JP2003176877A - Electromagnetic proportional flow rate control valve - Google Patents

Electromagnetic proportional flow rate control valve

Info

Publication number
JP2003176877A
JP2003176877A JP2001376987A JP2001376987A JP2003176877A JP 2003176877 A JP2003176877 A JP 2003176877A JP 2001376987 A JP2001376987 A JP 2001376987A JP 2001376987 A JP2001376987 A JP 2001376987A JP 2003176877 A JP2003176877 A JP 2003176877A
Authority
JP
Japan
Prior art keywords
shaft
flow rate
valve
valve hole
electromagnetic proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001376987A
Other languages
Japanese (ja)
Inventor
Hideki Tsuchiya
秀樹 土屋
Takaharu Miya
能治 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2001376987A priority Critical patent/JP2003176877A/en
Priority to DE10297516T priority patent/DE10297516B4/en
Priority to PCT/JP2002/012848 priority patent/WO2003050441A1/en
Priority to US10/494,568 priority patent/US8418723B2/en
Priority to CNB02824804XA priority patent/CN100354561C/en
Publication of JP2003176877A publication Critical patent/JP2003176877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)
  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic proportional flow rate control valve capable of realizing a fine flow rate control at an operation area at a small flow rate side. <P>SOLUTION: The electromagnetic proportional flow rate control valve 32 is provided with a valve hole 16 communicating pressure source side and a load side; a shaft 2 axially displaceable supported against the valve hole 16; springs 13, 14 for axially urging the shaft 2; and an electromagnetic coil 15 for driving the shaft 2 by a solenoid thrust in resistant to the springs 13, 14. An opening area Av of a variable throttle part 22 partitioned with the valve hole 16 accompanied with a displacement of the shaft 2 can be varied. A valve element part 2a of the shaft 2 is formed to an approximate spherical shape and a reduction ratio of the opening area Av of the variable throttle part 22 against a stroke of the shaft 2 is gradually made small as the shaft 2 approaches to the valve hole 16. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車のパワース
テアリング装置や産業機械等に用いられる電磁比例流量
制御弁の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electromagnetic proportional flow rate control valve used in a power steering device of an automobile, an industrial machine or the like.

【0002】[0002]

【従来の技術】従来、パワーステアリング装置に用いら
れる電磁比例流量制御弁として、例えば特開2001−
163233号公報に開示されたものや、図5に示すも
のがある。
2. Description of the Related Art Conventionally, as an electromagnetic proportional flow control valve used in a power steering device, for example, Japanese Patent Laid-Open No. 2001-2001.
There are those disclosed in Japanese Patent No. 163233 and those shown in FIG.

【0003】これについて説明すると、電磁比例流量制
御弁は、ポンプボディ10に挿入して取り付けられる円
筒状のベース1と、ベース1に摺動可能に挿入されるシ
ャフト2を備える。ベース1にはポンプの吐出側に連通
する上流室21と、シャフト2との間で可変絞り部22
を画成するバルブ穴16と、負荷側に連通する下流室2
3が形成される。ポンプから吐出される作動流体は、図
中矢印で示すように上流室21、バルブ穴16、下流室
23を通って負荷へと流れる。
Explaining this, the electromagnetic proportional flow control valve comprises a cylindrical base 1 which is inserted into and attached to a pump body 10, and a shaft 2 which is slidably inserted into the base 1. The variable throttle portion 22 is provided between the shaft 2 and the upstream chamber 21 communicating with the discharge side of the pump in the base 1.
And the downstream chamber 2 communicating with the load side, which defines the valve hole 16
3 is formed. The working fluid discharged from the pump flows to the load through the upstream chamber 21, the valve hole 16, and the downstream chamber 23 as shown by the arrow in the figure.

【0004】円柱状のシャフト2はベース1とスリーブ
10に渡って一対の軸受3,9を介して摺動可能に介装
される。シャフト2はその先端に円錐状の弁体部2aが
形成され、この弁体部2aがバルブ穴16に挿入され
る。シャフト2が図において右方向に変位するのに伴っ
て、弁体部2aとバルブ穴16の間との間で画成される
可変絞り部22の開口面積Avが次第に大きくなる。
The cylindrical shaft 2 is slidably mounted on the base 1 and the sleeve 10 via a pair of bearings 3 and 9. The shaft 2 has a conical valve body 2a formed at its tip, and the valve body 2a is inserted into the valve hole 16. As the shaft 2 is displaced to the right in the drawing, the opening area Av of the variable throttle portion 22 defined between the valve body portion 2a and the valve hole 16 gradually increases.

【0005】シャフト2を開弁方向(図において右方
向)に付勢するスプリング13と、閉弁方向(図におい
て左方向)に付勢するスプリング14が設けられる。
A spring 13 for urging the shaft 2 in the valve opening direction (rightward in the drawing) and a spring 14 for urging the shaft 2 in the valve closing direction (leftward in the drawing) are provided.

【0006】シャフト2の途中にプランジャ(可動鉄
心)6が固定され、スリーブ10の外側にプランジャ6
を駆動する電磁コイル15が設けられる。プランジャ6
は電磁コイル15に生じるソレノイド推力Fsolによ
ってシャフト2を閉弁方向(図において左方向)に駆動
する。つまり、電磁コイル15に流れる電流Iが増える
のにしたがって、シャフト2がスプリング13,14の
バネ力に抗して図において左方向に変位する。
A plunger (movable iron core) 6 is fixed in the middle of the shaft 2, and the plunger 6 is provided outside the sleeve 10.
An electromagnetic coil 15 for driving the motor is provided. Plunger 6
Drives the shaft 2 in the valve closing direction (leftward in the figure) by the solenoid thrust Fsol generated in the electromagnetic coil 15. That is, as the current I flowing through the electromagnetic coil 15 increases, the shaft 2 is displaced leftward in the figure against the spring force of the springs 13 and 14.

【0007】電磁比例流量制御弁は以上のように構成さ
れて、シャフト2に対して電磁コイル15のソレノイド
推力Fが閉弁方向に働き、スプリング13,14のバネ
力、可変絞り部22の前後差圧ΔPによる力、可変絞り
部22に発生する流体力が開弁方向に働き、これらの力
がバランスする位置にシャフト2が移動し、これによっ
て得られた可変絞り部22の開口面積Avおよび可変絞
り部22の前後差圧ΔPに比例した制御流量Qcが流れ
る。
The electromagnetic proportional flow control valve is constructed as described above. The solenoid thrust F of the electromagnetic coil 15 acts on the shaft 2 in the valve closing direction, the spring force of the springs 13 and 14 and the front and rear of the variable throttle portion 22. The force due to the differential pressure ΔP and the fluid force generated in the variable throttle section 22 act in the valve opening direction, the shaft 2 moves to a position where these forces are balanced, and the opening area Av of the variable throttle section 22 obtained by this and A control flow rate Qc proportional to the differential pressure ΔP across the variable throttle unit 22 flows.

【0008】[0008]

【発明が解決しようとする課題】図3は電磁コイル15
の励磁電流Iとソレノイド推力Fの関係を示す特性図で
ある。これからわかるように、電磁コイル15に流れる
電流Iが増えるのにしたがって、ソレノイド推力Fは急
速に立ち上がる特性がある。
FIG. 3 shows an electromagnetic coil 15.
6 is a characteristic diagram showing the relationship between the exciting current I and the solenoid thrust F of FIG. As can be seen from the above, the solenoid thrust F has a characteristic of rising rapidly as the current I flowing through the electromagnetic coil 15 increases.

【0009】しかしながら、シャフト2のストロークが
変化するのに応じてスプリング13,14のバネ力、可
変絞り部22の開口面積Avが一次的に比例して変化す
るため、電磁コイル15に流れる電流Iが増える小流量
側の作動領域にて電流値Iのわずかな変動で大きな流量
変動が生じ、きめ細かな流量制御が難しいという問題点
があった。
However, as the stroke of the shaft 2 changes, the spring force of the springs 13 and 14 and the opening area Av of the variable throttle unit 22 change in a linearly proportional manner. In the operating region on the small flow rate side where a large flow rate increases, a large flow rate change occurs due to a slight change in the current value I, and there is a problem that fine flow rate control is difficult.

【0010】図6は電磁コイル15の励磁電流Iと制御
流量Qcの関係を示す特性図である。これからわかるよ
うに、電磁コイル15に流れる電流Iが増えるのにした
がって、制御流量Qcは急速に減少する特性がある。
FIG. 6 is a characteristic diagram showing the relationship between the exciting current I of the electromagnetic coil 15 and the control flow rate Qc. As can be seen from this, the control flow rate Qc has a characteristic of rapidly decreasing as the current I flowing through the electromagnetic coil 15 increases.

【0011】本発明は上記の問題点を鑑みてなされたも
のであり、小流量側の作動領域にてきめ細かな流量制御
を実現できる電磁比例流量制御弁を提供することを目的
とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an electromagnetic proportional flow control valve capable of realizing fine flow control in an operation region on the small flow side.

【0012】[0012]

【課題を解決するための手段】第1の発明は、圧力源側
と負荷側を連通するバルブ穴と、バルブ穴に対して軸方
向に変位可能に支持されるシャフトと、シャフトを軸方
向に付勢するスプリングと、ソレノイド推力によってス
プリングに抗してシャフトを駆動する電磁コイルとを備
え、シャフトの変位に伴ってバルブ穴との間で画成され
る可変絞り部の開口面積を可変とする電磁比例流量制御
弁に適用する。
A first aspect of the present invention is directed to a valve hole that communicates a pressure source side and a load side, a shaft that is axially displaceable with respect to the valve hole, and a shaft that is axially movable. An urging spring and an electromagnetic coil that drives the shaft against the spring by a solenoid thrust force are provided, and the opening area of the variable throttle portion defined between the valve hole and the valve hole is changed according to the displacement of the shaft. Applies to electromagnetic proportional flow control valve.

【0013】そして、シャフトがバルブ穴に近づくのに
したがってシャフトのストロークに対する可変絞り部の
開口面積の減少割合が次第に小さくなる構成としたこと
を特徴とするものとした。
The reduction ratio of the opening area of the variable throttle portion with respect to the stroke of the shaft gradually decreases as the shaft approaches the valve hole.

【0014】第2の発明は、第1の発明において、バル
ブ穴に対峙するシャフトの先端形状を略球面状に形成し
たことを特徴とするものとした。
A second aspect of the invention is characterized in that, in the first aspect of the invention, the tip end of the shaft facing the valve hole is formed in a substantially spherical shape.

【0015】[0015]

【発明の作用および効果】第1の発明によると、大流量
側の作動領域にて電流値のわずかな変動で大きな流量変
動が生じ、流量制御の応答性を高められる一方、小流量
側の作動領域にて電流値の大きな変動でわずかな流量変
動が生じ、きめ細かな流量制御が行われる。この結果、
例えばパワーステアリング装置の微小なアシスト力の制
御が可能となり、ステアリングを中立に保つ適度なステ
アリングの剛性感が得られ、操舵フィーリングの向上が
はかられる。
According to the first aspect of the invention, in the operation area on the large flow rate side, a large flow rate fluctuation is caused by a slight change in the current value, and the responsiveness of the flow rate control is improved, while the operation on the small flow rate side is improved. In the region, a slight change in flow rate occurs due to a large change in current value, and fine flow rate control is performed. As a result,
For example, it becomes possible to control a slight assist force of the power steering device, obtain an appropriate sense of rigidity of the steering that keeps the steering neutral, and improve the steering feeling.

【0016】第2の発明によると、弁体部を略球面状に
形成することにより、所望の流量特性が得られ、きめ細
かな流量制御が可能となる。
According to the second aspect of the invention, by forming the valve body portion into a substantially spherical shape, desired flow rate characteristics can be obtained and fine flow rate control can be performed.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0018】図1は自動車のパワーステアリング装置の
油圧回路図である。これについて説明すると、電磁比例
流量制御弁32はポンプ31をパワーステアリングシス
テム36に接続している。電磁比例流量制御弁32の前
後差圧ΔP(=P1−P2)は圧力補償弁33によって略
一定に保たれる。電磁比例流量制御弁32に励磁電流I
が流れると、前後差圧ΔPに応じた開度調整が行われ、
その開度に応じた制御流量Qcが流れる。リリーフ弁3
5は回路の最高圧を決定するもので、安全弁として機能
し、オリフィス34は回路の応答性、安定性に寄与す
る。
FIG. 1 is a hydraulic circuit diagram of an automobile power steering apparatus. To explain this, the electromagnetic proportional flow control valve 32 connects the pump 31 to the power steering system 36. The differential pressure ΔP (= P 1 -P 2 ) across the electromagnetic proportional flow rate control valve 32 is kept substantially constant by the pressure compensation valve 33. An exciting current I is applied to the electromagnetic proportional flow control valve 32.
, The opening degree is adjusted in accordance with the front-rear differential pressure ΔP,
The control flow rate Qc flows according to the opening. Relief valve 3
5 determines the maximum pressure of the circuit, functions as a safety valve, and the orifice 34 contributes to the responsiveness and stability of the circuit.

【0019】このパワーステアリング装置では、非操舵
時に、パワーステアリングシステム36の負荷圧P2
低くなっているので、電磁比例流量制御弁32の上流側
の圧力も低く、この電磁比例流量制御弁32は最小開度
を保っている。パワーステアリングシステム36は、そ
の最小開度で決められた最小流量のみが供給され、パワ
ーステアリングシステム36に供給される制御流量を少
なくして、エネルギーロスを低減している。
In this power steering system, since the load pressure P 2 of the power steering system 36 is low during non-steering, the pressure on the upstream side of the electromagnetic proportional flow control valve 32 is also low. Keeps the minimum opening. The power steering system 36 is supplied with only the minimum flow rate determined by the minimum opening degree, and the control flow rate supplied to the power steering system 36 is reduced to reduce energy loss.

【0020】これに対して、操舵時には、パワーステア
リングシステム36の負荷圧P2が高くなるので、電磁
比例流量制御弁32がその開度を大きくする。パワース
テアリングシステム36は、電磁比例流量制御弁32の
開度に応じて制御された流量Qが供給され、必要とされ
るアシスト力を付与する。
On the other hand, at the time of steering, the load pressure P 2 of the power steering system 36 increases, so that the electromagnetic proportional flow rate control valve 32 increases its opening. The power steering system 36 is supplied with the flow rate Q controlled according to the opening degree of the electromagnetic proportional flow rate control valve 32, and gives a required assist force.

【0021】ところで、この種のパワーステアリング装
置にあっては、電磁比例流量制御弁32の小流量側で電
流値変動に対する制御流量Qcの変動を小さくして、ア
シスト力をきめ細かに調節したいという要求がある。
By the way, in this type of power steering device, there is a demand for reducing the fluctuation of the control flow rate Qc with respect to the fluctuation of the current value on the small flow side of the electromagnetic proportional flow control valve 32 to finely adjust the assist force. There is.

【0022】図2は、上記パワーステアリング装置の電
磁比例流量制御弁32に本発明を適用したものである。
以下、これについて説明するが、前記図5に示す従来例
と同一構成部には同一符号を付してその説明を省略す
る。
FIG. 2 shows the present invention applied to the electromagnetic proportional flow rate control valve 32 of the power steering device.
This will be described below, but the same components as those in the conventional example shown in FIG. 5 are designated by the same reference numerals and the description thereof will be omitted.

【0023】電磁比例流量制御弁32は、基本的には前
記従来例と同様に、バルブ穴16が開口するベース1
と、ベース1に対して軸受3,9を介して軸方向に変位
可能に支持されるシャフト2と、電磁コイル15のソレ
ノイド推力Fsolによってシャフト2を駆動するプラ
ンジャ6とを備える。
The electromagnetic proportional flow control valve 32 is basically the same as the above-mentioned conventional example, and the base 1 having the valve hole 16 opened.
And a shaft 2 supported by the base 1 via bearings 3 and 9 so as to be displaceable in the axial direction, and a plunger 6 for driving the shaft 2 by the solenoid thrust Fsol of the electromagnetic coil 15.

【0024】シャフト2はその先端に略球面状の弁体部
2aが形成され、この弁体部2aがバルブ穴16に挿入
され、弁体部2aとバルブ穴16の間との間で画成され
る可変絞り部22が形成される。シャフト2が軸方向に
変位するのに伴って、可変絞り部22の開口面積Avが
増減する。
The shaft 2 has a valve body 2a having a substantially spherical shape formed at the tip thereof, and the valve body 2a is inserted into the valve hole 16 to define a space between the valve body 2a and the valve hole 16. The variable aperture section 22 is formed. As the shaft 2 is displaced in the axial direction, the opening area Av of the variable diaphragm 22 increases or decreases.

【0025】そして本発明の要旨とするところである
が、弁体部2aを略球面状に形成し、シャフト2がバル
ブ穴16に近づくのにしたがってシャフト2のストロー
クに対する可変絞り部22の開口面積Avの減少割合が
次第に小さくなる構成とする。
As the gist of the present invention, the valve body portion 2a is formed into a substantially spherical shape, and as the shaft 2 approaches the valve hole 16, the opening area Av of the variable throttle portion 22 with respect to the stroke of the shaft 2 is increased. The rate of decrease is gradually reduced.

【0026】弁体部2aの断面は、略半円形に形成さ
れ、シャフト2の外周面2bと段差無く連続する。
The valve body 2a has a substantially semicircular cross section and is continuous with the outer peripheral surface 2b of the shaft 2 without a step.

【0027】以上のように電磁比例流量制御弁32は構
成されており、次に作用について説明する。
The electromagnetic proportional flow rate control valve 32 is constructed as described above, and its operation will be described below.

【0028】シャフト2に対して電磁コイル15のソレ
ノイド推力Fが閉弁方向に働き、スプリング13,14
のバネ力、可変絞り部22の前後差圧ΔPによる力、可
変絞り部22に発生する流体力が開弁方向に働き、これ
らの力がバランスする位置にシャフト2が移動し、これ
によって得られた可変絞り部22の開口面積Avおよび
可変絞り部22の前後差圧ΔPに比例した制御流量Qc
が流れる。
The solenoid thrust F of the electromagnetic coil 15 acts on the shaft 2 in the valve closing direction to cause the springs 13 and 14 to move.
Spring force, the force due to the differential pressure ΔP across the variable throttle portion 22, and the fluid force generated in the variable throttle portion 22 act in the valve opening direction, and the shaft 2 moves to a position where these forces are balanced. The control flow rate Qc proportional to the opening area Av of the variable throttle unit 22 and the differential pressure ΔP across the variable throttle unit 22.
Flows.

【0029】電磁コイル15に流れる励磁電流Iが増え
ると、ソレノイド推力Fが大きくなり、シャフト2がス
プリング13,14のバネ力に抗して図2において左方
向に変位する。これに伴って、可変絞り部22の開口面
積Avが小さくなり、制御流量Qcが減少し、パワース
テアリング装置のアシスト力が減少する。
When the exciting current I flowing through the electromagnetic coil 15 increases, the solenoid thrust F increases, and the shaft 2 is displaced leftward in FIG. 2 against the spring force of the springs 13 and 14. Along with this, the opening area Av of the variable throttle section 22 is reduced, the control flow rate Qc is reduced, and the assist force of the power steering device is reduced.

【0030】一方、電磁コイル15に流れる励磁電流I
が減ると、ソレノイド推力Fが小さくなり、シャフト2
がスプリング13,14のバネ力によって図2において
右方向に変位する。これに伴って、可変絞り部22の開
口面積Avが大きくなり、制御流量Qcが増加し、パワ
ーステアリング装置のアシスト力が増す。
On the other hand, the exciting current I flowing through the electromagnetic coil 15
Is reduced, the solenoid thrust F becomes smaller and the shaft 2
Is displaced to the right in FIG. 2 by the spring force of the springs 13 and 14. Along with this, the opening area Av of the variable throttle section 22 increases, the control flow rate Qc increases, and the assisting force of the power steering device increases.

【0031】図3は電磁コイル15の励磁電流Iとソレ
ノイド推力Fの関係を示す特性図である。これからわか
るように、電磁コイル15に流れる電流Iが増えるのに
したがって、ソレノイド推力Fは急速に立ち上がる特性
がある。これは、シャフト2が閉弁方向に移動するのに
応じてプランジャ6等に働く電磁コイル15の磁力が大
きくなるためである。
FIG. 3 is a characteristic diagram showing the relationship between the exciting current I of the electromagnetic coil 15 and the solenoid thrust F. As can be seen from the above, the solenoid thrust F has a characteristic of rising rapidly as the current I flowing through the electromagnetic coil 15 increases. This is because the magnetic force of the electromagnetic coil 15 acting on the plunger 6 and the like increases as the shaft 2 moves in the valve closing direction.

【0032】この対策として、本発明は、弁体部2aを
略球面状に形成し、シャフト2がバルブ穴16に近づく
のにしたがってシャフト2のストロークに対する可変絞
り部22の開口面積Avの減少割合が次第に小さくなる
構成とすることにより、小流量側の作動領域にてきめ細
かな流量制御が可能となる。
As a countermeasure against this, according to the present invention, the valve body portion 2a is formed into a substantially spherical shape, and as the shaft 2 approaches the valve hole 16, the reduction ratio of the opening area Av of the variable throttle portion 22 with respect to the stroke of the shaft 2 is reduced. By gradually reducing the flow rate, it becomes possible to finely control the flow rate in the operation region on the small flow rate side.

【0033】図4は電磁コイル15の励磁電流Iと制御
流量Qcの関係を示す特性図である。これからわかるよ
うに、電磁コイル15に流れる電流Iが増えるのにした
がって、制御流量Qcは緩やかに減少する特性がある。
つまり、大流量側の作動領域にて励磁電流Iが増えるの
に伴って制御流量Qcが一次的に比例して減少するが、
小流量側の作動領域にて励磁電流Iが増えるのに伴って
制御流量Qcが減少する度合いが次第に減る。
FIG. 4 is a characteristic diagram showing the relationship between the exciting current I of the electromagnetic coil 15 and the control flow rate Qc. As can be seen from this, as the current I flowing through the electromagnetic coil 15 increases, the control flow rate Qc gradually decreases.
That is, although the control flow rate Qc decreases linearly in proportion to the increase of the exciting current I in the operation area on the large flow rate side,
The degree of decrease in the control flow rate Qc gradually decreases as the exciting current I increases in the operation area on the small flow rate side.

【0034】これにより、大流量側の作動領域にて電流
値Iのわずかな変動で大きな流量変動が生じ、流量制御
の応答性を高められる一方、小流量側の作動領域にて電
流値Iの大きな変動でわずかな流量変動が生じ、きめ細
かな流量制御が行われる。この結果、パワーステアリン
グ装置の微小なアシスト力の制御が可能となり、ステア
リングを中立に保つ適度なステアリングの剛性感が得ら
れ、操舵フィーリングの向上がはかられる。
As a result, a large flow rate fluctuation occurs in the operating area on the large flow rate side even with a slight fluctuation of the current value I, and the response of the flow rate control is enhanced, while the current value I of the current value I increases in the operating area on the small flow rate side. A large fluctuation causes a slight fluctuation in the flow rate, and fine control of the flow rate is performed. As a result, it becomes possible to control a slight assist force of the power steering device, an appropriate steering rigidity feeling can be obtained to keep the steering neutral, and the steering feeling can be improved.

【0035】なお、弁体部2aの断面形状は、前記実施
の形態のように略半円形に限らず、略楕円形としたり、
あるいは先端側に略三角形のテーパ状の断面を合成して
も良い。
The cross-sectional shape of the valve body portion 2a is not limited to the substantially semicircular shape as in the above embodiment, but may be a substantially elliptical shape.
Alternatively, a substantially triangular tapered cross section may be combined on the tip side.

【0036】本発明は上記の実施の形態のようにパワー
ステアリング装置に用いられる電磁比例流量制御弁に限
らず、産業機械等に用いられる電磁比例流量制御弁に適
用しても良く、その技術的な思想の範囲内において種々
の変更がなしうることは明白である。
The present invention is not limited to the electromagnetic proportional flow rate control valve used in the power steering device as in the above-described embodiment, but may be applied to the electromagnetic proportional flow rate control valve used in industrial machines and the like, and its technical point. It is obvious that various modifications can be made within the scope of various ideas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示すパワーステアリング
装置の油圧回路図。
FIG. 1 is a hydraulic circuit diagram of a power steering device showing an embodiment of the present invention.

【図2】同じく電磁比例流量制御弁の断面図。FIG. 2 is a sectional view of the electromagnetic proportional flow rate control valve.

【図3】同じく励磁電流Iとソレノイド推力Fの関係を
示す特性図。
FIG. 3 is a characteristic diagram similarly showing a relationship between an exciting current I and a solenoid thrust F.

【図4】同じく励磁電流Iと制御流量Qcの関係を示す
特性図。
FIG. 4 is a characteristic diagram similarly showing a relationship between an exciting current I and a control flow rate Qc.

【図5】従来例を示す電磁比例流量制御弁の断面図。FIG. 5 is a sectional view of an electromagnetic proportional flow control valve showing a conventional example.

【図6】同じく励磁電流Iと制御流量Qcの関係を示す
特性図。
FIG. 6 is a characteristic diagram similarly showing a relationship between an exciting current I and a control flow rate Qc.

【符号の説明】[Explanation of symbols]

2 シャフト 2a 弁体部 13、14 スプリング 15 電磁コイル 16 バルブ穴 22 可変絞り部 32 電磁比例流量制御弁 2 shafts 2a Valve body 13, 14 spring 15 Electromagnetic coil 16 valve holes 22 Variable diaphragm 32 Electromagnetic proportional flow control valve

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3D033 FE03 3H052 AA01 BA03 BA35 CA01 DA01 EA16 3H106 DA05 DA23 DB02 DB12 DB23 DB32 DC02 DC17 DD03 EE36 GB06 KK03 KK17    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3D033 FE03                 3H052 AA01 BA03 BA35 CA01 DA01                       EA16                 3H106 DA05 DA23 DB02 DB12 DB23                       DB32 DC02 DC17 DD03 EE36                       GB06 KK03 KK17

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧力源側と負荷側を連通するバルブ穴と、 前記バルブ穴に対して軸方向に変位可能に支持されるシ
ャフトと、 前記シャフトを軸方向に付勢するスプリングと、 ソレノイド推力によって前記スプリングに抗して前記シ
ャフトを駆動する電磁コイルとを備え、 前記シャフトの変位に伴って前記バルブ穴との間で画成
される可変絞り部の開口面積を可変とする電磁比例流量
制御弁において、 前記シャフトが前記バルブ穴に近づくのにしたがって前
記シャフトのストロークに対する可変絞り部の開口面積
の減少割合が次第に小さくなる構成としたことを特徴と
する電磁比例流量制御弁。
1. A valve hole communicating between a pressure source side and a load side, a shaft supported so as to be axially displaceable with respect to the valve hole, a spring biasing the shaft in the axial direction, and a solenoid thrust. And an electromagnetic coil for driving the shaft against the spring by means of an electromagnetic proportional flow rate control for varying an opening area of a variable throttle portion defined between the valve hole and the shaft as the shaft is displaced. In the valve, an electromagnetic proportional flow rate control valve characterized in that a reduction rate of an opening area of a variable throttle portion with respect to a stroke of the shaft gradually decreases as the shaft approaches the valve hole.
【請求項2】前記バルブ穴に対峙する前記シャフトの先
端形状を略球面状に形成したことを特徴とする請求項1
に記載の電磁比例流量制御弁。
2. The tip end of the shaft facing the valve hole is formed in a substantially spherical shape.
An electromagnetic proportional flow control valve described in.
JP2001376987A 2001-12-11 2001-12-11 Electromagnetic proportional flow rate control valve Pending JP2003176877A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001376987A JP2003176877A (en) 2001-12-11 2001-12-11 Electromagnetic proportional flow rate control valve
DE10297516T DE10297516B4 (en) 2001-12-11 2002-12-09 Electromagnetic proportional flow control valve
PCT/JP2002/012848 WO2003050441A1 (en) 2001-12-11 2002-12-09 Solenoid-operated proportional flow control valve
US10/494,568 US8418723B2 (en) 2001-12-11 2002-12-09 Electromagnetic proportional flow rate control valve
CNB02824804XA CN100354561C (en) 2001-12-11 2002-12-09 Solenoid-operated proportional flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376987A JP2003176877A (en) 2001-12-11 2001-12-11 Electromagnetic proportional flow rate control valve

Publications (1)

Publication Number Publication Date
JP2003176877A true JP2003176877A (en) 2003-06-27

Family

ID=19185060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376987A Pending JP2003176877A (en) 2001-12-11 2001-12-11 Electromagnetic proportional flow rate control valve

Country Status (1)

Country Link
JP (1) JP2003176877A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050088581A (en) * 2004-03-02 2005-09-07 주식회사 만도 Pressure control valve for steering system of vehicle
JP2010121656A (en) * 2008-11-17 2010-06-03 Kayaba Ind Co Ltd Solenoid proportional throttle valve and power steering device
JP2010169181A (en) * 2009-01-22 2010-08-05 Kayaba Ind Co Ltd Electromagnetic proportional throttle valve, and power steering device
JP2011027195A (en) * 2009-07-27 2011-02-10 Kyb Co Ltd Electromagnetic proportional flow rate control valve and power steering device
JP2011033181A (en) * 2009-08-06 2011-02-17 Kyb Co Ltd Solenoid proportional control valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050088581A (en) * 2004-03-02 2005-09-07 주식회사 만도 Pressure control valve for steering system of vehicle
JP2010121656A (en) * 2008-11-17 2010-06-03 Kayaba Ind Co Ltd Solenoid proportional throttle valve and power steering device
JP2010169181A (en) * 2009-01-22 2010-08-05 Kayaba Ind Co Ltd Electromagnetic proportional throttle valve, and power steering device
JP2011027195A (en) * 2009-07-27 2011-02-10 Kyb Co Ltd Electromagnetic proportional flow rate control valve and power steering device
JP2011033181A (en) * 2009-08-06 2011-02-17 Kyb Co Ltd Solenoid proportional control valve

Similar Documents

Publication Publication Date Title
US8418723B2 (en) Electromagnetic proportional flow rate control valve
JP2533741B2 (en) Variable gain servo auxiliary device
EP1815302B1 (en) Electrically controlled pressure relief valve and system and method for controlling same
JP4293133B2 (en) solenoid valve
JP2003176877A (en) Electromagnetic proportional flow rate control valve
JPS6088283A (en) Flow-rate controller for power steering apparatus
JP3820273B2 (en) Hydraulic pump flow control valve
JP2953537B2 (en) Steering force control device for power steering device
JP2003185052A (en) Electromagnetic proportional flow rate control valve
JP3522618B2 (en) Flow control device
JP2010121656A (en) Solenoid proportional throttle valve and power steering device
JP4093886B2 (en) Flow control device
WO2003076252A1 (en) Flow control device for power steering
JP3238797B2 (en) Flow control valve
JP3994045B2 (en) Flow control device
JP5276540B2 (en) Electromagnetic proportional flow control valve and power steering device
JP2010169181A (en) Electromagnetic proportional throttle valve, and power steering device
JP2004306735A (en) Flow rate control device
JP5300822B2 (en) Pump device
JPS60226367A (en) Power steering apparatus
JP3522611B2 (en) Flow control device
JP2001153245A (en) Flow control device
JP3563114B2 (en) Flow control device
JP2002147642A (en) Solenoid valve
JP2019163699A (en) Pump unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212