回路の確認をしている。
In the operation test of the protective relay, a simulated accident is actually caused to test whether or not various relays operate. As a method of testing the power recovery / recovery circuit before power reception, the power recovery / recovery circuit is confirmed by simulating an undervoltage relay or the like.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような従
来の方法では、極性試験は個別に行うので、受配電設備
システムが複雑になると試験時間が増加し、また、試験
器材の準備や移設にも多くの時間がかかる。また、極性
試験の最終確認や保護継電器の動作試験においては、受
変電設備の主回路に実際に模擬3相低電圧電源(AC2
00V又はAC400V)を印加して試験を行うので、
試験時の安全確認も必要となる。さらに、停復電回路の
確認試験においても、受配電設備システムの複雑化や大
規模化によって、各関係場所への試験員の配置や連絡方
法の確保が必要となる。
However, in such a conventional method, since the polarity test is individually performed, the test time is increased when the power receiving and distributing equipment system becomes complicated, and the preparation and relocation of the test equipment are performed. Takes too much time. In the final confirmation of the polarity test and the operation test of the protective relay, a simulated three-phase low-voltage power supply (AC2
00V or AC400V) is applied for testing,
It is also necessary to confirm safety during the test. Further, in the confirmation test of the power recovery / recovery circuit, it is necessary to secure the test staff and the communication method at each relevant place due to the complexity and large scale of the power distribution system.

【0006】また、試験において、計器用変流器や計器
用変圧器の極性や保護継電器の方向性等の不適合を発見
できなかった場合は、実際に電力系統から受電し負荷に
電力を供給した後に停電事故等の大きな被害をもたらす
場合もある。さらに、不適合の手直しを行う場合は、再
停電などの後戻り作業や活線近接作業等の危険性などが
伴う。
[0006] Further, in the test, when the nonconformity such as the polarity of the current transformer for the instrument or the transformer for the instrument or the directionality of the protective relay could not be found, the power was actually received from the power system to supply the power to the load. In some cases, it may cause great damage such as a power outage later. Further, when repairing nonconformity, there is a risk of returning work such as power failure again and work near the live line.

【0007】本発明の目的は、受配電設備の各種電気機
器を安全で効率的に行える受配電設備系統保護試験装置
を提供することである。
An object of the present invention is to provide a power receiving and distributing equipment system protection test apparatus capable of safely and efficiently performing various electric devices of the power receiving and distributing equipment.

【0008】[0008]

【課題を解決するための手段】請求項1の発明に係る受
配電設備系統保護試験装置は、並行二回線の電力系統か
ら電力を受電し負荷に配電する受配電設備の計器用変流
器の極性試験を行う受配電設備系統保護試験装置におい
て、前記受配電設備が電力系統に接続されていない状態
で前記受配電設備の並行二回線の一方の回線に接続され
前記受配電設備に試験電源を供給する試験用電源装置
と、前記試験用電源装置から前記並行二回線のそれぞれ
の回線に設けられた前記計器用変流器に供給される試験
電流と同じ試験電流が供給され二次側は前記計器用変流
器の二次側に接続された試験用計器用変流器と、前記試
験電流を調整する試験電流調整装置と、前記計器用変流
器および前記試験用計器用変流器の二次側に接続され前
記計器用変流器および前記試験用計器用変流器の二次電
流の電流値および位相を計測する電気量計測器とを備え
たことを特徴とする。
According to a first aspect of the present invention, there is provided a power receiving and distributing facility system protection test apparatus for a current transformer for a meter of a power receiving and distributing facility which receives power from a parallel two-line power system and distributes it to a load. In a power receiving and distributing equipment system protection test device for performing a polarity test, the power receiving and distributing equipment is connected to one of the two parallel lines of the power receiving and distributing equipment while the power receiving and distribution equipment is not connected to the power system, and a test power source is supplied to the power receiving and distribution equipment. A test power supply to be supplied, and the same test current as the test current supplied from the test power supply to the instrument current transformer provided in each of the parallel two lines is supplied, and the secondary side is A measuring instrument current transformer connected to the secondary side of the measuring instrument current transformer, a test current adjusting device for adjusting the test current, the measuring instrument current transformer and the testing measuring instrument current transformer Connected to the secondary side, the current transformer for the instrument and the Characterized by comprising an electric quantity measuring device for measuring the current value and the phase of the secondary current of the current transformer for the test.

【0009】請求項1の発明に係る受配電設備系統保護
試験装置においては、受配電設備が電力系統に接続され
ていない状態で受配電設備の並行二回線の一方の回線に
試験用電源装置を接続し、並行二回線のそれぞれの回線
に設けられた計器用変流器の二次側には試験用計器用変
流器の二次側を接続し、試験用計器用変流器の一次側に
は試験用電源装置からの試験電流を供給する。この試験
電流は試験電流調整装置で調整される。そして、計器用
変流器および試験用計器用変流器の二次側に接続された
電気量計測器により、計器用変流器および試験用計器用
変流器の二次電流の電流値および位相を計測する。これ
により、計器用変流器の極性試験を行う。
In the power receiving and distributing equipment system protection test apparatus according to the first aspect of the present invention, the test power supply device is provided on one of the two parallel lines of the power receiving and distributing equipment in a state where the power receiving and distributing equipment is not connected to the power system. Connect the secondary side of the current transformer for the test instrument to the secondary side of the current transformer for the instrument provided on each of the two parallel lines, and connect the secondary side of the current transformer for the test instrument to the primary side of the current transformer for the test instrument. Is supplied with the test current from the test power supply. This test current is adjusted by the test current adjusting device. The current value of the secondary current of the instrument current transformer and the test instrument current transformer and the current value of the instrument current transformer and the test instrument current transformer Measure the phase. With this, the polarity test of the current transformer for the instrument is performed.

【0010】請求項2の発明に係る受配電設備系統保護
試験装置は、並行二回線の電力系統から電力を受電し負
荷に配電する受配電設備の計器用変圧器の極性試験を行
う受配電設備系統保護試験装置において、前記受配電設
備が電力系統に接続されていない状態で前記受配電設備
の並行二回線の一方の回線に接続され前記受配電設備に
試験電源を供給する試験用電源装置と、前記試験用電源
装置から前記受配電設備の計器用変圧器に印加される試
験電圧と同じ試験電圧が印加され前記計器用変圧器と並
列に接続された試験用計器用変圧器と、前記計器用変圧
器および前記試験用計器用変圧器の二次側または三次側
に接続され前記計器用変圧器および前記試験用計器用変
圧器の二次電圧または三次電圧の電圧値および位相を計
測する電気量計測器とを備えたことを特徴とする。
A power receiving and distributing equipment system protection test apparatus according to a second aspect of the present invention is a power receiving and distributing equipment for conducting a polarity test of a transformer for a meter of a power receiving and distributing equipment for receiving power from a parallel two-line power system and distributing it to a load. In a system protection test device, a power source for testing, which is connected to one of the two parallel lines of the power receiving and distributing facility while the power receiving and distributing facility is not connected to a power system, and which supplies a test power to the power receiving and distributing facility. A test instrument transformer connected in parallel with the instrument transformer by applying the same test voltage as the test voltage applied from the test power supply device to the instrument transformer of the power receiving and distribution facility, and the instrument Which is connected to the secondary side or the tertiary side of the transformer for test and the transformer for test and measures the voltage value and phase of the secondary voltage or the tertiary voltage of the transformer for test and the transformer for test. Quantity measurement Characterized by comprising and.

【0011】請求項2の発明に係る受配電設備系統保護
試験装置においては、受配電設備が電力系統に接続され
ていない状態で受配電設備の並行二回線の一方の回線に
試験用電源装置を接続し、計器用変圧器と並列に試験用
計器用変圧器を接続し、試験用電源装置から受配電設備
の計器用変圧器に印加される試験電圧と同じ試験電圧を
印加する。そして、計器用変圧器および試験用計器用変
圧器の二次側または三次側に接続された電気量計測器に
より、計器用変圧器および試験用計器用変圧器の二次電
圧または三次電圧の電圧値および位相を計測する。これ
により、計器用変圧器の極性試験を行う。
In the power receiving and distributing equipment system protection test apparatus according to the second aspect of the present invention, the test power supply device is provided on one of the two parallel lines of the power receiving and distributing equipment in a state where the power receiving and distributing equipment is not connected to the power system. Connect the test instrument transformer in parallel with the instrument transformer, and apply the same test voltage as the test voltage applied from the test power supply device to the instrument transformer of the power distribution equipment. Then, the voltage of the secondary voltage or the tertiary voltage of the instrument transformer and the test instrument transformer is measured by the electricity quantity measuring device connected to the secondary side or the tertiary side of the instrument transformer and the test instrument transformer. Measure value and phase. With this, the polarity test of the voltage transformer will be performed.

【0012】請求項3の発明に係る受配電設備系統保護
試験装置は、並行二回線の電力系統から電力を受電し負
荷に配電する受配電設備の回線選択保護継電装置の方向
短絡動作試験を行う受配電設備系統保護試験装置におい
て、受配電設備が電力系統に接続されていない状態で前
記受配電設備の並行二回線の一方の回線に接続され前記
受配電設備に試験電源を供給する試験用電源装置と、前
記試験用電源装置から前記並行二回線のそれぞれの回線
に設けられた前記計器用変流器に供給される試験電流と
同じ試験電流が供給され二次側は前記計器用変流器の二
次側に接続された試験用計器用変流器と、前記回線選択
保護継電装置の方向短絡故障検出機能の動作試験のため
の試験電流を調整する試験電流調整装置と、前記試験用
電源装置から前記受配電設備の計器用変圧器に印加され
る試験電圧と同じ試験電圧が印加され前記計器用変圧器
と並列に接続された試験用計器用変圧器と、前記回線選
択保護継電装置の方向短絡故障検出機能の動作試験のた
めの試験電圧を調整する試験電圧調整装置とを備えたこ
とを特徴とする。
According to a third aspect of the present invention, there is provided a power receiving and distributing equipment system protection test apparatus for conducting a directional short circuit operation test of a line selective protection relay device of a power receiving and distributing equipment which receives power from a parallel two-line power system and distributes it to a load. For the power receiving and distributing equipment system protection test equipment, for the test that the power receiving and distributing equipment is connected to one of the two parallel lines of the power receiving and distributing equipment while the power receiving and distributing equipment is not connected to the power system A power supply device and a test current that is the same as the test current supplied from the test power supply device to the instrument current transformers provided in the parallel two lines, respectively, are supplied to the secondary side of the instrument current transformer. Current transformer for a test instrument connected to the secondary side of the switch, a test current adjusting device for adjusting the test current for the operation test of the direction short circuit fault detection function of the line selection protection relay device, and the test From the power supply for Directional short circuit failure of the test instrument transformer connected in parallel with the instrument transformer and the test voltage applied to the instrument transformer of the power distribution equipment and the line selection protection relay device. And a test voltage adjusting device for adjusting a test voltage for an operation test of the detection function.

【0013】請求項3の発明に係る受配電設備系統保護
試験装置においては、受配電設備が電力系統に接続され
ていない状態で受配電設備の並行二回線の一方の回線に
試験用電源装置を接続し、並行二回線のそれぞれの回線
に設けられた計器用変流器の二次側には試験用計器用変
流器の二次側を接続し、試験用計器用変流器の一次側に
は試験用電源装置からの試験電流を供給する。また、計
器用変圧器と並列に試験用計器用変圧器を接続し、試験
用電源装置から受配電設備の計器用変圧器に印加される
試験電圧と同じ試験電圧を印加する。試験電流調整装置
により試験電流を調整し試験電圧調整装置で試験電圧を
調整して短絡事故を模擬し、回線選択保護継電装置の方
向短絡動作試験を行う。
In the power receiving and distributing equipment system protection test apparatus according to the third aspect of the present invention, the test power supply device is provided on one of the two parallel lines of the power receiving and distributing equipment in a state where the power receiving and distributing equipment is not connected to the power system. Connect the secondary side of the current transformer for the test instrument to the secondary side of the current transformer for the instrument provided on each of the two parallel lines, and connect the secondary side of the current transformer for the test instrument to the primary side of the current transformer for the test instrument. Is supplied with the test current from the test power supply. Also, connect a test instrument transformer in parallel with the instrument transformer and apply the same test voltage as that applied from the test power supply device to the instrument transformer of the power receiving and distribution facility. The test current adjuster adjusts the test current and the test voltage adjuster adjusts the test voltage to simulate a short-circuit accident, and a directional short-circuit operation test of the line selection protection relay is performed.

【0014】請求項4の発明に係る受配電設備系統保護
試験装置は、並行二回線の電力系統から電力を受電し負
荷に配電する受配電設備の回線選択保護継電装置の方向
地絡動作試験を行う受配電設備系統保護試験装置におい
て、受配電設備が電力系統に接続されていない状態で前
記受配電設備の並行二回線の一方の回線に接続され中性
点が限流抵抗で接地され前記受配電設備に試験電源を供
給する試験用電源装置と、前記試験用電源装置から前記
並行二回線のそれぞれの回線に設けられた前記計器用変
流器に供給される試験電流と同じ試験電流が供給され二
次側は前記計器用変流器の二次側に接続された試験用計
器用変流器と、前記回線選択保護継電装置の方向地絡故
障検出機能の動作試験のための試験電流を調整する試験
電流調整装置と、前記試験用電源装置から前記受配電設
備の計器用変圧器に印加される試験電圧と同じ試験電圧
が印加され前記計器用変圧器と並列に接続された試験用
計器用変圧器と、前記回線選択保護継電装置の方向地絡
故障検出機能の動作試験のための試験電圧を調整する試
験電圧調整装置とを備えたことを特徴とする。
According to a fourth aspect of the present invention, there is provided a power receiving and distributing equipment system protection test apparatus for a directional ground fault operation test of a line selecting protection relay device of a power receiving and distributing equipment for receiving power from a parallel two-line power system and distributing the power to a load. In the power receiving and distributing equipment system protection test device, the power receiving and distributing equipment is connected to one of the two parallel lines of the power receiving and distributing equipment in a state where it is not connected to the power system, and the neutral point is grounded with a current limiting resistance A test power supply device that supplies a test power supply to the power receiving and distribution facility, and a test current that is the same as the test current that is supplied from the test power supply device to the instrument current transformer provided in each of the two parallel lines. A test for measuring instrument current transformer connected to the secondary side of the instrument current transformer, and a test for operation test of the direction ground fault detection function of the line selection protection relay device. A test current adjusting device for adjusting the current, A test instrument transformer that is connected in parallel with the instrument transformer by applying the same test voltage as the test voltage applied from the test power supply device to the instrument transformer of the power receiving and distribution facility, and the line selection. And a test voltage adjusting device for adjusting a test voltage for an operation test of a direction ground fault detection function of the protective relay device.

【0015】請求項4の発明に係る受配電設備系統保護
試験装置においては、受配電設備が電力系統に接続され
ていない状態で受配電設備の並行二回線の一方の回線に
中性点が限流抵抗で接地された試験用電源装置を接続
し、並行二回線のそれぞれの回線に設けられた計器用変
流器の二次側には試験用計器用変流器の二次側を接続
し、試験用計器用変流器の一次側には試験用電源装置か
らの試験電流を供給する。また、計器用変圧器と並列に
試験用計器用変圧器を接続し、試験用電源装置から受配
電設備の計器用変圧器に印加される試験電圧と同じ試験
電圧を印加する。試験電流調整装置により試験電流を調
整し試験電圧調整装置で試験電圧を調整して地絡事故を
模擬し、回線選択保護継電装置の方向地絡動作試験を行
う。
In the power receiving and distributing equipment system protection test apparatus according to the invention of claim 4, the neutral point is limited to one of the two parallel lines of the power receiving and distributing equipment while the power receiving and distributing equipment is not connected to the power system. Connect the test power supply unit grounded with a flow resistance, and connect the secondary side of the current transformer for test to the secondary side of the current transformer for instrument installed in each of the two parallel lines. , Supply the test current from the test power supply to the primary side of the test instrument current transformer. Also, connect a test instrument transformer in parallel with the instrument transformer and apply the same test voltage as that applied from the test power supply device to the instrument transformer of the power receiving and distribution facility. The test current adjuster adjusts the test current and the test voltage adjuster adjusts the test voltage to simulate a ground fault, and conducts a direction ground fault operation test of the line selection protection relay.

【0016】請求項5の発明に係る受配電設備系統保護
試験装置は、電力系統から電力を受電し負荷に配電する
非接地系の受配電設備の地絡保護継電装置の動作試験を
行う受配電設備系統保護試験装置において、受配電設備
が電力系統に接続されていない状態で前記受配電設備の
受電系統に接続され中性点が抵抗接地されコンデンサが
並列接続され前記受配電設備に試験電源を供給する試験
用電源装置と、前記試験用電源装置から前記受配電設備
の計器用変圧器に印加される試験電圧と同じ試験電圧が
印加され前記計器用変圧器と並列に接続された試験用計
器用変圧器と、前記地絡保護継電装置の動作試験のため
の模擬地絡事故を発生させる模擬地絡事故発生装置とを
備えたことを特徴とする。
According to a fifth aspect of the present invention, there is provided a power receiving / distributing equipment system protection test apparatus for carrying out an operation test of a ground fault protecting relay device of a non-grounding power receiving / distributing equipment for receiving power from a power system and distributing it to a load. In the power distribution equipment system protection test device, the power receiving and distributing equipment is connected to the power receiving system of the power receiving and distributing equipment while the power receiving and distribution equipment is not connected to the power system, the neutral point is resistance grounded, the capacitor is connected in parallel, and the test power source is connected to the power receiving and distribution equipment And a test power supply that supplies the same test voltage as the test voltage applied from the test power supply to the instrument transformer of the power receiving and distribution facility, and is connected in parallel with the instrument transformer. It is characterized in that it is provided with a voltage transformer and a simulated ground fault accident generation device for generating a simulated ground fault accident for an operation test of the ground fault protection relay device.

【0017】請求項5の発明に係る受配電設備系統保護
試験装置においては、受配電設備が電力系統に接続され
ていない状態で受配電設備の受電系統に中性点が抵抗接
地されコンデンサを並列接続した試験用電源装置を接続
し、計器用変圧器と並列に試験用計器用変圧器を接続
し、試験用電源装置から受配電設備の計器用変圧器に印
加される試験電圧と同じ試験電圧を印加する。そして、
模擬地絡事故発生装置により、地絡保護継電装置の動作
試験のための模擬地絡事故を発生させ、非接地系の受配
電設備の地絡保護継電装置の動作試験を行う。
In the power receiving and distributing equipment system protection test apparatus according to the fifth aspect of the present invention, the neutral point is resistance grounded to the power receiving system of the power receiving and distributing equipment in a state where the power receiving and distributing equipment is not connected to the power system, and the capacitors are connected in parallel. Connect the connected test power supply device, connect the test instrument transformer in parallel with the instrument transformer, and use the same test voltage as the test voltage applied from the test power supply device to the instrument transformer of the power receiving and distribution facility. Is applied. And
A simulated ground fault accident generator is used to generate a simulated ground fault for the operation test of the ground fault protection relay device, and the operation test of the ground fault protection relay device of the non-grounded power receiving and distribution equipment is performed.

【0018】請求項6の発明に係る受配電設備系統保護
試験装置は、電力系統から電力を受電し負荷に配電する
受配電設備の計測機器の動作確認試験を行う受配電設備
系統保護試験装置において、前記受配電設備が電力系統
に接続されていない状態で前記受配電設備の受電系統に
接続され前記受配電設備に試験電源を供給する試験用電
源装置と、前記試験用電源装置から前記計器用変流器に
供給される試験電流と同じ試験電流が供給され二次側は
前記計器用変流器の二次側に接続された試験用計器用変
流器と、前記試験用電源装置から前記受配電設備の計器
用変圧器に印加される試験電圧と同じ試験電圧が印加さ
れ前記計器用変圧器と並列に接続された試験用計器用変
圧器と、前記試験電流または試験電圧を調整する試験模
擬装置と、前記計器用変流器または前記計器用変圧器の
二次側に接続された前記計測機器の動作状態を計測する
電気量計測器とを備えたことを特徴とする。
According to a sixth aspect of the present invention, there is provided a power receiving and distribution facility system protection test device for receiving a power from a power system and distributing the load to a load. , A test power supply device that is connected to a power receiving system of the power receiving and distributing facility and supplies test power to the power receiving and distributing facility in a state where the power receiving and distributing facility is not connected to a power system, and from the test power source device to the instrument The same test current as the test current supplied to the current transformer is supplied to the secondary side of the current transformer for test connected to the secondary side of the current transformer for meter, and from the power supply unit for test described above. A test instrument transformer connected in parallel with the instrument transformer to which the same test voltage as that applied to the instrument transformer of the power distribution equipment is applied, and a test for adjusting the test current or test voltage Simulated device and the total Characterized by comprising an electric quantity measuring device for measuring the operating state of the measuring device connected to the secondary side of the use current transformer or the potential transformer.

【0019】請求項6の発明に係る受配電設備系統保護
試験装置においては、受配電設備が電力系統に接続され
ていない状態で受配電設備の受電系統に試験用電源装置
を接続し、計器用変流器の二次側には試験用計器用変流
器の二次側を接続し、試験用計器用変流器の一次側には
試験用電源装置からの試験電流を供給する。また、計器
用変圧器と並列に試験用計器用変圧器を接続し、試験用
電源装置から受配電設備の計器用変圧器に印加される試
験電圧と同じ試験電圧を印加する。そして、試験模擬装
置により試験電流または試験電圧を調整し、電気量計測
器により計器用変流器または計器用変圧器の二次側に接
続された計測機器の動作状態を確認する。
In the power receiving and distributing equipment system protection test apparatus according to the invention of claim 6, the test power supply device is connected to the power receiving system of the power receiving and distributing equipment while the power receiving and distributing equipment is not connected to the power system, The secondary side of the current transformer is connected to the secondary side of the test instrument current transformer, and the test current from the test power supply is supplied to the primary side of the test instrument current transformer. Also, connect a test instrument transformer in parallel with the instrument transformer and apply the same test voltage as that applied from the test power supply device to the instrument transformer of the power receiving and distribution facility. Then, the test simulation device adjusts the test current or the test voltage, and the electrical quantity measuring device confirms the operating state of the measuring device connected to the secondary side of the measuring instrument current transformer or measuring instrument transformer.

【0020】請求項7の発明に係る受配電設備系統保護
試験装置は、電力系統から電力を受電し負荷に配電する
受配電設備の停復電試験を行う受配電設備系統保護試験
装置において、前記受配電設備が電力系統に接続されて
いない状態で前記受配電設備の受電系統に接続され前記
受配電設備に試験電源を供給する試験用電源装置と、試
験時に閉となるスイッチを有し試験を行う受電系統に接
続されたジャンパー線と、試験を行う受電系統に接続さ
れる不足電圧継電器とを備えたことを特徴とする。
According to a seventh aspect of the present invention, there is provided a power receiving and distributing equipment system protection test apparatus for carrying out a power interruption and restoration test of a power receiving and distributing equipment for receiving power from a power system and distributing the power to a load. A test power supply device that is connected to the power receiving and distribution facility power supply system and supplies test power to the power receiving and distributing facility when the power receiving and distributing facility is not connected to the power system, and has a switch that closes during the test. It is characterized by comprising a jumper wire connected to a power receiving system to be tested and an undervoltage relay connected to a power receiving system to be tested.

【0021】請求項7の発明に係る受配電設備系統保護
試験装置においては、受配電設備が電力系統に接続され
ていない状態で受配電設備の受電系統に試験用電源装置
を接続し、試験を行う受電系統に不足電圧継電器を接続
し、さらに試験を行う受電系統にジャンパー線を接続し
スイッチを閉とする。これにより、各受電系統の停復電
試験を行う。
In the power receiving and distributing equipment system protection test apparatus according to the invention of claim 7, the test power supply device is connected to the power receiving system of the power receiving and distributing equipment while the power receiving and distributing equipment is not connected to the power system, and the test is conducted. Connect an undervoltage relay to the receiving system to be performed, connect a jumper wire to the receiving system to be tested, and close the switch. In this way, the power failure test of each power receiving system is performed.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の第1の実施の形態に係る受配電設
備系統保護試験装置を受配電設備に適用した系統図であ
る。この第1の実施の形態は、並行2回線受電方式にお
ける計器用変圧器と計器用変流器の極性確認試験を行う
場合を示している。受配電設備には並行2回線11a、
11bが形成されており、遮断器12a、12bを介し
て母線13に接続されている。また、地絡事故や短絡事
故の検出のために回線選択保護継電装置14が設けられ
ている。各回線11a、11bには計器用変流器15
a、15bが設置され、各回線11a、11bを流れる
電流を検出し回線選択保護継電装置14に入力するよう
になっている。また、母線13には計器用変圧器16が
設けられており、母線電圧が回線選択保護継電装置14
に入力される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a system diagram in which a power receiving and distributing equipment system protection test apparatus according to a first embodiment of the present invention is applied to power receiving and distributing equipment. The first embodiment shows a case where a polarity confirmation test is performed on an instrument transformer and an instrument current transformer in the parallel two-line power receiving system. Two parallel lines 11a for power distribution
11b is formed and is connected to the bus bar 13 via the circuit breakers 12a and 12b. A line selection protection relay device 14 is provided for detecting a ground fault accident or a short circuit accident. A current transformer 15 for instrumentation on each line 11a, 11b
a and 15b are installed, and the currents flowing through the lines 11a and 11b are detected and input to the line selection protection relay device 14. Further, the bus bar 13 is provided with an instrument transformer 16, and the bus bar voltage is a line selection protection relay device 14.
Entered in.

【0023】このような受配電設備の計器用変流器15
a、15bおよび計器用変圧器16の極性確認を試験す
る場合には、まず、受配電設備が電力系統に接続されて
いない状態で、受配電設備の並行二回線の一方の回線に
試験用電源装置17を接続する。図1では、回線11a
に接続線19aで試験用電源装置17を接続した場合を
示している。試験用電源装置17は、例えば3相交流1
10V又は220Vの絶縁電源である。一方、試験用電
源装置17を接続した反対側の回線11bには接続線1
9bにより、スイッチ20を介して試験電流調整装置2
1を接続する。試験電流調整装置21は、試験電流電流
発生用のリアクトル23及び可変抵抗器24を並列接続
して構成される。
A current transformer 15 for an instrument of such a power receiving and distribution facility
When testing the polarity confirmation of a, 15b and the transformer 16 for a meter, first, in a state in which the power receiving and distribution equipment is not connected to the power system, one of the two parallel lines of the power receiving and distribution equipment is used as a test power source. Connect the device 17. In FIG. 1, the line 11a
It shows a case where the test power supply device 17 is connected to the connection line 19a. The test power supply device 17 is, for example, a three-phase alternating current 1
It is an insulated power supply of 10V or 220V. On the other hand, the connecting line 1 is connected to the line 11b on the opposite side to which the test power supply device 17 is connected.
9b, the test current adjusting device 2 via the switch 20.
Connect 1. The test current adjusting device 21 is configured by connecting a reactor 23 for generating a test current and a variable resistor 24 in parallel.

【0024】次に、試験用計器用変流器18a、18b
の二次側を計器用変流器15a、15bの二次側に接続
する。そして、試験用計器用変流器18aの一次側を試
験用電源装置17からの試験電流が供給される接続線1
9aに接続し、試験用計器用変流器18bの一次側を試
験電流調整装置21が接続される接続線19bに接続す
る。この試験用計器用変流器18a、18bは、例えば
(10A:10A)の計器用変流器である。
Next, the current transformers 18a and 18b for the test instrument
Is connected to the secondary side of the instrument current transformers 15a and 15b. Then, the connecting wire 1 to which the test current from the test power supply device 17 is supplied is provided on the primary side of the test instrument current transformer 18a.
9a, and the primary side of the test instrument current transformer 18b is connected to a connection line 19b to which the test current adjusting device 21 is connected. The test instrument current transformers 18a and 18b are, for example, (10A: 10A) instrument current transformers.

【0025】また、計器用変圧器16の二次側を切り離
し、試験用計器用変圧器22を計器用変圧器16に並列
に接続する。そして、試験用計器用変圧器22の二次側
を回線選択継電器14に接続する。
Further, the secondary side of the instrument transformer 16 is disconnected, and the test instrument transformer 22 is connected in parallel to the instrument transformer 16. Then, the secondary side of the test instrument transformer 22 is connected to the line selection relay 14.

【0026】さらに、電気量計測器25を用意し、計器
用変流器15a、15b及び試験用計器用変流器18
a、18bの二次側の電流を入力すると共に、計器用変
圧器16及び試験用計器用変圧器22の二次側の電圧を
入力し、これら二次側電流の電流値や位相、二次側電圧
の電圧値や位相を計測する。電気量計測器22は、例え
ばベクトルマルチメータである。
Further, an electric quantity measuring instrument 25 is prepared, and the instrument current transformers 15a and 15b and the test instrument current transformer 18 are provided.
While inputting the secondary side currents of a and 18b, the secondary side voltage of the instrument transformer 16 and the test instrument transformer 22 is input, and the current value and phase of these secondary side currents and the secondary side current are input. Measure the voltage value and phase of the side voltage. The electric quantity measuring device 22 is, for example, a vector multimeter.

【0027】計器用変流器15a、15bの極性試験を
行うにあたっては、遮断器12a、12bを投入し、ス
イッチ20を投入する。これにより試験電源装置17か
ら試験電流を、試験用計器用変流器18a、計器用変流
器15a、計器用変流器15b、試験用計器用変流器1
8bに供給する。この試験電流は試験電流調整装置21
の可変抵抗器24により、回線選択保護継電装置14の
動作領域とならない電流に調整する。
In conducting the polarity test of the instrument current transformers 15a and 15b, the circuit breakers 12a and 12b are turned on and the switch 20 is turned on. As a result, a test current is supplied from the test power supply device 17 to the test instrument current transformer 18a, the instrument current transformer 15a, the instrument current transformer 15b, and the test instrument current transformer 1.
Supply to 8b. This test current is the test current adjusting device 21.
The variable resistor 24 of No. 2 adjusts the current so that it does not fall within the operating range of the line selection protection relay device 14.

【0028】そして、電気量計測器25により、計器用
変流器15a、15bと試験用計器用変流器18a、1
8bの二次側電流の電流値と位相の測定を行い、計器用
変流器15a、15bが試験用計器用変流器18a、1
8bの極性と一致しているか否かの妥当性を確認する。
Then, the electric current measuring device 25 is used to make the measuring instrument current transformers 15a and 15b and the measuring instrument current transformers 18a and 1b.
The current value and phase of the secondary side current of 8b are measured, and the instrument current transformers 15a and 15b are used as test instrument current transformers 18a and 1b.
Confirm the validity of whether it matches the polarity of 8b.

【0029】同様に、計器用変圧器16の極性試験を行
うにあたっては、計器用変圧器16と試験用計器用変圧
器22の一次側電圧及び二次電圧の電圧値と位相(相
順)の測定を行い、計器用変圧器16が試験用計器用変
圧器22の極性と一致しているか否かの妥当性を確認す
る。この場合、計器用変圧器16に三次巻線がある場合
には、試験用計器用変圧器22として三次巻線を有する
ものを用意し、三次巻線の三次電圧についてもそれぞれ
電圧値と位相(相順)を測定する。
Similarly, in performing the polarity test of the instrument transformer 16, the voltage value and the phase (phase sequence) of the primary side voltage and the secondary voltage of the instrument transformer 16 and the test instrument transformer 22 are determined. The measurement is performed to confirm the validity of whether or not the instrument transformer 16 matches the polarity of the test instrument transformer 22. In this case, in the case where the instrument transformer 16 has a tertiary winding, a test instrument transformer 22 having a tertiary winding is prepared, and the tertiary voltage of the tertiary winding also has a voltage value and a phase ( Phase order) is measured.

【0030】このように、第1の実施の形態では、低圧
の試験用計器用変流器18や試験用計器用変圧器22を
用意し、試験用電源装置17から実回路の計器用変流器
15と試験用計器用変流器18に試験電流を供給して極
性試験を行い、また、試験用電源装置17から実回路の
計器用変圧器16と試験用計器用変圧器22に試験電圧
を供給して極性試験を行う。従って、試験用電源装置1
7が低圧であることから安全でしかも効率的に極性試験
を行うことができる。
As described above, in the first embodiment, the low-voltage test instrument current transformer 18 and the test instrument transformer 22 are prepared, and the test power source device 17 supplies the actual circuit instrument current transformer. A polarity test is performed by supplying a test current to the converter 15 and the current transformer 18 for the test instrument, and the test voltage is supplied from the power supply device 17 for the test to the transformer 16 for the meter and the transformer 22 for the test meter in the actual circuit. Is supplied to perform a polarity test. Therefore, the test power supply device 1
Since 7 has a low pressure, the polarity test can be performed safely and efficiently.

【0031】次に、本発明の第2の実施の形態を説明す
る。図2は本発明の第2の実施の形態に係る受配電設備
系統保護試験装置を受配電設備に適用した系統図であ
る。この第2の実施の形態は、並行2回線受電方式にお
ける回線選択保護継電装置の方向短絡故障検出機能の動
作確認試験を行う場合を示している。受配電設備につい
ては図1に示した第1の実施の形態と同一であるので、
同一要素には同一符号を付し重複する説明は省略する。
Next, a second embodiment of the present invention will be described. FIG. 2 is a system diagram in which the power receiving and distributing equipment system protection test apparatus according to the second embodiment of the present invention is applied to the power receiving and distributing equipment. The second embodiment shows a case where an operation confirmation test of a direction short circuit fault detection function of a line selection protection relay device in a parallel two-line power receiving system is performed. Since the power receiving and distributing equipment is the same as that of the first embodiment shown in FIG. 1,
The same elements will be denoted by the same reference symbols and redundant description will be omitted.

【0032】まず、受配電設備が電力系統に接続されて
いない状態で、受配電設備の並行二回線の一方の回線1
1aに、接続線19aにより試験用電源装置17を接続
する。一方、試験用電源装置17を接続した反対側の回
線11bには接続線19bにより、スイッチ20を介し
て試験電流調整装置21を接続する。試験電流調整装置
21は、試験電流電流発生用のリアクトル23及び可変
抵抗器24を並列接続して構成される。
First, in a state in which the power receiving / distributing equipment is not connected to the power system, one of the two parallel lines of the power receiving / distributing equipment is connected.
The test power supply device 17 is connected to 1a by a connection line 19a. On the other hand, the test current adjusting device 21 is connected via the switch 20 to the line 11b on the opposite side to which the test power supply device 17 is connected by the connection line 19b. The test current adjusting device 21 is configured by connecting a reactor 23 for generating a test current and a variable resistor 24 in parallel.

【0033】次に、試験用計器用変流器18a、18b
の二次側を計器用変流器15a、15bの二次側に接続
する。そして、試験用計器用変流器18aの一次側を試
験用電源装置17からの試験電流が供給される接続線1
9aに接続し、試験用計器用変流器18bの一次側を試
験電流調整装置21が接続される接続線19bに接続す
る。
Next, the current transformers 18a and 18b for the test instrument
Is connected to the secondary side of the instrument current transformers 15a and 15b. Then, the connecting wire 1 to which the test current from the test power supply device 17 is supplied is provided on the primary side of the test instrument current transformer 18a.
9a, and the primary side of the test instrument current transformer 18b is connected to a connection line 19b to which the test current adjusting device 21 is connected.

【0034】また、計器用変圧器16の二次側を切り離
し、試験用計器用変圧器22を試験電圧調整装置26を
介して計器用変圧器16に並列に接続する。そして、試
験用計器用変圧器22の二次側を回線選択継電器14に
接続する。試験用電圧調整装置26は、可変抵抗27及
びスイッチ28の並列回路から構成される。
Further, the secondary side of the instrument transformer 16 is disconnected, and the test instrument transformer 22 is connected in parallel to the instrument transformer 16 via the test voltage adjusting device 26. Then, the secondary side of the test instrument transformer 22 is connected to the line selection relay 14. The test voltage regulator 26 is composed of a parallel circuit of a variable resistor 27 and a switch 28.

【0035】回線選択保護継電装置14の方向短絡故障
検出機能の確認試験を行うにあたっては、遮断器12
a、12bを投入し、スイッチ20を投入する。これに
より試験電源装置17から試験電圧が母線13に印加さ
れ、試験電流が回線11a、母線13、回線11bに供
給される。母線13の試験電圧の調整は試験用電圧調整
装置26の可変抵抗器27で調整され、試験電流の調整
については、試験電流調整装置21のリアクトル23と
可変抵抗器24にて遅れ電流(短絡電流)に調整され
る。これにより、図2のF点で短絡事故が発生したこと
を模擬できる。また、試験電流及び試験電圧を調整する
ことにより、故障点Fを変化させることができ、また、
事故点での故障点抵抗を変化させることもできる。
When conducting a confirmation test of the direction short circuit fault detection function of the line selection protection relay device 14, the circuit breaker 12 is used.
The switches a and 12b are turned on, and the switch 20 is turned on. As a result, the test voltage is applied from the test power supply device 17 to the bus line 13, and the test current is supplied to the line 11a, the bus line 13, and the line 11b. The adjustment of the test voltage of the bus bar 13 is adjusted by the variable resistor 27 of the test voltage adjusting device 26, and the adjustment of the test current is performed by the reactor 23 and the variable resistor 24 of the test current adjusting device 21. ) Is adjusted. As a result, it is possible to simulate the occurrence of a short circuit accident at point F in FIG. In addition, the failure point F can be changed by adjusting the test current and the test voltage, and
It is also possible to change the failure point resistance at the accident point.

【0036】そして、試験電圧及び試験電流の調整によ
り、回路選択保護継電装置14の方向短絡事故検出機能
の整定値(動作範囲)になった場合に当該遮断器12b
がトリップすることを確認する。
When the test voltage and the test current are adjusted to reach the set value (operating range) of the directional short circuit accident detection function of the circuit selection protection relay device 14, the breaker 12b concerned.
Make sure that trips.

【0037】次に、試験電源装置17及び試験電流調整
装置21をそれぞれ反対側の回線にに接続替えを行って
同様な試験を行い、当該遮断器12aがトリップするこ
とを確認する。
Next, the test power supply device 17 and the test current adjusting device 21 are connected to the lines on the opposite sides, respectively, and a similar test is conducted to confirm that the circuit breaker 12a trips.

【0038】このように、第2の実施の形態では、低圧
の試験用計器用変流器18や試験用計器用変圧器22を
用意し、また、試験電流調整装置21及び試験電圧調整
装置26を用意して、試験用計器用変流器18や試験用
計器用変圧器22を介して短絡事故を模擬して試験を行
うので、安全にしかも効率的に回線選択保護継電装置の
方向短絡故障検出機能の動作確認試験を行うことができ
る。
As described above, in the second embodiment, the low voltage test current transformer 18 and the test voltage transformer 22 are prepared, and the test current adjusting device 21 and the test voltage adjusting device 26 are provided. Is prepared to conduct a test by simulating a short-circuit accident via the current transformer 18 for test instrument and the transformer 22 for test instrument, so the direction short circuit of the line selection protection relay device can be performed safely and efficiently. An operation confirmation test of the failure detection function can be performed.

【0039】次に、本発明の第3の実施の形態を説明す
る。図3は本発明の第3の実施の形態に係る受配電設備
系統保護試験装置を受配電設備に適用した系統図であ
る。この第3の実施の形態は、並行2回線受電方式にお
ける回線選択保護継電装置の方向地絡故障検出機能の動
作確認試験を行う場合を示している。
Next, a third embodiment of the present invention will be described. FIG. 3 is a system diagram in which the power receiving and distributing equipment system protection test apparatus according to the third embodiment of the present invention is applied to the power receiving and distributing equipment. The third embodiment shows a case where an operation confirmation test of a direction ground fault detection function of a line selection protection relay device in a parallel two-line power receiving system is performed.

【0040】まず、受配電設備が電力系統に接続されて
いない状態で、受配電設備の並行二回線の一方の回線1
1aに、接続線19aにより試験用電源装置17を接続
する。この試験用電源17は中性点が限流抵抗29で設
置され、地絡電流が流れるようにしている。一方、試験
用電源装置17を接続した反対側の回線11bには接続
線19bにより、スイッチ20を介して試験電流調整装
置21を接続する。試験電流調整装置21は、可変抵抗
器24とスイッチ30とを並列接続して構成される。
First, in a state where the power receiving / distributing equipment is not connected to the power system, one of the two parallel lines of the power receiving / distributing equipment is used.
The test power supply device 17 is connected to 1a by a connection line 19a. The neutral point of the test power source 17 is set by a current limiting resistor 29 so that a ground fault current flows. On the other hand, the test current adjusting device 21 is connected via the switch 20 to the line 11b on the opposite side to which the test power supply device 17 is connected by the connection line 19b. The test current adjusting device 21 is configured by connecting a variable resistor 24 and a switch 30 in parallel.

【0041】次に、試験用計器用変流器18a、18b
の二次側を計器用変流器15a、15bの二次側に接続
する。そして、試験用計器用変流器18aの一次側を試
験用電源装置17からの試験電流が供給される接続線1
9aに接続し、試験用計器用変流器18bの一次側を試
験電流調整装置21が接続される接続線19bに接続す
る。
Next, the current transformers 18a and 18b for the test instrument
Is connected to the secondary side of the instrument current transformers 15a and 15b. Then, the connecting wire 1 to which the test current from the test power supply device 17 is supplied is provided on the primary side of the test instrument current transformer 18a.
9a, and the primary side of the test instrument current transformer 18b is connected to a connection line 19b to which the test current adjusting device 21 is connected.

【0042】また、計器用変圧器16の二次側を切り離
し、試験用計器用変圧器22を試験電圧調整装置26を
介して計器用変圧器16に並列に接続する。そして、試
験用計器用変圧器22の二次側を回線選択継電器14に
接続する。試験用電圧調整装置26は、可変抵抗27及
びスイッチ28の並列回路から構成される。
Further, the secondary side of the instrument transformer 16 is disconnected, and the test instrument transformer 22 is connected in parallel to the instrument transformer 16 via the test voltage adjusting device 26. Then, the secondary side of the test instrument transformer 22 is connected to the line selection relay 14. The test voltage regulator 26 is composed of a parallel circuit of a variable resistor 27 and a switch 28.

【0043】回線選択保護継電装置14の方向地絡故障
検出機能の確認試験を行うにあたっては、遮断器12
a、12bを投入し、スイッチ20を投入する。
In performing the confirmation test of the direction ground fault detection function of the line selection protection relay device 14, the circuit breaker 12 is used.
The switches a and 12b are turned on, and the switch 20 is turned on.

【0044】これにより試験電源装置17から試験電圧
が母線13に印加され、試験電流が回線11a、母線1
3、回線11bに供給される。母線13の試験電圧の調
整は試験用電圧調整装置26の可変抵抗器27で調整さ
れ、試験電流の調整については、試験電流調整装置21
の可変抵抗器24を調整される。例えば、完全地絡の場
合には抵抗値が0Ωになるように調整する。抵抗値が0
Ωとならない場合はスイッチ30を投入して0Ωとす
る。これにより、図3のG点で短絡事故が発生したこと
を模擬する。
As a result, a test voltage is applied from the test power supply unit 17 to the bus bar 13, and a test current is applied to the line 11a and the bus line 1.
3 is supplied to the line 11b. The adjustment of the test voltage of the bus bar 13 is adjusted by the variable resistor 27 of the test voltage adjusting device 26, and the adjustment of the test current is performed by the test current adjusting device 21.
The variable resistor 24 of is adjusted. For example, in the case of a complete ground fault, the resistance value is adjusted to 0Ω. Resistance value is 0
When it does not become Ω, the switch 30 is turned on to make it 0 Ω. This simulates the occurrence of a short circuit accident at point G in FIG.

【0045】この場合に、回線選択保護継電装置14の
方向地絡事故検出機能の動作範囲で遮断器12bがトリ
ップすることを確認する。例えば、一線地絡の場合には
地絡表示にて地絡相の確認及び回線選択保護継電装置1
4の方向地絡事故検出機能の動作と該当遮断器12bの
トリップを確認する。そして、3相の各相分(R相、S
相、下相)を全て確認した後に、図2に示した第2の実
施の形態の場合と同様に、回路構成を切り替えて反対側
の回線の動作確認を行う。
In this case, it is confirmed that the circuit breaker 12b trips within the operation range of the direction ground fault detection function of the line selection protection relay device 14. For example, in the case of a one-line ground fault, the ground fault phase is confirmed on the ground fault display and the line selection protection relay device 1
The operation of the direction ground fault accident detection function 4 and the trip of the corresponding breaker 12b are confirmed. And for each of the three phases (R phase, S
After confirming all of the phases, the lower phase), the circuit configuration is switched and the operation of the opposite line is confirmed as in the case of the second embodiment shown in FIG.

【0046】このように、第3の実施の形態では、低圧
の試験用計器用変流器18や試験用計器用変圧器22を
用意し、また、試験電流調整装置21及び試験電圧調整
装置26を用意して、試験用計器用変流器18や試験用
計器用変圧器22を介して地絡事故を模擬して試験を行
うので、安全にしかも効率的に回線選択保護継電装置の
方向短絡故障検出機能の動作確認試験を行うことができ
る。
As described above, in the third embodiment, the low voltage test current transformer 18 and the test voltage transformer 22 are prepared, and the test current adjusting device 21 and the test voltage adjusting device 26 are provided. Is prepared to perform a test by simulating a ground fault accident through the test instrument current transformer 18 and the test instrument transformer 22. Therefore, the direction of the line selection protection relay device can be safely and efficiently performed. An operation confirmation test of the short-circuit failure detection function can be performed.

【0047】次に、本発明の第4の実施の形態を説明す
る。図4は本発明の第4の実施の形態に係る受配電設備
系統保護試験装置を受配電設備に適用した系統図であ
る。この第4の実施の形態は、受配電設備が非接地系で
ある場合の地絡方向継電器の動作確認試験を行う場合を
示している。
Next, a fourth embodiment of the present invention will be described. FIG. 4 is a system diagram in which the power receiving and distributing equipment system protection test apparatus according to the fourth embodiment of the present invention is applied to the power receiving and distributing equipment. This 4th Embodiment has shown the case where the operation confirmation test of the ground fault direction relay when a power distribution equipment is an ungrounded system is performed.

【0048】受配電設備の母線13には、遮断器12a
〜12eを介して各受電系統33a〜33dが接続され
ている。また、各受電系統33a〜33dには、零相電
流検出器34a〜34eが設けられ、この零相電流検出
器34a〜34eで検出された零相電流により地絡判定
を行い地絡事故のときには各遮断器12a〜12eに開
指令を出力する地絡方向継電器35a〜35eが設けら
れている。さらに、母線13には計器用変圧器16a、
16bが接続され、その二次側には地絡過電圧継電器3
6a、36bが設置されている。
A circuit breaker 12a is provided on the bus bar 13 of the power receiving and distribution facility.
Each of the power receiving systems 33a to 33d is connected via the to 12e. Further, the power receiving systems 33a to 33d are provided with zero-phase current detectors 34a to 34e, and the zero-phase currents detected by the zero-phase current detectors 34a to 34e are used to make a ground fault determination, so that a ground fault occurs. Ground fault direction relays 35a to 35e that output an open command to each of the circuit breakers 12a to 12e are provided. Further, the bus bar 13 has an instrument transformer 16a,
16b is connected to the secondary side of which a ground fault overvoltage relay 3
6a and 36b are installed.

【0049】このような非接地系の受配電設備に配置さ
れた地絡方向継電器35a〜35eや地絡過電圧継電器
36a、36bの動作確認を行う場合には、まず、受配
電設備が電力系統に接続されていない状態で、受配電設
備の母線13に、中性点が抵抗器31で抵抗接地されコ
ンデンサ32を並列接続した試験用電源装置17を接続
する。コンデンサ32を並列接続しているのは、受配電
設備の静電容量を模擬するためである。そして、計器用
変圧器16a、16bの二次側を切り離し、試験用計器
用変圧器22a、22bを計器用変圧器16a、16b
に並列に接続する。
When confirming the operation of the ground fault direction relays 35a to 35e and the ground fault overvoltage relays 36a and 36b arranged in such an ungrounded power receiving and distributing facility, first, the power receiving and distributing facility is connected to the power system. In the unconnected state, the test power supply device 17 in which the neutral point is resistance grounded by the resistor 31 and the capacitor 32 is connected in parallel is connected to the bus bar 13 of the power receiving and distribution facility. The capacitors 32 are connected in parallel in order to simulate the electrostatic capacity of the power receiving and distribution equipment. Then, the secondary sides of the instrument transformers 16a, 16b are separated, and the test instrument transformers 22a, 22b are replaced with the instrument transformers 16a, 16b.
In parallel with.

【0050】地絡方向継電器35a〜35eや地絡過電
圧継電器36a、36bの動作確認を行うにあたって
は、遮断器12a〜12eを投入し、試験用電源装置1
7から受配電設備の計器用変圧器16a、16bに印加
される試験電圧と同じ試験電圧を印加する。
When confirming the operation of the ground fault direction relays 35a to 35e and the ground fault overvoltage relays 36a and 36b, the circuit breakers 12a to 12e are turned on and the test power supply 1 is turned on.
The same test voltage as the test voltage applied to the instrument transformers 16a and 16b of the power receiving and distribution facility from 7 is applied.

【0051】そして、図示省略の模擬地絡事故発生装置
により模擬地絡事故を発生させ、非接地系の受配電設備
の地絡保護継電装置である地絡方向継電器35a〜35
eや地絡過電圧継電器36a、36bの動作試験を行
う。
Then, a simulated ground fault accident generator (not shown) causes a simulated ground fault, and ground fault direction relays 35a to 35 are ground fault protection relay devices of the non-grounded power receiving and distributing equipment.
e and the operation test of the ground fault overvoltage relays 36a and 36b.

【0052】いま、故障点G1の個所で完全地絡を模擬
的に発生させたとする。この場合は、地絡方向継電器3
5c及び地絡過電圧継電器36aの動作確認試験であ
り、地絡を発生させた地絡相に対して、地絡過電圧継電
器36aが動作し、地絡方向継電器35cが動作したこ
とを確認すると共に、該当の遮断器12cがトリップし
たことを確認する。
It is assumed that a perfect ground fault is simulated at the point of the fault point G1. In this case, the ground fault direction relay 3
It is an operation confirmation test of 5c and the ground fault overvoltage relay 36a, the ground fault overvoltage relay 36a operates for the ground fault phase in which the ground fault is generated, and it is confirmed that the ground fault direction relay 35c operates. Confirm that the corresponding breaker 12c has tripped.

【0053】次に、故障点G2の個所で完全地絡を模擬
的に発生させ、地絡方向継電器35d及び地絡過電圧継
電器36bの動作確認試験を行う。すなわち、地絡を発
生させた地絡相に対して、地絡過電圧継電器36bが動
作し、地絡方向継電器35dが動作したことを確認する
と共に、該当の遮断器12dがトリップしたことを確認
する。
Next, a complete ground fault is simulated at the fault point G2, and an operation confirmation test of the ground fault direction relay 35d and the ground fault overvoltage relay 36b is performed. That is, it is confirmed that the ground fault overvoltage relay 36b operates and the ground fault direction relay 35d operates for the ground fault phase in which the ground fault is generated, and also that the corresponding breaker 12d trips. .

【0054】同様に、故障点G3の個所で完全地絡を模
擬的に発生させ、地絡方向継電器35d及び地絡方向継
電器35eの動作確認試験を行う。すなわち、その地絡
事故における地絡方向継電器35dと地絡方向継電器3
5eの協調および該当動作の妥当性を評価する。以下同
様に、地絡方向継電器35aや地絡方向継電器35bに
ついても動作確認試験を行う。
Similarly, a complete ground fault is simulated at the fault point G3, and an operation confirmation test of the ground fault direction relay 35d and the ground fault direction relay 35e is performed. That is, the ground fault direction relay 35d and the ground fault direction relay 3 in the ground fault accident.
Evaluate the cooperation of 5e and the adequacy of the corresponding operation. Similarly, the operation confirmation test is also performed on the ground fault direction relay 35a and the ground fault direction relay 35b.

【0055】このように、第4の実施の形態では、低圧
の試験用計器用変圧器22や模擬地絡事故発生装置を用
意して、試験用計器用変圧器22を介して地絡事故を模
擬し試験を行うので、並行2回線でない受配電設備電に
対しても、安全にしかも効率的に地絡方向継電器や地絡
過電圧継電器の動作確認試験を行うことができる。
As described above, in the fourth embodiment, a low-voltage test instrument transformer 22 and a simulated ground fault accident generator are prepared, and a ground fault accident is conducted via the test instrument transformer 22. Since the simulation test is performed, the operation confirmation test of the ground fault direction relay and the ground fault overvoltage relay can be performed safely and efficiently even for the power receiving and distribution equipment which is not parallel two lines.

【0056】次に、本発明の第5の実施の形態を説明す
る。図5は本発明の第5の実施の形態に係る受配電設備
系統保護試験装置を受配電設備に適用した系統図であ
る。この第5の実施の形態は、受配電設備の計器用変流
器や計器用変圧器の二次側に接続された計測機器の動作
確認試験を行う場合を示している。
Next explained is the fifth embodiment of the invention. FIG. 5 is a system diagram in which a power receiving and distributing equipment system protection test apparatus according to a fifth embodiment of the present invention is applied to power receiving and distributing equipment. This 5th Embodiment has shown the case where the operation confirmation test of the measuring equipment connected to the secondary side of the current transformer for meters and the transformer for meters of a power distribution equipment is performed.

【0057】受配電設備の母線13には、遮断器12
a、12bを介して各受電系統33a、33bが接続さ
れている。また、各受電系統33a、33bには、計器
用変流器15a、15bが接続され、二次側には各種計
測機器が接続されている。また、受電系統33aには計
器用変圧器16aが接続され、母線13にも計器用変圧
器16bが接続されている。
A circuit breaker 12 is provided on the bus bar 13 of the power receiving and distribution facility.
The power receiving systems 33a and 33b are connected via a and 12b. The current transformers 15a and 15b are connected to the power receiving systems 33a and 33b, and various measuring devices are connected to the secondary side. Further, an instrument transformer 16a is connected to the power receiving system 33a, and an instrument transformer 16b is also connected to the bus bar 13.

【0058】計器用変流器15aの二次側には、過電流
継電器37a、有効電力計38、無効電力計39、力率
計40、自動無効力率調整器41等の計測機器が接続さ
れており、有効電力計38には計器用変圧器16aの二
次側からの電圧も入力されている。また、計器用変流器
15bの二次側には、過電流継電器37b、電力量積算
計42、電流検出器43等の計測機器が接続されてい
る。さらに、計器用変圧器16aの二次側には短絡不足
電圧継電器44が接続され、また計器用変圧器16bの
二次側には断線不足電圧継電器45が接続されている。
Measuring devices such as an overcurrent relay 37a, an active power meter 38, a reactive power meter 39, a power factor meter 40, and an automatic reactive power factor adjuster 41 are connected to the secondary side of the instrument current transformer 15a. Therefore, the voltage from the secondary side of the instrument transformer 16a is also input to the active power meter 38. In addition, measuring devices such as an overcurrent relay 37b, an electric energy integrating meter 42, and a current detector 43 are connected to the secondary side of the instrument current transformer 15b. Further, a short circuit undervoltage relay 44 is connected to the secondary side of the instrument transformer 16a, and a disconnection undervoltage relay 45 is connected to the secondary side of the instrument transformer 16b.

【0059】このような受配電設備の計器用変流器15
a、15bや計器用変圧器16a、16bの二次側に接
続された計測機器の動作確認試験を行う場合には、ま
ず、受配電設備が電力系統に接続されていない状態で、
受配電設備の受電系統33aに試験用電源装置17を接
続する。
A current transformer 15 for such a power receiving and distribution facility instrument
When performing the operation confirmation test of the measuring device connected to the secondary side of the a, 15b or the transformers 16a, 16b for meters, first, in a state where the power receiving and distributing facility is not connected to the power system,
The test power supply device 17 is connected to the power receiving system 33a of the power receiving and distribution facility.

【0060】そして、計器用変流器15a、15bの二
次側には試験用計器用変流器18a、18bの二次側を
接続し、試験用計器用変流器18aの一次側には試験用
電源装置17からの試験電流を供給する。また、試験用
計器用変流器18bの一次側には電気量計測器46を接
続し、さらに電気量計測器46には試験模擬装置47を
接続する。試験模擬装置47は、可変抵抗器48、リア
クトル49、コンデンサ50から構成されており、これ
らを接続することにより、受配電設備の各種電気量を調
整することになる。また、計器用変圧器16a、16b
の二次側を切り離し、試験用計器用変圧器22a、22
bを計器用変圧器16a、16bに並列に接続する。
The secondary sides of the current transformers 15a and 15b are connected to the secondary sides of the current transformers 18a and 18b for test, and the primary side of the current transformer 18a for test is connected to the secondary side. A test current is supplied from the test power supply device 17. Further, an electric quantity measuring device 46 is connected to the primary side of the test instrument current transformer 18b, and a test simulating device 47 is connected to the electric quantity measuring device 46. The test simulation device 47 is composed of a variable resistor 48, a reactor 49, and a capacitor 50, and by connecting these, various electric quantities of the power receiving and distributing equipment will be adjusted. In addition, instrument transformers 16a, 16b
Disconnect the secondary side of the test instrument voltage transformer 22a, 22
b is connected in parallel to the instrument transformers 16a and 16b.

【0061】計測機器の極性や指示値の確認試験を行う
にあたっては、遮断器12a、12bを投入し、試験用
電源装置17から受電系統33a、33b、母線13に
試験電源を供給する。そして、試験模擬装置47の可変
抵抗器48、リアクトル49、コンデンサ60を操作し
て電気量を変化させ、有効電力計38、無効電力計3
9、力率計40、自動無効力率調整器41、電力量積算
計42、電流検出器43等の計測機器の指示値を電気量
計測器46に表示出力し、各計測機器の動作確認を総合
的に行う。
In conducting the confirmation test of the polarity and the indicated value of the measuring device, the circuit breakers 12a and 12b are turned on, and the test power source 17 supplies the test power to the power receiving systems 33a and 33b and the bus bar 13. Then, the variable resistor 48, the reactor 49, and the capacitor 60 of the test simulation device 47 are operated to change the amount of electricity, and the active power meter 38 and the reactive power meter 3 are used.
9, the power factor meter 40, the automatic reactive power factor adjuster 41, the electric energy integrator 42, the current detector 43 and the like, the indicated values of the measuring device are displayed and output to the electric amount measuring device 46 to check the operation of each measuring device. Do it comprehensively.

【0062】さらに、試験模擬装置47により電気量を
変化させて、過電流継電器37a、37b、短絡不足電
圧継電器44、断線不足電圧継電器45を動作させ、遮
断器12a、12bのトリップや保護協調カーブの確認
を行う。
Further, by changing the amount of electricity by the test simulating device 47, the overcurrent relays 37a and 37b, the short-circuit and undervoltage relay 44, and the disconnection and undervoltage relay 45 are operated to trip the circuit breakers 12a and 12b and the protection cooperation curve. Check.

【0063】このように、第5の実施の形態では、低圧
の試験用計器用変流器18や試験用計器用変圧器22を
用意し、試験用電源装置17からこれら試験用計器用変
流器18や試験用計器用変圧器22に試験電流を供給し
て、実回路の計器用変流器15や計器用変圧器16に接
続された計測機器の動作確認試験を行う。従って、試験
用電源装置17が低圧であることから安全でしかも効率
的に極性試験を行うことができる。
As described above, in the fifth embodiment, the low-voltage test instrument current transformer 18 and the test instrument transformer 22 are prepared, and the test power source device 17 supplies these test instrument current transformers. A test current is supplied to the instrument 18 and the test instrument transformer 22 to perform an operation confirmation test of the measuring instrument connected to the instrument current transformer 15 and the instrument transformer 16 of the actual circuit. Therefore, since the test power supply device 17 has a low voltage, the polarity test can be performed safely and efficiently.

【0064】次に、本発明の第6の実施の形態を説明す
る。図6は本発明の第6の実施の形態に係る受配電設備
系統保護試験装置を受配電設備に適用した系統図であ
る。この第6の実施の形態は、自家発電設備に接続され
た受配電設備の各受電系統の停復電試験を行う場合を示
している。
Next, a sixth embodiment of the present invention will be described. FIG. 6 is a system diagram in which a power receiving and distributing equipment system protection test device according to a sixth embodiment of the present invention is applied to power receiving and distributing equipment. This 6th Embodiment has shown the case where the power stop / recovery test of each power receiving system of the power receiving / distributing equipment connected to the private power generation equipment is performed.

【0065】受配電設備の母線13aには各受電系統3
3a〜33gが接続されており、受電系統33d、33
gは連絡線51a、51bを介して母線13bに接続さ
れている。いま、受電系統33cが自家発電設備54に
接続される系統であるとする。母線13bには受電系統
33h、22iが接続されている。また、遮断器12a
〜12n及び計器用変圧器16a〜16kが母線13
a、14bや受電系統33a〜33iの各所に設置され
ている。
Each power receiving system 3 is connected to the bus bar 13a of the power receiving and distribution facility.
3a to 33g are connected to the power receiving system 33d, 33
g is connected to the bus bar 13b through the connecting lines 51a and 51b. Now, assume that the power receiving system 33c is a system connected to the private power generation facility 54. The power receiving systems 33h and 22i are connected to the bus bar 13b. Also, the circuit breaker 12a
12n and the transformers 16a to 16k for measuring instruments are the bus bar 13
a, 14b and power receiving systems 33a to 33i.

【0066】このような受配電設備の各受電系統の停復
電試験を行う場合には、受配電設備が電力系統や自家発
電設備54に接続されていない状態で、停復電の試験を
行う受電系統33a、33b、33cにスイッチ52
a、52b、52cを接続すると共に、不足電圧継電器
53a、53b、55cを接続する。この不足電圧継電
器53a、53b、53cは受電系統に既に接続されて
いる場合には接続する必要はない。例えば、受電系統3
3cの不足電圧継電器53cはす伝に受電系統に接続さ
れているものを示している。そして、スイッチ52a、
52b、52cを介して受配電設備の受電系統33aに
試験用電源装置17を接続する。
When conducting a power failure / recovery test for each power receiving system of such a power receiving / distributing equipment, a power failure / restoring test is performed in a state in which the power receiving / distributing equipment is not connected to the power system or the private power generation equipment 54. A switch 52 on the power receiving system 33a, 33b, 33c
a, 52b, 52c are connected, and undervoltage relays 53a, 53b, 55c are connected. It is not necessary to connect the undervoltage relays 53a, 53b, 53c when they are already connected to the power receiving system. For example, power receiving system 3
The undervoltage relay 53c of 3c is connected to the power receiving system for transmission. Then, the switch 52a,
The test power supply device 17 is connected to the power receiving system 33a of the power receiving and distribution facility via 52b and 52c.

【0067】図6に示すように、まず、受電系統33
a、33bのスイッチ52a、52bを閉じて受電系統
33a、33bを受電状態を模擬的に形成する。その後
に、スイッチ52a、52bを開いて模擬的な停電を発
生させ、該当の遮断器12a、12bの状態確認や不足
電圧継電器53a、52bの動作状態の確認を行う。
As shown in FIG. 6, first, the power receiving system 33
The switches 52a and 52b of a and 33b are closed to form the power receiving systems 33a and 33b in a simulated power receiving state. After that, the switches 52a and 52b are opened to generate a simulated power failure, and the states of the corresponding breakers 12a and 12b and the operating states of the undervoltage relays 53a and 52b are confirmed.

【0068】次に、自家発電設備の受電系統33cのス
イッチ52cを投入することにより、受電系統33cの
給電状態を模擬的に形成する。これにより、該当遮断器
12a、12bの状態確認や不足電圧継電器53a、5
3bの復帰状態の確認を行う(停電制御確認)。さら
に、スイッチ52cを開きスイッチ52a、52bを閉
じることにより復電制御の確認が可能となる。また、ス
イッチ52a、52b、52cの関係を自動化すること
により、様々な停復電制御に対応可能となる。
Next, the power supply state of the power receiving system 33c is simulated by turning on the switch 52c of the power receiving system 33c of the private power generation facility. As a result, the state of the corresponding breakers 12a and 12b can be confirmed and the undervoltage relays 53a and 5b can be
Check the return status of 3b (power failure control check). Further, by opening the switch 52c and closing the switches 52a and 52b, it is possible to confirm the power recovery control. Further, by automating the relationship between the switches 52a, 52b, and 52c, it becomes possible to cope with various power stop / recovery control.

【0069】この第6の実施の形態によれば、受配電設
備が電力系統や自家発電設備54に接続されていない状
態で、停復電の試験を行う受電系統にスイッチを接続
し、スイッチを介して試験用電源を供給するので、スイ
ッチの開閉状態の組み合わせにより各種の停復電の試験
が可能になる。
According to the sixth embodiment, the switch is connected to the power receiving system for performing the power failure recovery test while the power receiving and distributing facility is not connected to the power system or the private power generation facility 54. Since the test power is supplied via the switch, it is possible to test various kinds of power interruption and restoration depending on the combination of the open / closed states of the switches.

【0070】[0070]

【発明の効果】以上述べたように、本発明によれば、低
電圧による模擬受電状態を形成することにより、受配電
設備の系統構成によらず、実受電と同様な形での試験が
可能となる。また、電流についても調整可能としている
ので、模擬的な負荷状態による総合試験ができる。
As described above, according to the present invention, by forming a simulated power receiving state with a low voltage, it is possible to perform a test in the same form as actual power receiving, regardless of the system configuration of the power receiving and distributing equipment. Becomes Moreover, since the current can be adjusted, a comprehensive test under simulated load conditions can be performed.

【0071】すなわち、並行二回線の受配電設備におけ
る計器用変流器及び計器用変成器の極性試験や回線選択
保護継電装置の動作試験を安全にしかも効率的に行うこ
とができる。また、非接地系の受配電設備に対しても地
絡保護継電器の動作確認を用にに行うことができる。さ
らに、受配線設備の計測機器の動作確認や受電系統の停
復電の各仁賢も容易に行える。
That is, it is possible to safely and efficiently perform the polarity test of the instrument current transformer and the instrument transformer in the parallel two-line power receiving and distributing facility and the operation test of the line selection protection relay device. In addition, it is possible to confirm the operation of the ground fault protection relay even for non-grounded power distribution equipment. Furthermore, it is easy for each person to check the operation of the measuring equipment of the receiving wiring facility and stop and restore the power of the receiving system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係る受配電設備系
統保護試験装置を受配電設備に適用した系統図。
FIG. 1 is a system diagram in which a power receiving and distributing equipment system protection test apparatus according to a first embodiment of the present invention is applied to power receiving and distributing equipment.

【図2】本発明の第2の実施の形態に係る受配電設備系
統保護試験装置を受配電設備に適用した系統図。
FIG. 2 is a system diagram in which a power receiving and distributing equipment system protection test apparatus according to a second embodiment of the present invention is applied to power receiving and distributing equipment.

【図3】本発明の第3の実施の形態に係る受配電設備系
統保護試験装置を受配電設備に適用した系統図。
FIG. 3 is a system diagram in which a power receiving and distributing equipment system protection test device according to a third embodiment of the present invention is applied to power receiving and distributing equipment.

【図4】本発明の第4の実施の形態に係る受配電設備系
統保護試験装置を受配電設備に適用した系統図。
FIG. 4 is a system diagram in which a power receiving and distributing equipment system protection test device according to a fourth embodiment of the present invention is applied to power receiving and distributing equipment.

【図5】本発明の第5の実施の形態に係る受配電設備系
統保護試験装置を受配電設備に適用した系統図。
FIG. 5 is a system diagram in which a power receiving and distributing equipment system protection test apparatus according to a fifth embodiment of the present invention is applied to power receiving and distributing equipment.

【図6】本発明の第6の実施の形態に係る受配電設備系
統保護試験装置を受配電設備に適用した系統図。
FIG. 6 is a system diagram in which a power receiving and distributing equipment system protection test device according to a sixth embodiment of the present invention is applied to power receiving and distributing equipment.

【符号の説明】[Explanation of symbols]

11…並行2回線、12…遮断器、13…母線、14…
回線選択保護継電装置、15…計器用変流器、16…計
器用変圧器、17…試験用電源装置、18…試験用計器
用変流器、19…接続線、20…スイッチ、21…試験
電流調整装置、22…試験用計器用変圧器、23…リア
クトル、24…可変抵抗器、25…電気量計測器、26
…試験電圧調整装置、27…可変抵抗器、28…スイッ
チ、29…限流抵抗、30…スイッチ、31…抵抗器、
32…コンデンサ、33…受電系統、34…零相電流検
出器、35…地絡方向継電器、36…地絡過電圧継電
器、37…過電流継電器、38…有効電力計、39…無
効電力計、40…力率計、41…自動無効力率調整器、
42…電力量積算計、43…電流検出器、44…短絡不
足電圧継電器、45…断線不足電圧継電器、46…電気
量計測器、47…試験模擬装置、48…可変抵抗器、4
9…リアクトル、50…コンデンサ、51…連絡線、5
2…スイッチ、53…不足電圧継電器、54…自家発電
設備
11 ... Parallel 2 lines, 12 ... Circuit breaker, 13 ... Bus bar, 14 ...
Line selection protection relay device, 15 ... current transformer for instrument, 16 ... transformer for instrument, 17 ... power supply device for test, 18 ... current transformer for test instrument, 19 ... connection line, 20 ... switch, 21 ... Test current adjusting device, 22 ... Test instrument transformer, 23 ... Reactor, 24 ... Variable resistor, 25 ... Electric quantity measuring device, 26
... test voltage adjusting device, 27 ... variable resistor, 28 ... switch, 29 ... current limiting resistance, 30 ... switch, 31 ... resistor,
32 ... Capacitor, 33 ... Power receiving system, 34 ... Zero-phase current detector, 35 ... Ground fault direction relay, 36 ... Ground fault overvoltage relay, 37 ... Overcurrent relay, 38 ... Active power meter, 39 ... Reactive power meter, 40 … Power factor meter, 41… Automatic reactive power factor adjuster,
42 ... Electric energy integrating meter, 43 ... Current detector, 44 ... Short circuit undervoltage relay, 45 ... Disconnection undervoltage relay, 46 ... Electricity measuring instrument, 47 ... Test simulation device, 48 ... Variable resistor, 4
9 ... Reactor, 50 ... Capacitor, 51 ... Communication line, 5
2 ... switch, 53 ... undervoltage relay, 54 ... private power generation facility

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 並行二回線の電力系統から電力を受電し
負荷に配電する受配電設備の計器用変流器の極性試験を
行う受配電設備系統保護試験装置において、前記受配電
設備が電力系統に接続されていない状態で前記受配電設
備の並行二回線の一方の回線に接続され前記受配電設備
に試験電源を供給する試験用電源装置と、前記試験用電
源装置から前記並行二回線のそれぞれの回線に設けられ
た前記計器用変流器に供給される試験電流と同じ試験電
流が供給され二次側は前記計器用変流器の二次側に接続
された試験用計器用変流器と、前記試験電流を調整する
試験電流調整装置と、前記計器用変流器および前記試験
用計器用変流器の二次側に接続され前記計器用変流器お
よび前記試験用計器用変流器の二次電流の電流値および
位相を計測する電気量計測器とを備えたことを特徴とす
る受配電設備系統保護試験装置。
1. A power receiving and distributing equipment system protection test device for conducting a polarity test of a current transformer for a meter of a power receiving and distributing equipment for receiving power from a parallel two-line power system and distributing it to a load, wherein the power receiving and distributing equipment is a power system. A test power supply device that is connected to one of the two parallel lines of the power receiving and distributing facility in a state of not being connected to the power receiving and distributing facility and supplies a test power to the power receiving and distributing facility; and the parallel two lines from the test power source device. Test current transformer connected to the secondary side of the current transformer, the same test current as the test current supplied to the current transformer provided in the line A test current adjusting device for adjusting the test current; and a current transformer for the instrument and a current transformer for the instrument and a current transformer for the test instrument connected to the secondary side of the current transformer for the test instrument. Electricity to measure the current value and phase of the secondary current of the device A power receiving / distributing equipment system protection test apparatus comprising a quantity measuring device.
【請求項2】 並行二回線の電力系統から電力を受電し
負荷に配電する受配電設備の計器用変圧器の極性試験を
行う受配電設備系統保護試験装置において、前記受配電
設備が電力系統に接続されていない状態で前記受配電設
備の並行二回線の一方の回線に接続され前記受配電設備
に試験電源を供給する試験用電源装置と、前記試験用電
源装置から前記受配電設備の計器用変圧器に印加される
試験電圧と同じ試験電圧が印加され前記計器用変圧器と
並列に接続された試験用計器用変圧器と、前記計器用変
圧器および前記試験用計器用変圧器の二次側または三次
側に接続され前記計器用変圧器および前記試験用計器用
変圧器の二次電圧または三次電圧の電圧値および位相を
計測する電気量計測器とを備えたことを特徴とする受配
電設備系統保護試験装置。
2. In a power receiving and distributing equipment system protection test device for performing a polarity test of a voltage transformer of a power receiving and distributing equipment for receiving power from a parallel two-line power system and distributing it to a load, the power receiving and distribution equipment is connected to the power system. A test power supply device that is connected to one of the two parallel lines of the power receiving and distributing equipment to supply test power to the power receiving and distributing equipment when not connected, and a meter of the power receiving and distributing equipment from the test power supply device A test instrument transformer that is connected in parallel with the instrument transformer by applying the same test voltage as the test voltage applied to the transformer, and a secondary of the instrument transformer and the test instrument transformer. Side or tertiary side, and an electric quantity measuring device for measuring the voltage value and phase of the secondary voltage or the tertiary voltage of the measuring instrument transformer and the testing measuring instrument transformer. Equipment system protection test apparatus.
【請求項3】 並行二回線の電力系統から電力を受電し
負荷に配電する受配電設備の回線選択保護継電装置の方
向短絡動作試験を行う受配電設備系統保護試験装置にお
いて、受配電設備が電力系統に接続されていない状態で
前記受配電設備の並行二回線の一方の回線に接続され前
記受配電設備に試験電源を供給する試験用電源装置と、
前記試験用電源装置から前記並行二回線のそれぞれの回
線に設けられた前記計器用変流器に供給される試験電流
と同じ試験電流が供給され二次側は前記計器用変流器の
二次側に接続された試験用計器用変流器と、前記回線選
択保護継電装置の方向短絡故障検出機能の動作試験のた
めの試験電流を調整する試験電流調整装置と、前記試験
用電源装置から前記受配電設備の計器用変圧器に印加さ
れる試験電圧と同じ試験電圧が印加され前記計器用変圧
器と並列に接続された試験用計器用変圧器と、前記回線
選択保護継電装置の方向短絡故障検出機能の動作試験の
ための試験電圧を調整する試験電圧調整装置とを備えた
ことを特徴とする受配電設備系統保護試験装置。
3. A power receiving and distributing facility system protection test device for performing a directional short circuit operation test of a line selective protection relay device of a power receiving and distributing facility for receiving power from a parallel two-line power system and distributing it to a load. A test power supply device that is connected to one of the two parallel lines of the power receiving and distributing facility while not being connected to a power system, and supplies a test power to the power receiving and distributing facility,
The test current source supplies the same test current as the test current supplied to the current transformer for each instrument provided on each of the two parallel lines, and the secondary side is the secondary of the current transformer for instrument. From the test instrument current transformer connected to the side, the test current adjusting device for adjusting the test current for the operation test of the direction short circuit fault detection function of the line selection protection relay device, and the test power supply device. A test instrument transformer connected to the instrument transformer in parallel with the test voltage applied to the instrument transformer of the power distribution equipment, and the direction of the line selection protection relay device. A power receiving and distribution facility system protection testing device, comprising: a test voltage adjusting device for adjusting a test voltage for an operation test of a short-circuit fault detecting function.
【請求項4】 並行二回線の電力系統から電力を受電し
負荷に配電する受配電設備の回線選択保護継電装置の方
向地絡動作試験を行う受配電設備系統保護試験装置にお
いて、受配電設備が電力系統に接続されていない状態で
前記受配電設備の並行二回線の一方の回線に接続され中
性点が限流抵抗で接地され前記受配電設備に試験電源を
供給する試験用電源装置と、前記試験用電源装置から前
記並行二回線のそれぞれの回線に設けられた前記計器用
変流器に供給される試験電流と同じ試験電流が供給され
二次側は前記計器用変流器の二次側に接続された試験用
計器用変流器と、前記回線選択保護継電装置の方向地絡
故障検出機能の動作試験のための試験電流を調整する試
験電流調整装置と、前記試験用電源装置から前記受配電
設備の計器用変圧器に印加される試験電圧と同じ試験電
圧が印加され前記計器用変圧器と並列に接続された試験
用計器用変圧器と、前記回線選択保護継電装置の方向地
絡故障検出機能の動作試験のための試験電圧を調整する
試験電圧調整装置とを備えたことを特徴とする受配電設
備系統保護試験装置。
4. A power receiving / distributing equipment in a power receiving / distributing equipment system protection test apparatus for performing a directional ground fault operation test of a line selective protection relay device of a power receiving / distributing equipment for receiving power from two parallel parallel electric power systems and distributing to a load. And a test power supply device that is connected to one of the two parallel lines of the power receiving and distributing equipment in a state where is not connected to the power system and the neutral point is grounded by a current limiting resistor to supply test power to the power receiving and distributing equipment. , The same test current as the test current supplied from the test power supply device to the current transformer for each instrument provided in each of the two parallel lines is supplied to the secondary side of the instrument current transformer. Current transformer for test instrument connected to the next side, test current adjusting device for adjusting the test current for the operation test of the direction ground fault detection function of the line selection protection relay device, and the test power supply From the device to the voltage transformer of the power distribution equipment A test instrument transformer that is connected in parallel with the instrument transformer by applying the same test voltage as the test voltage applied to, and the operation test of the direction ground fault detection function of the line selection protection relay device. And a test voltage adjusting device for adjusting a test voltage for the power receiving and distributing equipment system protection test device.
【請求項5】 電力系統から電力を受電し負荷に配電す
る非接地系の受配電設備の地絡保護継電装置の動作試験
を行う受配電設備系統保護試験装置において、受配電設
備が電力系統に接続されていない状態で前記受配電設備
の受電系統に接続され中性点が抵抗接地されコンデンサ
が並列接続され前記受配電設備に試験電源を供給する試
験用電源装置と、前記試験用電源装置から前記受配電設
備の計器用変圧器に印加される試験電圧と同じ試験電圧
が印加され前記計器用変圧器と並列に接続された試験用
計器用変圧器と、前記地絡保護継電装置の動作試験のた
めの模擬地絡事故を発生させる模擬地絡事故発生装置と
を備えたことを特徴とする受配電設備系統保護試験装
置。
5. A power receiving and distributing equipment system protection test device for performing an operation test of a ground fault protection relay device of a non-grounded power receiving and distributing equipment which receives power from a power system and distributes it to a load. A power source for testing, which is connected to the power receiving system of the power receiving and distributing facility, has a neutral point resistance grounded and a capacitor is connected in parallel, and supplies test power to the power receiving and distributing facility; From the test instrument transformer connected in parallel with the instrument transformer by applying the same test voltage as the test voltage applied to the instrument transformer of the power receiving and distribution facility from the ground fault protection relay device. A power receiving and distribution facility system protection test apparatus comprising: a simulated ground fault accident generation device for generating a simulated ground fault accident for an operation test.
【請求項6】 電力系統から電力を受電し負荷に配電す
る受配電設備の計測機器の動作確認試験を行う受配電設
備系統保護試験装置において、前記受配電設備が電力系
統に接続されていない状態で前記受配電設備の受電系統
に接続され前記受配電設備に試験電源を供給する試験用
電源装置と、前記試験用電源装置から前記計器用変流器
に供給される試験電流と同じ試験電流が供給され二次側
は前記計器用変流器の二次側に接続された試験用計器用
変流器と、前記試験用電源装置から前記受配電設備の計
器用変圧器に印加される試験電圧と同じ試験電圧が印加
され前記計器用変圧器と並列に接続された試験用計器用
変圧器と、前記試験電流または試験電圧を調整する試験
模擬装置と、前記計器用変流器または前記計器用変圧器
の二次側に接続された前記計測機器の動作状態を計測す
る電気量計測器とを備えたことを特徴とする受配電設備
系統保護試験装置。
6. A power receiving and distributing facility system protection test apparatus for performing an operation confirmation test of a measuring device of a power receiving and distributing facility that receives power from a power system and distributes the load to a load, wherein the power receiving and distributing facility is not connected to the power system. With the test power supply device connected to the power receiving system of the power receiving and distributing equipment and supplying a test power supply to the power receiving and distributing equipment, the same test current as the test current supplied from the test power supply device to the instrument current transformer is The supplied secondary side is a test instrument current transformer connected to the secondary side of the instrument current transformer, and a test voltage applied from the test power supply device to the instrument transformer of the power receiving and distribution facility. A test instrument transformer connected to the instrument transformer in parallel with the same test voltage as described above, a test simulator for adjusting the test current or test voltage, and the instrument current transformer or the instrument transformer. Connected to the secondary side of the transformer And a power quantity measuring device for measuring an operating state of the measuring device.
【請求項7】 電力系統から電力を受電し負荷に配電す
る受配電設備の停復電試験を行う受配電設備系統保護試
験装置において、前記受配電設備が電力系統に接続され
ていない状態で前記受配電設備の受電系統に接続され前
記受配電設備に試験電源を供給する試験用電源装置と、
試験時に閉となるスイッチを有し試験を行う受電系統に
接続されたジャンパー線と、試験を行う受電系統に接続
される不足電圧継電器とを備えたことを特徴とする受配
電設備系統保護試験装置。
7. A power receiving and distributing equipment system protection test device for performing a power interruption and restoration test of a power receiving and distributing equipment for receiving power from a power system and distributing it to a load, wherein the power receiving and distributing equipment is not connected to the power system. A test power supply device that is connected to the power receiving system of the power receiving and distributing facility and supplies test power to the power receiving and distributing facility,
A power receiving and distribution facility system protection test apparatus comprising a jumper wire having a switch that is closed during a test and connected to a power receiving system to be tested, and an undervoltage relay connected to a power receiving system to be tested. .
JP2001382810A 2001-12-17 2001-12-17 Apparatus for testing protection of power receiving and distributing facility system Pending JP2003189425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001382810A JP2003189425A (en) 2001-12-17 2001-12-17 Apparatus for testing protection of power receiving and distributing facility system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001382810A JP2003189425A (en) 2001-12-17 2001-12-17 Apparatus for testing protection of power receiving and distributing facility system

Publications (1)

Publication Number Publication Date
JP2003189425A true JP2003189425A (en) 2003-07-04

Family

ID=27593038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001382810A Pending JP2003189425A (en) 2001-12-17 2001-12-17 Apparatus for testing protection of power receiving and distributing facility system

Country Status (1)

Country Link
JP (1) JP2003189425A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137516A1 (en) * 2011-04-08 2012-10-11 パナソニック株式会社 Distributed power generation device and method for operating same
CN103454554A (en) * 2013-08-30 2013-12-18 广东威恒输变电工程有限公司 Polarity tester for current transformer
KR101360137B1 (en) 2012-10-11 2014-02-10 한전케이피에스 주식회사 Safety jumper equipment
CN103746307A (en) * 2014-01-26 2014-04-23 国家电网公司 Hydraulic push-in replacing device for current transformer
CN103954882A (en) * 2014-05-12 2014-07-30 国家电网公司 Current transformer polarity judgment instrument with lithium battery
CN104215877A (en) * 2014-08-21 2014-12-17 国家电网公司 Combined CT (current transformer) polarity test device
JP2021043128A (en) * 2019-09-13 2021-03-18 東京電力ホールディングス株式会社 Method for measuring voltage-current phase of secondary circuit of transformer for meters
KR20210042734A (en) * 2019-10-10 2021-04-20 한국전력공사 Diagnosis method for potential transformer of switching device
CN112858958A (en) * 2021-01-05 2021-05-28 中国神华能源股份有限公司国华电力分公司 Method for detecting current wiring polarity of high-backup-power-transformation protection device
JP2021148654A (en) * 2020-03-19 2021-09-27 一般財団法人中部電気保安協会 Relay testing device attachment
JP2021148655A (en) * 2020-03-19 2021-09-27 一般財団法人中部電気保安協会 Relay testing device and high-voltage power receiver tester
WO2024122401A1 (en) * 2022-12-09 2024-06-13 日置電機株式会社 Testing device and testing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138122B2 (en) * 2011-04-08 2013-02-06 パナソニック株式会社 Distributed power generator and method of operating the same
WO2012137516A1 (en) * 2011-04-08 2012-10-11 パナソニック株式会社 Distributed power generation device and method for operating same
KR101360137B1 (en) 2012-10-11 2014-02-10 한전케이피에스 주식회사 Safety jumper equipment
CN103454554A (en) * 2013-08-30 2013-12-18 广东威恒输变电工程有限公司 Polarity tester for current transformer
CN103746307A (en) * 2014-01-26 2014-04-23 国家电网公司 Hydraulic push-in replacing device for current transformer
CN103954882A (en) * 2014-05-12 2014-07-30 国家电网公司 Current transformer polarity judgment instrument with lithium battery
CN104215877A (en) * 2014-08-21 2014-12-17 国家电网公司 Combined CT (current transformer) polarity test device
JP7375398B2 (en) 2019-09-13 2023-11-08 東京電力ホールディングス株式会社 Method for measuring voltage and current phase of secondary circuit of instrument transformer
JP2021043128A (en) * 2019-09-13 2021-03-18 東京電力ホールディングス株式会社 Method for measuring voltage-current phase of secondary circuit of transformer for meters
KR20210042734A (en) * 2019-10-10 2021-04-20 한국전력공사 Diagnosis method for potential transformer of switching device
KR102247177B1 (en) * 2019-10-10 2021-05-04 한국전력공사 Diagnosis method for potential transformer of switching device
JP2021148654A (en) * 2020-03-19 2021-09-27 一般財団法人中部電気保安協会 Relay testing device attachment
JP2021148655A (en) * 2020-03-19 2021-09-27 一般財団法人中部電気保安協会 Relay testing device and high-voltage power receiver tester
JP7000485B2 (en) 2020-03-19 2022-02-10 一般財団法人中部電気保安協会 Relay test equipment attachment
CN112858958A (en) * 2021-01-05 2021-05-28 中国神华能源股份有限公司国华电力分公司 Method for detecting current wiring polarity of high-backup-power-transformation protection device
CN112858958B (en) * 2021-01-05 2023-02-28 中国神华能源股份有限公司国华电力分公司 Method for detecting current wiring polarity of high-backup-power-transformation protection device
WO2024122401A1 (en) * 2022-12-09 2024-06-13 日置電機株式会社 Testing device and testing method

Similar Documents

Publication Publication Date Title
Calhoun et al. Development and testing of an electro-mechanical relay to detect fallen distribution conductors
AU2007324283C1 (en) Power supply monitoring system
CN103605357B (en) The test macro of power distribution network boundary switch control device
AU2016289494B2 (en) Method and testing device for testing wiring of transformers
JP2003189425A (en) Apparatus for testing protection of power receiving and distributing facility system
Codino et al. Cross-country fault protection in ENEL Distribuzione's experimental MV loop lines
MXPA05000537A (en) Electrical network protection system.
JP2008263761A (en) Power line artificial ground fault testing system and method
JPH11304870A (en) Method for confirming polarity of tertiary winding of meter current transformer, and testing method for ground protective relay using the same
Shen et al. Grounding transformer application, modeling, and simulation
JP3894346B2 (en) Protection relay control circuit test equipment
Henville et al. Dynamic simulations challenge protection performance
Meddeb et al. Impact of System Grounding on Distance Relay Operating
Kojovic et al. Improved relay coordination and relay response time by integrating the relay functions
Al-Mahrooqi et al. Simulation of distance protection for parallel transmission lines
De Oliveira et al. Evaluation of distance protection performance applied on series compensated transmission lines using real time digital simulation
Fredriksen Earth fault protection in isolated and compensated power distribution systems
Khoroshev et al. Analysis of adaptive single phase autoreclosing for high voltage transmission lines with various compensation levels
Khattak et al. Design and Implementation of Protective Relays Benches
Thomas et al. IED models for data generation in a transmission substation
Chan An investigation of grading margin violation in coordinating overcurrent relay/Chan Kok Wai
Roberts et al. Obtaining a reliable polarizing source for ground directional elements in multisource, isolated-neutral distribution systems
Wai An Investigation of Grading Margin Violation in Coordinating Overcurrent Relay
Makwana et al. Intelligent protection scheme for power transformer
JPS622884Y2 (en)